=PrL

COM-202: Signal Processing

Chapter 9: Introduction to Image Processing

two-dimensional signal processing

Two-dimensional discrete-space signals

m notation: x[ni, m], ni,m € Z
m indexes ni, ny locate a point on a grid

m grid is usually regularly spaced

2D signals: support representation

m show coordinates of nonzero values

m values may be written alongside
position

m example: the 2D discrete-space impulse:

5[] 1 if n = np = 0
ny, no] =]
b2 0 otherwise

n2

n

The 2D discrete-space rect

1 if |n1| < N
rect m no . and |n2| < N> 0
2Ny 2N,)

0 otherwise

A new concept: separability

A separable 2D signal can be decomposed as the product of two 1D signals:

x[nl, n2] = X1 [nl]x2[n2]

Examples of separable signals

(5[!71, n2] = (5[”1](5[”2]

Nonseparable signal

x[n1, m] = L if|m[+|nof <N 0
b2 0 otherwise

Nonseparable signal

m n

X[n]_, n2] = rect <m, m

)

m n
2M;’ 2M,

) 0

Two-dimensional filters

y[nm, no] = H{x[n1, no]}

m linearity: H{ax[n1, no] + bw[ny, no]} = aH{x[n1, no]} + bH{w|[n1, n2]}
m space invariance: H{x[ny — di,np — db|} = y[m — d1,n2 — dba]

m impulse response h[n1, np] = H{d[n1, n2]}

Two-dimensional filters

A linear, space-invariant 2D filter implements a 2D convolution:

(X * h)[nl, n2] = i i X[kl, k2]h[l11 - kl, np — k2]

ki=—o00 kp=—0c0

2D convolution for separable signals

If h[nl, n2] = hl[nl]hg[nz]:

(X * h)[nl, n2] = Z hl[nl — kl] Z X[kl, k2]h2[n2 — k2]

ki=—00 ko=—00

m each column of x[ny, n2] is a 1D signal x,, [n]
m convolve each column xp, [n] with ha[n] to obtain the 2D intermediate signal c[n1, n2]
m each row of c[ny, n2] is a 1D signal ¢, [n]

m convolve each row c,,[n] with h1[n] to obtain the final output

10

2D convolution for separable signals

If h[n1, n2] is an My x M, finite-support signal:

m non-separable convolution: M; M, operations per output sample

m separable convolution: M; 4+ M, operations per output sample!

11

The two-dimensional Discrete Fourier Transform

Straightforward extension of th 1D-DFT to two dimensions:
m an N x N, signal x[n1, ny] yields Ny Np DFT coefficients

m DFT computes the similarity between x[n1, np] and the DFT basis vectors

m the Ny N, basis vectors are Ny x N, sinusoidal signals

2D-DFT: analysis and synthesis

Analysis formula:
Ni—1 Np—1

227
Xk, ko] = Z Z x[n1, me M MK i ke

n=0 nx=0

Synthesis formula:

Ni—1 Np—1
1 &«

X el = 8 Z Z X[ke, koe' T " & 65 72k
=0 ko=

13

2D-DFT basis vectors

There are Ny N, orthogonal basis vectors for an Ny x N image:

Wk17k2[n17n2] _ e‘l’Vl n 1eJN2n2 2

for n1,k1:O,1,...,N1—1and n2,k2:O,1,...,N2—1

14

2D-DFT basis vectors (real part)

ki =1k =0

15

2D-DFT basis vectors (real part)

ki =1k =2

ki =N —10,ky =2

ki =1,ko=Np—1

16

2D DFT

2D-DFT basis vectors are separable, and so is the 2D-DFT:

X[ki, ko] =

Ni—1

D

n1=0

No—1

D

np=0

_j2m
x[nl, n2]e J ,\,72r naky

ry

e

;27
—j 5=k
Jy MK

m 1D-DFT along ny (the columns) —J

m 1D-DFT along ny (the rows)

image processing

The fundamental problem with image processing

among all possible 2D signals, images belong to a very small subset,
the set of 2D signals that “make sense” to the human visual processing system

m images are anisotropic: different areas carry extremely different data
m images are 2D projections of a 3D world: lots of information is lost

m images contain a lot of "visual semantics”, which is extremely hard to deal with

18

Displaying discrete-space signhals as images

m coordinates [ny, ny] point to a “pixel”
m x[ny, ny] is the pixel's grayscale level

m the eye “interpolates” the individual dots into a
smooth image (provided the pixel density is high
enough)

m limiting factor is medium’'s dynamic range (how
many levels of gray can be displayed)

n2

510
425
340
255
170

85

0 ! ! ! ! !
0 85 170 255 340 425 510

nm

19

About dynamic ranges...

Images: Sounds:
m human eye: 120dB m human ear: 140dB
m prints: 12dB to 36dB m speech: 40dB
m LCD: 60dB m vinyl, tape: 50dB

m digital cinema: 90dB m CD: 96dB

Digital images: what about color?

m grayscale images: pixel values are scalars
m color images: pixel values are tuples in a given color space (RGB, HSV, YUV, etc)

m we can consider each color component separately:

21

Image processing vs “standard” signal processing

From one to two dimensions...

m something still works
m something breaks down

m something is new

22

Image processing: what still works

m Fourier transform formulas
m some key concepts and operators: linearity, space-invariance, convolution

m interpolation, sampling, quantization

23

Image processing: what no longer works

m Fourier analysis is much less relevant
m filter design is hard, and |IRs are rare to non-existent

m only simple filters are useful because LTI filters are isotropic but images are not

Image processing: new concepts

What's new:

m new class of signal operators: affine transforms

m images are finite-support and available in their entirety — filter causality becomes
irrelevant

m images use up a lot of storage: we need compression

images in the frequency domain

How does a 2D-DFT look like?

510 —_— 510
425 . 425
340 . 340
255 - 255
170 . 170

85

0 1 1 1 1 1 0
0 85 170 255 340 425 510 0 85 170 255 340 425 510

DFT of an image: magnitude vs phase

X[kl, k2] = DFT {X[nl, n2]}
X[k, ko] = Alky, ko]e/?thekel - Alky ko] > 0

m what happens if we discard the phase?
Xm[nl, n2] = IDFT {A[kl, kz]}
m what happens if we discard the magnitude?

xp[n1, na] = IDFT {eiso[kl,kg]}

DFT magnitude doesn’t carry much visual information

Xm [n17 n2]

28

DFT phase, on the other hand...

Xp[nlv n2]

29

Images in the frequency domain

m key visual semantic information determined by edges
m edges are points of rapid amplitude change in space

m to create a “jump” we need precise phase alignment of basis vectors

in one dimension, the Fourier transform is a visual analysis tool...
...but images are already visual objects!

30

filters for image processing

Everyday 2D filter types

you'll see mostly linear-phase FIRs (to preserve edges)

m zero-centered, odd-length impulse response to avoid shifts

separable filters preferred for efficiency

lowpass response for image smoothing (blurring)

highpass response for edge detection

31

2D Moving Average

y[n17 n2]

2M—|—1 Z Z X[nl—kl,nz—kz]

h[nl, n2] =

ki=—M ko=—

1
- t - - =
M+ 12" (2/\/1’ 2M

Example: 3x3 Moving Average

h[nl, n2] = é |:

1
1
1

=

e

33

2D Moving Average

original

11 x 11 MA

34

2D Moving Average

original

51 x 51 MA

35

Border effects

N x N image filtered with an (2M + 1) x (2M + 1) FIR:

M M
(h * X)[nl, n2] = Z Z h[kl, kg]x[nl — kl, ny — k2]

ki=—M ko=—M

m when n; < M or n; > N — M, convolution uses pixels outside of the N x N image

m normally we assume x[n1, np] = 0 for n; & [0, N — 1]: this creates a dark band around the
edges

m in 1D 2M samples would exhibit border effects
m in 2D 4M(N — M) pixels are affected!

m cosmetic solution is to mirror the image at each edge

Gaussian Blur

h[nl, n2] =

1 _n +g§
e 20
212 ’

with M ~ 30

|n1,n2| <M

37

Gaussian Blur

-8

39

Gaussian Blur

original

o =1.8,11 x 11 blur

40

Gaussian Blur

original o =8.7,51 x 51 blur

41

Gaussian blur more “photographic”

than moving average

11 x 11 MA

o =1.8,11 x 11 blur

42

Gaussian blur more “photographic” than moving average

51 x 51 MA o =8.7,51 x 51 blur

43

edge detection

Filters for edge detection

What is an edge? In general very complicated since dependent on semantic scene analysis.

Candidate edge points are found where the signal’s amplitude

m has a discontinuity

m has an inflection

44

Edge detection

Edge detection algorithms work in 2 passes:

selection of candidate edge points via a filtering operation

refinement of edges using geometric consideration, heuristics, and machine learning

m the second step is highly nonlinear and quite complicated
m we will look at the first phase only

m candidate points are located by estimating the derivatives of the signal

45

Gradient and Laplacian

for points of discontinuity we look for large values of the gradient

V(t,) = [87‘ af}

o o

for points of inflection we look for the zeros of the Laplacian

P O
Af(t,) = — + =
otz ot3

46

Gradient and Laplacian for discrete images

m the gradient is approximated using the Sobel filter
m the Laplacian is approximated by the Laplacian discrete-space operator

m both are implemented using simple separable filters

47

Approximating the gradient with first differences

X1 X2 X3

N1/

X4 = X ™™ Xp

/N

X6 X7 X8

m derivatives on the discrete grid are approximated by first-order differences

m use also diagonal differences with appropriate scaling:

Xi—X d— 1 i =2,4,57
Pi=—g "T1v2 i=1,36.8

48

Approximating the gradient with first differences

X1 X2 X3

N1/

X4 = X —™ Xp

/N

X6 X7 X8

m combine differences with proper sign (left to right and down to up)
m diagonal first differences contribute to both horizontal and vertical derivatives:
Ox
8/11

ox
8”2

A ps — pa— Pp1+p3— Ps+ Ps

R p2—pr+p1+p3—pPs— pPs

49

Approximating the gradient with first differences

to make things computationally easy, set

g 1/2 i=2,4,57
"]t i=1,3,68

P ~(x3—x1) +2(xs — xq4) + (xs — x6)
m

8— ~ (Xl — X6) + 2(X2 — X7) + (X3 — Xg)
n

50

The Sobel filter

Odm.mal (o s m,)

om
%’17’2”2] ~ (Sv *X)[n17 n2]
10 -1
saln, m] =12 0 -2
10 -1

1 2 1
Sv[nla n2] = 0 0 °
-1 -2 -1

51

The Sobel filter

the Sobel filter is separable:

1
swlni,m] = |2 [1 0 —1]

—_

interpretation: horizontal gradient = vertical averaging before horizontal differentiation

The Sobel filter

horizontal Sobel filter

vertical Sobel filter

53

The Sobel operator

to find all extrema, use the square magnitude of the gradient:
[Vx[nw, m]|? = [(sh o+ x)[n1, n2][* + |(sv % x) [,]

(we call this an “operator” instead of a filter because it is nonlinear)

54

Edge detection with the Sobel operator

0.t

ey "‘.’! d}; ’/,_—’—1& :

output of Sobel operator

thresholded output

The Laplacian operator

The Laplacian of a bivariate function is defined as

0*f 9°f
Af(tl, t2) = — + =
ot2 ot3

zero crossings of the Laplacian are potential inflection points

56

Approximating the second derivative

for a smooth function f, the first three terms of the Taylor expansion in (t + 7) and (t — 7)

t—|—7'

n=0

e+ 7) % F(1) + ()7 + 57 (0)7
Ft =) ~ F(8) — F(e)r + (1)

so that

f(t) ~ %(f(f —7) = 2f(t) + f(t + 7))

57

Approximating the second derivative

F(t) ~ %(f(r —7) = 2f(t) + f(t + 7))

on the discrete grid (t < n, 7 = 1):

x[n] _
oz x[n — 1] = 2x[n] + x[n + 1]

= (h*x)[n]
hln]=[1 -2 1]

58

The Laplacian filter

for images, there are two alternate definitions

m using only the horizontal and vertical derivatives:

m using also the diagonals

h[nl) n2] =

h[nl, n2] =

59

Edge detection with the Laplacian filter

output of Laplacian filter

thresholded output

60

affine transforms

Affine transforms in continuous space

mapping R? — R? that reshapes the coordinate system:

= -l
t) a1 ax| |t d>

61

Translation

62

Translation

di = —0.7,dr = —0.3

Scaling

a

63

Scaling

if a; = ap the aspect ratio is preserved

63

Scaling

31:2,32:1

63

Rotation

A
d

|

cos 6
sind

—sinf
cos 6

|

64

Rotation

|

d=20

cos 6
sind

—sinf
cos 6

|

6 = —0.6m

64

Rotation

A
d

|

cos 6
sind

—sinf
cos 6

|

64

Flips

Horizontal:

Vertical:

Flips

Horizontal:

Vertical:

Shear

Horizontal:

Vertical:

66

Shear

Horizontal:

Vertical:

66

Affine transforms in discrete space

H :A[’”] —d eR22£72

na

67

Solution: work backwards!

m take each output coordinate y[my, ms]

m apply the inverse transform to [my, my] and find the source coordinates:
t — Al my +di|
t my +do|’

m if source point not on source grid, write

(t1, t2) = (1 + 71, m2 + 72), mp €%, 0<153<1

and interpolate from the surrounding original grid points

68

Bilinear Interpolation

(t1, t2)
°

69

Bilinear Interpolation

m+1f

-

x[m +1,
. —

(t1, t2)
°

x[m1, m2]
°

T m+1

 + 1]

69

Bilinear Interpolation

m+1f

-

T2

T1

m

m+1

69

Bilinear Interpolation

»,72_’_]_, ® - A [
[J
m @—h - [
T1
l l
m m+1

69

Bilinear Interpolation

772+1 = ® - A [
T2
’[72 L. @ .
T1
l l
m m+1

69

Bilinear Interpolation

m we are free to use any interpolation scheme
m a common and easy choice is linear interpolation for both direction
m this leads to a closed-form expression using four pixel values:

ylm1, mp] = (1 — 71)(1 — m2)x[n1, m2] + 71(1 — m2)x[n1 + 1, 7]
+ (1 = mo)mx[n1,m2 + 1] 4+ Ti7ax[m + 1,m2 + 1]

70

Shearing

Bilinear Interpolation for resizing

m start from the coordinates of each pixel in output resized image

1/ay O }

m use the inverse scaling operator A~1 =
& °op 0 1/a

m use bilinear interpolation to find value of output pixel from target input pixels

the JPEG image compression standard

A thought experiment

m consider all possible 256 x 256, 8bpp “images”

m each image is 524,288 bits

m total number of possible images: 2524288 ~ 10157,826

m number of atoms in the universe: 10%2

73

Image compression

Goal: reduce the storage required by an image

m lossless compression: store the information exactly, just more compactly
e zip files, PNG
e exploits patterns in bitstream (not image-specific)
e mostly a problem for Information Theory

m lossy compression: accept some degradation in return for larger storage gains

e JPG, MP3
e designed specifically for a class of signals (images, music)

e relies on known “blind spots” in our perceptual systems

4

Lossy image compression

m exploit natural redundancy in images (eg: large blue sky)
m use psychovisual experiments to determine what impacts perceived quality
m allocate most bits to the things that matter

m hide the losses where they are hard to see

75

Key ingredients of the JPEG standard

compressing at block level
using a suitable transform (i.e., a change of basis)
smart quantization

entropy coding

76

Compressing at pixel level

m reduce number bits per pixel
m equivalent to coarser quantization

m the lowest we can go is one bit per pixel
i.e. pixels are either black or white

7

Compressing at block level

m split image into small blocks

m keep only average pixel value in blocks
m shown here:

e 3 x 3 blocks, i.e. 9 pixels each

e average value coded using 8 bits

e storage less than 1 bpp

m where's the catch? zoom in to see

78

Transform coding

A simple 1D example:

signal encoded at R bits per sample
storing N samples requires NR bits

look at the DFT: if many DFT values
are close to zero we can discard them
and store only the nonzero ones

many natural signals are sparse once
properly transformed!

20 25 30

:

T T

5 10

T

15

T T T

20 25 30

79

Smart quantization

After computing the transform of each block:
m set to zero all small coefficients

e use a “deadzone” quantizer
e |ots of consecutive zeros can be encoded efficiently

m use more bits for the “important” coefficients

e more bits means more quantization levels, i.e. lower quantization error

e visual importance determined experimentally using subjective tests

80

Standard vs Deadzone Quantization (2 bps)

X[n] x[n]
0L
) .
- 01."
1+ Az 1 4+ :
00+
x[n] 00 x[n]
L L L L L L L L
I I I I I I I I
-2 —1 10 1 2 -2 -1 1 2
10,
. -1+ — ~1 -
1.
2
2 4 2 1

81

Standard quantization: full-amplitude signal

Standard quantization: full-amplitude signal

82

Standard quantization: full-amplitude signal

Standard quantization: small amplitude values

83

Standard quantization: small amplitude values

83

Standard quantization: small amplitude values

o)t ?t ¢t * ? ¢ ? T ?TT T PTT?T TP
¢ o o o ¢ o

¢ o6 6 0 o o o o o

83

Standard vs Deadzone Quantization (2 bps)

X[n] x[n]
0L
) .
- 01."
1+ Az 1 4+ :
00+
x[n] 00 x[n]
L L L L L L L L
I I I I I I I I
-2 —1 10 1 2 -2 -1 1 2
10,
. -1+ — ~1 -
1.
2
2 4 2 1

84

Standard quantization: small amplitude values

85

Standard quantization: small amplitude values

85

Standard quantization: small amplitude values

85

Final bitstream encoding

Smart quantization returns a series of integers that must be encoded efficiently:
m not all values occur with the same probability:

e use short binary “codewords” for very frequent values

e use longer binary codewords for rarely occurring values

m this is the principle of Morse code!

* mm Ue o mm
mmeeoe Veeoomm
- e mm ¢ We mm mm
-uee Xmmm oo mm
. Y o mum wm
oo mmeo Zumm oo
-

—HVPOTVOZErA——IOMMOO >
olooo
1.1°:
arc
1

2
- - 3ee o mmmm
- . 40000 mm
- - 500000
o mm mm o [_ XXX
- e mm 7o
o mm o G ——o o
[N O -
- O o - —

86

Key ingredients in the JPEG standard

m compressing at block level: split image into 8 x 8 non-overlapping blocks
m using a suitable transform: compute the Discrete Cosine Transform of each block
m smart quantization: round DCT coefficients according to psycovisually-tuned tables

m bitstream encoding: run-length encoding plus Huffman entropy coding

87

The Discrete Cosine Transform (DCT)

pretty much the same as the DFT:

m each coefficient inner product between image block and DCT basis vectors
m basis vectors are a bit different from the DFT but still orthogonal
m DCT coefficients are real-valued

m DCT minimizes border effects

88

DCT basis vectors for an 8 x 8 image

M ne
O A e
N0 00 200 000 i i
A0 L R e et

DCT coefficients of image blocks

90

Psycovisually-tuned quantization

m most of the 64 DCT coefficients in each block are small and rounded to zero
m coefficient with high visual impact are encoded first

m remaining bit budget allocated to the rest

91

Impact of smart quantization at 0.2bpp

uniform tuned

Runlength encoding

The matrix of quantized DCT coefficients will contain a lot of zeros:

m scan the matrix in a zig-zag pattern to obtain long sequence of zeros
m encode each nonzero value as a triple:

e number of zeros preceding the value

e number of bits used to encode the value

e the value itself

m each triple is a symbol that we must efficiently encode in binary format

(0,0,0,0,0,6) — [(5,4),6]

93

Zigzag scan

94

Example

Ococoocoocooocoo
coocoocoococoo
coocoococoo
coocoocoococoo
~OOoo0ooo oo
coocoococoo

O OO OO OO

goooaocoo
i

100, -6, 0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0, 0, 0,

0,000¢00000009009000000000000000000000

95

Runlength encoding

Oocoocoocooooo
coocoocooocoo
coocooococoo
coocoocooocoo
~ooooooo
coocooococoo

O OO O~ 0OO0OOo

geooaocoo
b

100, -6, 0,0,0,0
0,0,0,0,0,0

96

Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

100,

-6, 0,0,0,0,1, 0,0,0,2, 006000000-1 0000,00090,0,0,0,

0,000¢00¢0000090090090900000000000000000000

[100],

96

Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

100, -6, 0,0,0,0,1, 0,0,0,2, 0,0,0,0,0,0,00,-1, 0,0,0,0,0,0,0,0, 0,0, 0,

0,00¢00¢00000¢0090090900000000000000000000

[100], [(0.4). —6].

96

Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

0,002 000900000-102020620000000,0,

100, -6,

0,000¢000000¢009009000000000000000000000

[100], [(0.4). —6].

96

Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

O O OO~ OO0OOo

geooanooo
b

0,002 0606090¢09000-10200060000000

100, -6,

0,000¢000000¢0090090900000000000000000000

[(3,3), 2],

[100], [(0.4). —6].

96

Runlength encoding

100

O OO OOOO
O OO OO0 OoOOo
O OO OO0 O0O oo
OO O OO0 OoOOo
O OO OO0 O0oO oo
O OO OO0 O0O oo

[eNeoNeNeoNoNoNolS

cocoonNvOoO oo
I

100, -6, 0,0,0,0,1,0,0,0,2,0,000,0,000-1, 0,00,0,0,000,0,0,0,
0,000¢00¢00000¢0090090900000000000000000000

[100], [(0.4). —6]. [(4.2). 1]. [(3.3), 2], [(8.2). ~1],

96

Runlength encoding

Ococoocoocooocoo
coocoocooocoo
cooocococoo
coocoocooocoo
~ooooocoo
cooocoococoo

40004000

geooanooo
b

100, -6, 0, 0,0,0,1,0,0,0, 2,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 0,0, 0,

0,000¢000000900¢090900000000000000000000

[100], [(0,4), —6], [(4,2). 1], [(3,3), 2], [(8,2), —1], [(0,0)]

96

Bitstream encoding

goal: minimize storage requirement by encoding each symbol with a binary codeword

m variable-length entropy coding: frequent symbols use shorter codewords and vice-versa
m prefix-free code: no need for explicit separators between codewords
m JPEG provides a “general-purpose” code but you can build your own

m given the symbol frequencies, the Huffman algorithm builds an optimal prefix-free enropy
coder

97

Variable-length encoding

if codewords have different lengths, we must know how to parse them

m in western languages we use spaces and punctuation (we need extra symbols)
m in Morse code we use short pauses for letters and long for words (wasteful)

m can we do away with separators?

98

Prefix-free codes

in the bitstream generated by a prefix-free encoder:

m no valid codeword is the beginning of another valid codeword
m the bitstream can be parsed sequentially with no look-ahead

m easiest way to understand is graphically, using binary trees

99

Building a Huffman code: toy example

m four symbols: A, B, C, D

m probability table:
p(A) = 0.38 p(B) =0.32

p(C)

0.1 p(D)=0.2

100

Building a Huffman code
p(A)=0.38 p(B)=032 p(C)=0.1 p(D)=0.2
m at each step, select the two least probable symbols

m set them as descendant of an intermediate node

m arbitrarily assign binary digits to the branches

101

Building a Huffman code

p(A) =038 p(B)=032 p(C+D)=03

m probability of intermediate nodes is the sum of descendants

m repeat the previous step with remaining symbols and intermediate nodes

102

Building a Huffman code

p(A) =038 p(B+ C+D)=0.62

103

Building a Huffman code: toy example

m four symbols: A, B, C, D

m probabilities: p(A) = 0.38, p(B) =0.32, p(C) =0.1, p(D) =0.2

m prefix-free codewords:
A—0

¢ — 100

B —11

D — 101

104

Decoding a prefix-free bitstream

105

Decoding a prefix-free bitstream

001100110101100

105

Decoding a prefix-free bitstream

001100110101100

A

105

Decoding a prefix-free bitstream

001100110101100

AA

105

Decoding a prefix-free bitstream

001100110101100

AAB

105

Decoding a prefix-free bitstream

001100110101100

AABA

105

Decoding a prefix-free bitstream

001100110101100

AABAA

105

Decoding a prefix-free bitstream

001100110101100

AABAAB

105

Decoding a prefix-free bitstream

001100110101100

AABAABA

105

Decoding a prefix-free bitstream

001100110101100

AABAABAD

105

Decoding a prefix-free bitstream

001100110101100

AABAABADC

105

Conclusions

m JPEG is a very complex and comprehensive standard:
e |ossless, lossy
e color, B&W
e progressive encoding
e HDR (12bpp) for medical imaging
m JPEG is VERY good:

e compression factor of 10:1 virtually indistinguishable
e rates of 1bpp for RGB images acceptable (25:1 compression ratio)

m other important compression schemes:

o TIFF, JPEG2000
o MPEG (MP3)

106

