Chapter 2

Signal processing meets vector space

In the previous chapter we already started to classify signals according to their mathemat-
ical properties by discriminating, for instance, between finite- and infinite-length entities.
As we progress in the course, we will encounter several more types of signal, both in
discrete and in continuous time but, rather than trying to create a complex taxonomy,
in this chapter we will show how the concept of vector space provides an ideal frame-
work to describe and analyze signals irrespective of the details inherent to their type or
category.

2.1 Euclidean Geometry and Vector Space

Euclidean geometry is a straightforward idealization of the physical space that we expe-
rience with our senses and therefore the concepts of length, angle, translation or scaling
require no formal explanation. In this section we will show how Euclidean space can be
mapped to a vector space of real-valued tuples and, consequently, how the properties of
these vectors can be described in terms of standard geometrical constructs. The idea is
to associate the key ingredients of vector space to intuitive geometrical concepts before
generalizing them to the more abstract vector spaces that we will use later.

2.1.1 The Euclidean Plane
The vectors. Consider a vector x defined as a pair of real numbers:
X = ["0] . x0,x1 ER; 2.1)

we call the set of all such vectors R2.

Consider now the Euclidean plane, equipped with a Cartesian reference system as in
Figure. Each point on the plane is uniquely identified by a pair of real-valued coordinates
on the two reference axes, and therefore we can associate any point on the plane to a
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Figure 2.1: Graphical representation of a vector in R,
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Figure 2.2: Vector addition in R?

vector in R2. The standard graphical representation of such a vector is an arrow that from
the origin (i.e. the point with coordinates! [0 0]7) reaches the point with coordinates
[xo x1]7, as in Figure 2.1.

Define now the sum of two vectors in R? like so:

x+y= "+ =

X1 n
although we could have invented a different “recipe” for addition, this particular one
makes a lot of sense since it corresponds to a translation of y by x: geometrically, we place

y at the end of x and we connect the origin to the endpoint of the joined vectors as in
Figure 2.2. This is the classic parallelogram rule for vector addition.

X0 + Yo

; 2.2
*1+ 1 (2.2)

Similarly, define the scalar multiplication by a scalar @ € R as

axgp
axq

ax = ; (2.3)

again, this makes geometrical sense since it corresponds to changing the “size” of the
vector, as in Figure 2.3. Given these definitions for sum and scalar multiplication, it is
easy to verify that they possess all the nice properties we expect them to have, including

1The superscript T indicates transposition so that [0 0]” is a column vector.
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Figure 2.3: Scalar multiplication in R?

distributivity, associativity and so on. We will formalize all this later. Multiple vectors
can be joined together in linear combinations of the form:

N
y= Z QX (2.4)
n=0

where the subscript, when applied to a boldface symbol, indicates the ordinal number of
an item in a given set of vectors.

Norm, similarity and distance. We said that scalar multiplication changes the “size” of
a vector but we haven’t defined a way to quantify said size. Once again, by looking at
the geometric interpretation of R?, the natural choice is using the length of the arrow that
represents the vector; that is commonly called the norm and is represented by the symbol
|| - ||. From Figure 2.1, using Pythagoras Theorem, it’s easy to see that

lIx]| = G + 27 (2.5)

Consider now the problem of estimating the degree of similarity between two vectors;
if we start with vectors of equal norm, the only thing left to compare is their directions
or, in other words, the angle that they form. If the angle is small, the vectors will be
basically oriented equally and almost interchangeable; at the other extreme, if they form
a right angle, they will be maximally dissimilar in the sense that the second vector shares
no directionality component with the first. The inner product of two vectors in R? is a
function from R? x R? to R and it is defined as:

(X, y) = xoyo + X1Y1. (2.6)

Although the definition is not instantly intuitive, the following properties will help: first
of all, again by invoking Pythagoras, we can see that

x,x) = [IxII’ (2.7)
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Figure 2.4: Angle between vectors in R,

namely, a vector’s self inner product is equal to the square of the norm as defined in (2.5).
Secondly, using basic trigonometry, we can rewrite the inner product as

o y) = lIxIHlyll cos € (2.8)

where 0 is the angle between x and y as in Figure 2.4. The inner product as defined above,
therefore, is a qualitative measure of similarity between vectors. Vectors forming a right
angle, that is, vectors that are maximally dissimilar, will have an inner product of zero.
Such vectors are called orthogonal.

Finally, for a quantitative measure of how far apart two vectors are, we can use the norm
of their difference to compute the distance between vectors as

d(x,y) = Ix-yl; (2.9)
by using the definition of the norm in terms of the inner product, we have

Ix—ylI*=(x-y,x-y)
={(x,x) +{y,y) — 2(x,y)
= |IxII* + llyll* - 2(x, y)

which, when x and y are orthogonal, simplifies to Pythagoras theorem:

Ix=yl* = IxI* + llyl>  forx Ly (2.10)

Bases and projections. Consider the two vectors

1
o=,

obviously, for any vector in R? we can write:

. 6= [‘1’] (2.11)

X = [io] = x0 &0 + X1 01 (2.12)
1
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Figure 2.5: (a) canonical basis in R2: (b) rotated orthonormal basis; (c) non-orthogonal basis; (d) not a basis.

The fact that any vector in R? can be expressed as a linear combination of 6 and §; makes
the set {8g, &1} a basis for R?. This basis is also particularly good since its elements have
unit norm and are orthogonal, that is, they form an orthonormal basis; if we look at the
way we have been drawing vectors on the plane, as exemplified in Figure 2.5-(a), we can
see that the Cartesian reference grid uses 6p and 61 as the units on the horizontal and
vertical axis, respectively. For this particular basis, the coefficients in the expansion (2.12)
coincide with the elements of the vector; this unique fact gives {8¢, 01} the prestigious
title of canonical basis.

There is however an infinity of other bases that can be used for R2. For instance, any
rotation by an angle 0 of the canonical basis is also an orthonormal basis whose elements
are

cos 0 —sin6
o= [sin 6] ’ = [ cos 0 ] (2.13)

and the grid they induce on R? is shown in Figure 2.5-(b). Note that a basis need not be
orthonormal; for instance the vectors

So = [(1)] , 81 = [ﬂ (2.14)

from a valid basis for R? and they induce the non-rectangular grid shown in Figure 2.5-(c).
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On the other hand, the vectors
1 -1
ko = [0] p ki = [ 0 ] (2.15)

(Figure 2.5-(d)) do not form a basis for R? since any linear combination will necessarily
yield a point on the horizontal axis (the second element of the resulting vector will always
be zero). Stated differently, the two vectors are not linearly independent.

Consider a vector x in the canonical basis and pick new basis {wy, w1}; how can we find
the coefficients that express x in the new basis? In the Euclidean plane (and in Euclidean
space in general), we can always expand the equation

AOWo + X1 W1 =X (2.16)

by writing out the vector elements explicitly and solving for a1 and a;:

Wo,0 Wo,1| |A0| _ [X0 (2.17)
w10 Wi |21 X1
(we use the notation w,, ,, to indicate the m-th element of vector w,). For instance, looking
at Figure 2.5-(c) and given x = [3 2]T we have

so0 So1f|ao| _ (1 1f|ao| _ |3

[51,0 S11]| |1 _[0 1| |aq _H (2.18)
so that

x=1sy+2s1. (2‘19)

If the new basis is orthonormal, however, we know that
(Wi, wi) = 0[h = kJ; (2.20)

therefore, if we take the left? inner product of both sides in (2.16) with wy and wy in turn,
we can obtain directly:

ap = <W0, X> (2.21)
a1 = (W1, X) (2.22)

For instance, looking at Figure 2.5-(b) where the rotation angle is 6 = arctan(2/3), we
have

ap = (rg,x) =3cos 6 + 2sin 6 ~ 3.46 (2.23)
a1 = (r;,x) = -3sinf +2cos 6 =1 (2.24)

2We use the left inner product because it mirrors the order of the operands when the change of basis is
expressed as a matrix-vector multiplications as in (2.17). The order is of course irrelevant when we operate
over the field of reals, since in that case the inner product is commutative; over the field of complex numbers,
however, the inner product is commutative with conjugation (see definition (2.47) later) and so the order is
crucial.
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Figure 2.6: Orthogonal projection in R2.

Bases play a fundamental role in signal processing since, as we will see in the next Chapter,
the Fourier Transform can be interpreted as a change of basis in an appropriate vector
space. Intuitively, a change of basis is a change of perspective: we're looking at the same
data but from a different reference system and this change of viewpoint can highlight
properties of a signal that are difficult to see in the original dataset.

Let’s now look once again at the definition of inner product in 2.6. Consider Figure 2.6
and assume |[|x|| = 1; the vector

yx = (X, y) x = (|lyll cos 6) x (2.25)

is called the orthogonal projection of y over x and it represents the best way to approximate
y using only a scaled version of x (that is, using a vector that points in the direction of
x). The approximation is optimal in the sense that it achieves the minimum distance
(also known as the minimum Mean Square Error) between the original vector and any
approximation based only on x:

argmin [ly - ax|| = (x,y); (2.26)

this is illustrated graphically in Figure 2.7 and can be easily derived analytically by
solving d|ly — ax||?/da = 0. Additionally, the approximation error y — yy is orthogonal to
the approximation itself

(Y= yx yx =0 (2.27)

meaning that all the information of y that was expressible by x has been captured by the
approximation. The expressionin (2.25) assumed that x has unit norm; in the general case
we need to use the normalized vector x/||x|| to obtain the general orthogonal projection
formula

_{xy

T

(2.28)

Although these results are nearly self-evident in R?, they will be particularly interesting
when generalized to spaces of higher dimensionality.
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Figure 2.7: The orthogonal projection minimizes the distance between original and approximation.

2.1.2 Euclidean Space

One dimension up from the plane is the three-dimensional Euclidean space, which can
be described in terms of vectors in R3 of the form

X0
X=\|x1|, Xg,X1,X2€ R. (2.29)
X2

Addition, scalar multiplication and inner product all retain their definitions (by adjusting
for one more component) and their geometrical meaning. Euclidean space, however,
allows us to illustrate the concept of subspace approximation better than the plane.

Subspaces and Least Squares approximation. A vector subspace is a subset of the orig-
inal vector space closed under addition and scalar multiplication; consider for example
a plane in 3D space: if we sum (or rescale) vectors laying on the plane we remain on the
plane and therefore we have a proper subspace. Subspaces have their own bases, which
can be orthonormal of course. For instance, Figure 2.8 illustrates the planar subspace
spanned by the first two 3D canonical vectors

1 0
60: 0 and 61: 1f.
0 0

The existence of orthonormal bases for subspaces provides a very elegant answer to
the problem of approximating an arbitrary vector with elements of a subspace. While
the problem may appear quite abstract at first, it is actually at the core of many signal
processing applications: modern image or video compression algorithms, for example,
proceed by approximating a signal living in a high-dimensional space with a set of basis
vectors from a subspace of much lower dimensionality.
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Figure 2.8: Three-dimensional Euclidean space and the planar subspace spanned by the first two canonical
basis vectors; the subspace is closed under addition and scalar multiplication.

Consider a vector space V and a subspace W C V; assume {wWy }r=01,.. k-1 is an orthonor-
mal basis for W. The projection theorem states that the vector

K-1
X = Z(wk, X) Wi (2.30)
k=0

is the “best” approximation of x € V over W. To see why, let’s first unpack the above
Equation; the sum is a linear combination of orthogonal projections of x onto all the basis
vectors for the subspace. We already know from Equation (2.27) that each orthogonal
projection is the best approximation of x using a single unit norm basis vector. To show
that (2.30) is the best global approximation in W we need to show that the error x — x is
orthogonal to the approximation x:

(x—% %) =0; (2.31)

this means that no further portion of the error could be accounted for by elements of the
subspace and we’ve done the best we could. To prove (2.31) just substitute for (2.30), use
the distributivity of the inner product and remember that the basis {wy} is orthonormal.
If the error is orthogonal to the subspace, the approximation minimizes the (square) norm
of the error:

argmin [|x —y|| = %; (2.32)
yeW
the approximation is therefore optimal in the least squares sense. An example of subspace
approximation in Euclidean Space is given in Figure 2.9.

Note that the approximation provided by a set of orthonormal vectors can be successively
refined. Assume you have an approximation using the first m basis vectors:

Xy = ) (Wi, X) Wk (2.33)
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Figure 2.9: Least-squares approximation of a 3D vector onto the subspace spanned by the first two canonical
basis vectors.

the optimal approximation using another vector is simply

While this may seem obvious, it is actually a small miracle, since it does not hold for
more general, non-orthonormal bases; a classic application of this property is used in
algorithms for variable-bit-rate transmission of audio and video.

2.1.3 Higher Dimensions

Formally, it’s quite easy to increase the number of dimensions beyond three: just consider
the set of all tuples of N real numbers

X0

X
x=| 1. (2.35)

XN-1

By extending the Euclidean definitions of sum, scalar multiplication and inner product in
a straightforward manner we obtain a vector space called RN. While formally equivalent
to Euclidean space, RN does not correspond to any physical entity that we can visualize;
yet, the intuition gained in 2 and 3 dimensions can help us understand the properties of
higher-dimensional spaces that defy graphical representation.

Similarly, we can define vectors as tuples of complex numbers; the resulting vector space,
CN, cannot be represented graphically for N greater than one, but properties like norm,
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orthogonality and distance remain intuitive by analogy to Euclidean space. In general,
no matter how abstract the vector space, we can always try to resort to the geometrical
interpretation of R? or R? to get an intuitive grasp on the space’s properties.

2.2 \Vector Space: a Formal Definition

2.2.1 The Axioms

Following are the axiomatic definitions for a vector space equipped with an inner product.
The stuff is dry, no question, but it simply encodes at an abstract level the very reasonable
properties we have seen for Euclidean space?®.

Vector Space. A vector space H(V, S) is defined in terms of V, a set of objects called
vectors, and S, a set of numbers called scalars; note that we will always assume S = C.
For the vector space to have any use, we need to be able to resize and combine vectors
together and this is achieved via two operations called, respectively, addition and scalar
multiplication. For H(V,S) to be a vector space, these two operations, while arbitrarily
definable, must fulfill the following set of axioms:

Forany x,y,z, € Vandany a,f € S:

e operations don’t leave the vector space:

x+yeV (2.36)
axeV (2.37)

e addition is commutative:

X+y=y+x (2.38)

e addition is associative:

(x+y)+z=x+(y+2) (2.39)

e scalar multiplication is distributive:

a(x+y) =ax+ay (2.40)
(a+ B)x = ax + px (2.41)
a(px) = (ap)x .42)

SAlthough the analogy is a bit tenuous, readers with more than a passing acquaintance with object-
oriented programming could be excused for drawing a parallel between the concept of vector space and that
of an interface class: internal variables and implementations in derived classes can be arbitrary as long as
they conform with the interface.
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e there exists a null vector 0 € V that is the additive identity:

X+0=0+x=x (2.43)

e for every x € V there exists an additive inverse —x € V:

X+(=x)=(-x)+x=0 (2.44)

e there exists a scalar 1 € S that is the scalar multiplication identity:

l-x=x-1=x (2.45)

Note that no restrictions are set on what’s “inside” a vector or on the internal mechanics
of the vector operations; this leads to the great power of generalization of the vector space
paradigm.

Inner Product Space. In order to compare vectors in a space, we need some function
that takes two vectors and returns some measure of their similarity. The usual choice is to
equip the space with an inner product (or dot product), namely, a function defined on V XV
that returns a scalar; remember that our set of scalars is C. Again, the inner product can
be defined arbitrarily, as long as it satisfies the following properties:

Forany x,y,z€ Vand a € C:

e the inner product is distributive:

(x+y,z) =(x,z)+(y,z) (2.46)

the inner product is commutative, with complex conjugation:

x,y) =y, x)" (2.47)

the inner product scales with respect to scalar multiplication*:

(ax,y) = a’(x,y) (2.48)
(x, ay) = a(x,y) (2.49)

the self-product is real-valued and nonegative:

(x,x) 20 (2.50)

the self-product is zero only for the null vector:

x,x) =0 © x=0. (2.51)

4See footnote on page 6 as for the reason why we conjugate the scalar associated to the left operand.
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Hilbert Space. The axioms for addition and scalar multiplication require that the result
of these operations remain in the original vector space; as a consequence, all linear
combinations of a finite number of vectors from V will live in V as well. However, that is
not sufficient to guarantee that the limit of a convergent sequence of vectors in V' is also
in V. Closure of a vector space under convergent limiting operations is an independent
property called completeness and a inner-product space that is complete is called a Hilbert
space. Completeness is a rather technical property and one that is often difficult to prove
rigorously®. While there are no elementary examples of a non-complete vector space, to
gain some intuition think of the set of rational numbers Q; this set is not complete because
there are many sequences in Q that converge to irrational numbers. Consider for instance,
the sequence

while it’s easy to see that sy € Q for all values of k, it can be shown that
T
lim s = — .
k— o0 k 6 ¢ Q
The set of rational numbers R, on the other hand, is complete.

2.2.2 Norms and Distances

The properties of the inner-product induce a topology on the vector space, namely, once
we have an inner product, we can start to compare vectors and define qualitative and
quantitative measures of similarity. The most important concept is orthogonality

(X, Y> =0,

which encodes the notion of maximal difference between vectors. The norm of a vector is
defined as the square root of the self inner product

x|l = V{x, %) (2.52)

and it describes quantitatively the size of a vector. The norm also extends the concept of
Euclidean distance to arbitrary vector spaces as

d(x,x) =[x -yl (2.53)

this distance measure is also known as the Mean Square Error between vectors.

Triangle Inequality To quickly show the power of the abstract definitions above, let’s
formally prove the triangle inequality in an generic inner product space H(V,C). The
statement is simple: given any two vectors x,y € V, it is always

Ix+yll < x|l +lyll (2.54)

SIn this course, we will really need completeness only once when we prove the sampling theorem, and
we will tacitly assume the property without proof.
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where the norm is the natural norm induced by the inner product as in (2.52). On the
Euclidean plane, the above relation is obvious since it states that, for any triangle, the sum
of the length of two sides can’t be smaller than the length of the third side. The result
is however valid for all inner-product spaces and, to prove the inequality in the general
case, we first need an intermediate result, called the Cauchy-Schwarz inequality:

[ | < [Ix]lH Iyl (2.55)

To prove this, assume x, y # 0 (otherwise the resultis obvious) and consider the orthogonal
projection (2.28) of y onto x

Xy
Yx = (X, X> X;

call d =y —yx the approximation error and remember that the error is orthogonal to
yx; you can look at a graphical representation of the vectors involved in the proof in
Figure 2.10. Since y = yx + d we can write

lyll* = (yx + d, yx + d) (2.56)
= |lyxl* + 111> + (yx, d) + (d, yx) (2.57)
= [ly«ll* + [1d]|? (2.58)
> |ly«lI? (2.59)
I(x, y) I
= (2.60)
lIxI|2

where the cross inner products have vanished because of the orthogonality of the error.
Getting back to the triangle inequality, we have

Ix+yl?* = (x+y,x+y) (2.61)
= (%) + (X, y) +{y, %) +(y,y) (2.62)
= [IxII* + 2Re{(x, y)} + IlylI? (2.63)
< X1+ 21 y) | + llyll? (2.64)
< |IxI1* + 2[Ixllllyll + lyll* (2.65)
= (IIxIl + llyl)? (2.66)

where we have used (2.47), the fact that |z| > Re{z} for all z € C and, of course, the
Cauchy-Schwarz inequality. Please note that nowhere in the proof we made use of the
internal structure of the vectors; we only used the axioms.

Other Norms We should mention in passing that, although the norm induced by the
inner product is the natural norm for a Hilbert space, we are free to define alternative
quantitative measures of a vector’s size. In Euclidean space, for instance, the so-called
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Yx

Figure 2.10: Graphical representation of the vectors used in the proof of the Cauchy-Schwarz inequality.

p-norm is defined as

1/p
Ixll, = (Z |xn|p) : (2.67)

Notable values include

o the standard norm for p =2
o the so-called “Manhattan” norm for p =1
e the supremum norm for p = co:

[IX]leo = max|2,] (2.68)

The latter, in particular, will reappear in a major role when we study FIR filter design.
Norms not derived from the inner product, in order to be valid norms, must be designed
to satisfy the triangle inequality.

2.2.3 Bases and Subspaces

Given a vector space H(V,C), a subset of N vectors S = {sk}, is said to be linearly
independent if the equation

only admits the solution x = 0 for k = 0,1,..., N — 1. Linear independence states that
the subset S contains no redundancies, that is, none of its members can be expressed as a
linear combination of the others. Now, suppose we can determine a subset of N vectors
W = {wi}r C H so that any element x € H can be written as a linear combination of
elements of W:
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in this case we say that W is a spanning set for H. If the set is also linearly independent (i.e.,
it contains no redundancy) then we call W a basis for H. If W is a basis, the coefficients a
are unique, as a consequence of linear independence. The laborious process of finding
the analysis coefficients a; for an arbitrary vector x is greatly simplified if the basis is
orthonormal:

1 forhzk‘

(Wi, W) = {o forh #k’

in this case, it is simply
ay = (W, X).

If a basis for H contains N elements, it is relatively straightforward (at least for finite N)
to show that any other basis will also contain exactly N vectors; N is therefore called
the dimensionality of H. As a consequence, for finite-dimensional vector spaces, any set
S = {sk}r of N linearly-independent vectors will constitute a basis; indeed, if S did not
span H then there exists at lease one nonzero element x € H so that

N-1
X £ Z agsy for all ay,
k=0

that is, S’ = {sp,...,sn-1,x} is a set of N + 1 linearly independent vectors. Now, if S’
spans H, it will be dim(H) = N + 1, which is a contradiction; otherwise we can repeat the
procedure and augment S’ until we have a basis, but, a fortiori, the dimensionality of H
will be larger than N.

Finally, mutually orthogonal vectors are inherently linearly independent; pick a set of N
nonzero orthogonal vectors {wy }, and assume we can write

N-1

chwk =0

k=0
with at least one nonzero coefficient c;. By the properties of the inner product, since
(0,x) =0, we have
N-1
O,wi) = ()" cewr, wi) = cillwil® = 0.
k=0

As a consequence, if we can find a set of N orthogonal vectors in a space of dimension N,
we automatically have found a basis.

2.3 Vector Spaces in Signal Processing

After an informal introduction using Euclidean space and a precise axiomatic definition,
we are now ready to see how vector spaces are going to be used for signal processing in
the rest of the course.
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2.3.1 Discrete-time Signals

As we have seen in the previous chapter, in signal processing it is common practice to
use the expression x[n] to indicate a discrete-time signal in its entirety; this is an abuse of
notation, since the term x[7] in fact pinpoints the value of the signal x[-] at a specific index
value n. Vector notation, on the other hand, provides us with a much more compact and
precise symbolism: we can use the symbol x to indicate an entire signal and the expression
x[n] to indicate its n-th value.

Finite-length signals Length-N signals are simply ordered tuples of N complex numbers
and therefore they belong to C:

X = : (2.69)
x[N'— 1]

Addition and scalar multiplication are defined in the intuitive, straightforward way. The
inner product is defined as

N-1
(x,y) = > x[n]yln] (2.70)
n=0
We will soon see that, in signal processing, a filter works by implementing an inner
product; indeed, by filtering a data set, we are evaluating the local degree of similarity
of the input with a prototype “shape”, known as the filter’s impulse response. Similarly,
many communication systems work by comparing the incoming waveform to a set of
predefined “pulses” that encode different symbols; the measure of similarity that is used
for the selection of the closest pulse is also an inner product.

The canonical basis for CV is also intuitive:

1 0 0
0 1 0

so=.1, 1=, ... ona=].|. 2.71)
0 0 1

Another very important basis for CN is the Fourier basis {wy } with
wi[n] = el N1k, (2.72)
we will study the Fourier basis in detail in the next chapter.

Given a basis {si }, we know that we can express any vector in CN as a linear combination
of basis elements:

= Z sk (2.73)
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if the basis is orthonormal, the coefficients a) can be easily computed using the analysis
formula

ay = {Sk,X). (2.74)

In CN aparticularly nice thing happens: the set of N coefficients ay is itself a member of CV
and this opens up the full linear algebra toolbox for us to use. For example, remembering
the definition of inner product in (2.70), we can build an N X N matrix M by stacking the
conjugates of the basis vectors as rows®

Sy
st
M= (2.75)
| SN
and, with this, obtain all the coefficient ax in one go using the matrix-vector product:
a = Mx. (2.76)

Note that M! is a matrix whose columns are simply the basis vectors side by side; we can
therefore write

x = Ma (2.77)
since
MM = MM = 1. (2.78)

The possibility of applying the constructs of linear algebra to signal manipulation further
allows us to cast all linear operations on signals as matrix-vector multiplications.

Periodic Signals Periodic signals of period N are completely described by N consecutive
samples and therefore they are equivalent to finite-length signals of length N; they also
live in CN and, when the periodicity is to be made explicit, we will sometimes use the
notation CVN.

Infinite-length signals From a purely formal point of view, we can let N in CN grow
to infinity and, by keeping the same definitions for sum, scalar multiplication and inner
product, we obtain the vector space C* (sometimes also notated as CZ since, in signal
processing, we are usually using both positive and negative indexes). Because the result-
ing space is now infinite-dimensional, we need to exercise much caution; for example, it

6The notation x/ denotes the Hermitian transpose i.e. a vector or a matrix where the original elements have
been transposed and conjugated.
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is immediate to see that the inner product can diverge even for elementary signals such
as a constant signal whose samples are all equal to one; indeed

[o¢]

(x,x) = Z [n]x[n] = i 1= oo. (2.79)

n=—00 —

To avoid these type of problems we can consider instead the set of infinite-length vectors
whose Euclidean norm is finite, that is, the space of square-summable sequences; the
space is called #,(Z), with

xeh(z) = [xP=)] |x[n][* < oo, (2.80)

nez

and is also known as the space of finite-enerqy signals, given the definition of energy in
the previous chapter. In this space the inner product is always well defined, as can be
shown by using the Cauchy-Schwarz inequality. Be forewarned, however, that there are a
lot of interesting signals that are not in ¢,(Z) and we will see how to deal with them while
trying to preserve the vector space formalism.

In the case of infinite dimensions, the concept of basis also becomes tricky since it is not
necessarily safe to allow for linear combinations of vectors with an infinite number of
terms in the sum. In ¢,(Z), however, all is well: the canonical basis for the space is the
extension to infinite dimensions of the canonical basis for CN, that is, an infinite set of
vectors in which only a single element at a time is equal to one.

2.3.2 Function Spaces

Function vector spaces, as the name implies, are spaces in which the vectors are functions;
since we know from calculus how to combine, rescale and measure the difference between
functions, we can re-cast those operations in such a way that they comply with the axioms
of a vector space. Here we are really performing a task of profound abstraction because
our vectors are no longer tuples of numbers but sophisticated mathematical entities.

In this course we will only be interested in two specific function spaces, the space of square-
integrable functions over an interval and the space of bandlimited functions on the real
line; we will wait until later to introduce the latter, but the former is easily described:
consider an interval I and the set of complex-valued functions of a real variable x = x(t)
such that

/|x(t)|2dt < oo. (2.81)
I

The space of all such functions is denoted by L(I); addition and scalar multiplication are
defined in the intuitive manner:

x+y=x(t)+yt) (2.82)

ax = ax(t) (2.83)
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y =1 - |t|, symmetric

x = sin(nt), antisymmetric

-1 0 1

Figure 2.11: Orthogonality of symmetric and antisymmetric functions. The shaded areas show the inte-
gration area in the inner product.

while the inner product is

(x,y) = [x*(t) y(t)dt. (2.84)

Note that the norm induced by the inner product is

wW=mw=[mm%t (2.85)

so that all elements of L,(I) have a well-defined norm.

The concept of orthogonality carries on, with the same meaning, to function spaces.
Consider for instance the two vectors

x = sin(7tt) (2.86)
y=1-1 (287)

over I = [-1,1], as shown in Figure 2.11. Their inner product is the integral

1
/ (1 — |t]) sin(7et) dt
-1

which, graphically, is the sum of the positive green area and the negative red areas in
the picture; since this sum is zero, the functions are orthogonal. This makes sense since
the first function is odd and the second is even: clearly no symmetric shape can be
captured by an antisymmetric curve. Similarly, two sinusoids at different multiples of a
fundamental frequency are also orthogonal, as shown in Figure 2.12; the orthogonality of
harmonically-related sinusoids is one of the key concepts in signal processing.
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-1+

1

T

-1 0 1

Figure 2.12: Orthogonality of sinusoids x = sin(4nt) and y = sin(5nt) over [-1,1]; the sinusoids’
frequencies are multiples of the fundamental frequency for the interval. The sum of the shaded
areas yields the value of the integral in the inner product, which is zero.

Function vector spaces possess bases as well, obviously. For instance, an orthonormal
basis for L, ([—7t, t]) is the well-known Fourier basis

{(1/V2m) e} ez (2.88)

The number of vectors is understandably infinite but, perhaps surprisingly, they forms a
countable set. While it’s easy to verify that the vectors are orthogonal, proving that they
indeed span L, ([-7t, 71]) is a much harder task — unfortunately, this is very much the rule
for all non-trivial, infinite-dimensional basis sets, as we will have to admit again for the
space of bandlimited functions later on in the course.

2.4 Appendix: Approximation via Legendre Polynomials

In this section we will illustrate how the concept of subspace projection can lead to
optimal polynomial approximation (in the min-square-error sense) for functions over an
interval. This example will give us the chance to talk about polynomial vector spaces,
orthonormalization procedures and optimal approximation via subspace projections with
a concrete case study. While the section is not a direct signal processing application,
approximation by projection is routinely used in compression algorithm and the concepts
illustrated here will show the flexibility of the vector space approach.

Let’s start by considering Pn(I), the vector space of all polynomials of degree up to N — 1
over the interval I; a generic element of Py/(I) is of the form

a=ag+ait+...+antNl, areR,tel. (2.89)

Addition and scalar multiplication are defined according to standard polynomial algebra
and, since Py(I) € Ly(I), we will use the standard definition for the inner product as
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in (2.84). A natural basis for Py(I) is the family
{1,¢,¢2,... N1} (2.90)

since every vector is a linear combination of powers of . The natural basis, however, is
not orthonormal so before we can address the issue of subspace approximation we need
to rectify that.

Gram-Schmidt Orthonormalization A basis for a vector (sub)space can be transformed
into an orthonormal basis via the Gram-Schmidth iteration. Given a basis {sy}, the
procedure progressively “whittles” away from each basis vector the portions that are
linearly dependent to the previously processed elements. In detail, the orthonormal basis
{u} is built one vector at a time by first converting s,, into p,;, a vector orthogonal to the
set of the previously-computed {uy, ..., uy,-1}, and then by normalizing p,, and adding
it to the pool:

m—1

P =Sm = ) (Sm, Ue) Uk (2.91)
k=0

Wy = P/ |[pmll- (2.92)

A graphical example of the orthonormalization procedure for two vectors in R? is shown
in Figure 2.13.

Legendre Polynomials Let’s apply the Gram-Schmidt algorithm to the naive basis for
Pn([-1,1]):

e m=0:s)=1
- po=so=1
= llpoll* =2
— w = po/llpoll = V1/2
e m=1:s; =t
- (Sl,u0>=f_11t/\/§=0
- p1=s1=t
- lIpll>=2/3
—u1:\/3%t
o m=2: szzt2

= (s2w0) = [ 12N2 =2/3V2
= (s, u) = [ £/V2=0
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Figure 2.13: The Gram-Schmidt algorithm applied to a basis for R?,

- p2=5-(2/3V2)ug =2 -1/3
— llp2ll* = 8/45
- up = +/5/8(3t2 - 1)

e m=23:s =1

The resulting family of orthonormal basis vectors is known under the name of Legendre
polynomials; the basis for Pe([-1, 1]) is plotted in Figure 2.14.

Subspace approximation Now that we have an orthonormal polynomial basis for the
interval, let’s try to approximate a function via subspace projection. We will pick an
element from L([-1, 1])

X = sint

and project it over the basis for P3([-1, 1]) that we computed before. We will then compare
the result to another well known linear approximation for the sine, namely its Taylor series
expansion.
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— 1y — 1y

uz us

-1 0 1

Figure 2.14: The Legendre basis for Pe([—1, 1]).

The expansion coefficients over the Legendre basis are readily computed:

ap = (x,up) = (sint, \/ﬁ) =0 (2.93)
a1 = (x,u1) = (sint, \/3/2t) ~ 0.7377 (2.94)
as = (x,up) = (sint, \/5/8(3t2 - 1)) = 0; (2.95)

note that we need to explicitly compute just the value for a1 since, in the other two cases,
the inner products are between an even and an odd function, which we know to be
orthogonal. In the end, the least-squares approximation to sint over P3([-1, 1]) is:

X

arug = 0.9035¢. (2.96)

By comparison, the second-degree Taylor approximation of the sine around zero is the
function y = t. Although y and X seem very similar, let’s look at the approximation error
over the interval as shown in Figure 2.15. Although the Taylor approximation is more
precise around the origin, we can see that the Legendre approximation minimizes the
global error, i.e. the mean square error over the entire interval.
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m— | sint — ¢
= |sint — 0.9035¢|

Figure 2.15: Approximation erro using the optimal Legendre projection vs Taylor series.



