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COM-202: Signal Processing

Chapter 2: Signal Processing and Vector Space



Overview:

m signal processing as geometry
m vectors and vector space
e inner product space

e bases

m subspace approximations



Introduction to vector space and linear algebra

You (most likely) already know and use the mechanics:

m “standard” (Euclidean) vectors, dot product
m matrices, determinants, transposition, matrix-vector multiplication
m change of basis, linear independence
What we can do for you:
m show you the practical (engineering) use of all that
m show you how general and useful this is

m help you start thinking in infinitely dimensional space



What is linear algebra



What is algebra

algebra is branch of mathematics in which arithmetical operations and formal manipulations
are applied to abstract symbols rather than specific numbers

[Britannica]



What is linear algebra

Linear algebra:

m focuses on linear operations (addition and scaling)
m operates on multidimensional entities called vectors and matrices

m defines a “world” called vector space that has an intuitive geometrical structure



Key ideas behind linear algebra

a vector can be “anything”

any vector can be expressed as a linear combination of fundamental building blocks
(aka basis vectors)

basis vectors define a coordinate space

the "amount” of each basis vector in a given vector is the scalar (numerical) value of the
corresponding coordinates in the space
and therefore:

coordinates are just tuples of numbers ([2 3.5 2 —0.8] T)

we can use standard linear algebra tools independently of the “true” nature of vectors



Example
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Analogy: LEGO

basic building block: g = [1 1 1]"



Analogy: LEGO

reshaping: x = [

o O b

O N O

] J

= O O
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Analogy: LEGO

combining: y = x & x
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Why use vector spaces in SP?

all types of signals can be represented as vectors
in a suitable vector space
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The unifying framework

m space of continuous-time bandlimited signals
(more on this later in the course!)

m space of discrete-time signals of length N
m space of discrete-time periodic signals of period N
m space of discrete-time, finite-energy signals

m etc.
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Main advantages

Math will be easier and signal properties will automatically apply to all signal spaces:

m we can select the “easiest” space to prove a result
m the Fourier Transform will be easy to understand
m and so will the proof of the sampling theorem
Vector space is the closest thing to an algorithmic framework for SP:
m most vectors can be thought of as simple arrays
m approximation and compression algorithms are simple applications of linear algebra

m low-dimensional intuition is super helpful
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Are you into data science?
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vector space



Let’s talk about Vector Spaces...

Some spaces should be very familiar:

m R? R3: Euclidean space, geometry

m RV, CN: linear algebra

Others perhaps not so much...

m (5(Z): space of square-summable infinite sequences

m L,([a, b]): space of square-integrable functions over an interval

yes, vectors can be functions!
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The space of square-summable infinite sequences /;(7)

2
x € [o(Z) = x> = X ez |xIn]|” < o0

this is exactly the space of finite energy infinite signals
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The space of square-integrable functions over an interval L,(][a, b])

x € Lo([a, b]) <= [P[x(t)]dt < o0
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Graphical representation of a vector
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Some spaces can be shown graphically...

R? x:[xo xl]

................................... 3.__

................................... o
x=[x x]

.................................. 1__ ,,

L L L LY L L L 1 L L L

I I i v i i i I i i i

Z4 23 2 1 1 2 3 4 5 6 7

.......... S O T S O SRR SRR
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Some spaces can be shown graphically...
R3: X = [Xo X1 X2]T

X2

X0



...but most spaces cannot

RN for N > 3 :

X = [Xo X1

XN—1
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Some spaces can be shown graphically...

Ly ([-1,1]) : x=x(t) eR, te[-1,1]

x = sin(wt)




...but most spaces cannot

f: C — C, analytic
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The three take-home lessons today

m vectors represent a wide variety of different objects
m vector space is defined by properties that do not depend on the nature of the vectors

m once you are in vector space, you can always use the same tools



Analogy for programmers: OOP

class Polygon:
def __init__(self, num_sides, side_len=1, x=0, y=0):
self .num_sides = num_sides
self.side_len side_len

self.center = [x, y]

def resize(self, factor):
self.side_len *= factor

def translate(self, x, y):
self.center[0] += x

self.center[1] +=y

def plot(self):



Analogy for programmers:

class Triangle(Polygon) :
def __init__(self):
super () . __init__(3)

class Square(Polygon):
def __init__(self):
super () .__init__(4)

OOP
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Vector space: operational definition

Ingredients:

m a set of vectors V

m a set of scalars (say C)

To have a vector space we need at least to be able to:

m resize vectors (scalar multiplication)

m combine vectors together (vector addition)



Vector space: the axioms

For x,y,z€ V and o, € C:
BX+y=y+Xx

= (x+y)+z=x+(y+2)

m30eV | x+0=0+x=x

mvxeV3I—x) | x+(—x)=0

m a(x+y)=ay+ax

m (a+ fB)x = ax+ px

m afx) = (af)x (field and scalar multiplications play well together)

ml x=x 1eC



Example: RV

X:[Xo X1 ... XN-—1

YZ[YO yi ..o Yn-1

These definition of scalar multiplication and vector addition fulfill the axioms:
ax = [OéXo axy ... C!X/\/_]_]

T
X+¥=[Xo+J/0 x1+yt ... XN—1‘|‘}/N—1]
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Scalar multiplication in R?

L L L L Fay L L L 1 L L L
I I i i A i i i I i i i

“4 43 2 1 i 2 3 4 5 6 71
.......... S O T S O SRR SRR
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Vector addition in R?

]T

X+y= [Xo-H/o X1+ y1

i I I L a I I j I I I
f T T 9 T T T T T T T
-4 =3 =2 -1 1 2 3 4 5 6 7
................................. L O O OOt SO PPN RO PO SPPRRUPE SUPPRRY



Example: [,[—1,1]

Vectors are now functions over [—1, 1]
x=x(t), te[-1,]1]
y=y(t), te[-1,1]

These definition of scalar multiplication and vector addition fulfill the axioms:

ax = ax(t)

x+y = x(t) +y(t)

33



Scalar multiplication in L,[—1, 1]

ax = ax(t)

x = sin(7t)
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Scalar multiplication in L,[—1, 1]

ax = ax(t)

NS

2| 1.5x = 1.5 sin(nt)




Addition in Ly[—1,1]

x+y=x(t) + y(t)

x = sin(nt)
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Addition in L;[—1,1]

x+y=x(t) + y(t)

y = 0.3 sin(257t)

o [ AAAAANAAANANAAN ANNANAAANANAN

VVVVVVVVV VVVVVVVVVVVV

x = sin(mt)




Addition in Ly[—1,1]

x+y=x(t)+ y(t)

MgV "

x +y =sin(nt) 4+ 0.3 sin(257t)

T

0



Vector space is kinda dull: we need something more

So far:

m the set of vectors V
m a set of scalars (say C)
m scalar multiplication

m vector addition

We need something to measure and compare:
inner product (aka dot product)
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inner product space



Inner product

() VxV=C
m measure of similarity between vectors

m inner product is zero? vectors are orthogonal (maximally different)
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Inner product space: the axioms

Given x,y,z € V and a € C:
m (x,a(y +2z)) = a(x,y) + a(x,z) (linearity in the second argument)

[ ) (conjugate symmetry)

(x,y)
(%, %)
(x, )

X,

]
v

(positive-semidefinte)

(y,x
0
] 0 x=0

ke

The norm (aka the “length” of a vector):

m definition [|x|| = 1/ (x,x)
m we can take the root because of axiom 3

m axiom 2 is necessary to ensure axiom 3 when the scalar field is C
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Word of the day: sesquilinear

From the axioms we can prove this:

(x,ay) = a(x,y)
(ax,y) = a”(x,y)

m usually, linearity is in the first argument

m our choice will make more sense later when we study the Fourier transform
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Inner product in CV

(x,y) = 3020 x*[nly[n]



Inner product in R?

(x,y) = xoy0 + x1y1

m not immediate to see why it's a measure of similarity

m easier to start with the norm
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The norm in R? (i.

I

e. Pythagoras’ theorem)

a I I I I I I I I
— T T T T T T T T
: 1 2 3 4 5 6 7 8
T S SO SO PP UUS SO POOL S PP UPTTS
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Inner product in R?

(x,y) = xoy0 + x1y1 = [[x[| [lyl| cosex
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Inner product as a measure of similarity

If two vectors have unit norm, ||x|| = |ly|| = 1, then (x,y) = cos«

Important cases for unit-norm vectors (easy to see in R? but valid for all types of vector
space!):

m-l<{xy <1
m when (x,y) = 1 vectors are aligned (maximally similar)

m when (x,y) = —1 vectors are pointing in opposite directions
(still maximally similar, but with a “flip”)
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Orthogonality

Orthogonality is one of the most powerful concepts in inner-product space:

m two nonzero vectors x and y are called orthogonal if (x,y) =0

m orthogonal vectors are maximally different (i.e. they have nothing in common)

m orthogonality is geometrically intuitive in low-dimensional Euclidean space
m “orthogonal” is Greek for “right angle”

m intuition helps us with the abstract concept of orthogonality
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Orthogonality in R?

(x,y) = xoy0 + x1y1 = [[x[| [lyl| cosex
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Inner product and orthogonality in functional spaces
Back to La[—1,1]; definition of inner product:

x=x(t), te[-1,]1]
y:y(t)7 te [_171]

let’s use our low-dimensional intuition to understand norm and orthogonality...
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The norm in Lp[—1,1]

x =sinmt (x,x) = ||x||? = f_llsin2(7rt)dt =1

-1 0 1

if x(t) was a voltage, the norm would measure the energy over the time interval [—1,1]
48



The norm in Lp[—1,1]

z=t |22 = [, 2 dt =2/3
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Normalizing a vector

Normalization ensures that the norm is equal to one:

y=2/|lz|l = /3/2t lyll>

=(3/2) [}, 2dt=1
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Inner product in L,[—1,1]

(x,y) = f_llx(t)y(t)dt = f_ll \/3/2tsin(mt)dt =a2 0.78 a2 cos(38.7°)

y=1/3/2t

x = sin(7t)
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Orthogonality in L,[—1, 1]

x,y from orthogonal subspaces: (x,y) =0

y =1 —|t|, symmetric

x = sin(7t), antisymmetric




Orthogonality in L,[—1, 1]

sinusoids with frequencies integer multiples of a fundamental

x = sin(4nt)
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Norm vs Distance

m inner product defines a norm: ||x|| = 1/ (x,x)

m norm defines a distance: d(x,y) = ||x — y]|
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Norm and distance in R?

IxIl = v/ %) = (/>3 + ¢ Iyl = V/{y.y) =

Y+ yE IIx—yll = (x0 —y0)? + (x1 — y1)?
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Distance in L,[—1, 1]: the Mean Square Error

Ix —y|[2 = [1, [x(t) = y(t)|? dt =2

x = sin(4rt)
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A familiar result

Pythagorean theorem:

Ix +yl

(x+y,x+y)
1|12+ [ly||* for x Ly

BOOK V1. PROP. XXXI. THEOR. 259

any Jfimilar  rectilinear
Jgures be fimilarly deferibed
on the fides of a right an-

| %
BT i s R
deferibed o the fide (mmrvmmmm) fib-
tending the right angle is equal to the

Jiom of the figures on the other fides.

From the right angle draw mmmmm perpendicular

[IITS T —

] (B. 6. pr. s)

- =3

(B. 6. pr. 20).

(B. 6. pr. 20).

Hence asssasts o — 2 e —
N |
but smssennss + = ceemmn}

From Euclid’'s elements by Oliver
Byrne (1810 - 1880)
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Caution: dangerous turns ahead

We want to make sure that the inner product is always well defined. Trouble spots:

m inner product of infinite-length vectors

m inner product of arbitrary functions

We will need to “restrict” the elements of a vector space
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fz(Z) vs C*

For infinite-length vectors the inner product is an infinite sum that may explode

o0

(x,y)= > xInlyn]

n=—o0

To ensure this doesn't happen we use ¢>(Z):

m vectors in l»(Z) are infinite-dimensional tuples

mx € (7)< ||x]|? =250 Ix4|2 < o0

n=—0o0

m elements of ¢»(Z) are known as finite-energy sequences
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((Z)

Exercise: consider the infinite-length vectors x and y whose elements are

0 n<0
Xp =
1/v/n n>0

_Jo n<0
Yn = 1/n n>0

and show that x & (>(Z) but y € ¢»(Z)
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L>([a, b])

Similarly, to ensure that (x,y) = fab x*(t)y(t) < oo, we define Ly([a, b]) as the space of
square-integrable functions over [a, b]:

b
x = x(t) € Ly([a, b]) & [x]? = / X(6) < oo

Example: x =1/t ¢ L»(][0, 1])
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Vector space and bases: providing structure

Key ideas:

m a basis is a coordinate system for a vector space
m every vector can be expressed as a linear combination of basis elements
m a vector space has infinitely many bases and we can move from one to the other

m certain special bases allow us to see more clearly the information contained in vectors



Basis

Given a vector space V/, a basis is a set of vectors {wy}x—01.. n-1€ V
such that any x € V' can be expressed as a linear combination

N—
X = oW g
k=0

[y

for a unique set of scalars ag,...,apn_1.
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The canonical R? basis
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The canonical R? basis

-k

x = 2eg + €1

€e;

€o
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Another R? basis

a1 = X1 — X2,

Q) = X2
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Another R? basis

Vo
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Not all pairs of vectors form a basis for R?...
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“Parallel” vectors are not a basis for R?

-k

X # 0180 + 281
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What about infinite-dimensional spaces?

o)
X = E Qe W

k=—o0
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A basis for (5(7Z)

€y

- O O O

Won, keZ
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What about functional vector spaces?

F(£) = cu hu(t)
k

72



A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F
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A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F
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A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F

73



A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F

73



A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F

F
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A basis for odd functions over [—1,1]

ZN 1 v
k=0 2k+1Vk>

Vi = vk (t) = sin(m(2k + 1)t),

te[-1,1]

1F

N = 150
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Bases: formal definition

Given:

m a vector space V

m a set of N vectors from V: W = {wy}x=01,. n—1

W is a basis for V if:

we can write for all x € V:
N_

X = aWwy, o €C
k=0

[y

the elements of W are linearly independent:

N—

[y

agwg =0 <~ a, =0, k=0,1,...

k=0

4



Bases: formal definition

Linear independence implies unique representation

N-1

X = Zakwk, a, € C
k=0

and the coefficients « are unique
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Special bases

Orthogonal basis:

(wg,wp) =0 for k # h

Orthonormal basis:

1 h=k

<Wk,Wh> :5[h—k] = {O h;& K

(we can always orthonormalize a basis via the Gram-Schmidt algorithm)
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Basis expansion

N—

X = Zakwk

k=0

[ay

how do we find the coefficients?

Orthonormal bases are the best:

Q) = <wk7 X>

v



Orthogonal change of basis

Start from a vector expressed in terms of a basis {wy}

=2
-

x
I

N—1
QW = E BkVh
h—0

x
Il

0

We want to express the same vector using a new orthonormal basis {v,}

=2
-

x = BkVh
0

>
Il
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Orthogonal change of basis matrix

N—1
Bh = (Va,X) = (v, Y QW)
k=0
N—1 N—1
= ap(Vp,Wi) = Qi Chk
k=0 k=0

Bo 0,0 1 ---  CON-1 ap

Bn-1 CN-10 CN—1,1 --- CN—1N-1] [QNn—1
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Change of basis: example

m canonical basis E = {ep,e; }

B X = g€y + a1e;

m new basis V' = {vg, v;} with
Vo = [cos@ sin 9] T
vi = [—sind cosG}T

m x = Bovo + B1v1
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Change of basis: example

m new basis is orthonormal;
the change of basis matrix is

Chk = (Vh, €k)

m new coefficients in compact form:

Bo| [ cos® sin@] [ag]
[51] - [— sinf cos@} [al] =Ra

m R is a 2D rotation matrix

m key property: RTR = |
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Orthonormal change of basis matrices

Orthonormal change of basis matrices are unitary:

clc=ccH =1

The superscript H denotes Hermitian transposition:

a b c a* d* g*
d e f| =|b* e" h*
g h i ct



Norm and energy

We saw that the square norm is a proxy for the “energy” of a vector.

H X = QW

m {wy} is an orthonormal basis

then
N—1
X[ = (x,x) = > oyl
k=0
—alla = [ag
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Parseval’s Theorem (conservation of energy)

If:
mx = Y akwy = 3350 Bevk ({wi), {k} orthonormal)
m 3 =Ca
then:
X[ = (18117
="
= (Ca)"(Ca)
= al'clca
= aHa

= [|ex]?
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Conservation of energy: example

8= [,60] _ [cos@ sind

51 —sinf cosf
m square norm in canonical basis: ||x|> = o + o3
m square norm in rotated basis: ||x||? = 83 + 37

m let's verify Parseval:

B+ B =p"p

J[a] = e

= (Ra)"(Rev)
=a’(R"R)a

T

=« a:ag—i—a%
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Finite basis example: Fourier basis

Claim: the set of N signals in CV
Wk[n]:ej%r"k, nk=01,...,.N—-1

is an orthogonal basis in CV,

More on this next week!
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Finite basis example: Haar basis

m orthonormal

m represents the signal information robustly
resilient against data loss

m easy to compute
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Haar basis: robust representation

1 coeff 5 coeff 10 coeff 15 coeff
1 1 1
0.5
0.0 1/7 0 I\_\_[J—\_\_\r 0 0
0L ; ; . . ; — L ; . 1L 5 ; :
[ 20 40 60 [ 20 40 60 0 20 0 60 0 20 40 60
20 coeff 25 coeff 30 coeff 35 coeff

:
?
:
:

20 40 60 o 20 40 60

c;
N
s
&
o
g
o]

20 a0 60
40 coeff 45 coeff 50 coeff 55 coeff

&

?
?
?
:

20 40 60 o] 20 40 60

o;
o

20 40 60 20 40 60

|



Haar basis: construction

m the coefficient for the first basis vector encodes the average value of the data

m the coefficient for the second basis vector encodes the difference between the averages of
the first half and the second half of the data

m every subsequent coefficient encodes a difference between the averages of alternating sets
of data points
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Haar basis N = 8

03 04 04
02
02 02
02
0.0 0.0 00
01 -0.2 -0.2
-0.2
-0.4 -0.4
0.0
o 2 4 6 o 2 4 6 o 2 a4 6 o 2 4 6
[ [ [ 05
0.0 0.0 0.0 00
-05 -0.5 -0.5 -05
o 2 4 6 o 2 4 6 o 2 a4 6 o 2 4 6

See the first python lab for code examples
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subspace approximations



Vector subspace

a subset of vectors closed under addition and scalar multiplication
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Example in Euclidean Space

intuition: R2 ¢ R3

€0
X+y

€

€
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Subspace of symmetric functions over [,[—1,1]

x = cos(mt) y = cos(57t) x +y, symmetric
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Subspaces have their own basis

1 0
€y — 0 e = |1
0 0

basis vector for the plane in R3
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Approximation

Problem:

m vector x € V

m subspace SC V

m approximate x with X € S

€

€1
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Least-Squares Approximation

® {Sk}k=01,. k1 orthonormal basis for S C V

m orthogonal projection:

>

I
X
L

<Sk7 X> Sk
0

>
Il

orthogonal projection is the “best” approximation over S
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Least-Squares Approximation: definition of “best”

m orthogonal projection has minimum-norm error (minimum-energy error):

argmin [|x —y|| = X
yeSs

m error is orthogonal to approximation (everything has been extracted):

(x —%, %) =0
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Least Squares Approximation
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Example: polynomial approximation

Pn[—1,1]: subspace of polynomials of degree N over the interval [—1,1]
m Py[-1,1] C Ly[-1,1]

mp=ag+at+... +aytV
m clearly Py[—1,1] is closed under addtion and scalar multiplication
m a self-evident, naive basis: s, = tX, k=0,1,..., N

m naive basis is not orthonormal
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Example: polynomial approximation

goal: approximate x =sint € Lp[—1,1] over P>[—1,1]

m build orthonormal basis from naive basis
m project x over the orthonormal basis
B compute approximation error

m compare to well-known Taylor approximation

100



Building an orthonormal basis

Gram-Schmidt orthonormalization procedure:

{sk} — {ui}

original set orthonormal set

Algorithmic procedure: at each step k
k—1
Ve =Sk — Z(un,sk> un
n=0

ue = ric/ el

101



Building an orthonormal basis

S1

So
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Building an orthonormal basis

S1

¢
s
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Building an orthonormal basis

/UO

S1

So
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Building an orthonormal basis

up

So
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Building an orthonormal basis

up

So
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Building an orthonormal basis

ug

L)

S1

So
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Building an orthonormal basis

Gram-Schmidt orthonormalization of the naive basis: {sx} — {ux}

u So—].
° l’o—So—l .S t2
2_
2 _
° [Irof* =2 o (ug,s0) = [1, 2/V2=2/3V2
b uO:rO/HrOHZ 1/2 o <U1 52>:f1 t3/\/§=0
S =t 7 -

ro =Sy — (2/3\/§)U0 =t — 1/3
Ir2|[> = 8/45

uy = /57832 — 1)

o (ug,s1) = 1 t/v2=0

e r =S5 =t

o [nl>=2/3

o up=1/3/2t
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Legendre polynomials

The Gram-Schmidt algorithm leads to an orthonormal basis for Py([—1,1])

Upg = 1/2
u; = \/3/21‘

u, = /5/8(3t%> — 1)

uz = ...
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Legendre Polynomials
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Orthogonal projection over P;[—1, 1]

1
ak = (ug,x) :/ uk(t) sint dt
-1

mag = (/1/2,sint) =0
m a1 = (\/3/2t,sint) ~ 0.7377
m ap = (\/5/8(3t> — 1),sint) =0
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Approximation

Using the orthogonal projection over P>[—1,1]:

sint — aqu; ~ 0.9035t

Using Taylor's series:

sint~ t
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Sine approximation

sint
t
0.9035¢
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Approximation error

m— |sint —t]
=== |sint — 0.9035¢|
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Error norm

Orthogonal projection over Pp[—1, 1]:

||'sint — a1 u|| = 0.0337

Taylor series:

||'sint — t|| =~ 0.0857
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Hilbert space



Hilbert Space — the ingredients:

a vector space: H(V,C)
an inner product: (-,-) : VxV = C

completeness

111



Completeness
limiting operations must yield vector space elements

Example of an incomplete space: the set of rational numbers

n

1 .
Xn:k,OHE@ but nll_}rT;oxn:egé@

X4
X5
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Signals in Hilbert Space

Why did we do all this?

m finite-length and periodic signals live in CN

m infinite-length signals live in (>(Z)

m different bases are different observation tools for signals

m subspace projections are useful in filtering and compression
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