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COM-202: Signal Processing

Chapter 9: Introduction to Image Processing



two-dimensional signal processing



Two-dimensional discrete-space signals

m notation: x[ni, m], ni,m € Z
m indexes ni, ny locate a point on a grid

m grid is usually regularly spaced




2D signals: support representation

m show coordinates of nonzero values

m values may be written alongside
position

m example: the 2D discrete-space impulse:

5[ ] 1 if n = np = 0
ny, no] = ]
b2 0 otherwise

n2

n




The 2D discrete-space rect

1 if |n1| < N
rect m no . and |n2| < N> 0
2Ny 2N, )

0 otherwise




A new concept: separability

A separable 2D signal can be decomposed as the product of two 1D signals:

x[nl, n2] = X1 [nl]x2[n2]



Examples of separable signals

(5[!71, n2] = (5[”1](5[”2]



Nonseparable signal

x[n1, m] = L if|m[+|nof <N 0
b2 0 otherwise




Nonseparable signal

m n

X[n]_, n2] = rect <m, m

)

m n
2M;’ 2M,

) 0




Two-dimensional filters

y[nm, no] = H{x[n1, no]}

m linearity: H{ax[n1, no] + bw[ny, no]} = aH{x[n1, no]} + bH{w|[n1, n2]}
m space invariance: H{x[ny — di,np — db|} = y[m — d1,n2 — dba]

m impulse response h[n1, np] = H{d[n1, n2]}



Two-dimensional filters

A linear, space-invariant 2D filter implements a 2D convolution:

(X * h)[nl, n2] = i i X[kl, k2]h[l11 - kl, np — k2]

ki=—o00 kp=—0c0



2D convolution for separable signals

If h[nl, n2] = hl[nl]hg[nz]:

(X * h)[nl, n2] = Z hl[nl — kl] Z X[kl, k2]h2[n2 — k2]

ki=—00 ko=—00

m each column of x[ny, n2] is a 1D signal x,, [n]
m convolve each column xp, [n] with ha[n] to obtain the 2D intermediate signal c[n1, n2]
m each row of c[ny, n2] is a 1D signal ¢, [n]

m convolve each row c,,[n] with h1[n] to obtain the final output
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2D convolution for separable signals

If h[n1, n2] is an My x M, finite-support signal:

m non-separable convolution: M; M, operations per output sample

m separable convolution: M; 4+ M, operations per output sample!
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The two-dimensional Discrete Fourier Transform

Straightforward extension of th 1D-DFT to two dimensions:
m an N x N, signal x[n1, ny] yields Ny Np DFT coefficients

m DFT computes the similarity between x[n1, np] and the DFT basis vectors

m the Ny N, basis vectors are Ny x N, sinusoidal signals



2D-DFT: analysis and synthesis

Analysis formula:
Ni—1 Np—1

227
Xk, ko] = Z Z x[n1, me M MK i ke

n=0 nx=0

Synthesis formula:

Ni—1 Np—1
1 &«

X el = 8 Z Z X[ke, koe' T " & 65 72k
=0 ko=
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2D-DFT basis vectors

There are Ny N, orthogonal basis vectors for an Ny x N image:

Wk17k2[n17n2] _ e‘l’Vl n 1eJN2n2 2

for n1,k1:O,1,...,N1—1and n2,k2:O,1,...,N2—1
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2D-DFT basis vectors (real part)

ki =1k =0
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2D-DFT basis vectors (real part)

ki =1k =2

ki =N —10,ky =2

ki =1,ko=Np—1
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2D DFT

2D-DFT basis vectors are separable, and so is the 2D-DFT:

X[ki, ko] =

Ni—1

D

n1=0

No—1

D

np=0

_j2m
x[nl, n2]e J ,\,72r naky

ry

e

;27
—j 5=k
Jy MK

m 1D-DFT along ny (the columns) —J

m 1D-DFT along ny (the rows)




image processing



The fundamental problem with image processing

among all possible 2D signals, images belong to a very small subset,
the set of 2D signals that “make sense” to the human visual processing system

m images are anisotropic: different areas carry extremely different data
m images are 2D projections of a 3D world: lots of information is lost

m images contain a lot of "visual semantics”, which is extremely hard to deal with

18



Displaying discrete-space signhals as images

m coordinates [ny, ny] point to a “pixel”
m x[ny, ny] is the pixel's grayscale level

m the eye “interpolates” the individual dots into a
smooth image (provided the pixel density is high
enough)

m limiting factor is medium’'s dynamic range (how
many levels of gray can be displayed)

n2

510
425
340
255
170

85

0 ! ! ! ! !
0 85 170 255 340 425 510

nm
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About dynamic ranges...

Images: Sounds:
m human eye: 120dB m human ear: 140dB
m prints: 12dB to 36dB m speech: 40dB
m LCD: 60dB m vinyl, tape: 50dB

m digital cinema: 90dB m CD: 96dB



Digital images: what about color?

m grayscale images: pixel values are scalars
m color images: pixel values are tuples in a given color space (RGB, HSV, YUV, etc)

m we can consider each color component separately:
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Image processing vs “standard” signal processing

From one to two dimensions...

m something still works
m something breaks down

m something is new

22



Image processing: what still works

m Fourier transform formulas
m some key concepts and operators: linearity, space-invariance, convolution

m interpolation, sampling, quantization
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Image processing: what no longer works

m Fourier analysis is much less relevant
m filter design is hard, and |IRs are rare to non-existent

m only simple filters are useful because LTI filters are isotropic but images are not



Image processing: new concepts

What's new:

m new class of signal operators: affine transforms

m images are finite-support and available in their entirety — filter causality becomes
irrelevant

m images use up a lot of storage: we need compression



images in the frequency domain



How does a 2D-DFT look like?

510 —_— 510
425 . 425
340 . 340
255 - 255
170 . 170

85

0 1 1 1 1 1 0
0 85 170 255 340 425 510 0 85 170 255 340 425 510



DFT of an image: magnitude vs phase

X[kl, k2] = DFT {X[nl, n2]}
X[k, ko] = Alky, ko]e/?thekel - Alky ko] > 0

m what happens if we discard the phase?
Xm[nl, n2] = IDFT {A[kl, kz]}
m what happens if we discard the magnitude?

xp[n1, na] = IDFT {eiso[kl,kg]}



DFT magnitude doesn’t carry much visual information

Xm [n17 n2]
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DFT phase, on the other hand...

Xp[nlv n2]
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Images in the frequency domain

m key visual semantic information determined by edges
m edges are points of rapid amplitude change in space

m to create a “jump” we need precise phase alignment of basis vectors

in one dimension, the Fourier transform is a visual analysis tool...
...but images are already visual objects!
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filters for image processing



Everyday 2D filter types

you'll see mostly linear-phase FIRs (to preserve edges)

m zero-centered, odd-length impulse response to avoid shifts

separable filters preferred for efficiency

lowpass response for image smoothing (blurring)

highpass response for edge detection
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2D Moving Average

y[n17 n2]

2M—|—1 Z Z X[nl—kl,nz—kz]

h[nl, n2] =

ki=—M ko=—

1
- t - - =
M+ 12" (2/\/1’ 2M



Example: 3x3 Moving Average

h[nl, n2] = é |:

1
1
1

=

e
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2D Moving Average

original

11 x 11 MA

34



2D Moving Average

original

51 x 51 MA
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Border effects

N x N image filtered with an (2M + 1) x (2M + 1) FIR:

M M
(h * X)[nl, n2] = Z Z h[kl, kg]x[nl — kl, ny — k2]

ki=—M ko=—M

m when n; < M or n; > N — M, convolution uses pixels outside of the N x N image

m normally we assume x[n1, np] = 0 for n; & [0, N — 1]: this creates a dark band around the
edges

m in 1D 2M samples would exhibit border effects
m in 2D 4M(N — M) pixels are affected!

m cosmetic solution is to mirror the image at each edge



Gaussian Blur

h[nl, n2] =

1 _n +g§
e 20
212 ’

with M ~ 30

|n1,n2| <M
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Gaussian Blur

-8
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Gaussian Blur

original

o =1.8,11 x 11 blur
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Gaussian Blur

original o =8.7,51 x 51 blur
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Gaussian blur more “photographic”

than moving average

11 x 11 MA

o =1.8,11 x 11 blur
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Gaussian blur more “photographic” than moving average

51 x 51 MA o =8.7,51 x 51 blur
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edge detection



Filters for edge detection

What is an edge? In general very complicated since dependent on semantic scene analysis.

Candidate edge points are found where the signal’s amplitude

m has a discontinuity

m has an inflection
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Edge detection

Edge detection algorithms work in 2 passes:

selection of candidate edge points via a filtering operation

refinement of edges using geometric consideration, heuristics, and machine learning

m the second step is highly nonlinear and quite complicated
m we will look at the first phase only

m candidate points are located by estimating the derivatives of the signal

45



Gradient and Laplacian

for points of discontinuity we look for large values of the gradient

V(t, ) = [87‘ af}

o o

for points of inflection we look for the zeros of the Laplacian

P O
Af(t, ) = — + =
otz ot3
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Gradient and Laplacian for discrete images

m the gradient is approximated using the Sobel filter
m the Laplacian is approximated by the Laplacian discrete-space operator

m both are implemented using simple separable filters
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Approximating the gradient with first differences

X1 X2 X3

N1/

X4 = X ™™ Xp

/N

X6 X7 X8

m derivatives on the discrete grid are approximated by first-order differences

m use also diagonal differences with appropriate scaling:

Xi—X d— 1 i =2,4,57
Pi=—g "T1v2 i=1,36.8
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Approximating the gradient with first differences

X1 X2 X3

N1/

X4 = X —™ Xp

/N

X6 X7 X8

m combine differences with proper sign (left to right and down to up)
m diagonal first differences contribute to both horizontal and vertical derivatives:
Ox
8/11

ox
8”2

A ps — pa— Pp1+p3— Ps+ Ps

R p2—pr+p1+p3—pPs— pPs
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Approximating the gradient with first differences

to make things computationally easy, set

g 1/2 i=2,4,57
"]t i=1,3,68

P ~(x3—x1) +2(xs — xq4) + (xs — x6)
m

8— ~ (Xl — X6) + 2(X2 — X7) + (X3 — Xg)
n
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The Sobel filter

Odm.mal (o s m, )

om
%’17’2”2] ~ (Sv *X)[n17 n2]
10 -1
saln, m] =12 0 -2
10 -1

1 2 1
Sv[nla n2] = 0 0 °
-1 -2 -1
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The Sobel filter

the Sobel filter is separable:

1
swlni,m] = |2 [1 0 —1]

—_

interpretation: horizontal gradient = vertical averaging before horizontal differentiation



The Sobel filter

horizontal Sobel filter

vertical Sobel filter
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The Sobel operator

to find all extrema, use the square magnitude of the gradient:
[Vx[nw, m]|? = [(sh o+ x)[n1, n2][* + |(sv % x) [, ]

(we call this an “operator” instead of a filter because it is nonlinear)
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Edge detection with the Sobel operator

0.t

ey "‘.’! d}; ’/,_—’—1& :

output of Sobel operator

thresholded output



The Laplacian operator

The Laplacian of a bivariate function is defined as

0*f  9°f
Af(tl, t2) = — + =
ot2  ot3

zero crossings of the Laplacian are potential inflection points
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Approximating the second derivative

for a smooth function f, the first three terms of the Taylor expansion in (t + 7) and (t — 7)

t—|—7'

n=0

e+ 7) % F(1) + ()7 + 57 (0)7
Ft =) ~ F(8) — F(e)r + (1)

so that

f(t) ~ %(f(f —7) = 2f(t) + f(t + 7))
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Approximating the second derivative

F(t) ~ %(f(r —7) = 2f(t) + f(t + 7))

on the discrete grid (t < n, 7 = 1):

x[n] _
oz x[n — 1] = 2x[n] + x[n + 1]

= (h*x)[n]
hln]=[1 -2 1]
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The Laplacian filter

for images, there are two alternate definitions

m using only the horizontal and vertical derivatives:

m using also the diagonals

h[nl) n2] =

h[nl, n2] =

59



Edge detection with the Laplacian filter

output of Laplacian filter

thresholded output
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affine transforms



Affine transforms in continuous space

mapping R? — R? that reshapes the coordinate system:

= -l
t) a1 ax| |t d>
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Translation

62



Translation

di = —0.7,dr = —0.3




Scaling

a

63



Scaling

if a; = ap the aspect ratio is preserved
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Scaling

31:2,32:1
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Rotation

A
d

|

cos 6
sind

—sinf
cos 6

|
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Rotation

|

d=20

cos 6
sind

—sinf
cos 6

|

6 = —0.6m
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Rotation

A
d

|

cos 6
sind

—sinf
cos 6

|
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Flips

Horizontal:

Vertical:




Flips

Horizontal:

Vertical:




Shear

Horizontal:

Vertical:
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Shear

Horizontal:

Vertical:
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Affine transforms in discrete space

H :A[’”] —d eR22£72

na
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Solution: work backwards!

m take each output coordinate y[my, ms]

m apply the inverse transform to [my, my] and find the source coordinates:
t — Al my +di|
t my +do|’

m if source point not on source grid, write

(t1, t2) = (1 + 71, m2 + 72), mp €%, 0<153<1

and interpolate from the surrounding original grid points
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Bilinear Interpolation

(t1, t2)
°
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Bilinear Interpolation

m+1f

-

x[m +1,
. —

(t1, t2)
°

x[m1, m2]
°

T m+1

 + 1]
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Bilinear Interpolation

m+1f

-

T2

T1

m

m+1
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Bilinear Interpolation

»,72_’_]_, ® - A [
[ J
m @—h - [
T1
l l
m m+1
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Bilinear Interpolation

772+1 = ® - A ............. [
T2
’[72 L. @ .
T1
l l
m m+1
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Bilinear Interpolation

m we are free to use any interpolation scheme
m a common and easy choice is linear interpolation for both direction
m this leads to a closed-form expression using four pixel values:

ylm1, mp] = (1 — 71)(1 — m2)x[n1, m2] + 71(1 — m2)x[n1 + 1, 7]
+ (1 = mo)mx[n1,m2 + 1] 4+ Ti7ax[m + 1,m2 + 1]
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Shearing




Bilinear Interpolation for resizing

m start from the coordinates of each pixel in output resized image

1/ay O }

m use the inverse scaling operator A~1 =
& °op 0 1/a

m use bilinear interpolation to find value of output pixel from target input pixels



the JPEG image compression standard



A thought experiment

m consider all possible 256 x 256, 8bpp “images”

m each image is 524,288 bits

m total number of possible images: 2524288 ~ 10157,826

m number of atoms in the universe: 10%2
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Image compression

Goal: reduce the storage required by an image

m lossless compression: store the information exactly, just more compactly
e zip files, PNG
e exploits patterns in bitstream (not image-specific)
e mostly a problem for Information Theory

m lossy compression: accept some degradation in return for larger storage gains

e JPG, MP3
e designed specifically for a class of signals (images, music)

e relies on known “blind spots” in our perceptual systems

4



Lossy image compression

m exploit natural redundancy in images (eg: large blue sky)
m use psychovisual experiments to determine what impacts perceived quality
m allocate most bits to the things that matter

m hide the losses where they are hard to see
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Key ingredients of the JPEG standard

compressing at block level
using a suitable transform (i.e., a change of basis)
smart quantization

entropy coding

76



Compressing at pixel level

m reduce number bits per pixel
m equivalent to coarser quantization

m the lowest we can go is one bit per pixel
i.e. pixels are either black or white

7



Compressing at block level

m split image into small blocks

m keep only average pixel value in blocks
m shown here:

e 3 x 3 blocks, i.e. 9 pixels each

e average value coded using 8 bits

e storage less than 1 bpp

m where's the catch? zoom in to see
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Transform coding

A simple 1D example:

signal encoded at R bits per sample
storing N samples requires NR bits

look at the DFT: if many DFT values
are close to zero we can discard them
and store only the nonzero ones

many natural signals are sparse once
properly transformed!

20 25 30

:

T T

5 10

T

15

T T T

20 25 30

79



Smart quantization

After computing the transform of each block:
m set to zero all small coefficients

e use a “deadzone” quantizer
e |ots of consecutive zeros can be encoded efficiently

m use more bits for the “important” coefficients

e more bits means more quantization levels, i.e. lower quantization error

e visual importance determined experimentally using subjective tests

80



Standard vs Deadzone Quantization (2 bps)

X[n] x[n]
0L
) .
- 01."
1+ Az 1 4+ :
00+
x[n] 00 x[n]
L L L L L L L L
I I I I I I I I
-2 —1 10 1 2 -2 -1 1 2
10,
. -1+ — ~1 -
1.
2
2 4 2 1
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Standard quantization: full-amplitude signal




Standard quantization: full-amplitude signal
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Standard quantization: full-amplitude signal




Standard quantization: small amplitude values
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Standard quantization: small amplitude values
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Standard quantization: small amplitude values

o)t ?t ¢t * ? ¢ ? T ?TT T PTT?T TP
¢ o o o ¢ o

¢ o6 6 0 o o o o o
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Standard vs Deadzone Quantization (2 bps)

X[n] x[n]
0L
) .
- 01."
1+ Az 1 4+ :
00+
x[n] 00 x[n]
L L L L L L L L
I I I I I I I I
-2 —1 10 1 2 -2 -1 1 2
10,
. -1+ — ~1 -
1.
2
2 4 2 1
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Standard quantization: small amplitude values

85



Standard quantization: small amplitude values
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Standard quantization: small amplitude values
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Final bitstream encoding

Smart quantization returns a series of integers that must be encoded efficiently:
m not all values occur with the same probability:

e use short binary “codewords” for very frequent values

e use longer binary codewords for rarely occurring values

m this is the principle of Morse code!

* mm Ue o mm
mmeeoe Veeoomm
- e mm ¢ We mm mm
-uee Xmmm oo mm
. Y o mum wm
oo mmeo Zumm oo
-

—HVPOTVOZErA——IOMMOO >
olooo
1.1°:
arc
1

2
- - 3ee o mmmm
- . 40000 mm
- - 500000
o mm mm o [ _ XXX
- e mm 7o
o mm o G ——o o
[N O -
- O o - —
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Key ingredients in the JPEG standard

m compressing at block level: split image into 8 x 8 non-overlapping blocks
m using a suitable transform: compute the Discrete Cosine Transform of each block
m smart quantization: round DCT coefficients according to psycovisually-tuned tables

m bitstream encoding: run-length encoding plus Huffman entropy coding
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The Discrete Cosine Transform (DCT)

pretty much the same as the DFT:

m each coefficient inner product between image block and DCT basis vectors
m basis vectors are a bit different from the DFT but still orthogonal
m DCT coefficients are real-valued

m DCT minimizes border effects

88



DCT basis vectors for an 8 x 8 image

M ne
O A e
N0 00 200 000 i i
A0 L R e et




DCT coefficients of image blocks
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Psycovisually-tuned quantization

m most of the 64 DCT coefficients in each block are small and rounded to zero
m coefficient with high visual impact are encoded first

m remaining bit budget allocated to the rest
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Impact of smart quantization at 0.2bpp

uniform tuned



Runlength encoding

The matrix of quantized DCT coefficients will contain a lot of zeros:

m scan the matrix in a zig-zag pattern to obtain long sequence of zeros
m encode each nonzero value as a triple:

e number of zeros preceding the value

e number of bits used to encode the value

e the value itself

m each triple is a symbol that we must efficiently encode in binary format

(0,0,0,0,0,6) — [(5,4),6]
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Zigzag scan
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Example

Ococoocoocooocoo
coocoocoococoo
coocoococoo
coocoocoococoo
~OOoo0ooo oo
coocoococoo

O OO OO OO

goooaocoo
i

100, -6, 0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0, 0, 0,

0,000¢00000009009000000000000000000000
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Runlength encoding

Oocoocoocooooo
coocoocooocoo
coocooococoo
coocoocooocoo
~ooooooo
coocooococoo

O OO O~ 0OO0OOo

geooaocoo
b

100, -6, 0,0,0,0
0,0,0,0,0,0
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Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

100,

-6, 0,0,0,0,1, 0,0,0,2, 006000000-1 0000,00090,0,0,0,

0,000¢00¢0000090090090900000000000000000000

[100],
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Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

100, -6, 0,0,0,0,1, 0,0,0,2, 0,0,0,0,0,0,00,-1, 0,0,0,0,0,0,0,0, 0,0, 0,

0,00¢00¢00000¢0090090900000000000000000000

[100], [(0.4). —6].
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Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

0,002 000900000-102020620000000,0,

100, -6,

0,000¢000000¢009009000000000000000000000

[100], [(0.4). —6].
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Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

0,002 0606090¢09000-10200060000000

100, -6,

0,000¢000000¢0090090900000000000000000000

[(3,3), 2],

[100], [(0.4). —6].
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Runlength encoding

100

O OO OOOO
O OO OO0 OoOOo
O OO OO0 O0O oo
OO O OO0 OoOOo
O OO OO0 O0oO oo
O OO OO0 O0O oo

[eNeoNeNeoNoNoNolS

cocoonNvOoO oo
I

100, -6, 0,0,0,0,1,0,0,0,2,0,000,0,000-1, 0,00,0,0,000,0,0,0,
0,000¢00¢00000¢0090090900000000000000000000

[100], [(0.4). —6]. [(4.2). 1]. [(3.3), 2], [(8.2). ~1],
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Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

40004000

geooanooo
b

100, -6, 0, 0,0,0,1,0,0,0, 2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 0,0, 0,

0,000¢000000900¢090900000000000000000000

[100], [(0,4), —6], [(4,2). 1], [(3,3), 2], [(8,2), —1], [(0,0)]
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Bitstream encoding

goal: minimize storage requirement by encoding each symbol with a binary codeword

m variable-length entropy coding: frequent symbols use shorter codewords and vice-versa
m prefix-free code: no need for explicit separators between codewords
m JPEG provides a “general-purpose” code but you can build your own

m given the symbol frequencies, the Huffman algorithm builds an optimal prefix-free enropy
coder
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Variable-length encoding

if codewords have different lengths, we must know how to parse them

m in western languages we use spaces and punctuation (we need extra symbols)
m in Morse code we use short pauses for letters and long for words (wasteful)

m can we do away with separators?

98



Prefix-free codes

in the bitstream generated by a prefix-free encoder:

m no valid codeword is the beginning of another valid codeword
m the bitstream can be parsed sequentially with no look-ahead

m easiest way to understand is graphically, using binary trees

99



Building a Huffman code: toy example

m four symbols: A, B, C, D

m probability table:
p(A) = 0.38 p(B) =0.32

p(C)

0.1 p(D)=0.2
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Building a Huffman code
p(A)=0.38 p(B)=032 p(C)=0.1 p(D)=0.2
m at each step, select the two least probable symbols

m set them as descendant of an intermediate node

m arbitrarily assign binary digits to the branches

101



Building a Huffman code

p(A) =038 p(B)=032 p(C+D)=03

m probability of intermediate nodes is the sum of descendants

m repeat the previous step with remaining symbols and intermediate nodes
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Building a Huffman code

p(A) =038 p(B+ C+D)=0.62
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Building a Huffman code: toy example

m four symbols: A, B, C, D

m probabilities: p(A) = 0.38, p(B) =0.32, p(C) =0.1, p(D) =0.2

m prefix-free codewords:
A—0

¢ — 100

B —11

D — 101
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Decoding a prefix-free bitstream

105



Decoding a prefix-free bitstream

001100110101100
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Decoding a prefix-free bitstream

001100110101100

A
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Decoding a prefix-free bitstream

001100110101100

AA
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Decoding a prefix-free bitstream

001100110101100

AAB
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Decoding a prefix-free bitstream

001100110101100

AABA
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Decoding a prefix-free bitstream

001100110101100

AABAA
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Decoding a prefix-free bitstream

001100110101100

AABAAB
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Decoding a prefix-free bitstream

001100110101100

AABAABA
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Decoding a prefix-free bitstream

001100110101100

AABAABAD
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Decoding a prefix-free bitstream

001100110101100

AABAABADC
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Conclusions

m JPEG is a very complex and comprehensive standard:
e |ossless, lossy
e color, B&W
e progressive encoding
e HDR (12bpp) for medical imaging
m JPEG is VERY good:

e compression factor of 10:1 virtually indistinguishable
e rates of 1bpp for RGB images acceptable (25:1 compression ratio)

m other important compression schemes:

o TIFF, JPEG2000
o MPEG (MP3)
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