COM-202 - Signal Processing

Solutions for Homework 6

Exercise 1. LTI Systems (I)

Consider a discrete-time system described by the following input-output relationship:
y[n]=nx[n].

Is the system linear? Is it time-invariant?

Solution: The system is linear; for any two input signalsx,,Xg, let the corresponding outputs
be

yaln]=nxy[n]
ysln]=nxg[n};

forx=ax,+ bxg, the output is

ylnl=nxln]= anx,lnl+bnxslnl = aylnl+ byslnl.

The system however is not time-invariant. To show this, call h; the system’s response to the
shifted delta sequence 6, = . *é:

he[n]=néln—k]= {g Z ; ’f — k6[n—k.

If the system was time-invariant we should have hi[n] = hy[n — k] but, obviously, since
hy[n]=0 for all n, this is not the case.

Exercise 2. LTl Systems (lI)

For each of the input-output relationships listed below, determine whether the discrete
system they describe is linear, time-invariant, and BIBO stable. If the system is LI1, deter-
mine its impulse response.



@ yln]=x[—n]
(b) y[n]=e7*"x[n]
© ylnl=3"""  x[k]for LeN*

k=n—L
(d) ylnl=ny[n—1]+x[n],
assuming causality and zero initial conditions, that s, all inputs and outputs are zero
for n <0.
(Hint: to prove linearity, you can then proceed by induction.)

Solution: In every case, calling 7€ the system described by the input-output relationship, we
will assume the following:

X4, Xp €4,(Z)

Va=HXy

Vg =AXp
x=ax,+bxg, a,beC
y=5X

x, =%

Vi =X,y

The system will be linear ify = ay, + byy and time-invariant ify, = . %y.

(a) The system is linear:
yn]=x[—n]=ax,[—n]+bxg[—n]=aysn]+ bys[n]

The system is not time-invariant: first of all notice that the change of sign affects the
whole expression for the index:

yln]=x[-n]=yl(n—d)]=x[—(n—d)]=x[-n+d]
Now, if x;[n]= x[n—d] then x;[(—n)] = x[(—n)—d] and so
Yalnl=xql—n]=x[-n—d]# yln—d]=x[-n+d]

The system is BIBO stable since, if |x[n]| < M for all n, then obviously |x[—n]| < M as
well.

(b) The system is linear:
yinl=e " (axaln]+bxg[n]) = ale™ " x,[n))+b(e™/" x5[n]) = aylnl+bys(n]
The system is not time-invariant:
yalnl=e " xyln]l=e 7" x[n—dl# yln—d]=e 7" x[n—d]

The system is BIBO stable since, if |x[n]| < M for all n, then |y[n]| = |e™/*"x[n]| =
|x[n]| <M.



(©)

d)

The system is linear:
n+L n+L n+L
yinl= > (ax kl+bxslk)=a > xlkl+b > xzlk]=ayln]+bysln]
k=n—L k=n—L k=n—L

The system is time-invariant since

n+L n+L
yalnl= Y xalkl= > xlk—d]
T
yin—dl= > xlk]= > x[m—d]
k=n—d—L m=n—L

where we have used the change of variable m = k + d in the second line.

n+L

The system is BIBO stable since, if|x[n]| <M, then|Y " |

x[n]|<2L+1)M
The system'’s impulse response is

h[n]:{l ifln|<L

0 otherwise.

To show that the system is linear, we need to show that y[n]|= ay.[n]+ b yg[n] for all
n. For this, we can proceed by induction: if the equality is true for some value n, then
itis true for all n > n, since

yin+1]=(n+1)y[n]+axsn+1]+bxg[n+1]
=(n+1)(aysn)+bys[n))+axsn+1]+bxg[n+1]
=a{(n+1yan]+ xaln+11}+ b{(n +1)ysln]+ xp[n +1]}
=ayn+1]+byg[n+1].

Since we assume zero initial conditions, we know that x,[n] = xg[n]= y\[n]= ysln]=
y[n]=0 for all n <0 and so we can start the recursion at any value n, < 0.

The system is not time-invariant; to show this, callh,; the output of the system when
the input is the shifted delta sequence & ; = &~ & ; when the shift is zero we have

(0 n<o0

holn]= 1

DN =
Il




and when the shift is one:

(0 n<o0
0 n=0
1 n=1
hn]=
nl=y,
6 n=3

If the system was time-invariant we should have h,[n] = hy[n—1] for all n but h,[2] #
ho[1].

The system is not BIBO stable; again, using the delta sequence as input, it is easy to
show that

ho[n]=(nY)u[n]

which is not a bounded sequence.

Exercise 3. Convolution

Compute the nonzero values of the sequence y =xxh where

(3 n=-—1
-1 n=-1
1 n=0 9 ]
n=
x[n]=<-1 n=1 hin]=
4 n=2
n=2 .
0 otherwise
0 otherwise

Solution:
-3 n=-2
-1 n=-1
7 n=0
12 n=1
nl=-+

yln] s nen
0 n=3
8 n=4

kO otherwise




Exercise 4. Triangular sequence
For M an odd positive integer, consider the discrete-time sequence

(1] M—|n| |n|l<M
nli=
M 0 otherwise.

(a) sketch ts

(b) Find a symmetric sequence r,, such that t,; =r,, xr,, for any odd positive integer M.
As a hint, try to convolve the sequence r[n]=6[n+ 1]+ 6[n]+ o[n—1] with itself.

(c) Using the results found in the previous question, compute the DTFT of t,.

Solution:

(a) Thesequencet,, hasasymmetric, zero-centered, triangular shape with2M—1 nonzero
samples:

T

S = N W ks O
T
1

—Q—Q—HIIxx waI?—Q—Q—Q—
-9 -8 -7 6 -5 4 -3 2 -1 O 1 2 3 4 5 6 7 8 9

(b) The discrete-time sequence t,; can be written as the convolution of a zero-centered
rectangular sequence with M nonzero samples:

_ 1 InIS(M—l)/Z
"M [n]—{ 0 otherwise.

We can verify this by computing the value of the convolution in n; sincer,, is symmet-

ric we have
(M-1)/2
(rxminl= > nylklnln—kl;
k=—(M—1)/2

the value of the sum is equal to the number of overlapping nonzero samples between
the originalr,, and a copy ofr\; shifted by n. When |n|> M the two sequences do not
overlap at all whereas the maximum overlap occurs for n =0, where the convolution
sum is equal to M .

Using Python and NumPy, we can easily verify the above result for M = 5 using the
following code:



r = np.ones (5H)
t = np.convolve(r, r)
plt.stem(t)

(c) The DTFT of the rectangular signal r); is well-known and has been derived in class.
Using the convolution theorem, we can write

Ty (w)= Ry (w)Ry(w)

Exercise 5. A nonlinear system

Consider a discrete-time system .# whose input-output relationhip is y[n] = x?[n].
(a) Show with an example that the system is nonlinear.
(b) Prove that the system is time-invariant.

Now consider the following cascade:

x[n|——— # £ y[n]

where ¥ is an ideal highpass filter with frequency response:
Glw)= 0 forlwlfn/z,
1/2 otherwise
(the 27t-periodicity of G(w) is implicit).

(c) Compute the output of the cascade when the input is x[n] = 2cos(wyn) for w, =
37/8. How would you describe the combined effect of the cascade on the input?

(d) Compute the output once again but using w, =77/8.

Solution:
(@) leth, =6 andh, = 5(aé); since 6*[n]= 6[n], we have

h[n]=6[n]
hy[n]=a?*6[n]# ahn]=ad[n]

(b) Lety=.x andy, = (< %x); we have
yalnl=(x[n—d]f =y[n—d]



(©)

@)

Callv the signal at the output of the first block 5 ; using a well-known trigonometric
identity we can write

v[n]=4cos*(wyn)=2+2cos(2w,n)

so thatv is the sum of a constant term and of a sinusoid at double the original input
frequency.

With w,=371/8, v[n]=2+2cos((37t/4)n); since Y is a highpass with cutoff frequency
7t/2, the filter will eliminate all frequency components below 1t /2 and therefore it will
remove the constant term in the input but the cosine at frequency 37 /4 will not be
affected. The final output is therefore y[n] = cos((37t/4)n).

When w, =71/8, then 2w, =71/4 > . Since we are in discrete time, frequencies are
always to be wrapped back over the [—rn, 1] interval by adding the necessary integer
multiple of 2rt. In this case, |7mt/4—2n| = |—n/4| < 7 and therefore cos((7m/4)n) =
cos((—m/4)n) = cos((t/4)n).

Again, 9 will eliminate all frequency components below /2 and, in this case, both the
constant term and the cosine term in v fall in the filter’s stopband so that the output
will be y[n]=0.

Exercise 6. Ideal filters

Compute the impulse response of an ideal filter whose real-valued frequency response
H(w) is shown in the following figure:

H(w)

0 T T T T T T
-7 —3m/4 —n/2 —n/4 0 mn/8 m/4 n/2 3m/4 T

Solution:

By looking at the frequency response we can write

1 w 1 w
H(a))z—rect( )+—rect( )
2 2w, 2 2wg

withw,=m/4 and wg =1/8.



We know that a frequency response of the form rect(w/(2w.)) corresponds to the impulse
response

w() . C()C
—sinc{—n

T 4
and therefore
1 n 1
hin]=- sinc(—) +— sinc(ﬁ)
8 4 16 8

Exercise 7. The Gibbs Phenomenon

In this exercise you will verify the existence of the Gibbs phenomenon using Python and
NumPy. Consider a filter whose impulse response is the symmetrically truncated impulse
response of an ideal lowpass with cutoff w, = 7/2:

s [n] = (1/2)sinc(n/2) |n|<M
M0 otherwise

Let Hy;(w) be the DTFT of hy,:

(@) Plot Hyy(w) for 1.4 < w < 1.7 using at least 2000 uniformly spaced points over the
range for w.

(b) Now plot Hyyy(w) and H,yy(w) and verify that the maximum value of the DTFTs re-
mains approximately the same in both cases.

Solution: The frequency response of the truncated ideal lowpass is

1 < .
HM(w):E Z sinc(n/2) e /"

n=—M

Firstlet’s define a function to compute Hy;(w) over a given set of K freqency values{w,, ..., wx_1}.
Anefficient way todo soisto definea K x(2M +1) matrixW with entries W[k, m] = e~/ @xm=M),
with0 <k < K and0 < m < 2M +1; the desired DTFT values can thus be computed in one

go via the matrix-vector multiplication

h[—M] |
h[—M +1]

A\ h[.O]

h[M—1]
h[M]




def H(omega, M):
n = np.arange (-M, M+1)
h = 0.5 » np.sinc (0.5 * n)
W = np.exp(-1j * np.outer (omega, n))
return omega, np.real (W @ h)

The following code can be use to plot the required charts:

for M in (20, 100, 200):

plt.plot (#H(np.linspace(1.4, 1.7, 2000), M), label=f"M={M}")
plt.axhline(1.09, c="r’, 1s=’":")
plt.legend()

Interpretation:

H,;(w) can be considered an approximation of an ideal lowpass with cutoff w, = m/2. The
time-domain approximation error caused by truncating the impulse response appears in
the frequency response as an oscillatory error near the cutoff frequency; this type of error is
known as the Gibbs phenomenon. When M grows larger, that is when the truncation error in
the impulse response becomes smaller, the frequency response becomes progressively flatter
and closer to the ideal response almost everywhere but, interestingly enough, the maximum
value of the oscillatory error does not decrease, as we can see on the plots. The peaks however
gets thinner and the total area under the oscillations decreases.




