
COM-202: Signal Processing

Chapter 2: Signal Processing and Vector Space

Overview:

signal processing as geometry

vectors and vector space

• inner product space

• bases

subspace approximations

1

Introduction to vector space and linear algebra

You (most likely) already know and use the mechanics:

“standard” (Euclidean) vectors, dot product

matrices, determinants, transposition, matrix-vector multiplication

change of basis, linear independence

What we can do for you:

show you the practical (engineering) use of all that

show you how general and useful this is

help you start thinking in infinitely dimensional space

2

What is linear algebra

3

What is algebra

algebra is branch of mathematics in which arithmetical operations and formal manipulations

are applied to abstract symbols rather than specific numbers

[Britannica]

4

What is linear algebra

Linear algebra:

focuses on linear operations (addition and scaling)

operates on multidimensional entities called vectors and matrices

defines a “world” called vector space that has an intuitive geometrical structure

5

Key ideas behind linear algebra

a vector can be “anything”

any vector can be expressed as a linear combination of fundamental building blocks
(aka basis vectors)

basis vectors define a coordinate space

the “amount” of each basis vector in a given vector is the scalar (numerical) value of the
corresponding coordinates in the space

and therefore:

coordinates are just tuples of numbers (
[

2 3.5 2 −0.8
]T

)

we can use standard linear algebra tools independently of the “true” nature of vectors
6

Example

R2 : x =
[

x0 x1
]T

0 1 2 3 4 5 6 7−1−2−3−4

0

−1

1

2

3

x =

[

4
2

]

= 4e0 + 2e1

e0

e1

7

Example

8

Analogy: LEGO

basic building block: g =
[

1 1 1
]T

9

Analogy: LEGO

reshaping: x =





4 0 0
0 2 0
0 0 1



 g

10

Analogy: LEGO

combining: y = x⊕ x

11

Why use vector spaces in SP?

all types of signals can be represented as vectors
in a suitable vector space

12

The unifying framework

space of continuous-time bandlimited signals
(more on this later in the course!)

space of discrete-time signals of length N

space of discrete-time periodic signals of period N

space of discrete-time, finite-energy signals

etc.

13

Main advantages

Math will be easier and signal properties will automatically apply to all signal spaces:

we can select the “easiest” space to prove a result

the Fourier Transform will be easy to understand

and so will the proof of the sampling theorem

Vector space is the closest thing to an algorithmic framework for SP:

most vectors can be thought of as simple arrays

approximation and compression algorithms are simple applications of linear algebra

low-dimensional intuition is super helpful

14

Are you into data science?

15

vector space

Let’s talk about Vector Spaces...

Some spaces should be very familiar:

R2,R3: Euclidean space, geometry

RN ,CN : linear algebra

Others perhaps not so much...

ℓ2(Z): space of square-summable infinite sequences

L2([a, b]): space of square-integrable functions over an interval

yes, vectors can be functions!

16

The space of square-summable infinite sequences ℓ2(Z)

x ∈ ℓ2(Z) ⇐⇒ ‖x‖2 =
∑

n∈Z

∣

∣x [n]
∣

∣

2
< ∞

this is exactly the space of finite energy infinite signals

17

The space of square-integrable functions over an interval L2([a, b])

x ∈ L2([a, b]) ⇐⇒
∫ b

a
|x(t)|2dt < ∞

18

Graphical representation of a vector

19

Some spaces can be shown graphically...

R2 : x =
[

x0 x1
]T

0 1 2 3 4 5 6 7−1−2−3−4

0

−1

1

2

3

x =
[

x0 x1
]T

20

Some spaces can be shown graphically...

R3 : x =
[

x0 x1 x2
]T

x0
x1

x2

x

21

...but most spaces cannot

RN for N > 3 : x =
[

x0 x1 . . . xN−1

]T

22

Some spaces can be shown graphically...

L2([−1, 1]) : x = x(t) ∈ R, t ∈ [−1, 1]

x = sin(πt)

−1 0 1

0

23

...but most spaces cannot

f : C → C, analytic

24

The three take-home lessons today

vectors represent a wide variety of different objects

vector space is defined by properties that do not depend on the nature of the vectors

once you are in vector space, you can always use the same tools

25

Analogy for programmers: OOP

class Polygon:

def __init__(self, num_sides, side_len=1, x=0, y=0):

self.num_sides = num_sides

self.side_len = side_len

self.center = [x, y]

def resize(self, factor):

self.side_len *= factor

def translate(self, x, y):

self.center[0] += x

self.center[1] += y

def plot(self):

...

26

Analogy for programmers: OOP

class Triangle(Polygon):

def __init__(self):

super().__init__(3)

...

class Square(Polygon):

def __init__(self):

super().__init__(4)

...

27

Vector space: operational definition

Ingredients:

a set of vectors V

a set of scalars (say C)

To have a vector space we need at least to be able to:

resize vectors (scalar multiplication)

combine vectors together (vector addition)

28

Vector space: the axioms

For x, y, z ∈ V and α, β ∈ C:

x+ y = y + x

(x+ y) + z = x+ (y + z)

∃ 0 ∈ V | x+ 0 = 0 + x = x

∀x ∈ V ∃(−x) | x+ (−x) = 0

α(x+ y) = αy + αx

(α+ β)x = αx+ βx

α(βx) = (αβ)x (field and scalar multiplications play well together)

1 · x = x 1 ∈ C

29

Example: RN

x =
[

x0 x1 . . . xN−1

]T

y =
[

y0 y1 . . . yN−1

]T

These definition of scalar multiplication and vector addition fulfill the axioms:

αx =
[

αx0 αx1 . . . αxN−1

]T

x+ y =
[

x0 + y0 x1 + y1 . . . xN−1 + yN−1

]T

30

Scalar multiplication in R2

αx =
[

αx0 αx1
]T

0 1 2 3 4 5 6 7−1−2−3−4

0

−1

1

2

3

x

1.5 x

31

Vector addition in R2

x+ y =
[

x0 + y0 x1 + y1
]T

0 1 2 3 4 5 6 7−1−2−3−4

0

−1

1

2

3

x

y

x+ y

32

Example: L2[−1, 1]

Vectors are now functions over [−1, 1]

x = x(t), t ∈ [−1, 1]

y = y(t), t ∈ [−1, 1]

These definition of scalar multiplication and vector addition fulfill the axioms:

αx = α x(t)

x+ y = x(t) + y(t)

33

Scalar multiplication in L2[−1, 1]

αx = α x(t)

x = sin(πt)

−1 0 1

−2

0

2

34

Scalar multiplication in L2[−1, 1]

αx = α x(t)

1.5 x = 1.5 sin(πt)

−1 0 1

−2

0

2

34

Addition in L2[−1, 1]

x+ y = x(t) + y(t)

x = sin(πt)

−1 0 1

−2

0

2

35

Addition in L2[−1, 1]

x+ y = x(t) + y(t)

x = sin(πt)

y = 0.3 sin(25πt)

−1 0 1

−2

0

2

35

Addition in L2[−1, 1]

x+ y = x(t) + y(t)

x+ y = sin(πt) + 0.3 sin(25πt)

−1 0 1

−2

0

2

35

Vector space is kinda dull: we need something more

So far:

the set of vectors V

a set of scalars (say C)

scalar multiplication

vector addition

We need something to measure and compare:
inner product (aka dot product)

36

inner product space

Inner product

〈·, ·〉 : V × V → C

measure of similarity between vectors

inner product is zero? vectors are orthogonal (maximally different)

37

Inner product space: the axioms

Given x, y, z ∈ V and α ∈ C:

〈x, α(y + z)〉 = α〈x, y〉 + α〈x, z〉 (linearity in the second argument)

〈x, y〉 = 〈y, x〉∗ (conjugate symmetry)

〈x, x〉 ≥ 0 (positive-semidefinte)

〈x, x〉 = 0 ⇔ x = 0

The norm (aka the “length” of a vector):

definition ‖x‖ =
√

〈x, x〉

we can take the root because of axiom 3

axiom 2 is necessary to ensure axiom 3 when the scalar field is C

38

Word of the day: sesquilinear

From the axioms we can prove this:

〈x, αy〉 = α〈x, y〉
〈αx, y〉 = α∗〈x, y〉

usually, linearity is in the first argument

our choice will make more sense later when we study the Fourier transform

39

Inner product in CN

〈x, y〉 =
∑N−1

n=0 x∗[n]y [n]

40

Inner product in R2

x =
[

x0 x1
]T

y =
[

y0 y1
]T

〈x, y〉 = x0y0 + x1y1

not immediate to see why it’s a measure of similarity

easier to start with the norm

41

The norm in R2 (i.e. Pythagoras’ theorem)

〈x, x〉 = x20 + x21 = ‖x‖2

0 1 2 3 4 5 6 7 8−1

0

−1

1

2

3

4

x‖x‖

42

Inner product in R2

〈x, y〉 = x0y0 + x1y1 = ‖x‖ ‖y‖ cosα

0 1 2 3 4 5 6 7 8−1

0

−1

1

2

3

4

x

y

α

43

Inner product as a measure of similarity

If two vectors have unit norm, ‖x‖ = ‖y‖ = 1, then 〈x, y〉 = cosα

Important cases for unit-norm vectors (easy to see in R2 but valid for all types of vector
space!):

−1 ≤ 〈x, y〉 ≤ 1

when 〈x, y〉 = 1 vectors are aligned (maximally similar)

when 〈x, y〉 = −1 vectors are pointing in opposite directions
(still maximally similar, but with a “flip”)

44

Orthogonality

Orthogonality is one of the most powerful concepts in inner-product space:

two nonzero vectors x and y are called orthogonal if 〈x, y〉 = 0

orthogonal vectors are maximally different (i.e. they have nothing in common)

orthogonality is geometrically intuitive in low-dimensional Euclidean space

“orthogonal” is Greek for “right angle”

intuition helps us with the abstract concept of orthogonality

45

Orthogonality in R2

〈x, y〉 = x0y0 + x1y1 = ‖x‖ ‖y‖ cosα

x

y

α = π/2 〈x, y〉 = 0

46

Inner product and orthogonality in functional spaces

Back to L2[−1, 1]; definition of inner product:

x = x(t), t ∈ [−1, 1]

y = y(t), t ∈ [−1, 1]

〈x, y〉 =
∫ 1

−1
x∗(t)y(t) dt

let’s use our low-dimensional intuition to understand norm and orthogonality...

47

The norm in L2[−1, 1]

x = sinπt 〈x, x〉 = ‖x‖2 =
∫ 1
−1 sin

2(πt)dt = 1

−1 0 1

0

if x(t) was a voltage, the norm would measure the energy over the time interval [−1, 1]
48

The norm in L2[−1, 1]

z = t ‖z‖2 =
∫ 1
−1 t

2 dt = 2/3

−1 0 1

−1

0

1

49

Normalizing a vector

Normalization ensures that the norm is equal to one:

y = z/‖z‖ =
√

3/2 t ‖y‖2 = (3/2)
∫ 1
−1 t

2 dt = 1

−1 0 1

−1

0

1

50

Inner product in L2[−1, 1]

〈x, y〉 =
∫ 1
−1 x(t)y(t)dt =

∫ 1
−1

√

3/2t sin(πt)dt =≈ 0.78 ≈ cos(38.7◦)

x = sin(πt)

y =
√

3/2t

−1 0 1

−1

0

1

51

Orthogonality in L2[−1, 1]

x, y from orthogonal subspaces: 〈x, y〉 = 0

x = sin(πt), antisymmetric

y = 1− |t|, symmetric

−1 0 1

0

52

Orthogonality in L2[−1, 1]

sinusoids with frequencies integer multiples of a fundamental

x = sin(4πt)

y = sin(5πt)

−1 0 1

0

53

Norm vs Distance

inner product defines a norm: ‖x‖ =
√

〈x, x〉

norm defines a distance: d(x, y) = ‖x− y‖

54

Norm and distance in R2

‖x‖ =
√

〈x, x〉 =
√

x20 + x21 ‖y‖ =
√

〈y, y〉 =
√

y20 + y21 ‖x− y‖ =
√

(x0 − y0)2 + (x1 − y1)2

‖x‖

‖y‖
‖x− y‖

55

Distance in L2[−1, 1]: the Mean Square Error

‖x− y‖2 =
∫ 1
−1 |x(t)− y(t)|2 dt = 2

x = sin(4πt)

y = sin(5πt)

−1 0 1

−2

0

2

56

A familiar result

Pythagorean theorem:

‖x+ y‖2 = 〈x+ y, x + y〉

= ‖x‖2 + ‖y‖2 for x ⊥ y

From Euclid’s elements by Oliver
Byrne (1810 - 1880)

57

Caution: dangerous turns ahead

We want to make sure that the inner product is always well defined. Trouble spots:

inner product of infinite-length vectors

inner product of arbitrary functions

We will need to “restrict” the elements of a vector space

58

ℓ2(Z) vs C∞

For infinite-length vectors the inner product is an infinite sum that may explode

〈x, y〉 =
∞
∑

n=−∞

x∗[n]y [n]

To ensure this doesn’t happen we use ℓ2(Z):

vectors in ℓ2(Z) are infinite-dimensional tuples

x ∈ ℓ2(Z) ⇔ ‖x‖2 =
∑

∞

n=−∞
|xn|2 < ∞

elements of ℓ2(Z) are known as finite-energy sequences

59

ℓ2(Z)

Exercise: consider the infinite-length vectors x and y whose elements are

xn =

{

0 n ≤ 0

1/
√
n n > 0

yn =

{

0 n ≤ 0

1/n n > 0

and show that x 6∈ ℓ2(Z) but y ∈ ℓ2(Z)

60

L2([a, b])

Similarly, to ensure that 〈x, y〉 =
∫ b

a
x∗(t)y(t) < ∞, we define L2([a, b]) as the space of

square-integrable functions over [a, b]:

x = x(t) ∈ L2([a, b]) ⇔ ‖x‖2 =

∫ b

a

|x(t)|2 < ∞

Example: x = 1/t 6∈ L2([0, 1])

61

bases

Vector space and bases: providing structure

Key ideas:

a basis is a coordinate system for a vector space

every vector can be expressed as a linear combination of basis elements

a vector space has infinitely many bases and we can move from one to the other

certain special bases allow us to see more clearly the information contained in vectors

62

Basis

Given a vector space V , a basis is a set of vectors {wk}k=0,1,...,N−1 ∈ V

such that any x ∈ V can be expressed as a linear combination

x =

N−1
∑

k=0

αkwk

for a unique set of scalars α0, . . . , αN−1.

63

The canonical R2 basis

[

x1
x2

]

= x1

[

1
0

]

+ x2

[

0
1

]

e0 =

[

1
0

]

e1 =

[

0
1

]

64

The canonical R2 basis

x =

[

2
1

]

x = 2e0 + e1

0 1 2−1

0

−1

1

2

x

e0

e1

65

Another R2 basis

[

x1
x2

]

= α1

[

1
0

]

+ α2

[

1
1

]

v0 =

[

1
0

]

v1 =

[

1
1

]

α1 = x1 − x2, α2 = x2

66

Another R2 basis

x =

[

2
1

]

x = v0 + v1

0 1 2−1

0

−1

1

2

x

v0

v1

67

Not all pairs of vectors form a basis for R2...

g0 =

[

1
0

]

g1 =

[

−1
0

]

[

x1
x2

]

6= α1

[

1
0

]

+ α2

[

−1
0

]

whenever x2 6= 0

68

“Parallel” vectors are not a basis for R2

x =

[

2
1

]

x 6= α1g0 + α2g1

0 1 2−1

0

−1

1

2

x

g0g1

69

What about infinite-dimensional spaces?

x =
∞
∑

k=−∞

αk wk

70

A basis for ℓ2(Z)

ek =





























...
0
0
1
0
0
0
...





























k-th position, k ∈ Z

71

What about functional vector spaces?

f (t) =
∑

k

αk hk(t)

72

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 0

−1 0 1

−1

0

1

73

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 1

−1 0 1

−1

0

1

73

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 2

−1 0 1

−1

0

1

73

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 10

−1 0 1

−1

0

1

73

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 50

−1 0 1

−1

0

1

73

A basis for odd functions over [−1, 1]

∑N
k=0

1
2k+1vk , vk = vk(t) = sin(π(2k + 1)t), t ∈ [−1, 1]

N = 150

−1 0 1

−1

0

1

73

Bases: formal definition

Given:

a vector space V

a set of N vectors from V : W = {wk}k=0,1,...,N−1

W is a basis for V if:

1 we can write for all x ∈ V :

x =

N−1
∑

k=0

αkwk , αk ∈ C

2 the elements of W are linearly independent:

N−1
∑

k=0

αkwk = 0 ⇐⇒ αk = 0, k = 0, 1, . . . ,N − 1

74

Bases: formal definition

Linear independence implies unique representation

x =
N−1
∑

k=0

αkwk , αk ∈ C

and the coefficients αk are unique

75

Special bases

Orthogonal basis:

〈wk ,wh〉 = 0 for k 6= h

Orthonormal basis:

〈wk ,wh〉 = δ[h − k] =

{

1 h = k

0 h 6= k

(we can always orthonormalize a basis via the Gram-Schmidt algorithm)

76

Basis expansion

x =

N−1
∑

k=0

αkwk

how do we find the coefficients?

Orthonormal bases are the best:

αk = 〈wk , x〉

77

Orthogonal change of basis

Start from a vector expressed in terms of a basis {wk}

x =
N−1
∑

k=0

αkwk =
N−1
∑

h=0

βkvh

We want to express the same vector using a new orthonormal basis {vk}

x =

N−1
∑

h=0

βkvh

78

Orthogonal change of basis matrix

βh = 〈vh, x〉 = 〈vh,
N−1
∑

k=0

αkwk〉

=
N−1
∑

k=0

αk〈vh,wk〉 =
N−1
∑

k=0

αk ch,k .







β0
...

βN−1






=







c0,0 c0,1 . . . c0,N−1
...

cN−1,0 cN−1,1 . . . cN−1,N−1













α0
...

αN−1






= Cα

79

Change of basis: example

canonical basis E = {e0, e1}

x = α0e0 + α1e1

new basis V = {v0, v1} with

v0 =
[

cos θ sin θ
]T

v1 =
[

− sin θ cos θ
]T

x = β0v0 + β1v1

0 1 2−1

0

−1

1

2

x

e0

e1

θ
v0

v1

80

Change of basis: example

new basis is orthonormal;
the change of basis matrix is

chk = 〈vh, ek〉

new coefficients in compact form:

[

β0
β1

]

=

[

cos θ sin θ
− sin θ cos θ

] [

α0

α1

]

= Rα

R is a 2D rotation matrix

key property: RTR = I

0 1 2−1

0

−1

1

2

x

v(0)

v(1)

81

Orthonormal change of basis matrices

Orthonormal change of basis matrices are unitary:

CHC = CCH = I

The superscript H denotes Hermitian transposition:





a b c

d e f

g h i





H

=





a∗ d∗ g∗

b∗ e∗ h∗

c∗ f ∗ i∗





82

Norm and energy

We saw that the square norm is a proxy for the “energy” of a vector.
If

x =
N−1
∑

k=0

αkwk

{wk} is an orthonormal basis

then

‖x‖2 = 〈x, x〉 =
N−1
∑

k=0

|αk |2 = ‖α‖2

= αHα =
[

α∗

0 . . . α∗

N−1

]







α0
...

αN−1







83

Parseval’s Theorem (conservation of energy)

If:

x =
∑N−1

k=0 αkwk =
∑N−1

k=0 βkvk ({wk}, {vk} orthonormal)

β = Cα

then:

‖x‖2 = ‖β‖2

= βHβ

= (Cα)H(Cα)

= αHCHCα

= αHα

= ‖α‖2

84

Conservation of energy: example

β =

[

β0
β1

]

=

[

cos θ sin θ
− sin θ cos θ

] [

α0

α1

]

= Rα

square norm in canonical basis: ‖x‖2 = α2
0 + α2

1

square norm in rotated basis: ‖x‖2 = β2
0 + β2

1

let’s verify Parseval:

β2
0 + β2

1 = βTβ

= (Rα)T (Rα)

= αT (RTR)α

= αTα = α2
0 + α2

1

85

Finite basis example: Fourier basis

Claim: the set of N signals in CN

wk [n] = e j
2π
N
nk , n, k = 0, 1, . . . ,N − 1

is an orthogonal basis in CN .

More on this next week!

86

Finite basis example: Haar basis

orthonormal

represents the signal information robustly
resilient against data loss

easy to compute

87

Haar basis: robust representation

88

Haar basis: construction

the coefficient for the first basis vector encodes the average value of the data

the coefficient for the second basis vector encodes the difference between the averages of
the first half and the second half of the data

every subsequent coefficient encodes a difference between the averages of alternating sets
of data points

89

Haar basis N = 8

See the first python lab for code examples

90

subspace approximations

Vector subspace

a subset of vectors closed under addition and scalar multiplication

91

Example in Euclidean Space

intuition: R2 ⊂ R3

e0
e1

e2

x+ y

92

Subspace of symmetric functions over L2[−1, 1]

−1 0 1

−2

0

2

x = cos(πt) y = cos(5πt) x+ y, symmetric

93

Subspaces have their own basis

e0 =





1
0
0



 e1 =





0
1
0





basis vector for the plane in R3

94

Approximation

Problem:

vector x ∈ V

subspace S ⊆ V

approximate x with x̂ ∈ S

e0
e1

e2x

x̂
95

Least-Squares Approximation

{sk}k=0,1,...,K−1 orthonormal basis for S ⊆ V

orthogonal projection:

x̂ =

K−1
∑

k=0

〈sk , x〉 sk

orthogonal projection is the “best” approximation over S

96

Least-Squares Approximation: definition of “best”

orthogonal projection has minimum-norm error (minimum-energy error):

argmin
y∈S

‖x− y‖ = x̂

error is orthogonal to approximation (everything has been extracted):

〈x− x̂, x̂〉 = 0

97

Least Squares Approximation

x

s

x− x̂

x̂

98

Example: polynomial approximation

PN [−1, 1]: subspace of polynomials of degree N over the interval [−1, 1]

PN [−1, 1] ⊂ L2[−1, 1]

p = a0 + a1t + . . .+ aNt
N

clearly PN [−1, 1] is closed under addtion and scalar multiplication

a self-evident, naive basis: sk = tk , k = 0, 1, . . . ,N

naive basis is not orthonormal

99

Example: polynomial approximation

goal: approximate x = sin t ∈ L2[−1, 1] over P2[−1, 1]

build orthonormal basis from naive basis

project x over the orthonormal basis

compute approximation error

compare to well-known Taylor approximation

100

Building an orthonormal basis

Gram-Schmidt orthonormalization procedure:

{sk} {uk}
original set orthonormal set

Algorithmic procedure: at each step k

1 rk = sk −
k−1
∑

n=0

〈un, sk〉un

2 uk = rk/‖rk‖

101

Building an orthonormal basis

s1

s0

102

Building an orthonormal basis

s1

s0
r0

102

Building an orthonormal basis

s1

s0

u0

102

Building an orthonormal basis

s1

s0

u0
〈u0, s1〉u0

102

Building an orthonormal basis

s1

s0

u0

r1

102

Building an orthonormal basis

s1

s0

u0

u1

102

Building an orthonormal basis

Gram-Schmidt orthonormalization of the naive basis: {sk} → {uk}

s0 = 1

• r0 = s0 = 1

• ‖r0‖2 = 2

• u0 = r0/‖r0‖ =
√

1/2

s1 = t

• 〈u0, s1〉 =
∫ 1

−1
t/
√
2 = 0

• r1 = s1 = t

• ‖r1‖2 = 2/3

• u1 =
√

3/2 t

s2 = t2

• 〈u0, s2〉 =
∫ 1

−1
t2/

√
2 = 2/3

√
2

• 〈u1, s2〉 =
∫ 1

−1
t3/

√
2 = 0

• r2 = s2 − (2/3
√
2)u0 = t2 − 1/3

• ‖r2‖2 = 8/45

• u2 =
√

5/8(3t2 − 1)

103

Legendre polynomials

The Gram-Schmidt algorithm leads to an orthonormal basis for PN([−1, 1])

u0 =
√

1/2

u1 =
√

3/2 t

u2 =
√

5/8(3t2 − 1)

u3 = . . .

104

Legendre Polynomials

-1 0 1−1 0 1

−2

−1

0

1

2

105

Orthogonal projection over P2[−1, 1]

αk = 〈uk , x〉 =
∫ 1

−1
uk(t) sin t dt

α0 = 〈
√

1/2, sin t〉 = 0

α1 = 〈
√

3/2 t, sin t〉 ≈ 0.7377

α2 = 〈
√

5/8(3t2 − 1), sin t〉 = 0

106

Approximation

Using the orthogonal projection over P2[−1, 1]:

sin t → α1u1 ≈ 0.9035 t

Using Taylor’s series:

sin t ≈ t

107

Sine approximation

sin t
t

0.9035t

−1 0 1

−1

0

1

108

Approximation error

| sin t − t|
| sin t − 0.9035t|

−1 0 1
0

109

Error norm

Orthogonal projection over P2[−1, 1]:

‖ sin t − α1 u1‖ ≈ 0.0337

Taylor series:

‖ sin t − t‖ ≈ 0.0857

110

Hilbert space

Hilbert Space – the ingredients:

1 a vector space: H(V ,C)

2 an inner product: 〈·, ·〉 : V × V → C

3 completeness

111

Completeness

limiting operations must yield vector space elements

Example of an incomplete space: the set of rational numbers

xn =

n
∑

k=0

1

k!
∈ Q but lim

n→∞

xn = e 6∈ Q

0 1 3x1 = 2 x2 x3

x4
x5

112

Signals in Hilbert Space

Why did we do all this?

finite-length and periodic signals live in CN

infinite-length signals live in ℓ2(Z)

different bases are different observation tools for signals

subspace projections are useful in filtering and compression

113

