
COM-202 - Signal Processing

Solutions for Homework 6

Exercise 1. LTI Systems (I)

Consider a discrete-time system described by the following input-output relationship:

y [n ] = n x [n ].

Is the system linear? Is it time-invariant?

Solution: The system is linear; for any two input signals xA, xB , let the corresponding outputs

be

yA[n ] = n xA[n ]

yB [n ] = n xB [n ];

for x= a xA + b xB , the output is

y [n ] = n x [n ] = a n xA[n ] + b n xB [n ] = a yA[n ] + b yB [n ].

The system however is not time-invariant. To show this, call hk the system’s response to the

shifted delta sequence δk =S
−kδ:

hk [n ] = nδ[n −k ] =

¨

k n = k

0 n 6= 1
= kδ[n −k ].

If the system was time-invariant we should have hk [n ] = h0[n − k ] but, obviously, since

h0[n ] = 0 for all n, this is not the case.

Exercise 2. LTI Systems (II)

For each of the input-output relationships listed below, determine whether the discrete

system they describe is linear, time-invariant, and BIBO stable. If the system is LTI, deter-

mine its impulse response.
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(a) y [n ] = x [−n ]

(b) y [n ] = e − jωn x [n ]

(c) y [n ] =
∑n+L

k=n−L
x [k ] for L ∈N+

(d) y [n ] = n y [n −1] + x [n ],

assuming causality and zero initial conditions, that is, all inputs and outputs are zero

for n < 0.

(Hint: to prove linearity, you can then proceed by induction.)

Solution: In every case, callingH the system described by the input-output relationship, we

will assume the following:

xA, xB ∈ ℓ2(Z)

yA =H xA

yB =H xB

x= a xA + b xB , a , b ∈C

y=H x

xd =S
−d x

yd =H xd

The system will be linear if y= a yA + b yB and time-invariant if yd =S
−d y.

(a) The system is linear:

y [n ] = x [−n ] = a xA[−n ] + b xB [−n ] = a yA[n ] + b yB [n ]

The system is not time-invariant: first of all notice that the change of sign affects the

whole expression for the index:

y [n ] = x [−n ]⇒ y [(n −d )] = x [−(n −d )] = x [−n +d ]

Now, if xd [n ] = x [n −d ] then xd [(−n )] = x [(−n )−d ] and so

yd [n ] = xd [−n ] = x [−n −d ] 6= y [n −d ] = x [−n +d ]

The system is BIBO stable since, if |x [n ]| ≤M for all n, then obviously |x [−n ]| ≤M as

well.

(b) The system is linear:

y [n ] = e − jωn (a xA[n ]+b xB [n ]) = a (e − jωn xA[n ])+b (e − jωn xB [n ]) = a yA[n ]+b yB [n ]

The system is not time-invariant:

yd [n ] = e − jωn xd [n ] = e − jωn x [n −d ] 6= y [n −d ] = e − jω(n−d )x [n −d ]

The system is BIBO stable since, if |x [n ]| ≤ M for all n, then |y [n ]| = |e − jωn x [n ]| =

|x [n ]| ≤M .
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(c) The system is linear:

y [n ] =

n+L
∑

k=n−L

(a xA[k ] + b xB [k ]) = a

n+L
∑

k=n−L

xA[k ] + b

n+L
∑

k=n−L

xB [k ] = a yA[n ] + b yB [n ]

The system is time-invariant since

yd [n ] =

n+L
∑

k=n−L

xd [k ] =

n+L
∑

k=n−L

x [k −d ]

y [n −d ] =

n−d+L
∑

k=n−d−L

x [k ] =

n+L
∑

m=n−L

x [m −d ]

where we have used the change of variable m = k +d in the second line.

The system is BIBO stable since, if |x [n ]| ≤M , then |
∑n+L

k=n−L
x [n ]| ≤ (2L +1)M

The system’s impulse response is

h [n ] =

¨

1 if |n | ≤ L

0 otherwise.

(d) To show that the system is linear, we need to show that y [n ] = a yA[n ] + b yB [n ] for all

n. For this, we can proceed by induction: if the equality is true for some value n0 then

it is true for all n ≥ n0 since

y [n +1] = (n +1)y [n ] +a xA[n +1] + b xB [n +1]

= (n +1)(a yA[n ] + b yB [n ])+a xA[n +1] + b xB [n +1]

= a {(n +1)yA[n ] + xA[n +1]}+ b {(n +1)yB [n ] + xB [n +1]}

= a yA[n +1] + b yB [n +1].

Since we assume zero initial conditions, we know that xA[n ] = xB [n ] = yA[n ] = yB [n ] =

y [n ] = 0 for all n < 0 and so we can start the recursion at any value n0 < 0.

The system is not time-invariant; to show this, call hd the output of the system when

the input is the shifted delta sequence δd =S
−dδ; when the shift is zero we have

h0[n ] =





















0 n < 0

1 n = 0

1 n = 1

2 n = 2

6 n = 3

. . .
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and when the shift is one:

h1[n ] =





















0 n < 0

0 n = 0

1 n = 1

2 n = 2

6 n = 3

. . .

If the system was time-invariant we should have h1[n ] = h0[n −1] for all n but h1[2] 6=

h0[1].

The system is not BIBO stable; again, using the delta sequence as input, it is easy to

show that

h0[n ] = (n !)u [n ]

which is not a bounded sequence.

Exercise 3. Convolution

Compute the nonzero values of the sequence y= x ∗h where

x [n ] =

















3 n =−1

1 n = 0

−1 n = 1

2 n = 2

0 otherwise

h [n ] =













−1 n =−1

2 n = 1

4 n = 2

0 otherwise

Solution:

y [n ] =































−3 n =−2

−1 n =−1

7 n = 0

12 n = 1

2 n = 2

0 n = 3

8 n = 4

0 otherwise
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Exercise 4. Triangular sequence

For M an odd positive integer, consider the discrete-time sequence

tM [n ] =

¨

M − |n | |n |<M

0 otherwise.

(a) sketch t5

(b) Find a symmetric sequence rM such that tM = rM ∗rM for any odd positive integer M .

As a hint, try to convolve the sequence r [n ] = δ[n +1] +δ[n ] +δ[n −1]with itself.

(c) Using the results found in the previous question, compute the DTFT of tM .

Solution:

(a) The sequence tM has a symmetric, zero-centered, triangular shape with 2M−1 nonzero

samples:

b b b b

b

b

b

b

b

b

b

b

b

b b b b

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

(b) The discrete-time sequence tM can be written as the convolution of a zero-centered

rectangular sequence with M nonzero samples:

rM [n ] =

�

1 |n | ≤ (M −1)/2

0 otherwise.

We can verify this by computing the value of the convolution in n; since rM is symmet-

ric we have

(rM ∗ rM )[n ] =

(M−1)/2
∑

k=−(M−1)/2

rM [k ]rM [n −k ];

the value of the sum is equal to the number of overlapping nonzero samples between

the original rM and a copy of rM shifted by n. When |n | ≥M the two sequences do not

overlap at all whereas the maximum overlap occurs for n = 0, where the convolution

sum is equal to M .

Using Python and NumPy, we can easily verify the above result for M = 5 using the

following code:
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r = np.ones(5)

t = np.convolve(r, r)

plt.stem(t)

(c) The DTFT of the rectangular signal rM is well-known and has been derived in class.

Using the convolution theorem, we can write

TM (ω) =RM (ω)RM (ω)

=

�

sin(ωM /2)

sin(ω/2)

�2

.

Exercise 5. A nonlinear system

Consider a discrete-time systemH whose input-output relationhip is y [n ] = x 2[n ].

(a) Show with an example that the system is nonlinear.

(b) Prove that the system is time-invariant.

Now consider the following cascade:

x [n ] H G y [n ]

where G is an ideal highpass filter with frequency response:

G (ω) =

¨

0 for |ω|<π/2,

1/2 otherwise

(the 2π-periodicity of G (ω) is implicit).

(c) Compute the output of the cascade when the input is x [n ] = 2 cos(ω0n ) for ω0 =

3π/8. How would you describe the combined effect of the cascade on the input?

(d) Compute the output once again but usingω0 = 7π/8.

Solution:

(a) let h1 =H δ and h2 =H (aδ); since δ2[n ] = δ[n ], we have

h1[n ] =δ[n ]

h2[n ] = a 2δ[n ] 6= a h1[n ] = aδ[n ]

(b) Let y=H x and yd =H (S
−d x); we have

yd [n ] = (x [n −d ])2 = y [n −d ]
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(c) Call v the signal at the output of the first blockH ; using a well-known trigonometric

identity we can write

v [n ] = 4 cos2(ω0n ) = 2+2 cos(2ω0n )

so that v is the sum of a constant term and of a sinusoid at double the original input

frequency.

Withω0 = 3π/8, v [n ] = 2+2 cos((3π/4)n ); since G is a highpass with cutoff frequency

π/2, the filter will eliminate all frequency components below π/2 and therefore it will

remove the constant term in the input but the cosine at frequency 3π/4 will not be

affected. The final output is therefore y [n ] = cos((3π/4)n ).

(d) Whenω0 = 7π/8, then 2ω0 = 7π/4 > π. Since we are in discrete time, frequencies are

always to be wrapped back over the [−π,π] interval by adding the necessary integer

multiple of 2π. In this case, |7π/4− 2π| = | −π/4| < π and therefore cos((7π/4)n ) =

cos((−π/4)n ) = cos((π/4)n ).

Again,G will eliminate all frequency components belowπ/2 and, in this case, both the

constant term and the cosine term in v fall in the filter’s stopband so that the output

will be y [n ] = 0.

Exercise 6. Ideal filters

Compute the impulse response of an ideal filter whose real-valued frequency response

H (ω) is shown in the following figure:

π/8−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π

0

1

H
(ω
)

Solution:

By looking at the frequency response we can write

H (ω) =
1

2
rect

�

ω

2ωA

�

+
1

2
rect

�

ω

2ωB

�

withωA =π/4 andωB =π/8.
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We know that a frequency response of the form rect(ω/(2ωc )) corresponds to the impulse

response

ωc

π
sinc
�ωc

π
n
�

and therefore

h [n ] =
1

8
sinc
�n

4

�

+
1

16
sinc
�n

8

�

Exercise 7. The Gibbs Phenomenon

In this exercise you will verify the existence of the Gibbs phenomenon using Python and

NumPy. Consider a filter whose impulse response is the symmetrically truncated impulse

response of an ideal lowpass with cutoffωc =π/2:

hM [n ] =

¨

(1/2)sinc(n/2) |n | ≤M

0 otherwise

Let HM (ω) be the DTFT of hM :

(a) Plot H20(ω) for 1.4 ≤ ω ≤ 1.7 using at least 2000 uniformly spaced points over the

range forω.

(b) Now plot H100(ω) and H200(ω) and verify that the maximum value of the DTFTs re-

mains approximately the same in both cases.

Solution: The frequency response of the truncated ideal lowpass is

HM (ω) =
1

2

M
∑

n=−M

sinc(n/2) e − jωn

First let’s define a function to compute HM (ω)over a given set of K freqency values {ω0, . . . ,ωK −1}.

An efficient way to do so is to define a K ×(2M+1)matrix W with entries W [k , m ] = e − jωk (m−M ),

with 0 ≤ k < K and 0 ≤m < 2M + 1; the desired DTFT values can thus be computed in one

go via the matrix-vector multiplication

W























h [−M ]

h [−M +1]
...

h [0]
...

h [M −1]

h [M ]






















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def H(omega, M):

n = np.arange(-M, M+1)

h = 0.5 * np.sinc(0.5 * n)

W = np.exp(-1j * np.outer(omega, n))

return omega, np.real(W @ h)

The following code can be use to plot the required charts:

for M in (20, 100, 200):

plt.plot(*H(np.linspace(1.4, 1.7, 2000), M), label=f"M={M}")

plt.axhline(1.09, c=’r’, ls=’:’)

plt.legend()

Interpretation:

HM (ω) can be considered an approximation of an ideal lowpass with cutoff ωc = π/2. The

time-domain approximation error caused by truncating the impulse response appears in

the frequency response as an oscillatory error near the cutoff frequency; this type of error is

known as the Gibbs phenomenon. When M grows larger, that is when the truncation error in

the impulse response becomes smaller, the frequency response becomes progressively flatter

and closer to the ideal response almost everywhere but, interestingly enough, the maximum

value of the oscillatory error does not decrease, as we can see on the plots. The peaks however

gets thinner and the total area under the oscillations decreases.
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