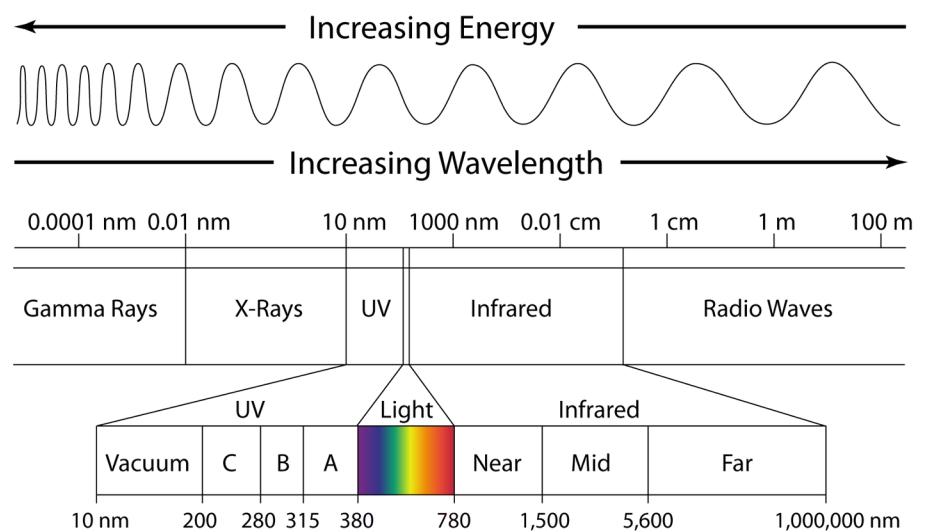
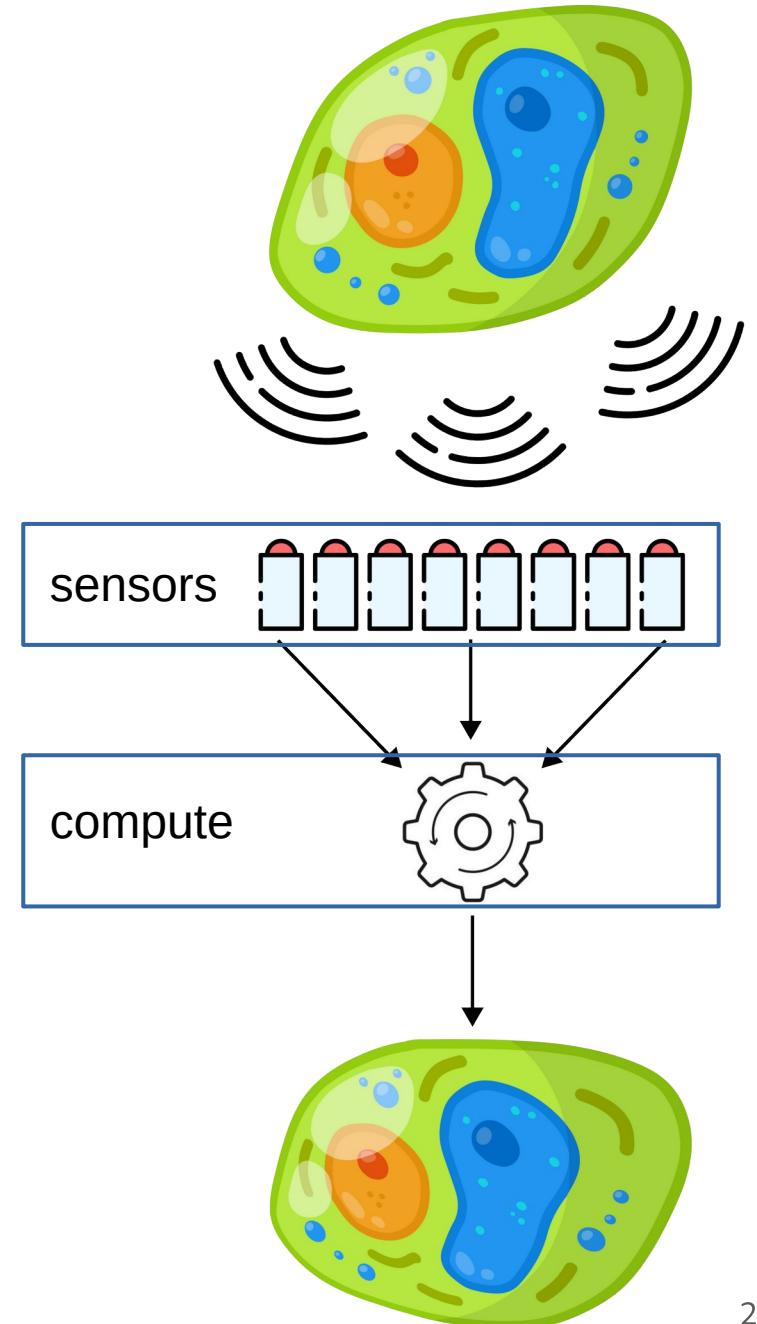


Signal Processing in the Wild

Sepand Kashani

Signal Processing (SP)

- Capture signals from real world with sensors
- Infer something about quantity of interest via **computation**



Acoustic Imaging

- Determine acoustic intensity in different directions.
 - Microphone(s) record time series
 - Process signals to infer spherical intensity



Acoustic emitters

measurement

computation?

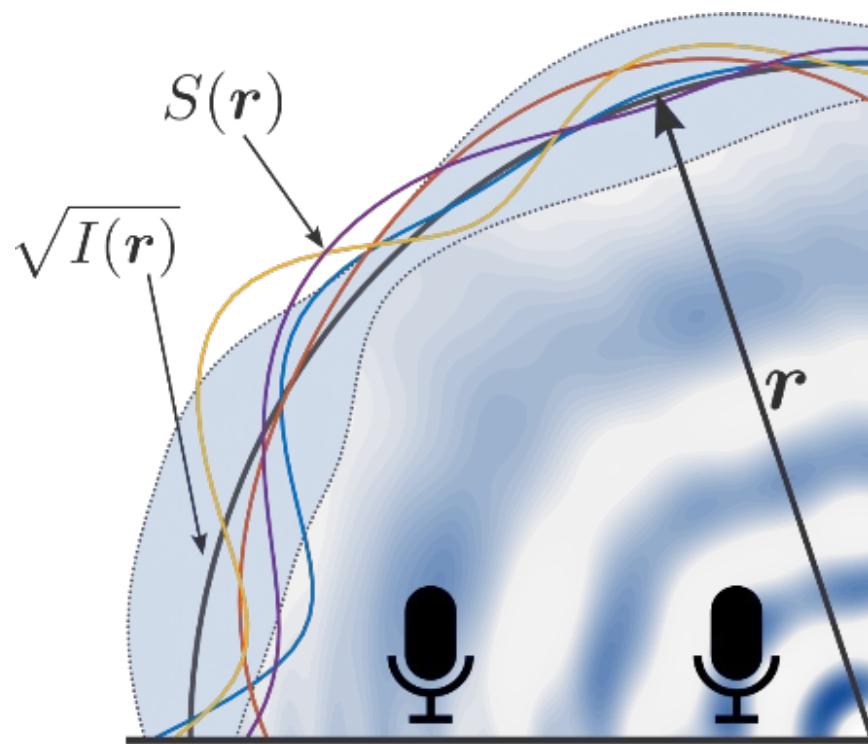
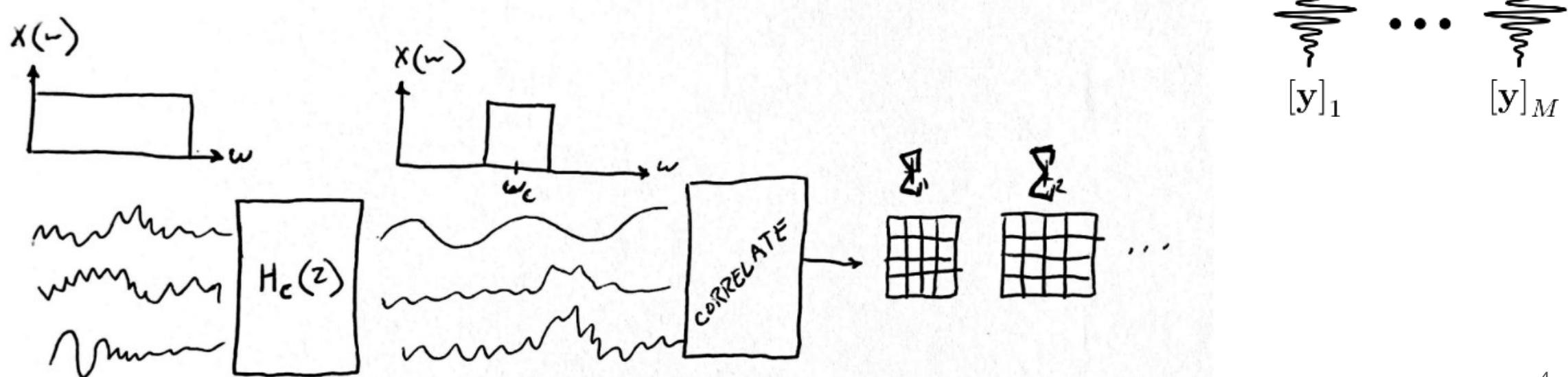
Microphone signals

Acoustic Imaging 2

$$\mathbf{y}_m = \int_{\mathbb{S}^2} S(\mathbf{r}) \alpha_m^*(\mathbf{r}) e^{-j \frac{2\pi}{\lambda} \langle \mathbf{p}_m, \mathbf{r} \rangle} d\mathbf{r}$$

$$= \sum_{\mathbf{r} \in \theta} S(\mathbf{r}) \alpha_m^*(\mathbf{r}) e^{-j \frac{2\pi}{\lambda} \langle \mathbf{p}_m, \mathbf{r} \rangle}$$

$$\Sigma = \mathbb{E} [\mathbf{y} \mathbf{y}^H] = (\overline{\mathbf{A}} \circ \mathbf{A}) \mathbf{I} + \sigma^2$$



Acoustic Imaging: Real-Time Demo

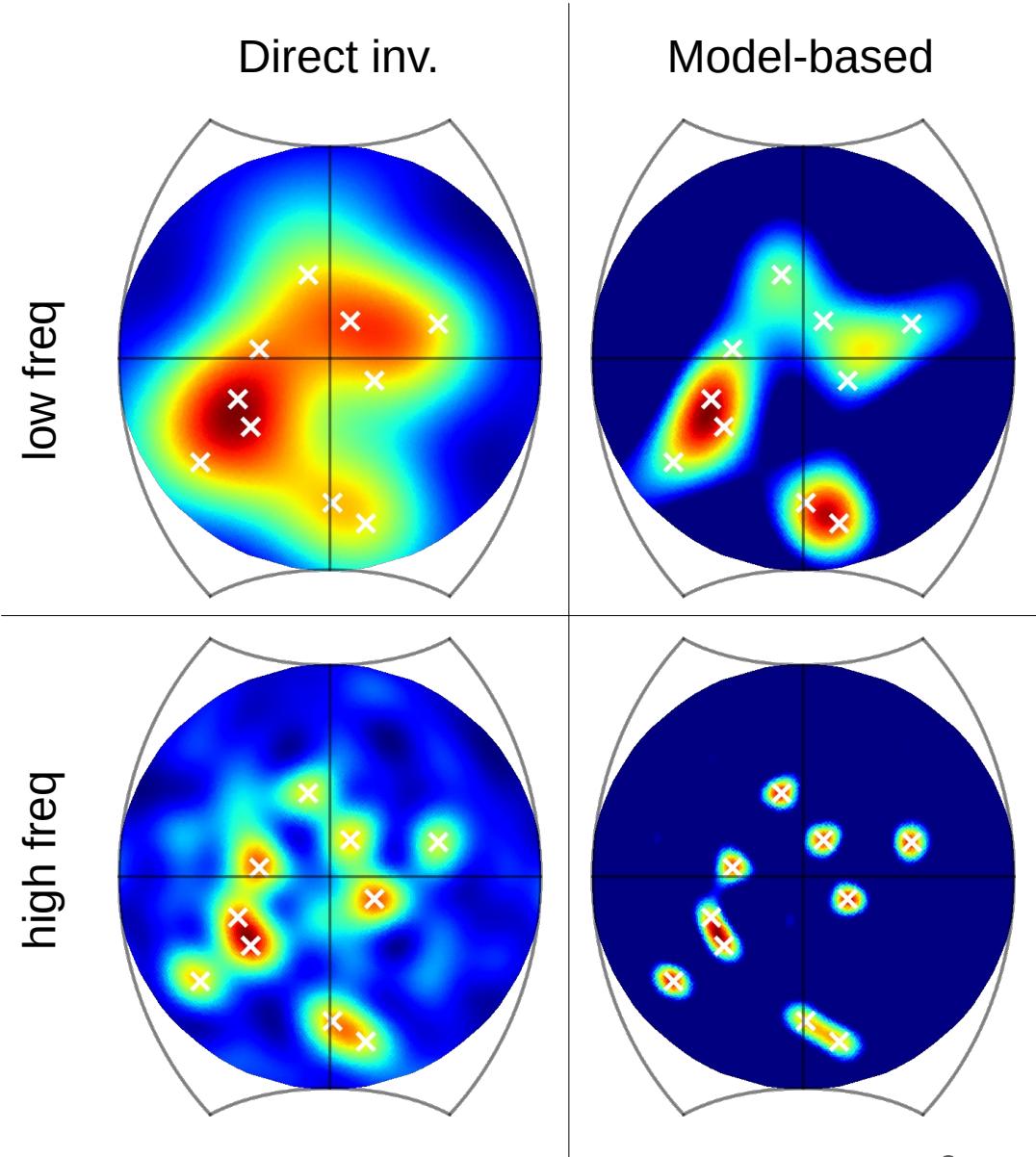
Acoustic Camera Video

Acoustic Imaging 4

- Least-squares reconstruction to achieve real-time estimation.
 - Poor spatial resolution for compact arrays.
- Solution: inject prior knowledge.

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}_+^N} \left\| \text{vec}(\hat{\Sigma}) - (\bar{\mathbf{A}} \circ \mathbf{A}) \mathbf{x} \right\|_2^2 + \lambda [\gamma \|\mathbf{x}\|_1 + (1 - \gamma) \|\mathbf{x}\|_2^2]$$

Data FidelityPrior Model

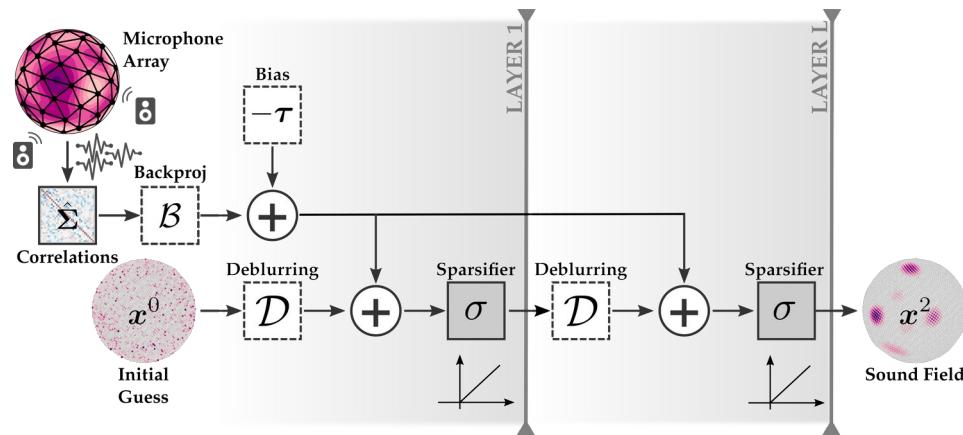


Acoustic Imaging 5

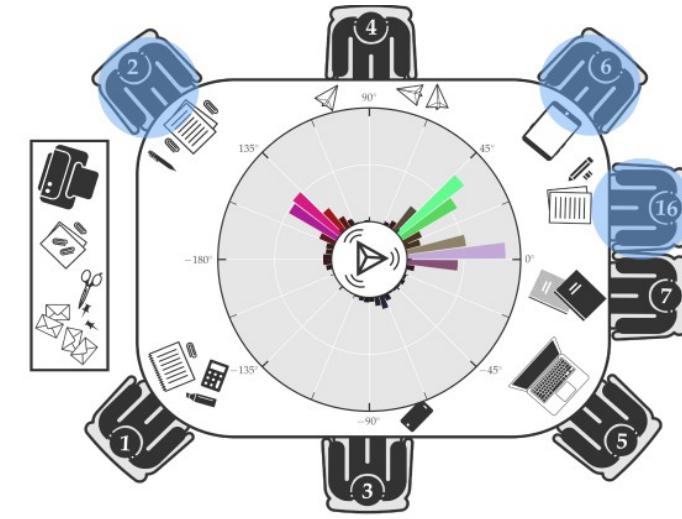
- Solve via iterative methods.

$$\begin{aligned}\mathbf{x}_{\text{PGD}}^k &= \text{prox}_g \left(\mathbf{x}^{k-1} - \alpha \nabla f(\mathbf{x}^{k-1}) \right) \\ &= \text{ReLU} \left[\mathcal{D} \mathbf{x}^{k-1} + \mathcal{B} \text{vec}(\hat{\Sigma}) - \boldsymbol{\tau} \right]\end{aligned}$$

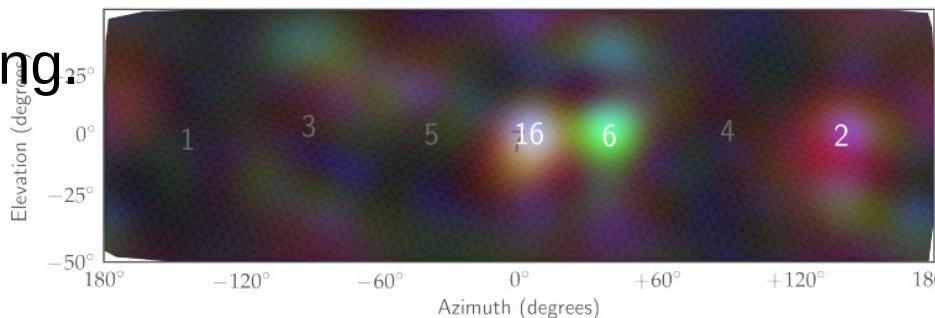
- Can be made real-time via loop-unrolling.



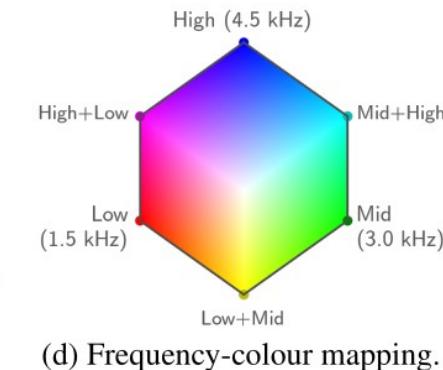
(a) DAS azimuthal sound field.



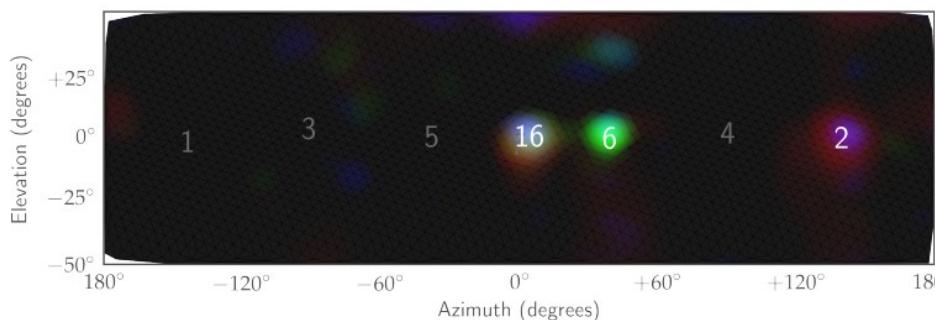
(b) DeepWave azimuthal sound field.



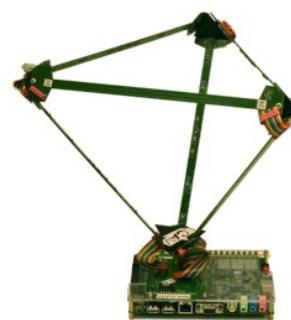
(c) DAS spherical sound field (resolution: 25.3° , RMS contrast: 0.78).



(d) Frequency-colour mapping.

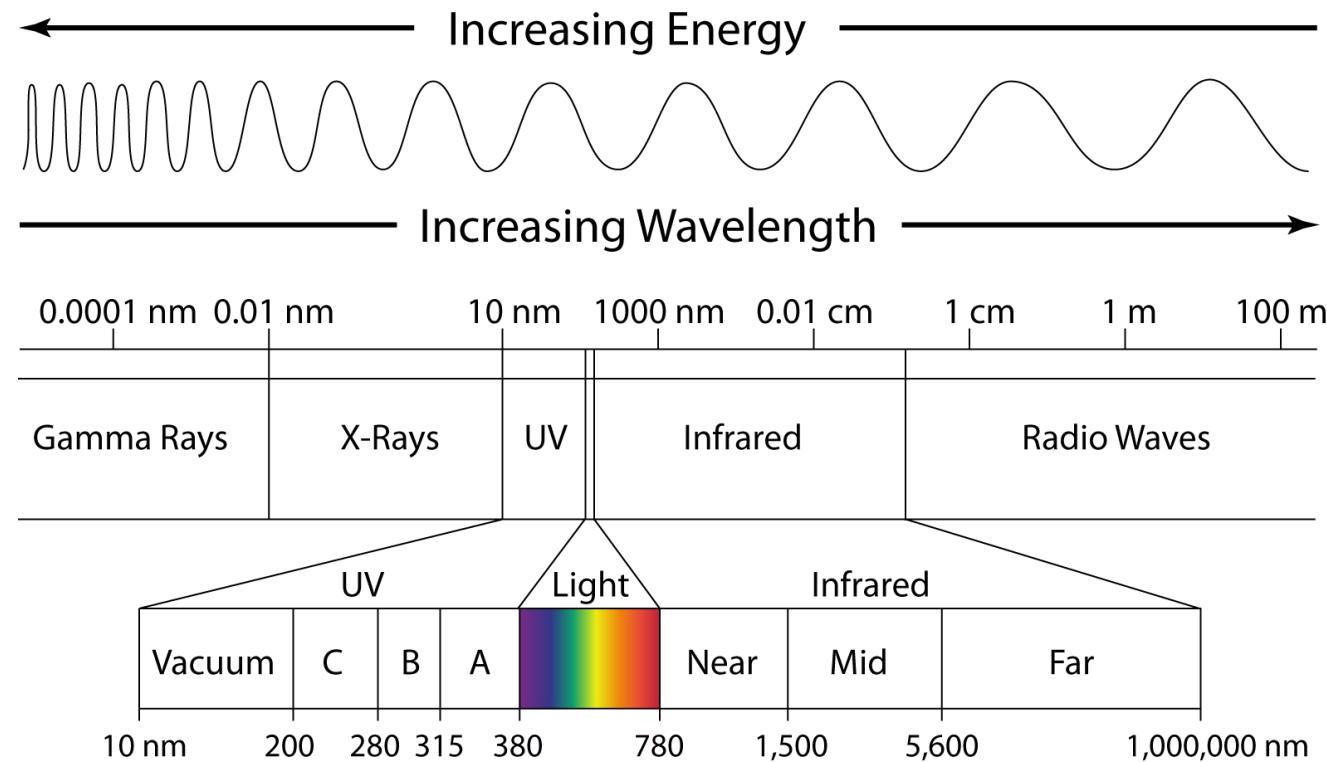


(e) DeepWave spherical sound field (resolution: 18.5° , contrast: 0.97).



(f) Pyramic array.

The Electro-Magnetic Spectrum



Digital Communications

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

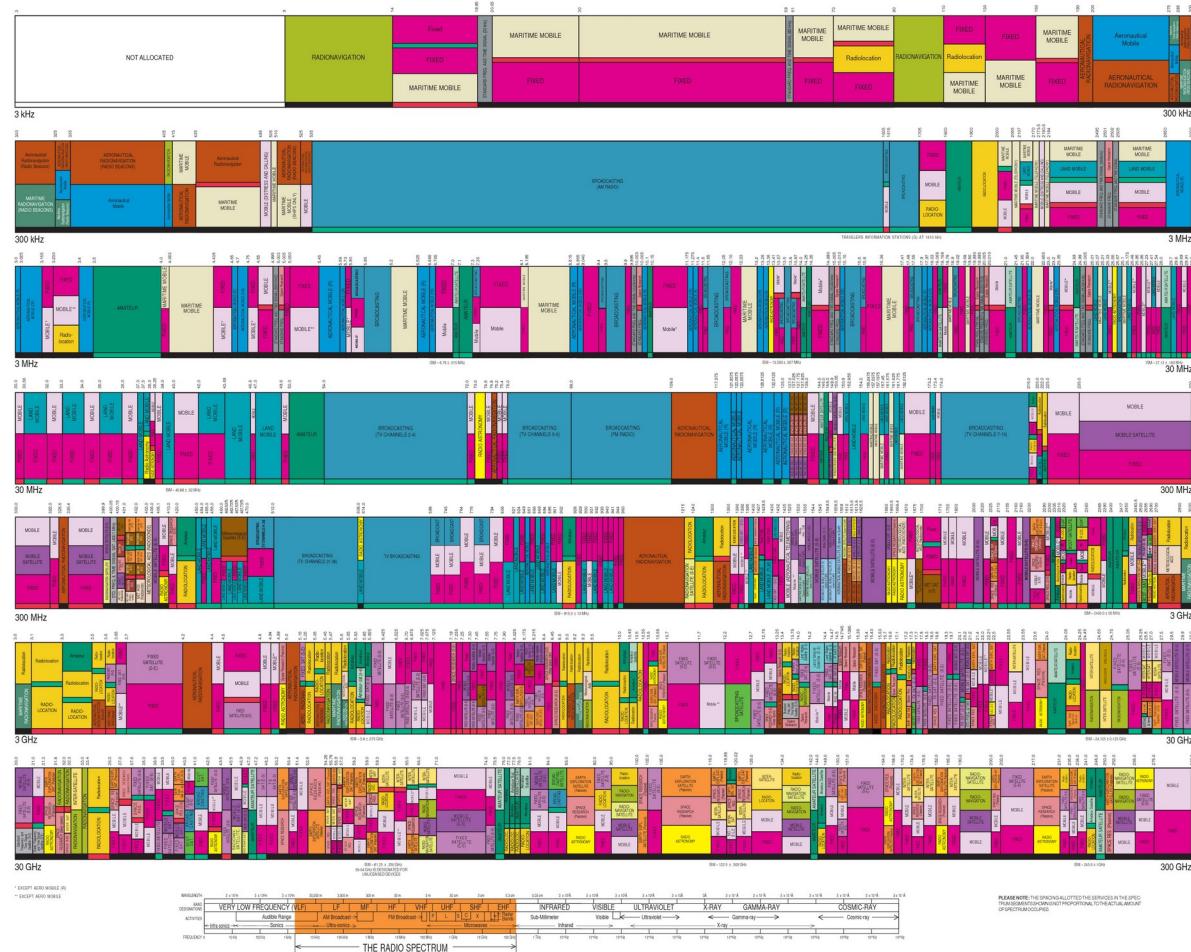
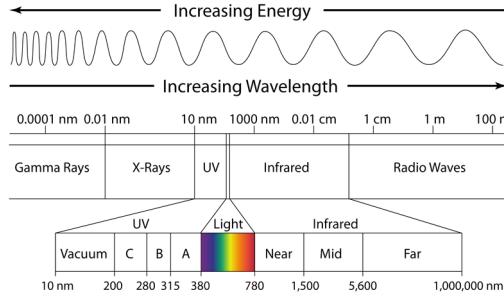


ALLOCATION USAGE DESIGNATION

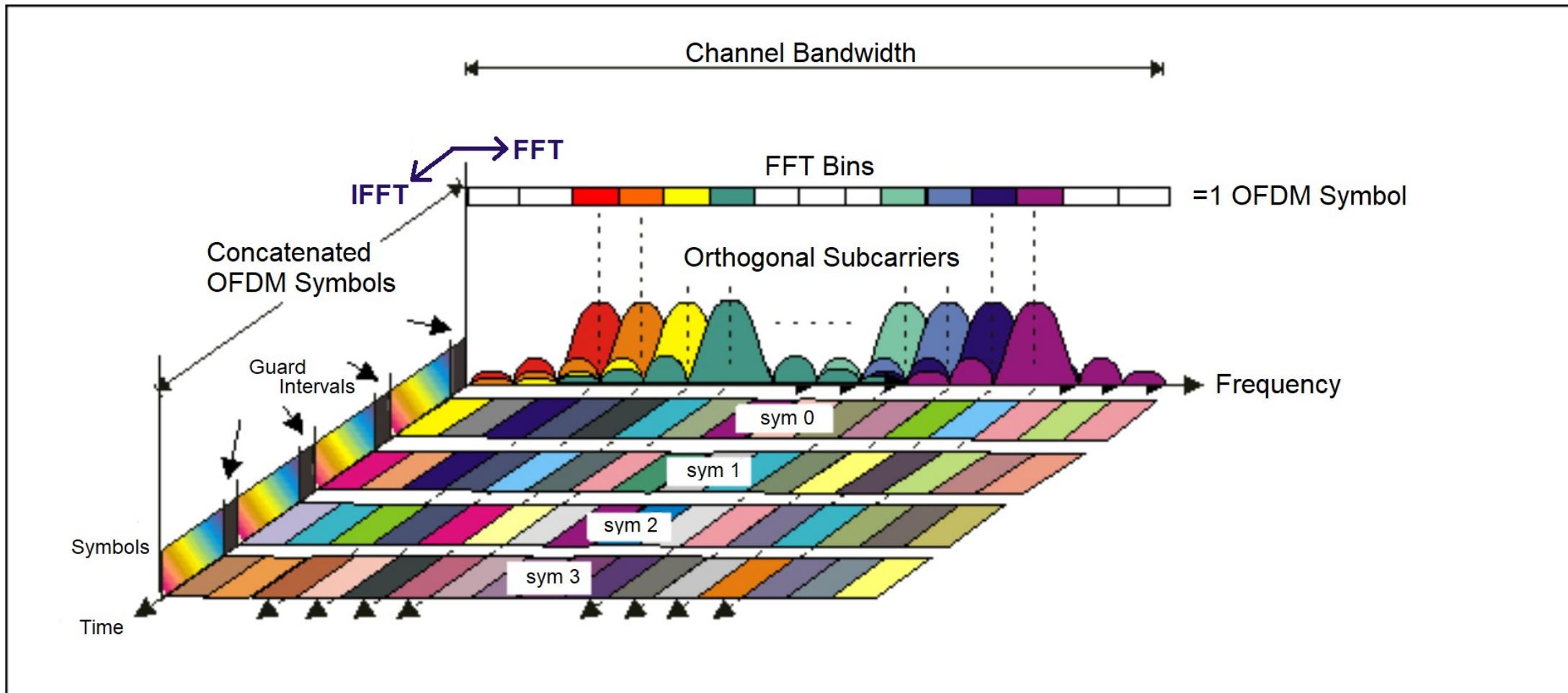
SERVICE	EXAMPLE	DESCRIPTION
Primary	FIXED	Capital Letters
Secondary	Mobile	1st Capital with lower case letters

This chart is a graphic display of the contents of the Table of Frequency Allocations used by the FCC and the International Telecommunications Union. The chart is not to be used as a substitute for the Table of Frequency Allocations. However, for complete intervals, users should consult the Table of Frequency Allocations.

U.S. DEPARTMENT OF COMMERCE
National Telecommunications and Information Administration
Office of Spectrum Management
October 2003



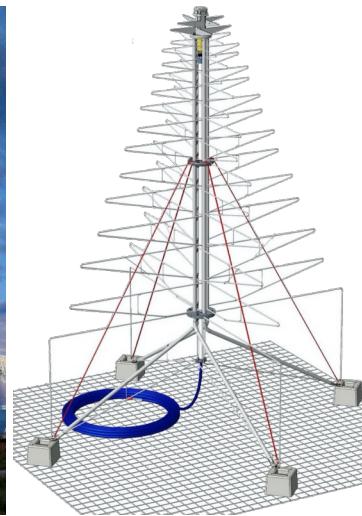
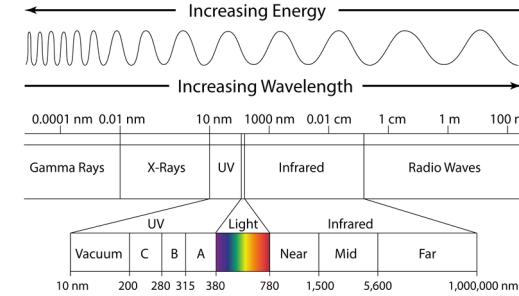
Digital Communications: 5G Coding



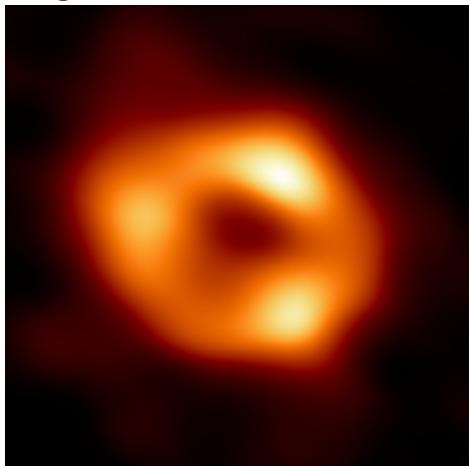
Frequency-Time Representative of an OFDM signal

Radio-Interferometry

- Determine sky brightness distribution
 - Stars emit radio emissions (among other things)
 - Recorded on Earth with antennas



Sgr A^*

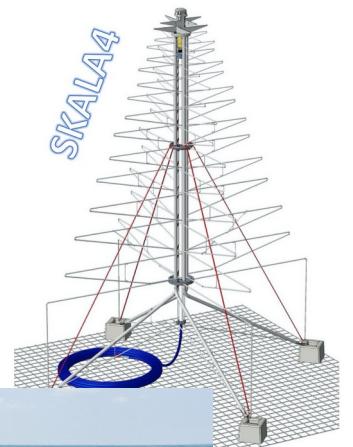


measurement

computation?

antenna time series

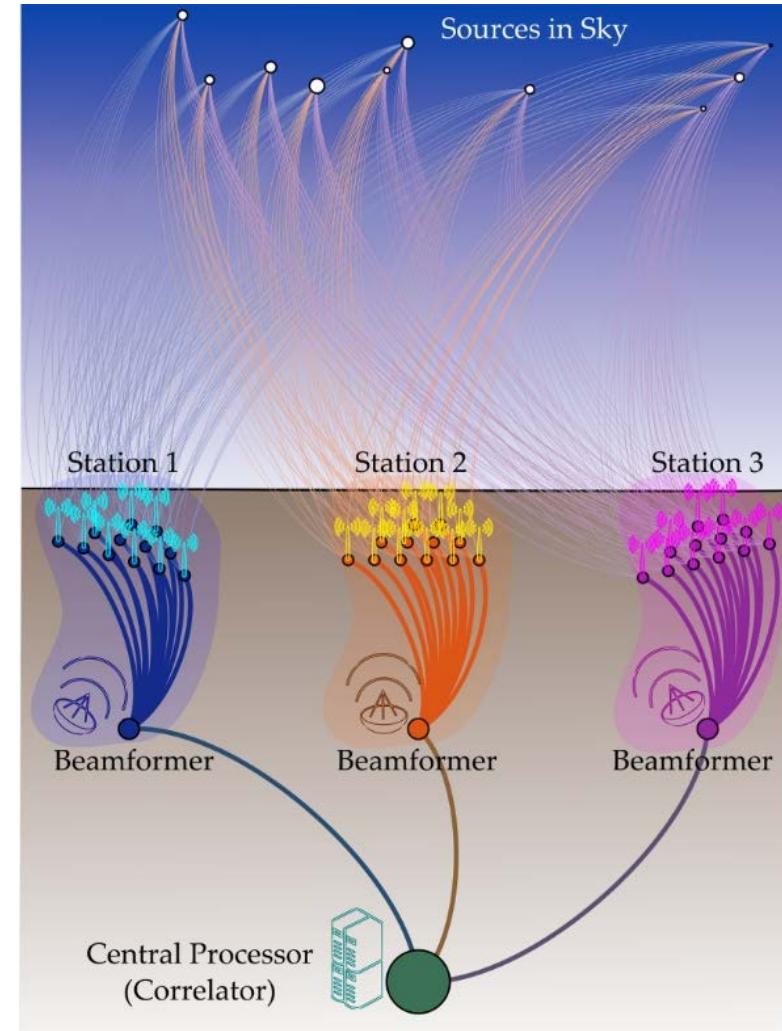
Radio-Interferometry



RI: Design of Modern Interferometers

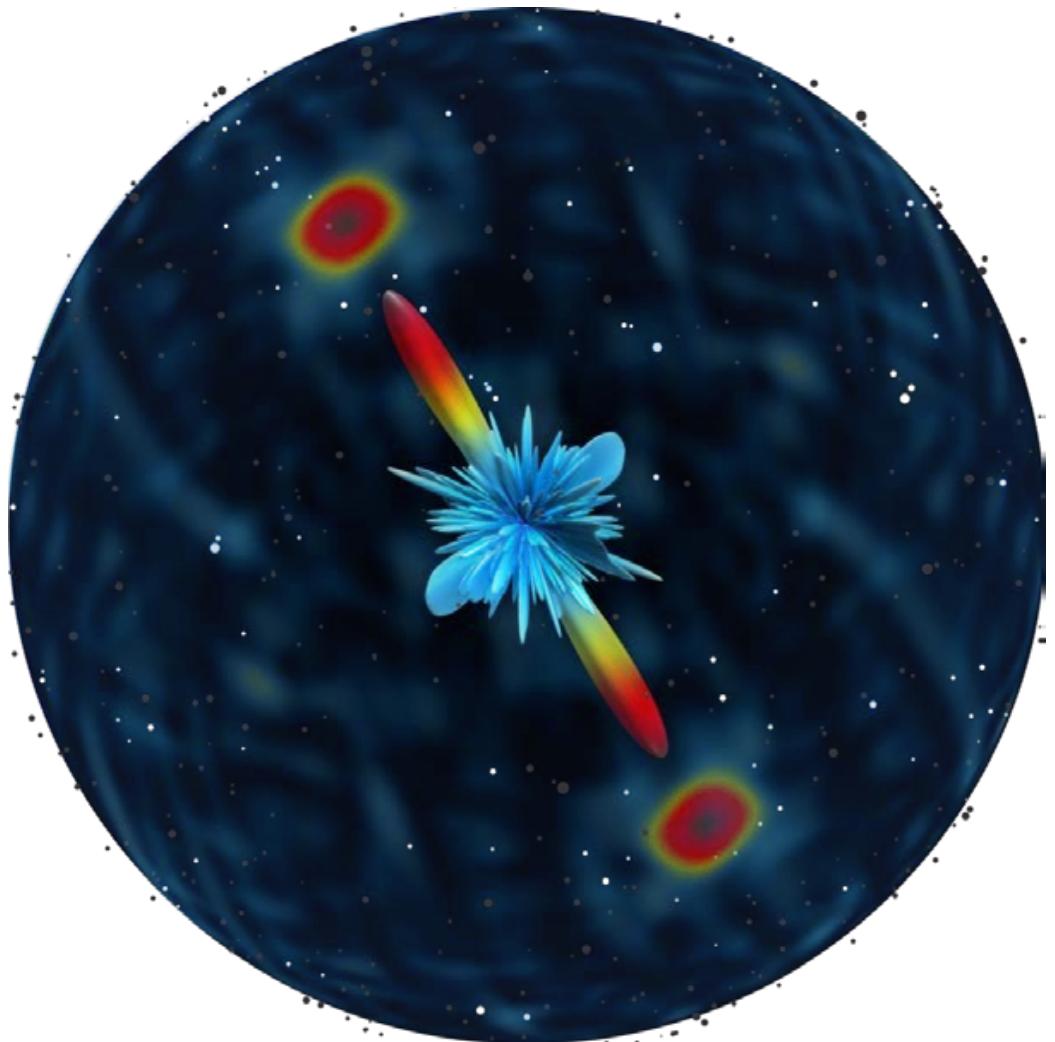
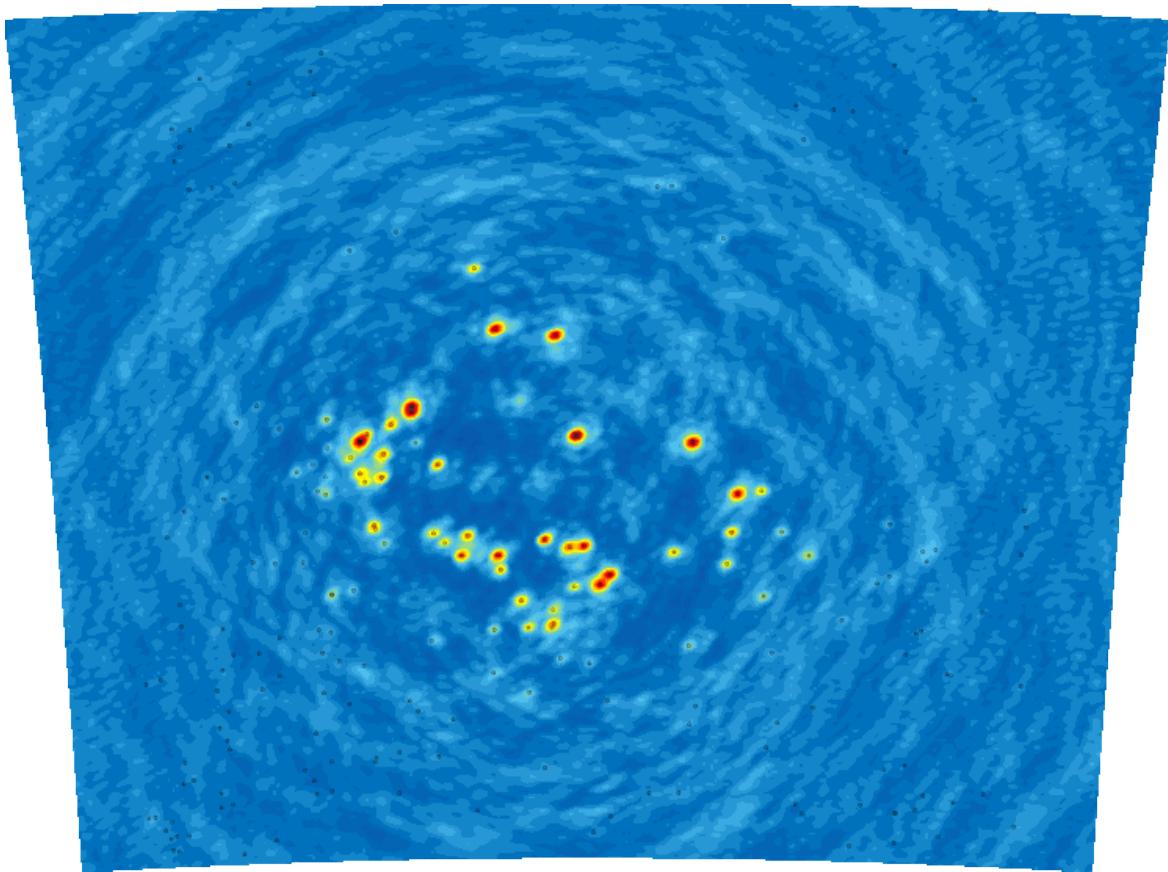
- Hierarchical phased-array architecture using beamforming.
 - Station-level spatial filtering.
 - Reduce data rate from antennas.

$$\begin{aligned}\mathbf{y}_m &= \int_{\mathbb{S}^2} S(\mathbf{r}) \alpha_m^*(\mathbf{r}) e^{-j \frac{2\pi}{\lambda} \langle \mathbf{p}_m, \mathbf{r} \rangle} d\mathbf{r} \\ &= \sum_{\mathbf{r} \in \theta} S(\mathbf{r}) \alpha_m^*(\mathbf{r}) e^{-j \frac{2\pi}{\lambda} \langle \mathbf{p}_m, \mathbf{r} \rangle} \\ \mathbf{x}_l &= \mathbf{w}^H \mathbf{y}\end{aligned}$$



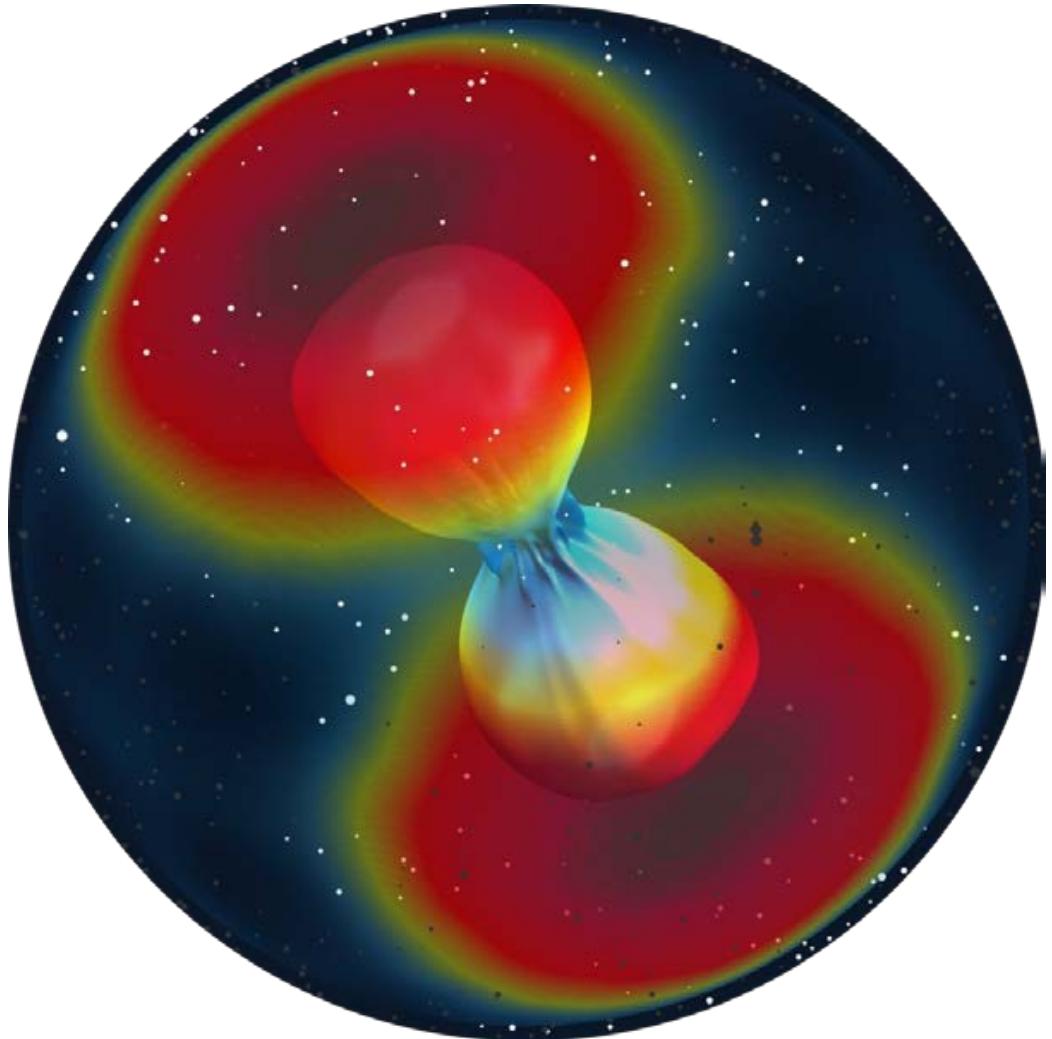
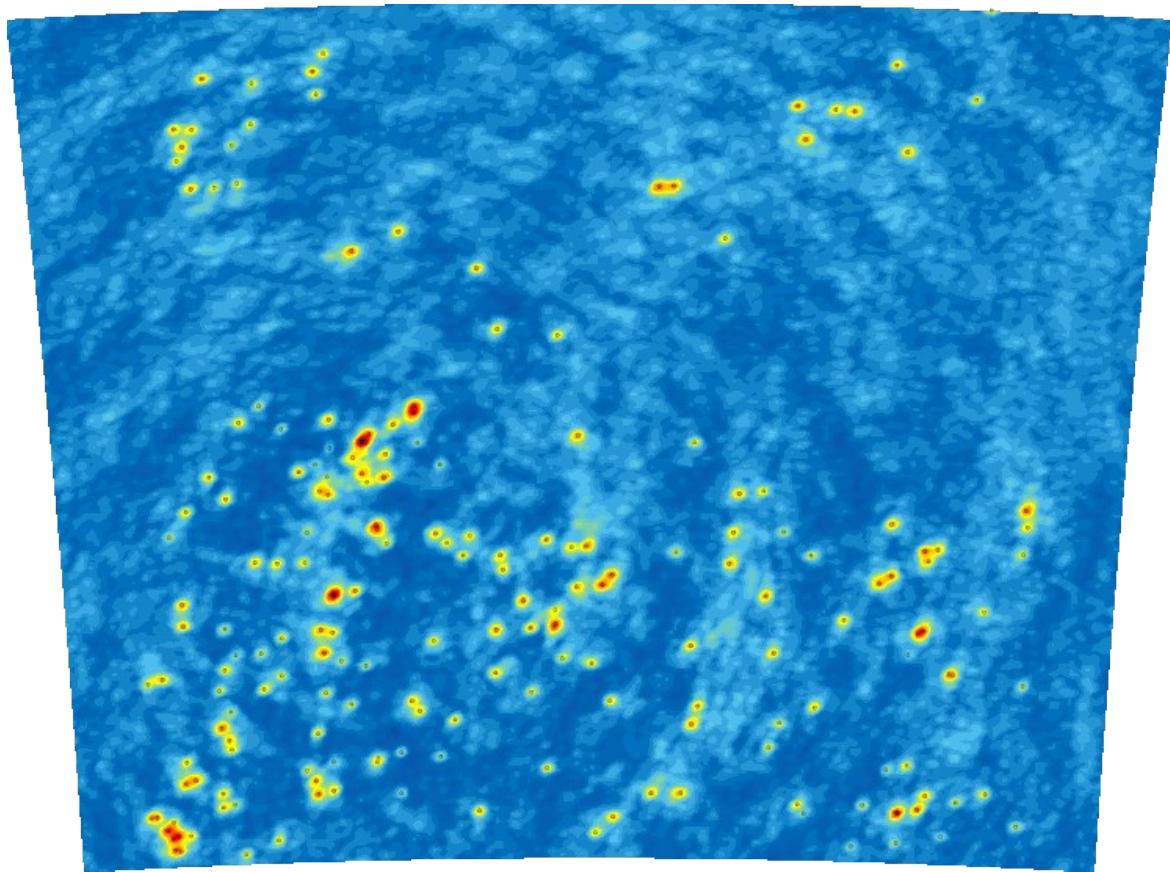
RI: Adaptive Beamforming

Trading Resolution for Sensitivity

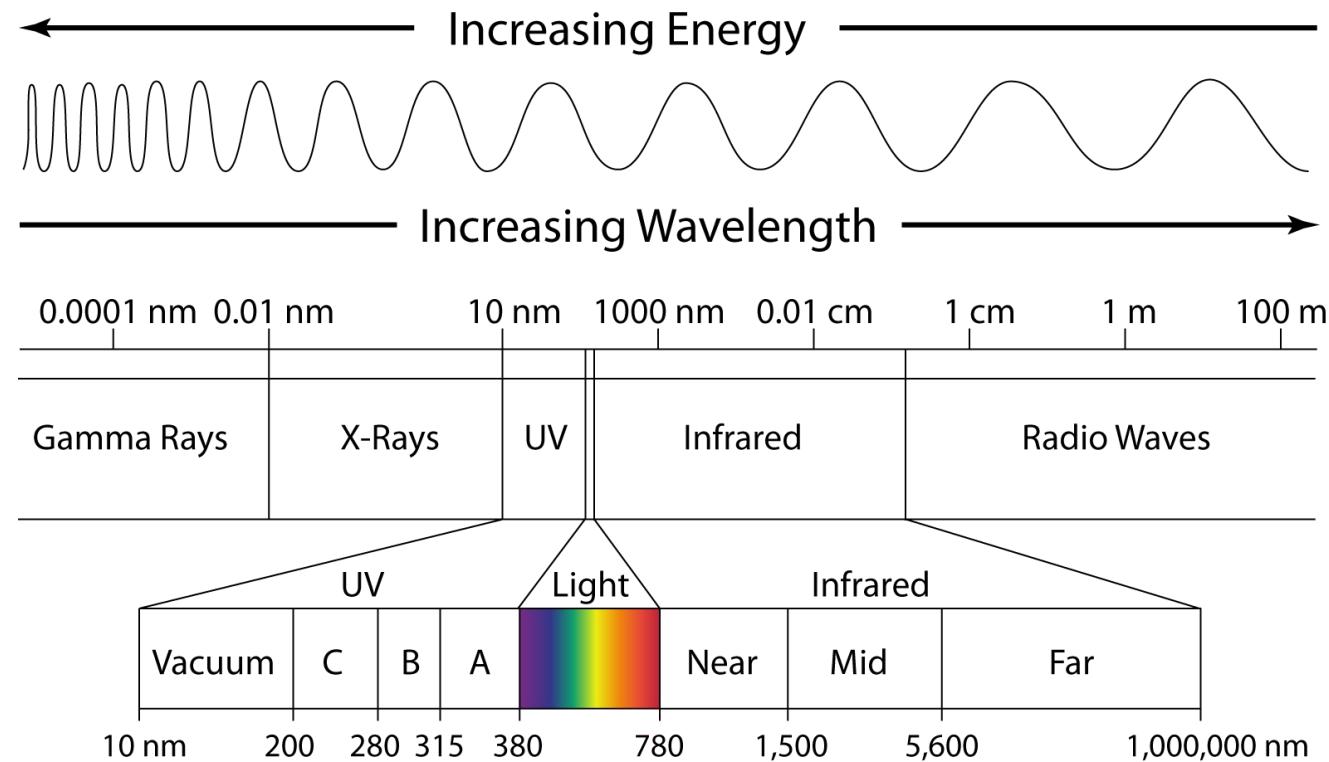


RI: Adaptive Beamforming

Trading Resolution for Sensitivity



The Electro-Magnetic Spectrum



Optical Imaging

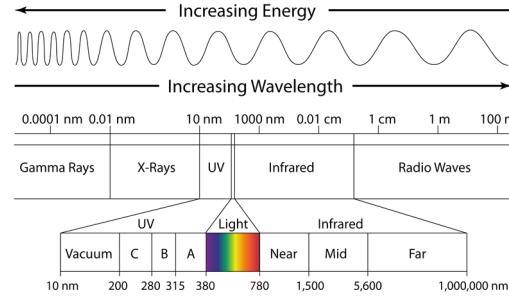
- Capture scene radiance
 - Visible light enters camera
 - Recorded on pixel detector

scene

measurement

computation?

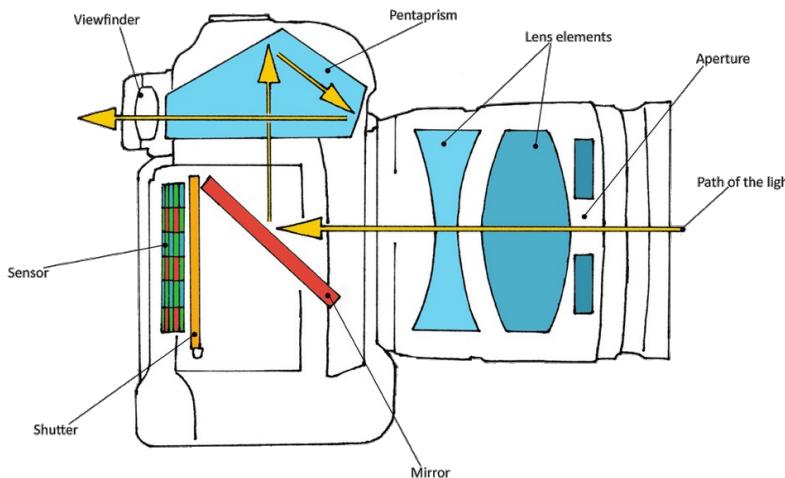
camera picture (shown to user)



Optical Imaging 2

- Camera does not capture true scene
 - Use computation to recover it

scene

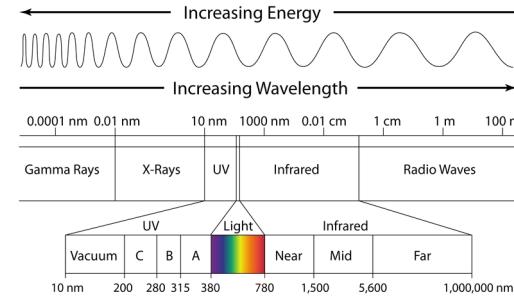


measurement

computation?

sensor recording

$$\mathbf{y}(\mathbf{r}) = (\mathbf{h} * \mathbf{x})(\mathbf{r}) + \text{color channels...}$$

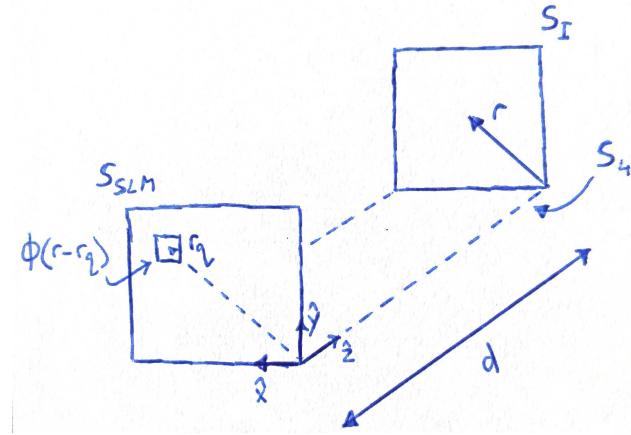
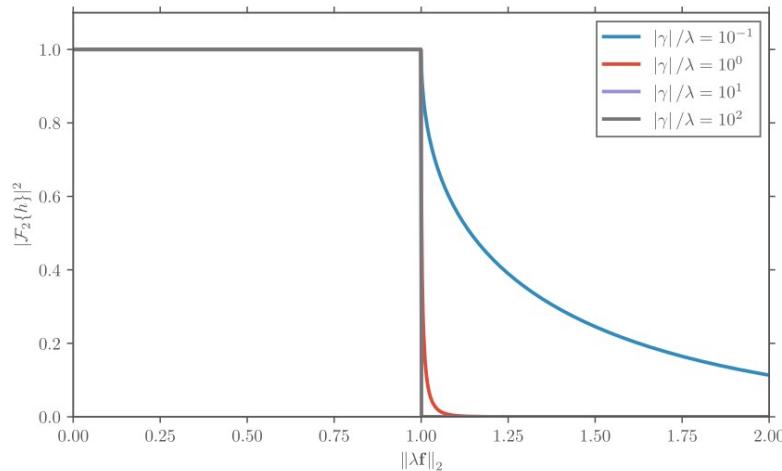


Optical SP: A 2D LTI System

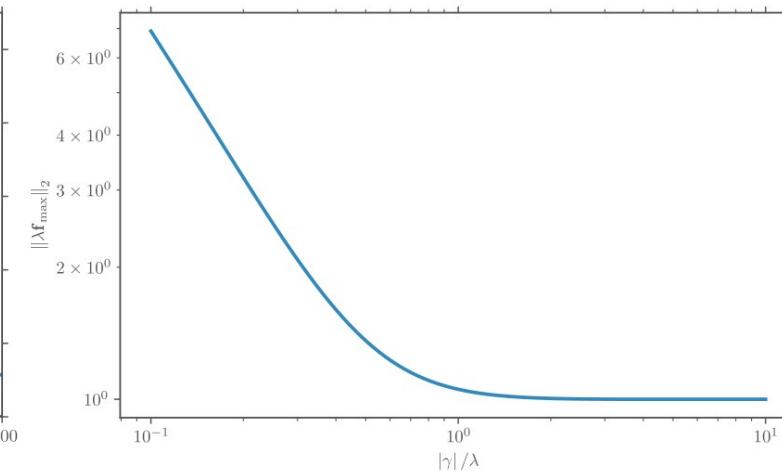
$$U(\mathbf{r}) = \sum_q \alpha_q (\chi \phi \star \star \tilde{h})(\mathbf{r} - \mathbf{r}_q), \quad \mathbf{r} \in \mathbb{R}^2$$

$$\tilde{h}(\mathbf{r}; d) = \frac{-d}{4\pi\beta^2(\mathbf{r}; d)} \left[\frac{2\pi}{j\lambda} + \frac{1}{\beta(\mathbf{r}; d)} \right] \exp \left(j \frac{2\pi}{\lambda} \beta(\mathbf{r}; d) \right),$$

$$\beta(\mathbf{r}; d) = \sqrt{\|\mathbf{r}\|_2^2 + d^2}.$$



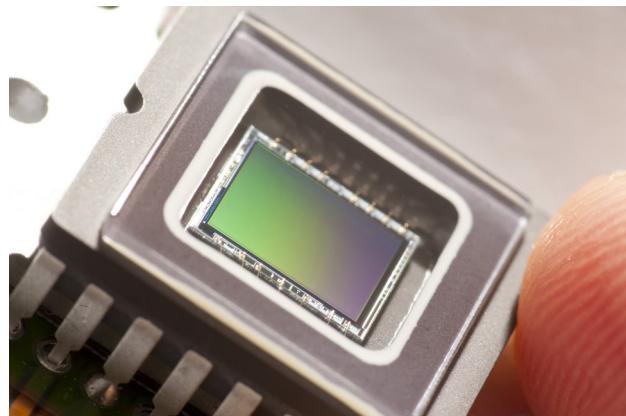
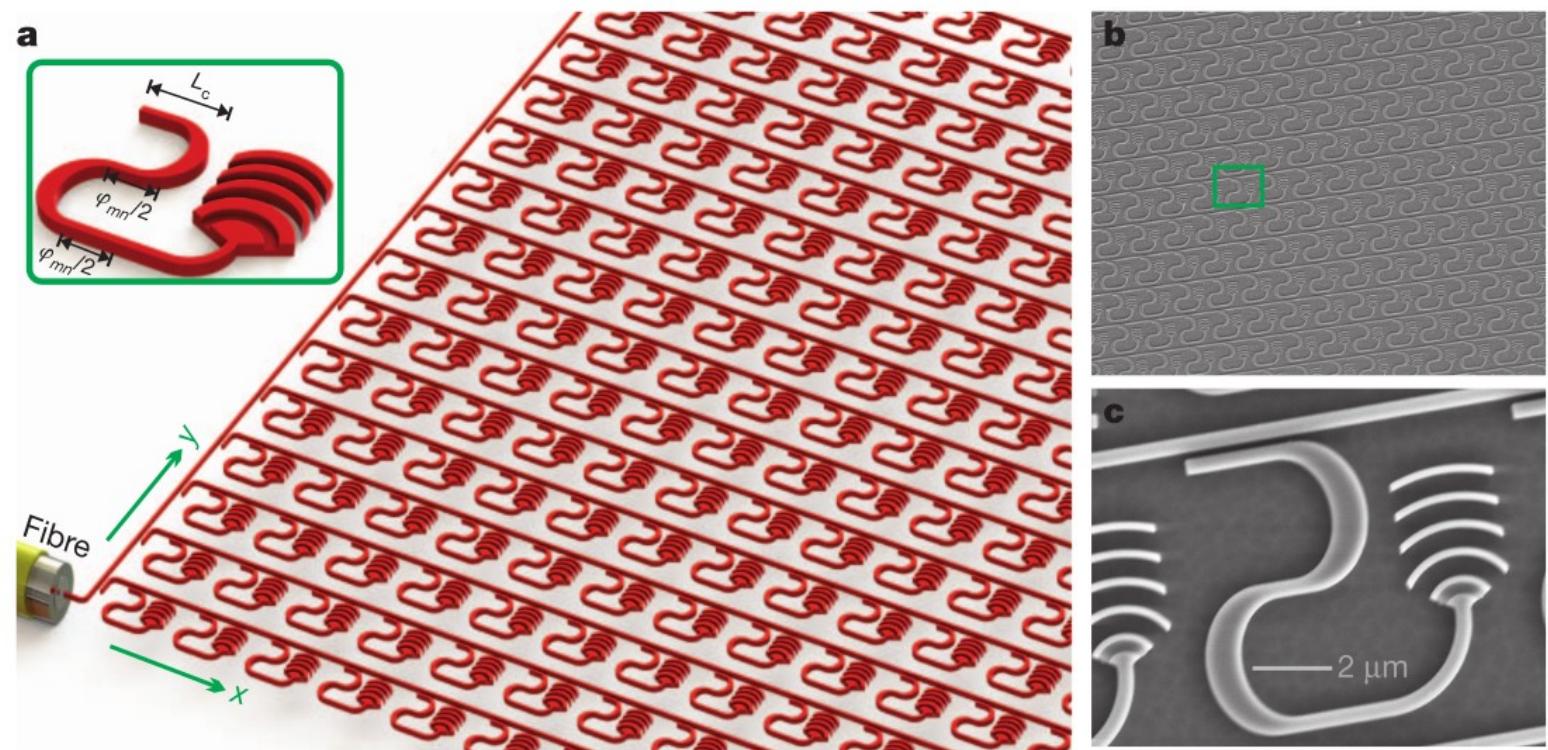
(a) Magnitude response



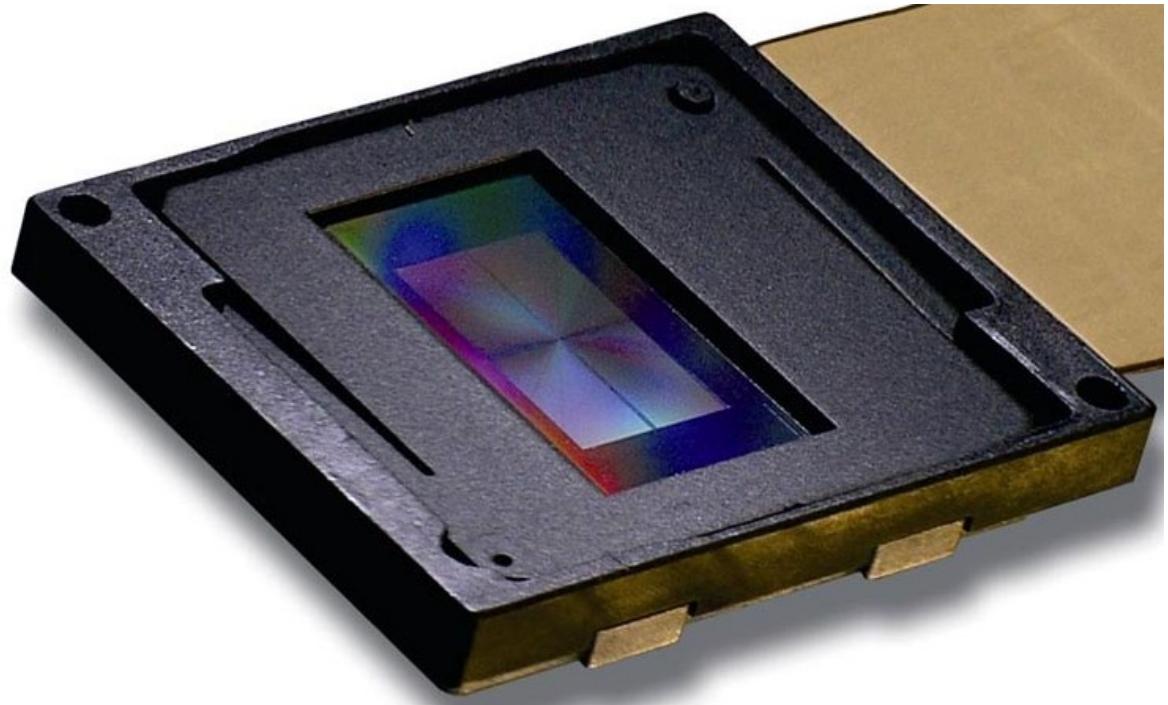
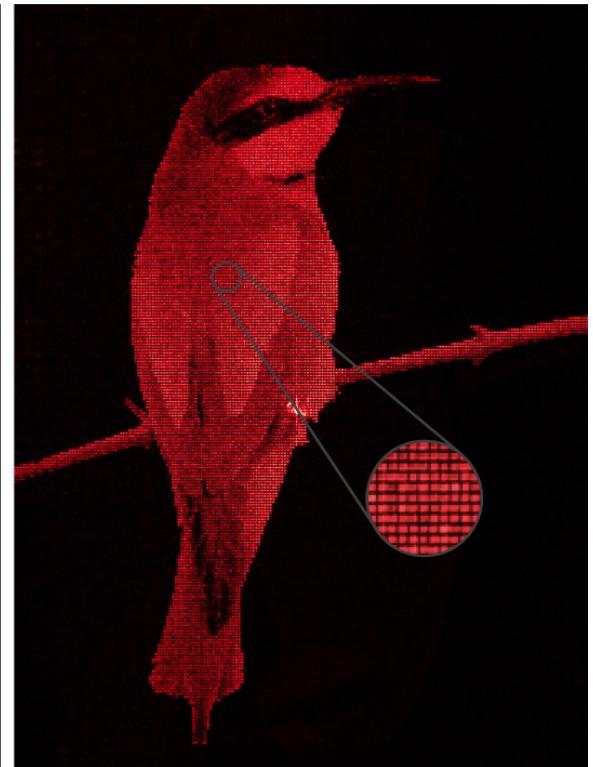
(b) 99.9% normalized bandwidth

Figure 5. Spectral properties of coherent propagation in homogeneous media. When not in the sub-wavelength regime, the channel is effectively $\frac{1}{\lambda}$ -bandlimited.

Optical SP 2

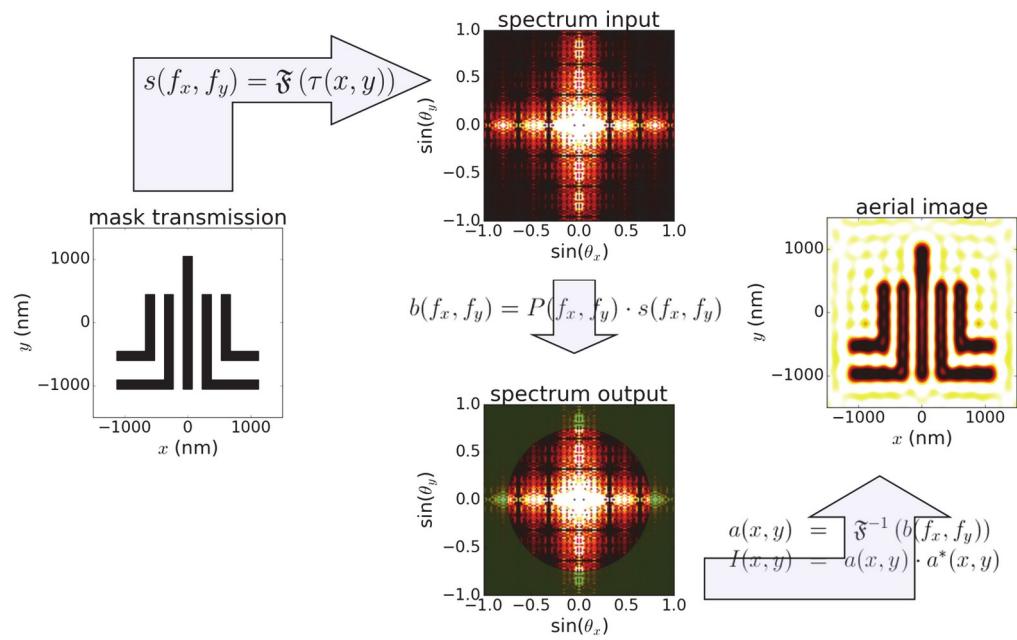
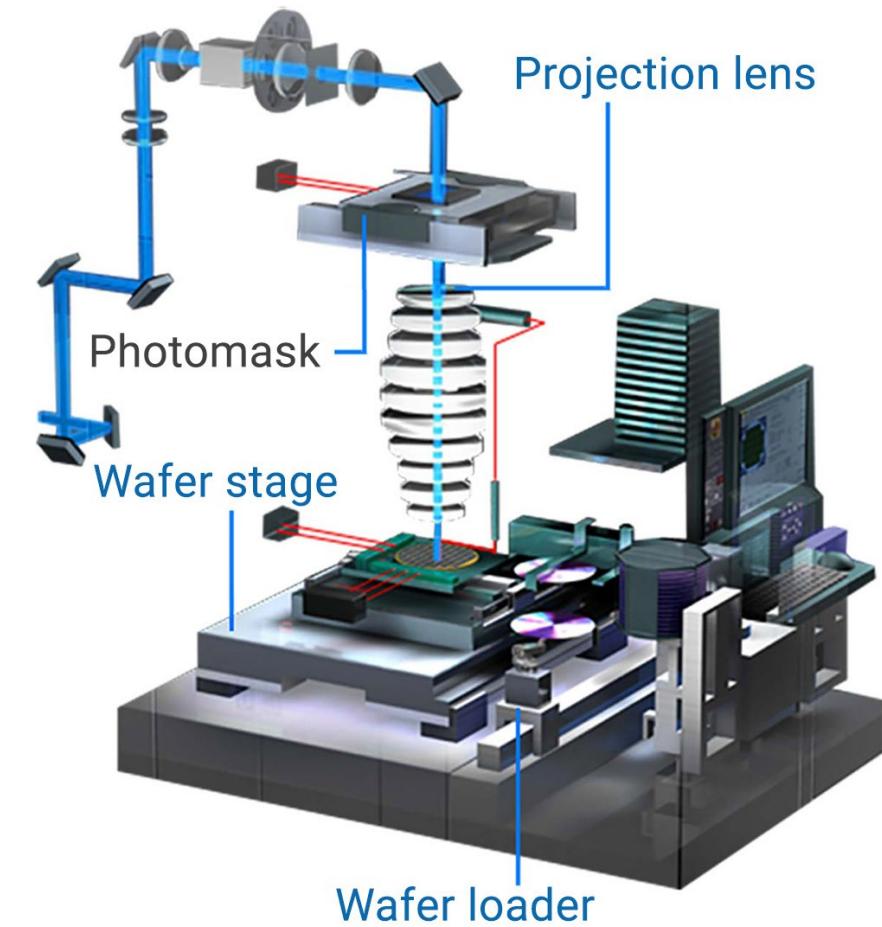
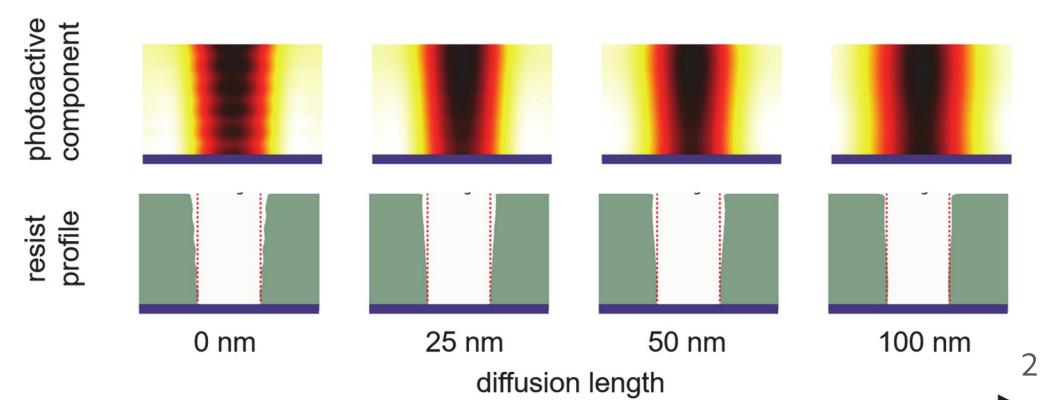


Optical SP 3

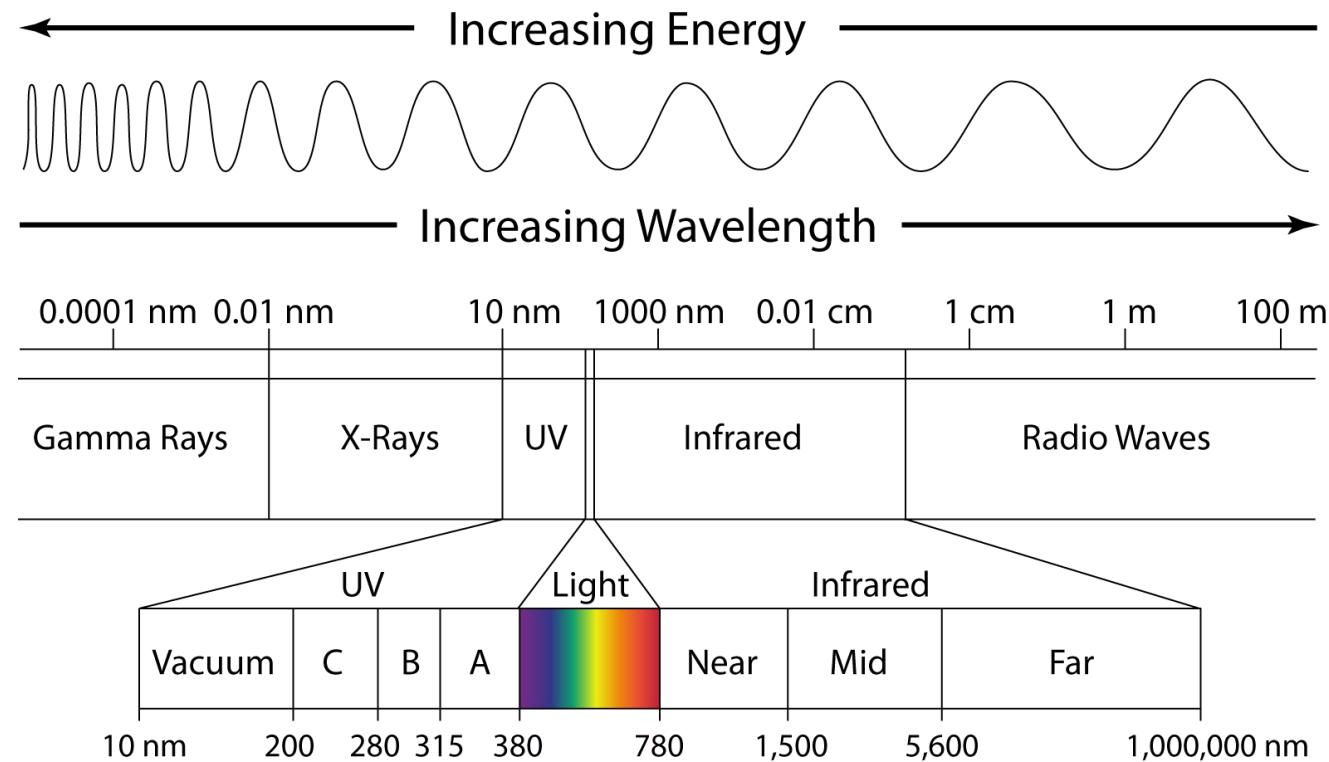


OSP: Photo-Lithography

- DUV/EUV light shines onto mask/SLM
 - Free-space propagation + lens effects
 - Intensity pattern at wafer surface
 - Non-linear chemical etching.

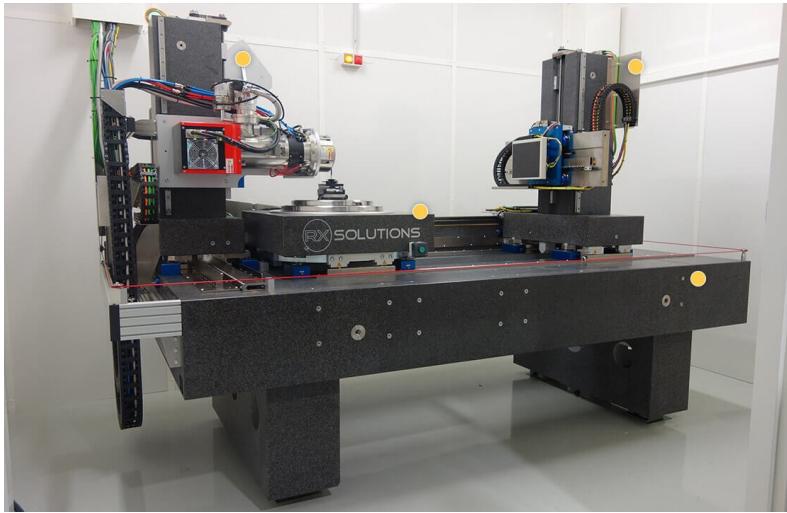
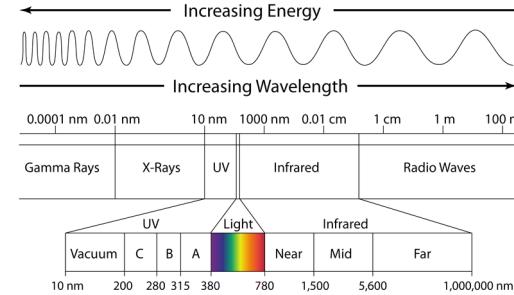


The Electro-Magnetic Spectrum

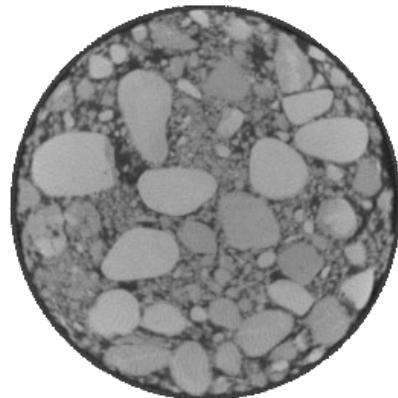


Tomography

- Determine volume absorption profile
 - Project X-rays through object
 - Record shadows from different directions



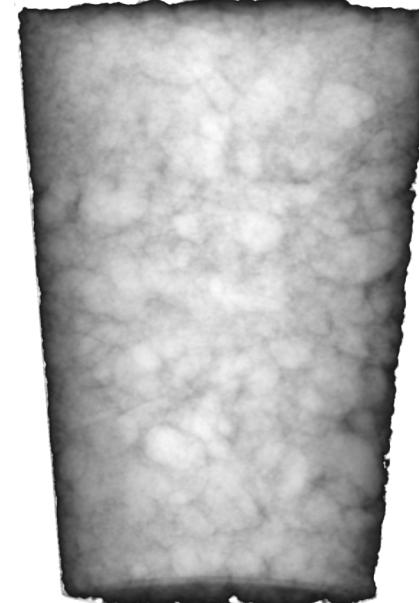
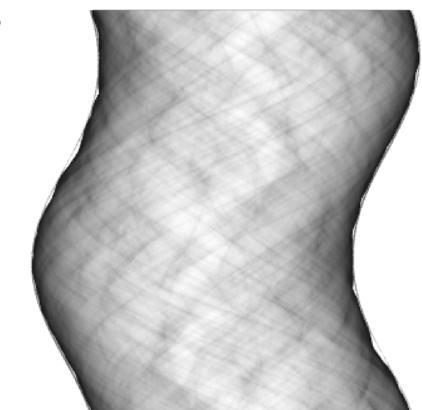
3D volume



measurement

computation?

2D projections



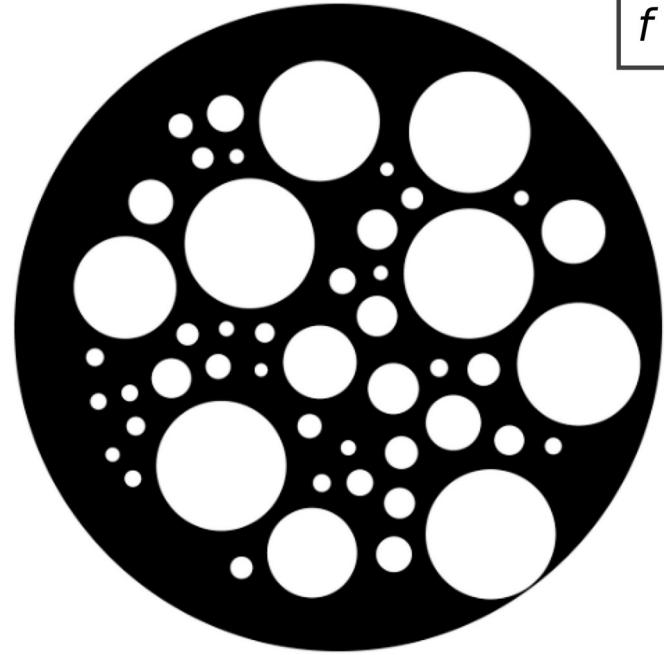
X-Ray Tomography

- Applications
 - Non-Destructive Testing (NDT)
 - Medical Imaging: X-CT
 - Material Science Research
 - Absorption CT
 - Multi-Modal Imaging: PXCT, PyXL

$$P[f](\mathbf{n}, \mathbf{s}) = \int_{\mathbb{R}} f(\mathbf{n}\alpha + U_{\mathbf{n}^\perp} \mathbf{s}) d\alpha$$

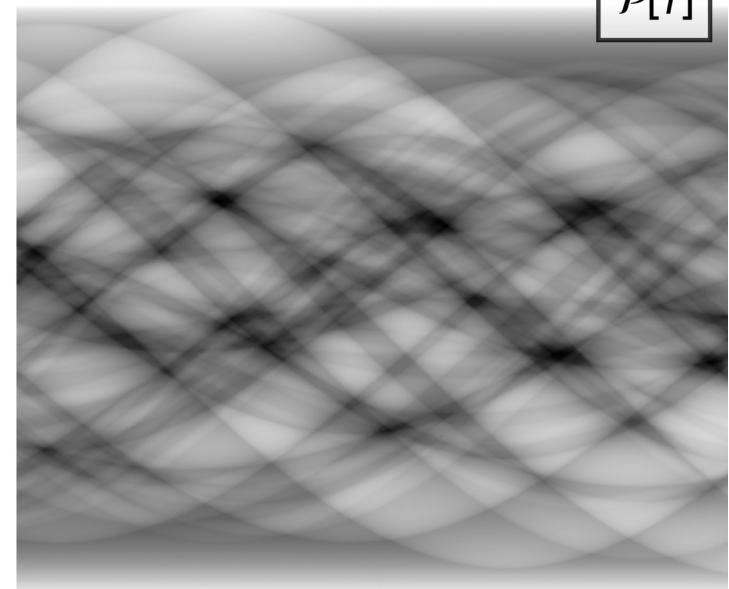
- Goal: recover f from samples of $g = P[f]$

S-domain



f

P-domain



$P[f]$

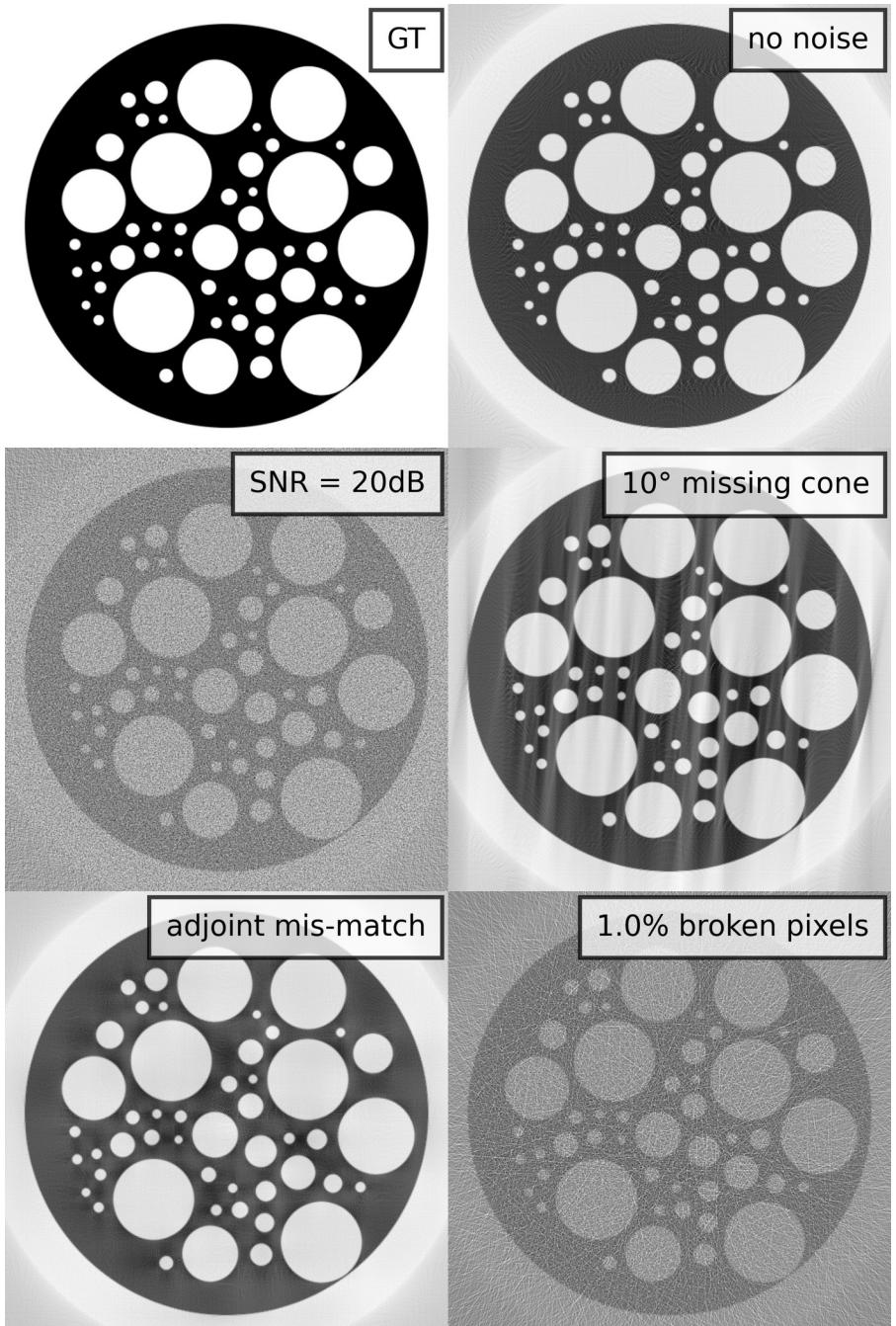
Filtered Back-Projection

- Analytic **direct** inverse

$$\begin{aligned}\hat{f} &= (P^* P)^{-1} P^* [g](\mathbf{x}) \\ &= P^* [h * g](\mathbf{x})\end{aligned}$$

- Issues

- Dense P-space sampling
- Model mis-match
- Implementation details

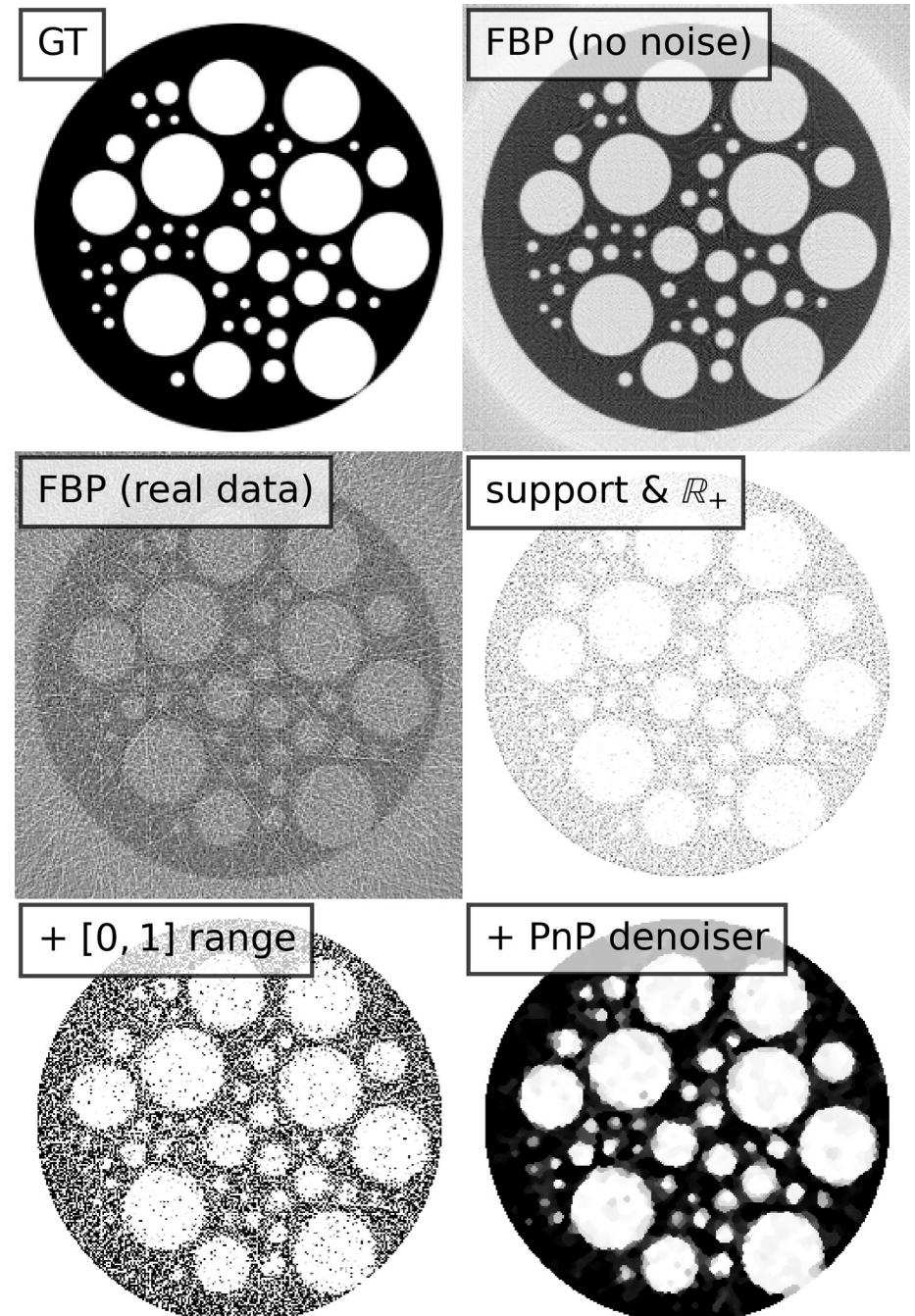


General Image Reconstruction

- Image reconstruction formulated as an inverse problem

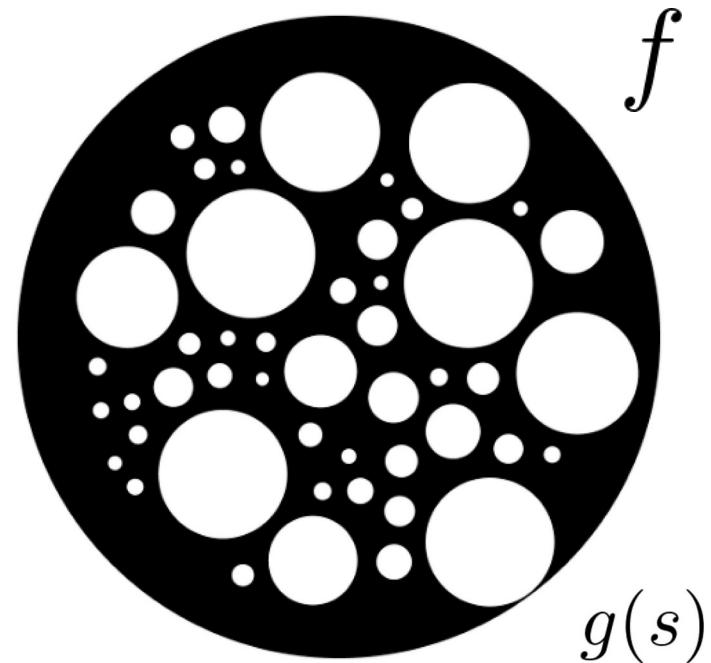
$$\hat{f} = \arg \min_{f \in \mathcal{L}^2(\mathbb{R}^D, \mathbb{R})} \mathcal{F}\{g - \underbrace{\Phi}_{\dots \circ \mathcal{P}_0 \circ \dots} f\} + \lambda \mathcal{G}\{f\}$$

- Advantages
 - Inject prior knowledge
 - Less measurements
 - Account for instrument deviations
 - Leverage **AI** in imaging pipeline
 - Denoisers, generative priors, ...
- Solved via **iterative** 1st-order methods
 - PGD, CG, PDS, SGD, Adam, ...



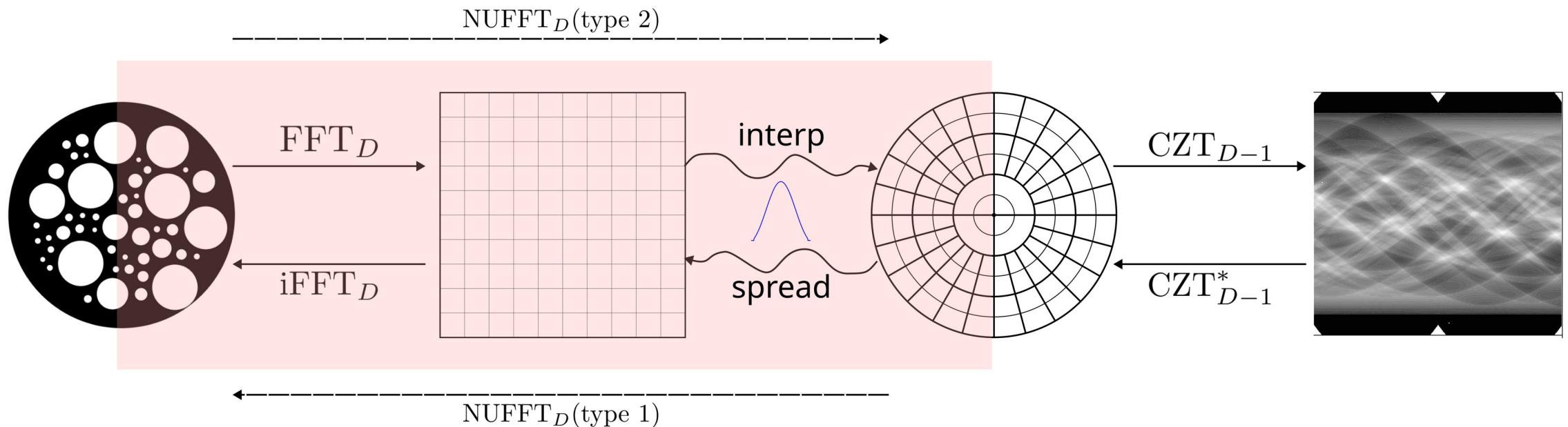
FourierXRT: Idea

- Projections $g(s)$ are **finite-support** and **band-limited**
 - FS coefficients \tilde{g}_k^{FS} can be computed exactly via the FFT
 - $g^F(v)$ obtained via FS \longleftrightarrow FT equivalence
 - *Fourier Slice Theorem* relates $g^F(v)$ with $f^F(v)$

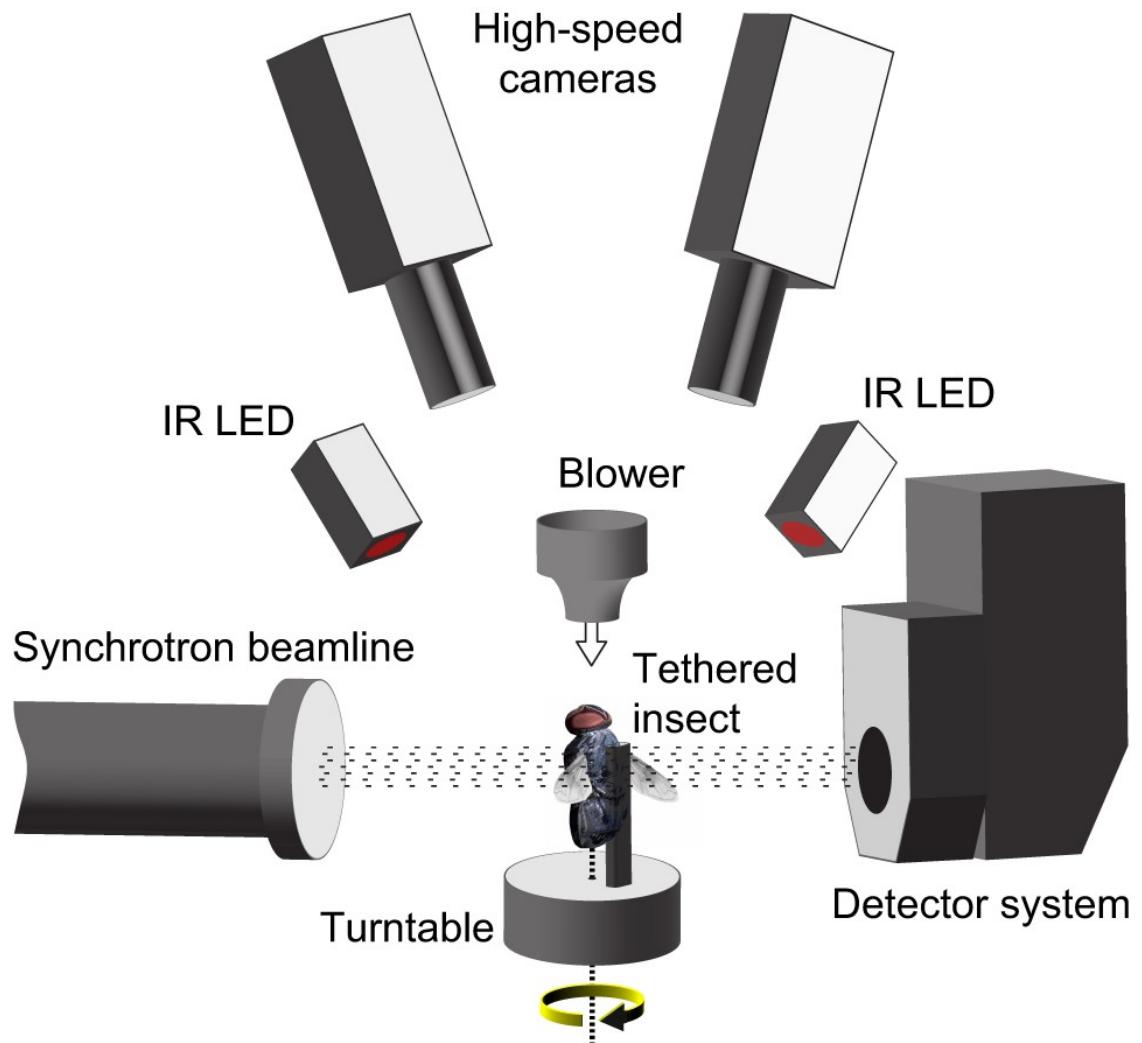


FourierXRT: Idea

$$\mathcal{P}[f](\mathbf{n}, \mathbf{s}) = \frac{1}{T^{D-1}} \sum_{\mathbf{m} \in [-N, N]^{D-1}} \mathcal{F}_D[f] \left(\frac{1}{T} U_{\mathbf{n}^\perp} \mathbf{m} \right) \exp \left[j \frac{2\pi}{T} \langle \mathbf{m}, \mathbf{s} \rangle \right]$$

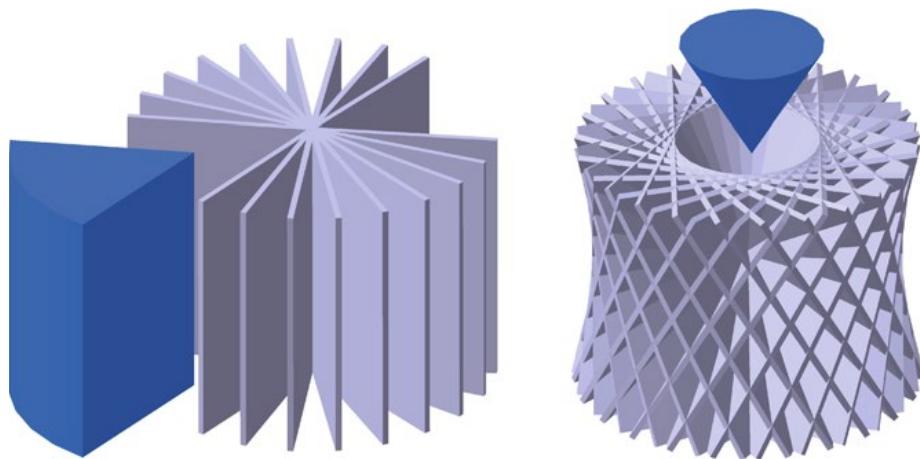


XRT: In-Vivo Imaging



- Fly video (see link below)

XRT: Non-Destructive Processor Inspection



- Processor 3D structure video (see link below)

