
COM-202: Signal Processing

Chapter 9: Introduction to Image Processing



two-dimensional signal processing



Two-dimensional discrete-space signals

notation: x [n1, n2], n1, n2 ∈ Z

indexes n1, n2 locate a point on a grid

grid is usually regularly spaced
n1 n2

x [n1, n2]
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2D signals: support representation

show coordinates of nonzero values

values may be written alongside
position

example: the 2D discrete-space impulse:

δ[n1, n2] =

{

1 if n1 = n2 = 0

0 otherwise
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The 2D discrete-space rect

rect

(

n1

2N1
,
n2

2N2

)

=




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

1 if |n1| < N1

and |n2| < N2

0 otherwise
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A new concept: separability

A separable 2D signal can be decomposed as the product of two 1D signals:

x [n1, n2] = x1[n1]x2[n2]
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Examples of separable signals

δ[n1, n2] = δ[n1]δ[n2]

rect

(

n1

2N1
,
n2

2N2

)

= rect

(

n1

2N1

)

rect

(

n2

2N2

)

.
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Nonseparable signal

x [n1, n2] =

{

1 if |n1|+ |n2| < N

0 otherwise
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Nonseparable signal

x [n1, n2] = rect

(

n1

2N1
,
n2

2N2

)

−rect
(

n1

2M1
,
n2

2M2

)
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Two-dimensional filters

y [n1, n2] = H{x [n1, n2]}

linearity: H{ax [n1, n2] + bw [n1, n2]} = aH{x [n1, n2]}+ bH{w [n1, n2]}

space invariance: H{x [n1 − d1, n2 − d2]} = y [n1 − d1, n2 − d2]

impulse response h[n1, n2] = H{δ[n1, n2]}
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Two-dimensional filters

A linear, space-invariant 2D filter implements a 2D convolution:

(x ∗ h)[n1, n2] =
∞
∑

k1=−∞

∞
∑

k2=−∞

x [k1, k2]h[n1 − k1, n2 − k2]
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2D convolution for separable signals

If h[n1, n2] = h1[n1]h2[n2]:

(x ∗ h)[n1, n2] =
∞
∑

k1=−∞

h1[n1 − k1]

∞
∑

k2=−∞

x [k1, k2]h2[n2 − k2]

each column of x [n1, n2] is a 1D signal xn1 [n]

convolve each column xn1 [n] with h2[n] to obtain the 2D intermediate signal c[n1, n2]

each row of c[n1, n2] is a 1D signal cn2 [n]

convolve each row cn2 [n] with h1[n] to obtain the final output
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2D convolution for separable signals

If h[n1, n2] is an M1 ×M2 finite-support signal:

non-separable convolution: M1M2 operations per output sample

separable convolution: M1 +M2 operations per output sample!
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The two-dimensional Discrete Fourier Transform

Straightforward extension of th 1D-DFT to two dimensions:

an N1 × N2 signal x [n1, n2] yields N1N2 DFT coefficients

DFT computes the similarity between x [n1, n2] and the DFT basis vectors

the N1N2 basis vectors are N1 × N2 sinusoidal signals
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2D-DFT: analysis and synthesis

Analysis formula:

X [k1, k2] =

N1−1
∑

n1=0

N2−1
∑

n2=0

x [n1, n2]e
−j 2π

N1
n1k1e

−j 2π
N2

n2k2

Synthesis formula:

x [n1, n2] =
1

N1N2

N1−1
∑

k1=0

N2−1
∑

k2=0

X [k1, k2]e
j 2π
N1

n1k1
e
j 2π
N2

n2k2
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2D-DFT basis vectors

There are N1N2 orthogonal basis vectors for an N1 × N2 image:

wk1,k2 [n1, n2] = e
j 2π
N1

n1k1e
j 2π
N2

n2k2

for n1, k1 = 0, 1, . . . ,N1 − 1 and n2, k2 = 0, 1, . . . ,N2 − 1
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2D-DFT basis vectors (real part)

k1 = 1, k2 = 0 k1 = 0, k2 = 1

k1 = 4, k2 = 0 k1 = 0, k2 = 4
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2D-DFT basis vectors (real part)

k1 = 1, k2 = 2 k1 = 1, k2 = N2 − 1

k1 = N − 10, k2 = 2 k1 = 5, k2 = N − 7
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2D DFT

2D-DFT basis vectors are separable, and so is the 2D-DFT:

X [k1, k2] =

N1−1
∑

n1=0





N2−1
∑

n2=0

x [n1, n2]e
−j 2π

N2
n2k2



 e
−j 2π

N1
n1k1

1D-DFT along n2 (the columns)

1D-DFT along n1 (the rows)
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image processing



The fundamental problem with image processing

among all possible 2D signals, images belong to a very small subset,
the set of 2D signals that “make sense” to the human visual processing system

images are anisotropic: different areas carry extremely different data

images are 2D projections of a 3D world: lots of information is lost

images contain a lot of “visual semantics”, which is extremely hard to deal with
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Displaying discrete-space signals as images

coordinates [n1, n2] point to a “pixel”

x [n1, n2] is the pixel’s grayscale level

the eye “interpolates” the individual dots into a
smooth image (provided the pixel density is high
enough)

limiting factor is medium’s dynamic range (how
many levels of gray can be displayed)
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About dynamic ranges...

Images:

human eye: 120dB

prints: 12dB to 36dB

LCD: 60dB

digital cinema: 90dB

Sounds:

human ear: 140dB

speech: 40dB

vinyl, tape: 50dB

CD: 96dB
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Digital images: what about color?

grayscale images: pixel values are scalars

color images: pixel values are tuples in a given color space (RGB, HSV, YUV, etc)

we can consider each color component separately:

= + +
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Image processing vs “standard” signal processing

From one to two dimensions...

something still works

something breaks down

something is new
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Image processing: what still works

Fourier transform formulas

some key concepts and operators: linearity, space-invariance, convolution

interpolation, sampling, quantization
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Image processing: what no longer works

Fourier analysis is much less relevant

filter design is hard, and IIRs are rare to non-existent

only simple filters are useful because LTI filters are isotropic but images are not
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Image processing: new concepts

What’s new:

new class of signal operators: affine transforms

images are finite-support and available in their entirety → filter causality becomes
irrelevant

images use up a lot of storage: we need compression
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images in the frequency domain



How does a 2D-DFT look like?
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DFT of an image: magnitude vs phase

X [k1, k2] = DFT {x [n1, n2]}

X [k1, k2] = A[k1, k2]e
jϕ[k1,k2], A[k1, k2] ≥ 0

what happens if we discard the phase?

xm[n1, n2] = IDFT {A[k1, k2]}

what happens if we discard the magnitude?

xp[n1, n2] = IDFT
{

e jϕ[k1,k2]
}
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DFT magnitude doesn’t carry much visual information

xm[n1, n2]
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DFT phase, on the other hand...

xp[n1, n2]
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Images in the frequency domain

key visual semantic information determined by edges

edges are points of rapid amplitude change in space

to create a “jump” we need precise phase alignment of basis vectors

in one dimension, the Fourier transform is a visual analysis tool...
...but images are already visual objects!

30



filters for image processing



Everyday 2D filter types

you’ll see mostly linear-phase FIRs (to preserve edges)

zero-centered, odd-length impulse response to avoid shifts

separable filters preferred for efficiency

lowpass response for image smoothing (blurring)

highpass response for edge detection
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2D Moving Average

y [n1, n2] =
1

(2M + 1)2

M
∑

k1=−M

M
∑

k2=−M

x [n1 − k1, n2 − k2]

h[n1, n2] =
1

(2M + 1)2
rect

( n1

2M
,
n2

2M

)
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Example: 3x3 Moving Average

h[n1, n2] =
1

9





1 1 1
1 1 1
1 1 1




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2D Moving Average

original 11× 11 MA
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2D Moving Average

original 51× 51 MA
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Border effects

N × N image filtered with an (2M + 1)× (2M + 1) FIR:

(h ∗ x)[n1, n2] =
M
∑

k1=−M

M
∑

k2=−M

h[k1, k2]x [n1 − k1, n2 − k2]

when ni < M or ni > N −M, convolution uses pixels outside of the N × N image

normally we assume x [n1, n2] = 0 for ni 6∈ [0,N − 1]: this creates a dark band around the
edges

in 1D 2M samples would exhibit border effects

in 2D 4M(N −M) pixels are affected!

cosmetic solution is to mirror the image at each edge
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Gaussian Blur

h[n1, n2] =
1

2πσ2
e
−

n21+n22
2σ2 , |n1, n2| < M

with M ≈ 3σ
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Gaussian Blur

n1 n2

h[n1, n2]
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Gaussian Blur
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σ = 5,M = 14
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Gaussian Blur

original σ = 1.8, 11 × 11 blur

40



Gaussian Blur

original σ = 8.7, 51 × 51 blur
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Gaussian blur more “photographic” than moving average

11× 11 MA σ = 1.8, 11 × 11 blur
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Gaussian blur more “photographic” than moving average

51× 51 MA σ = 8.7, 51 × 51 blur

43



edge detection



Filters for edge detection

What is an edge? In general very complicated since dependent on semantic scene analysis.

Candidate edge points are found where the signal’s amplitude

has a discontinuity

has an inflection
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Edge detection

Edge detection algorithms work in 2 passes:

1 selection of candidate edge points via a filtering operation

2 refinement of edges using geometric consideration, heuristics, and machine learning

the second step is highly nonlinear and quite complicated

we will look at the first phase only

candidate points are located by estimating the derivatives of the signal
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Gradient and Laplacian

for points of discontinuity we look for large values of the gradient

∇f (t1, t2) =
[

∂f

∂t1

∂f

∂t2

]

for points of inflection we look for the zeros of the Laplacian

∆f (t1, t2) =
∂2f

∂t21
+

∂2f

∂t22
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Gradient and Laplacian for discrete images

the gradient is approximated using the Sobel filter

the Laplacian is approximated by the Laplacian discrete-space operator

both are implemented using simple separable filters
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Approximating the gradient with first differences

x1 x2 x3

x4 x x5

x6 x7 x8

derivatives on the discrete grid are approximated by first-order differences

use also diagonal differences with appropriate scaling:

pi =
xi − x

di
, di =

{

1 i = 2, 4, 5, 7√
2 i = 1, 3, 6, 8
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Approximating the gradient with first differences

x1 x2 x3

x4 x x5

x6 x7 x8

combine differences with proper sign (left to right and down to up)

diagonal first differences contribute to both horizontal and vertical derivatives:

∂x

∂n1
≈ p5 − p4 − p1 + p3 − p6 + p8

∂x

∂n2
≈ p2 − p7 + p1 + p3 − p6 − p8
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Approximating the gradient with first differences

to make things computationally easy, set

di =

{

1/2 i = 2, 4, 5, 7

1 i = 1, 3, 6, 8

∂x

∂n1
≈ (x3 − x1) + 2(x5 − x4) + (x8 − x6)

∂x

∂n2
≈ (x1 − x6) + 2(x2 − x7) + (x3 − x8)
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The Sobel filter

∂x [n1, n2]

∂n1
≈ (sh ∗ x)[n1, n2]

∂x [n1, n2]

∂n2
≈ (sv ∗ x)[n1, n2]

sh[n1, n2] =





1 0 −1
2 0 −2
1 0 −1





sv [n1, n2] =





1 2 1
0 0 0
−1 −2 −1




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The Sobel filter

the Sobel filter is separable:

sh[n1, n2] =





1
2
1





[

1 0 −1
]

interpretation: horizontal gradient = vertical averaging before horizontal differentiation
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The Sobel filter

horizontal Sobel filter vertical Sobel filter
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The Sobel operator

to find all extrema, use the square magnitude of the gradient:

|∇x [n1, n2]|2 = |(sh ∗ x)[n1, n2]|2 + |(sv ∗ x)[n1, n2]|2

(we call this an “operator” instead of a filter because it is nonlinear)
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Edge detection with the Sobel operator

output of Sobel operator thresholded output
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The Laplacian operator

The Laplacian of a bivariate function is defined as

∆f (t1, t2) =
∂2f

∂t21
+

∂2f

∂t22

zero crossings of the Laplacian are potential inflection points
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Approximating the second derivative

for a smooth function f , the first three terms of the Taylor expansion in (t + τ) and (t − τ)

f (t + τ) =
∞
∑

n=0

f (n)(t)

n!
τn

f (t + τ) ≈ f (t) + f ′(t)τ +
1

2
f ′′(t)τ2

f (t − τ) ≈ f (t)− f ′(t)τ +
1

2
f ′′(t)τ2

so that

f ′′(t) ≈ 1

τ2
(f (t − τ)− 2f (t) + f (t + τ))
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Approximating the second derivative

f ′′(t) ≈ 1

τ2
(f (t − τ)− 2f (t) + f (t + τ))

on the discrete grid (t ← n, τ = 1):

∂2x [n]

∂n2
≈ x [n − 1]− 2x [n] + x [n + 1]

= (h ∗ x)[n]

h[n] =
[

1 −2 1
]
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The Laplacian filter

for images, there are two alternate definitions

using only the horizontal and vertical derivatives:

h[n1, n2] =





0 1 0
1 −4 1
0 1 0





using also the diagonals

h[n1, n2] =





1 1 1
1 −8 1
1 1 1




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Edge detection with the Laplacian filter

output of Laplacian filter thresholded output
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affine transforms



Affine transforms in continuous space

mapping R
2 → R

2 that reshapes the coordinate system:

[

t ′1
t ′2

]

=

[

a11 a12
a21 a22

] [

t1
t2

]

−
[

d1
d2

]

[

t ′1
t ′2

]

= A

[

t1
t2

]

− d
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Translation

A =

[

1 0
0 1

]

= I

d =

[

d1
d2

]

0

0
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Translation

A =

[

1 0
0 1

]

= I

d =

[

d1
d2

]

d1 = −0.7, d2 = −0.3

0

0
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Scaling

A =

[

a1 0
0 a2

]

d = 0

0

0
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Scaling

A =

[

a1 0
0 a2

]

d = 0

if a1 = a2 the aspect ratio is preserved

a1 = a2 = 1.5

0

0
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Scaling

A =

[

a1 0
0 a2

]

d = 0

a1 = 2, a2 = 1

0

0
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Rotation

A =

[

cos θ − sin θ
sin θ cos θ

]

d = 0

0

0
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Rotation

A =

[

cos θ − sin θ
sin θ cos θ

]

d = 0

θ = −0.6π

0

0

64



Rotation

A =

[

cos θ − sin θ
sin θ cos θ

]

d = 0

θ = π

0

0
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Flips

Horizontal:

A =

[

−1 0
0 1

]

d = 0

Vertical:

A =

[

1 0
0 −1

]

d = 0
0

0
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Flips

Horizontal:

A =

[

−1 0
0 1

]

d = 0

Vertical:

A =

[

1 0
0 −1

]

d = 0
0

0
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Shear

Horizontal:

A =

[

1 s

0 1

]

d = 0

Vertical:

A =

[

1 0
s 1

]

d = 0
0

0
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Shear

Horizontal:

A =

[

1 s

0 1

]

d = 0

Vertical:

A =

[

1 0
s 1

]

d = 0
0

0
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Affine transforms in discrete space

[

t ′1
t ′2

]

= A

[

n1
n2

]

− d ∈ R
2 6= Z

2
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Solution: work backwards!

take each output coordinate y [m1,m2]

apply the inverse transform to [m1,m2] and find the source coordinates:

[

t1
t2

]

= A−1

[

m1 + d1
m2 + d2

]

;

if source point not on source grid, write

(t1, t2) = (η1 + τ1, η2 + τ2), η1,2 ∈ Z, 0 ≤ τ1,2 < 1

and interpolate from the surrounding original grid points
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Bilinear Interpolation

b
(t1, t2)
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Bilinear Interpolation

b
x[η1 + 1, η2 + 1]

b
x[η1, η2]

b

b

b
(t1, t2)

η1 η1 + 1

η2

η2 + 1
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Bilinear Interpolation

b

b b

b

b

τ1

τ2

η1 η1 + 1

η2

η2 + 1
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Bilinear Interpolation

b

b b

b

b

τ1

u

u

η1 η1 + 1

η2

η2 + 1
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Bilinear Interpolation

b

b b

b

b

τ1

τ2

u

u

η1 η1 + 1

η2

η2 + 1
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Bilinear Interpolation

we are free to use any interpolation scheme

a common and easy choice is linear interpolation for both direction

this leads to a closed-form expression using four pixel values:

y [m1,m2] = (1− τ1)(1− τ2)x [η1, η2] + τ1(1− τ2)x [η1 + 1, η2]

+ (1− τ1)τ2x [η1, η2 + 1] + τ1τ2x [η1 + 1, η2 + 1]
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Shearing
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Bilinear Interpolation for resizing

start from the coordinates of each pixel in output resized image

use the inverse scaling operator A−1 =

[

1/a1 0
0 1/a2

]

use bilinear interpolation to find value of output pixel from target input pixels
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the JPEG image compression standard



A thought experiment

consider all possible 256 × 256, 8bpp “images”

each image is 524,288 bits

total number of possible images: 2524,288 ≈ 10157,826

number of atoms in the universe: 1082
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Image compression

Goal: reduce the storage required by an image

lossless compression: store the information exactly, just more compactly

• zip files, PNG

• exploits patterns in bitstream (not image-specific)

• mostly a problem for Information Theory

lossy compression: accept some degradation in return for larger storage gains

• JPG, MP3

• designed specifically for a class of signals (images, music)

• relies on known “blind spots” in our perceptual systems
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Lossy image compression

exploit natural redundancy in images (eg: large blue sky)

use psychovisual experiments to determine what impacts perceived quality

allocate most bits to the things that matter

hide the losses where they are hard to see
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Key ingredients of the JPEG standard

1 compressing at block level

2 using a suitable transform (i.e., a change of basis)

3 smart quantization

4 entropy coding
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Compressing at pixel level

reduce number bits per pixel

equivalent to coarser quantization

the lowest we can go is one bit per pixel
i.e. pixels are either black or white
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Compressing at block level

split image into small blocks

keep only average pixel value in blocks

shown here:

• 3× 3 blocks, i.e. 9 pixels each

• average value coded using 8 bits

• storage less than 1 bpp

where’s the catch? zoom in to see
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Transform coding

A simple 1D example:

signal encoded at R bits per sample

storing N samples requires NR bits

look at the DFT: if many DFT values
are close to zero we can discard them
and store only the nonzero ones

many natural signals are sparse once
properly transformed!
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Smart quantization

After computing the transform of each block:

set to zero all small coefficients

• use a “deadzone” quantizer

• lots of consecutive zeros can be encoded efficiently

use more bits for the “important” coefficients

• more bits means more quantization levels, i.e. lower quantization error

• visual importance determined experimentally using subjective tests
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Standard vs Deadzone Quantization (2 bps)

1 2−1−2
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x̂[n]
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Standard quantization: full-amplitude signal
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Standard quantization: full-amplitude signal
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Standard quantization: full-amplitude signal
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Standard quantization: small amplitude values
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Standard quantization: small amplitude values
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Standard quantization: small amplitude values
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Standard vs Deadzone Quantization (2 bps)
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Standard quantization: small amplitude values
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Standard quantization: small amplitude values
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Standard quantization: small amplitude values

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b0
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Final bitstream encoding

Smart quantization returns a series of integers that must be encoded efficiently:

not all values occur with the same probability:

• use short binary “codewords” for very frequent values

• use longer binary codewords for rarely occurring values

this is the principle of Morse code!
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Key ingredients in the JPEG standard

compressing at block level: split image into 8× 8 non-overlapping blocks

using a suitable transform: compute the Discrete Cosine Transform of each block

smart quantization: round DCT coefficients according to psycovisually-tuned tables

bitstream encoding: run-length encoding plus Huffman entropy coding
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The Discrete Cosine Transform (DCT)

pretty much the same as the DFT:

each coefficient inner product between image block and DCT basis vectors

basis vectors are a bit different from the DFT but still orthogonal

DCT coefficients are real-valued

DCT minimizes border effects
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DCT basis vectors for an 8× 8 image
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DCT coefficients of image blocks
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Psycovisually-tuned quantization

most of the 64 DCT coefficients in each block are small and rounded to zero

coefficient with high visual impact are encoded first

remaining bit budget allocated to the rest

91



Impact of smart quantization at 0.2bpp

uniform tuned
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Runlength encoding

The matrix of quantized DCT coefficients will contain a lot of zeros:

scan the matrix in a zig-zag pattern to obtain long sequence of zeros

encode each nonzero value as a triple:

• number of zeros preceding the value

• number of bits used to encode the value

• the value itself

each triple is a symbol that we must efficiently encode in binary format

(0, 0, 0, 0, 0, 6) −→ [(5, 4), 6]
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Zigzag scan
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Example



















100 −6 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



















100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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Runlength encoding
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








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



100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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Runlength encoding
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








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


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
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100],
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Runlength encoding
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










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


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

100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100], [(0, 4), −6],
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Runlength encoding


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




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





100 −6 0 1 0 0 0 0
0 0 0 0 0 0 0 0
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




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
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100], [(0, 4), −6], [(4, 2), 1],
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Runlength encoding



















100 −6 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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


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

100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100], [(0, 4), −6], [(4, 2), 1], [(3, 3), 2],
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Runlength encoding
















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100 −6 0 1 0 0 0 0
0 0 0 0 0 0 0 0
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2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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


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







100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100], [(0, 4), −6], [(4, 2), 1], [(3, 3), 2], [(8, 2), −1],
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Runlength encoding



















100 −6 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



















100, -6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

[100], [(0, 4), −6], [(4, 2), 1], [(3, 3), 2], [(8, 2), −1], [(0, 0)]
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Bitstream encoding

goal: minimize storage requirement by encoding each symbol with a binary codeword

variable-length entropy coding: frequent symbols use shorter codewords and vice-versa

prefix-free code: no need for explicit separators between codewords

JPEG provides a “general-purpose” code but you can build your own

given the symbol frequencies, the Huffman algorithm builds an optimal prefix-free enropy
coder
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Variable-length encoding

if codewords have different lengths, we must know how to parse them

in western languages we use spaces and punctuation (we need extra symbols)

in Morse code we use short pauses for letters and long for words (wasteful)

can we do away with separators?
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Prefix-free codes

in the bitstream generated by a prefix-free encoder:

no valid codeword is the beginning of another valid codeword

the bitstream can be parsed sequentially with no look-ahead

easiest way to understand is graphically, using binary trees
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Building a Huffman code: toy example

four symbols: A, B, C, D

probability table:

p(A) = 0.38 p(B) = 0.32

p(C ) = 0.1 p(D) = 0.2
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Building a Huffman code

p(A) = 0.38 p(B) = 0.32 p(C ) = 0.1 p(D) = 0.2

0.30

0.10 C0

0.20 D1

at each step, select the two least probable symbols

set them as descendant of an intermediate node

arbitrarily assign binary digits to the branches
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Building a Huffman code

p(A) = 0.38 p(B) = 0.32 p(C +D) = 0.3

0.62

0.300

C0

D1

0.32 B1

probability of intermediate nodes is the sum of descendants

repeat the previous step with remaining symbols and intermediate nodes
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Building a Huffman code

p(A) = 0.38 p(B + C + D) = 0.62

1.00

0.38 A
0

0.62

1
0

C0

D1

B1
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Building a Huffman code: toy example

four symbols: A, B, C, D

probabilities: p(A) = 0.38, p(B) = 0.32, p(C ) = 0.1, p(D) = 0.2

prefix-free codewords:

A −→ 0 B −→ 11

C −→ 100 D −→ 101
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

A
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AA
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AAB
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AABA
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AABAA
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Decoding a prefix-free bitstream
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D1

B1

001100110101100

AABAAB

105



Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AABAABA
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AABAABAD
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Decoding a prefix-free bitstream

A0

1

0

C0

D1

B1

001100110101100

AABAABADC
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Conclusions

JPEG is a very complex and comprehensive standard:

• lossless, lossy

• color, B&W

• progressive encoding

• HDR (12bpp) for medical imaging

JPEG is VERY good:

• compression factor of 10:1 virtually indistinguishable

• rates of 1bpp for RGB images acceptable (25:1 compression ratio)

other important compression schemes:

• TIFF, JPEG2000

• MPEG (MP3)

106


