COM-202 - Signal Processing

Solutions for Homework 7

Exercise 1. A simple model for a bank

A simple discrete-time feedback loop with a single delay can be used to describe an el-
ementary banking model where compound interest accrues yearly. Assume the follow-
ing:

- you can only deposit (or withdraw) funds from your account on January 1st of each
year; call the yearly deposit x[n], with n =0 when you open the account;

- on December 31st each year, the bank looks at your total assets and adds R percent
of it to your account the next day; R is the interest rate;

- let’s assume for simplicity that you never take any money out, so your balance is
always positive.

With these assumptions we can model y[n], the amount of money in your account in year
n, via the recursive equation

ylnl=ay[n—1]+x[n]
wherea=1+R.

Compute the closed-form expression for y[n] when x[n] = B u[n], that is, when you de-
posit B units of currency in your account every year.

Solution:
You can solve this problem in two ways:
- Using the z-transform: From
yln]=ay[n—1]+puln]

we have

Y(z)=az'Y(z)+p

B
1—az ) (1—z1)

1—2z-1




Using partial fraction expansion we can write

Y(z) A + B
zZ)=
(1—az 1) (1—z71)

with

A+B=p

A+aB=0
This yields

1 1
Y(z)= ap B

a—1(1—azl) a—1(1—z1)

The first term on the right-hand side is the z-transform of a causal exponential se-
quence with base a whereas the second term is the z -transform of the unit step, with
both terms multiplied by scalars. Therefore we have:

_ B g
yln]= p— (a l)u[n].

- By induction: With zero initial conditions, y[n]=0 for n <0; then

y0l=ay[-11+p =
y[l1=ayl0]+B=af+p
y2l=ay[ll+p=a’B+af+p

yInl=Bla"+-+1)=p > a*
k=0

an+l —1

a—1

=p

Exercise 2. Allpass filters

An allpass filter is a filter whose magnitude response is a constant. Allpass filters are useful
when we need to modify only the phase of an input signal.

(a) Consider a discrete-time LTT system with transfer function

= 1200

where a is a real-valued constant. Show that the system is allpass, i.e., show that
|H(w)| = d for all values of the frequency w.
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(b) Determine the magnitude response of a filter with transfer function

:1—(1/a)z_1 1—(1/b)z7! 1—(1/c)z™!

G(z
(2) l—az1 1—bz1 l—cz1

where a, b, and ¢ are real-valued constants.

Solution:

(a) The magnitude response of the filter is

1—(1/a)e /¢
H(w)|=|———
l—ae-J«

_|(/a)e7® (ael® —1)
B l—ae j®

1 il 1—aei®
=— |e‘”’| P ——

|a| l—ae J®
_ 1

|al

The last line follows from the fact that (1 —ae™*) and (1—ae ) are complex con-
jugate (since a is real) and, for any s € C, it is always |s/s*| = 1. To see why, simply

express s in polar coordinates:

N

0
- =|e*?|=1.

pel’
=

An alternative, if more laborious, way to solve the problem is

1—(1/a)e ¢ |?

H(e!)? = .
|H(e’®)| Ty

ae /¥ —1 2
_‘ae—fw—az
_ lacos(w)—1— jasin(w)?

" lacos(w)—a?— jasin(w)|?
_ (acos(w)—1) +(asin(w))’
 (acos(w)—a2)? + (asin(w))?
_a*+1-2acos(w) 1

T a2+at—2a3cos(w) |al?’

(b) The filter G(z) is the cascade of 3 allpass filters for which we know the magnitude re-

sponse. We therefore have




Exercise 3. Linear phase

Show that a causal, odd-length, antisymmetric FIR filter has a linear phase response. Recall
that, for an FIR of length M, symmetry (or antisymmetry) is around the midpoint of the
impulse response so that, in this case, the antisymmetry condition translates to h[n] =
—h[M —1—n]forn=0,...,M—1.

Solution:

If M is odd, we can write M = 2C + 1 with C € N* and the filter’s midpoint coincides with
the sample h|C]; the antisymmetry condition becomes

hin]=—h[2C—n] n=0,...,2C.

For n = C, the expression yields h[C] = —h[C], which implies that h[C] =0 (i.e. the mid-
point of an antisymmetric impulse response is necessarily equal to zero).

Consider now a noncausal shifted version of the original impulse response centered around
the midpoint, h.[n]= h[n+ C]; the antisymmetry condition for this filter is simply h.[—n] =
—h.[n] and its transfer function is

C

H.(z)= Z hinlz™"

n=—-=.C
~1 C
= Z hlnlz™" +Zh[n]z—"
n=—-=C n=1
C
=> hnlz"—z").
n=1
To find the frequency response, let’s evaluate H,(z) on the unit circle:
C . .
Ho(w)= hln](e”/*" —e*")
n=1
C
=—2jz h[n]sin(wn)
n=1

C
= lzz h[n]sin(a)n)] ez,

Since the term in brackets is real-valued, the phase response of H.(w) is constant and equal
to —m/2.



To find the phase response of the original filter, we simply shift the impulse response back to
its causal formulation and obtain

c
H(w)=e'““H,(w)= [22 h[n]sin(o)n)] g j(@C+3)

n=1

whose phase is linear in w.

Exercise 4. Discrete-time system diagram

Consider the causal system described by the following block diagram. Assume a causal
input (x[n] =0 for n < 0) and zero initial conditions.

x[n] ——) _ (O— yln]
| — )
(]
Q ! z73
T nin]
71

(a) Find the three constant-coefficients difference equations that describe the relation-
ship between the input x[n] and yy[n], n(n], y[(n].

(b) Find Hy(z), H,(z) and H(z), the transfer functions associated to the three CCDEs you
found in the previous point.

(c) Isthe whole system stable?

(d) Consider the input x[n] = u[n], where, as usual, u[n] =1 for n > 0 and u[n] = 0 for
n <0. How do yy[n],;[n] and y[n] evolve over time? Sketch their values.

Solution:

(a) (i) The upper branch is a integrator:

wolnl=x[n]+ yln—1].

(ii) The lower branch is the cascade of an integrator followed by a delay. The easi-
est way to find the CCDE is by remembering that the order of the elements in a
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cascade of filters does not matter. We can therefore swap the delay and the inte-
grator to obtain the CCDE describing the output of an integrator when the input
is delayed by 3

nlnl=x[n—-3]+ y[n—1].
Alternatively, call w[n] the signal before the delay so that y,[n] = w[n —3]; this
relationship is time-invariant and therefore it is also

wn]= yn[n+3]
wn—1]=y[n+2]

Since w(n] is the output of an integrator, we have
win]=x[n]+w[n—1]

which we can write as
nln+3]=x[n]+ y[n+2].

By shifting the above CCDE in time we obtain once again

nlnl=x[n—-3]+nln—1].

(iii) Since y[n]= yy[n]— y[n], the global input-output CCDE is
yln]= yln]—nln]
= x[n]+ pln—1]=x[n=3]-pln-1]
= x[n]=x[n=3]+(pln—-1]=pln-1])
=x[n]—x[n—-3]+y[n—1].

(b) The transfer functions are easily derived:

1
Hy(z) = 1—2-1
Z—S
H(z) = 1— o1
1—z% (1—zYH1l+z'+z72
H(z) = ! X )=1+z_1+z_2.
1—2z-1 1—2z-1

(c) The system is BIBO stable since the overall transfer function has only zeros and there-
fore the system implements an FIR filter.

(d) The first subsystem is a simple integrator: at each step the previous output is summed
to the current input. Since the input is a step sequence, the output for n > 0 will be:
y[0]=x[0]=1
y[1]=y[0]+x[1]=2
y[2]=y[1]+x[2]=3

ylnl=n+1



or, concisely,
Yoln]=(n+1)uln].
The lower subsystem is identical to the first, except it is followed by a delay by three;
therefore
nlnl= ypln—3]=(n—-2)uln—3].
Finally, since the overall transfer function is FIR, the system’s ouput is simply y[n] =

u[n]+ u[n—1]+ u[n—2]; this is the superposition of three unit step sequences delayed
by one each; since y[0]=1, y[1]=2, and y[n]=3 for n > 2, we can write

yln]=3-20[n]—06[n—1].

Exercise 5. Impulse response from poles and zeros

Compute the impulse response of the causal filter with the following pole-zero plot:

Im

Solution:

The system has a pole in z = a and a zero in z = 1. We can write the transfer function of the
system as
1—z! 1 L1
= Z .
l—az! 1—az-! l1—az-!

H(z)=

A first-order section with a pole in z = a has a transfer function G(z) = 1/(1—az™!) and
impulse response g[n] = a" u[n]. Therefore the impulse response of the above system is

0 n<o0
uln—1]=11 n=0.
a" Y a—1) n>0

n—1

hin]=gln]—gln—1]=a"u[n]-a



Exercise 6.

A causal LTI system is described by the following difference equation, where b is a real
number.

y[nl+ (b +1Py[n—1]+2b°+ b*)y[n—2]= x[n].

(a) Find the transfer function H(z) and the range of b such that the system is stable.

(b) Sketch a block diagram implementing this system.

Solution:

(a) Taking the z-Transform on both sides of the difference equation, we have

Y(z) 1 1

H(z)= X(z)  1+(b+ 12z +2b3+b2)z2  (1+b2z )1 +(2b+1)z)

whose two poles are at z =—b? and z =—2b —1.

Since the system is causal, the ROC extends outwards from a circle passing through
the pole with largest magnitude. For the system to be stable the ROC must contain the
unit circle and for this to happen we must have

max{b?2b+1[} <1
that is,

—-1<b<0.

(b) A straightforward implementation of this filter is via a standard second-order section
where only the feedback branches have nonzero weights

x[n) ©, yln]
z—l
—(b+1)?
N
©, t
71
—2b3—b*




Alternately, since we already have the transfer function in factored form and since the
two poles are real-valued, we can implement the system as a cascade of two first-order
feedback loops as shown in the following figure; the advantage of this implementation

is that it uses the actual values of the poles and therefore any potential issues due to
limited numerical precision are mitigated.

x[n] ©, ¢ © ' yln]

—2b+1) _p?




