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Signal Processing (SP)

Capture signals from real world with

Sensors

Infer something about quantity of interest
via computation
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Increasing Wavelength

Acoustic Imaging

OAOOI‘J1 nm 0.01 nm 10nm 100? nm 0A01‘ cm 1‘cm 1‘m 10(|) m

Gamma Rays X-Rays uv Infrared Radio Waves

 Determine acoustic intensity in different
directions.

- Microphone(s) record time series

- Process signals to infer spherical
intensity

Acoustic emitters
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Acoustic Imaging 2
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Acoustic Imaging: Real-Time Demo

Acoustic Camera Video



Acoustic Imaging 4

Direct inv. Model-based

» Least-squares reconstruction to achieve
real-time estimation.

— Poor spatial resolution for compact
arrays.

e Solution: inject prior knowledge.

Data Fidelity Prior Model
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Acoustic Imaging 5

 Solve via iterative methods.

X%GD = prox, (Xk_l — onf(xk_l))

= RelLu [ka_l + Bvec(X) — T}

(b) DeepWave azimuthal sound field.

High (4.5 kHz)

* Can be made real-time via loop-unrolling::
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(e) DeepWave spherical sound field (resolution: 18.5° , contrast: 0.97). (f) Pyramic array.
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Digital Communications: 5G Coding

Concatenated
OFDM Symbols
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Radio-Interferometry W i
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* Determine sky brightness
distribution

- Stars emit radio emissions
(among other things)

- Recorded on Earth with antennas
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Radio-Interferometry
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RI: Design of Modern Interferometers

Hierarchical phased-array architecture
using beamforming.

- Station-level spatial filtering.

- Reduce data rate from antennas.

ym = [ S(r)a’ (r)e I X Pmr)gy
§2
=D S)ay, (r)e? X P
red
X] — WHy

Central Processor 31’

(Correlator)

. Sources in Sky
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RI: Adaptive Beamforming
Trading Resolution for Sensitivity
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RI: Adaptive Beamforming
Trading Resolution for Sensitivity
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Optical Imaging

e Capture scene radiance
— Visible light enters camera

— Recorded on pixel detector

scene
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Optical Imaging 2 S
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— Use computation to recover it

=P/thf the light

scene sensor recording

measurement

computation?

y(r) = (h*x)(r) 18

+ color channels...



Optical SP: A 2D LTI System
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Figure 5. Spectral properties of coherent propagation in homogeneous media.
wavelength regime, the channel is effectively %-bandlimited.

When not in the sub-
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Optical SP 2
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Optical SP 3
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y (nm)

. 0 | Projection lens
OSP: Photo-Lithography >0 |

DUV/EUV light shines onto mask/SLM

- Free-space propagation + lens effects

Photomask

- Intensity pattern at wafer surface Wafer stage

* Non-linear chemical etching.
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* Determine volume absorption profile

d
10nm 200 280 315 380 780 1,500 5,600 1,000,000 nm

— Project X-rays through object

— Record shadows from different
directions

3D volume

measurement

computation?




X-Ray Tomography

Applications
— Non-Destructive Testing (NDT)
- Medical Imaging: X-CT

— Material Science Research
e Absorption CT
* Multi-Modal Imaging: PXCT, PyXL

= o f(na+ Uy, is)do

Goal: recover f from samples of g = P[f]

S-domain

P-domain
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Filtered Back-Projection

Analytic direct inverse
f = (P*P)~1P*[g](x
= P*h * g|(x

Issues
- Dense P-space sampling
- Model mis-match

- Implementation details

SEaEl i i

no noise

adjoint mis-match




General Image Reconstruction

Image reconstruction formulated as an
Inverse problem

f= argmin F{g— ® f}+AG{f}

fEEZ(RD7R) .oPo-..

Advantages

Inject prior knowledge
Less measurements
Account for instrument deviations
Leverage Al in imaging pipeline
* Denoisers, generative priors, ...

Solved via iterative 1st-order methods

PGD, CG, PDS, SGD, Adam,

FBP (no noise)

. (| support & |

+ PnP denoiser




FourierXRT: Idea

* Projections g(s) are finite-support and band-limited
- FS coefficients §;f S can be computed exactly via the FFT
- ¢"(v) obtained via FS «— F'T equivalence

- Fourier Slice Theorem relates g*(v) with f*(v)

§(s) =Y gls ~ Tq)

G55 = g¥ (k/T)




FourierXRT: Idea

Pl =7 Y Foll (gl ) e [ ms)]
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XRT: In-Vivo Imaging

High-speed
cameras

IR LED

IR LED T o
Q Blower 0

Synchrotron beamline

Tethered
‘insect

Turntable a

Detector system

In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

* Fly video (see link below)
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https://doi.org/10.1371/journal.pbio.1001823
https://doi.org/10.1371/journal.pbio.1001823

XRT: Non-Destructive Processor Inspection

* Processor 3D structure video (see link
below)

Ptychography
. scanning axes \

X-ray optics

X-ray photon-

\
Laminography
grapny counting camera

X-ray beam _ :
rotation axis \

High-resolution non-destructive three-dimensional imaging of integrated circuits


https://www.nature.com/articles/nature21698
https://www.nature.com/articles/nature21698

