COM-202 - Signal Processing

Solutions for Homework 5

Exercise 1. DTFTs
Compute the DTFTs of the following sequences:
(@) x[n]=guln]-guln—1]

(b) x[n]=a" cos(wyn)un], lal <1

Solution:

(a) By linearity the DTFT will be the sum of the DTFT5 of both terms. For the first term
(a decaying exponential sequence starting at n = 0) we know that the DTFT is simply

1
ThjzeTe- For the second term, we have

oo o
e —jon _ —n —]con
_ 1
1—(1/4)e—i®
so that in the end
1 1
X(w)= — +1.

— Lo _lo—jo
l—3e7® 1—ze7J

(b) Leta[n]= a" u[n], so that A(w) =1/(1—ae ’*). Using Euler’s formula we can write
cos(won) =(1/2)(e/ @™ + e~/®") so that, by linearity,

1 . 1 .
X(w)= EDTFT{e]‘"O"a[n]} + EDTFT{e_]‘"O"a[n]}.
Using the time-shift property of the DTFT we finally have

X(w)= % [A(w— wy)+ A(w + wy)]
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Exercise 2. DTFT visual inspection

The real and imaginary parts of X(w) are shown in the figure below. By visual inspection

of the plots, prove that:

(@ x[n]is0-mean,i.e., > _, x[n]=0;
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(b) x[n]is real valued.
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Solution:

(a) From the plots one can see that X(w) is 0 for w =0,

X(O):zx[n]zo,

nez

so x[n] is 0-mean.

(b) From the plots one can see that the real part of X(w) is symmetric around «w =0, and

its imaginary part is antisymmetric. Since
x'[n]— X*(-w),

then
X (—w)=M{X(—w)} = jH{X (o)} =R {X(w)} + jI{X(w)} = X(w).

Therefore, x[n] = x*[n].

Exercise 3. DTFT of a symmetric sequence

Compute the DTFT of x[n]= a!" for n € Z and |a| < 1, and sketch its magnitude for a close

to 1.




Solution:
Sett[n]=a" u[n]; then
x[n]=t[n]+ t[—n]—0][n].
Since T(w)=(1—ae ), itis
1 1
X(w)= — + ——1
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Hereis a plot for a =0.99:
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Exercise 4. DTFT properties

Given a finite-energy sequence x[n] and its DTFT X(w), express the DTFT of the sequence
y[n]=(—1)"x[n]in terms of X (w).

[Hint: remember that(—1)" = e/™"]

Solution:
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This results in a translation of the DTFT plot by . Because of the 21t -periodicity of the DTFT
over the [—m, 1] interval, this is visually equivalent to a circular shift, e.g.:

X(w) Y(w)
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Exercise 5. Alternate notation for the DTFT

In many signal processing textbooks and publications (including the material used in pre-
vious editions of this class) DTFTs are represented using the notation

X(el®).

The main advantage of that choice is clarity since any expression of the form A(e/?) is
immediately interpreted as a Fourier transform; additionally, the expression automati-
cally “encodes” the 27-periodicity of the DTFT since obviously X (e/(“*2¥7)) = X(e/®) with
no need of knowing the actual expression for X(e/®). On the other hand, the notation
becomes very cumbersome when needing to apply shifts and scalings to the frequency
variable, leading to hard-to-read expressions such as X (efw%) which are very hard to
read.

It's nevertheless important to become familiar with this alternate notation because it’s very
common. Here’s a question to test your knowledge: for the DTFT X(e/“) shown below,
sketch the magnitude of X(—e/®).
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Solution: The “tricky” thing is to remember that the free variable is w:

X(—el®)=X(e'"el?)=X(e/“™™):
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Exercise 6. DTFT of a modified sequence

Consider a causal sequence x[n] € £,(Z) (i.e. an integer valued energy signal) with DTFT
X(w)where x[n]=0forn <0. Anew sequence y[n]is defined as

0 forn<0
yln]l=1 x[n] for n even
a” for n odd

with |a| < 1. Derive the expression for Y (w) in terms of X (w).

[Hint: the sequence (1+ e/™)/2 may prove useful.]

Solution:

The sequencet[n] = (1+e/™")/2 isequal to 1 for n even andto 0 for n odd. Leta[n]= a" u[n];
we can write:

y[nl=x[n]t[n]+aln]tln—1]

= %(x[n]+ ej“”x[n]+d[n]+a[n]ejﬂ("—l))

= %(x[n]+ e/™ x[n]+a[n]—a[n]e’™).

Using linearity and the shift property for the DTFT we have:

Y(w)= % [X(w)+ X(w—1)+ A(w)— A(w — )]
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Exercise 7. DTFT, DFT, and numerical computations

Consider the following finite-support signal, where M € N:

1 0<n<M,
x[n]= )
0 otherwise.

In this exercise you will need to write some Python/NumPy code to compare the theoretical
value of the DTFT X(w) to its numerical approximation.

(a) Derive the closed-form expression for X (w).

(b) Using Python, plot the values of | X(w)| over a set of uniformly spaced frequency val-
ues between —r and 7t; set M =20 and use 10,000 frequency values.

(c) Now generate an N -point finite-length sequence xy[n] where xy[n] = x[n] for n =
0,1,...,N—1. Compute its DFT using NumPy’s FFT package and plot the magnitude
of the coefficients for N = 31,51,101. Align the DFT plots so that you can visually
compare the DFT coefficients to the analytical values of the DTFT obtained in the
previous step.

Solution: The analytical expression for the DTFT of the signal is

_sin(M/2)w) _ju,
X =G ¢

Here is a Python Notebook code snippet that provides the plots required by the exercise:

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (14,4)

M= 20

# compute the value of the theoretical DTFT over 10,000 points
w = np.linspace(-np.pi, np.pi, 10000)
X = np.sin((M / 2.0) * w) / np.sin(w / 2.0)

# now compute the three FFT-based approximations

for N in [31, 51, 101]:
X = np.zeros (N)
x[0:M] =1
X a = np.fft.fftshift (np.fft.frt(x))
w_a = np.fft.fftshift((2  np.pi / N) * np.arange (N))
w_al[:N // 2] —= 2 * np.pi
plt.figure();
plt.plot(w, np.abs(X), ’'C2’, 1lw=4, label="analytical’);
plt.plot (w_a, np.abs(X_a), ’7C3’, label=f’{N}-point DFT’);
plt.legend();






