
COM-202 - Signal Processing

Solutions for Homework 7

Exercise 1. A simple model for a bank

A simple discrete-time feedback loop with a single delay can be used to describe an el-

ementary banking model where compound interest accrues yearly. Assume the follow-

ing:

- you can only deposit (or withdraw) funds from your account on January 1st of each

year; call the yearly deposit x [n ], with n = 0 when you open the account;

- on December 31st each year, the bank looks at your total assets and adds R percent

of it to your account the next day; R is the interest rate;

- let’s assume for simplicity that you never take any money out, so your balance is

always positive.

With these assumptions we can model y [n ], the amount of money in your account in year

n , via the recursive equation

y [n ] =αy [n −1] + x [n ]

where α= 1+R .

Compute the closed-form expression for y [n ] when x [n ] = βu [n ], that is, when you de-

posit β units of currency in your account every year.

Solution:

You can solve this problem in two ways:

- Using the z -transform: From

y [n ] =αy [n −1] +βu [n ]

we have

Y (z ) =αz −1Y (z )+β
1

1− z −1

=
β

(1−αz −1)(1− z −1)
.
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Using partial fraction expansion we can write

Y (z ) =
A

(1−αz −1)
+

B

(1− z −1)

with

A+B =β

A+αB = 0

This yields

Y (z ) =
αβ

α−1

1

(1−αz −1)
−
β

α−1

1

(1− z −1)
.

The first term on the right-hand side is the z -transform of a causal exponential se-

quence with base α whereas the second term is the z -transform of the unit step, with

both terms multiplied by scalars. Therefore we have:

y [n ] =
β

α−1

�

αn+1−1
�

u [n ].

- By induction: With zero initial conditions, y [n ] = 0 for n < 0; then

y [0] =αy [−1] +β =β

y [1] =αy [0] +β =αβ +β

y [2] =αy [1] +β =α2β +αβ +β

. . .

y [n ] =β (αn + · · ·+1) =β

n
∑

k=0

αk

=β
αn+1−1

α−1
.

Exercise 2. Allpass filters

An allpass filter is a filter whose magnitude response is a constant. Allpass filters are useful

when we need to modify only the phase of an input signal.

(a) Consider a discrete-time LTI system with transfer function

H (z ) =
1− (1/a )z −1

1−a z −1

where a is a real-valued constant. Show that the system is allpass, i.e., show that

|H (ω)|= d for all values of the frequencyω.
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(b) Determine the magnitude response of a filter with transfer function

G (z ) =
1− (1/a )z −1

1−a z −1

1− (1/b )z −1

1− b z −1

1− (1/c )z −1

1− c z −1

where a , b , and c are real-valued constants.

Solution:

(a) The magnitude response of the filter is

|H (ω)|=

�

�

�

�

1− (1/a )e − jω

1−a e − jω

�

�

�

�

=

�

�

�

�

(1/a )e − jω (a e jω−1)

1−a e − jω

�

�

�

�

=
1

|a |

�

�e − jω
�

�

�

�

�

�

1−a e jω

1−a e − jω

�

�

�

�

=
1

|a |

The last line follows from the fact that (1− a e − jω) and (1− a e − jω) are complex con-

jugate (since a is real) and, for any s ∈ C, it is always |s/s ∗| = 1. To see why, simply

express s in polar coordinates:

�

�

�

s

s ∗

�

�

�=

�

�

�

�

ρe jθ

ρe − jθ

�

�

�

�
= |e 2 jθ |= 1.

An alternative, if more laborious, way to solve the problem is

|H (e jω)|2 =

�

�

�

�

1− (1/a )e − jω

1−a e − jω

�

�

�

�

2

=

�

�

�

a e − jω−1

a e − jω−a 2

�

�

�

2

=
|a cos(ω)−1− j a sin(ω)|2

|a cos(ω)−a 2− j a sin(ω)|2

=
(a cos(ω)−1)2+ (a sin(ω))2

(a cos(ω)−a 2)2+ (a sin(ω))2

=
a 2+1−2a cos(ω)

a 2+a 4−2a 3 cos(ω)
=

1

|a |2
.

(b) The filter G (z ) is the cascade of 3 allpass filters for which we know the magnitude re-

sponse. We therefore have

|G (ω)|=
1

|a b c |
.
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Exercise 3. Linear phase

Show that a causal, odd-length, antisymmetric FIR filter has a linear phase response. Recall

that, for an FIR of length M , symmetry (or antisymmetry) is around the midpoint of the

impulse response so that, in this case, the antisymmetry condition translates to h [n ] =

−h [M −1−n ] for n = 0, . . . , M −1.

Solution:

If M is odd, we can write M = 2C + 1 with C ∈ N+ and the filter’s midpoint coincides with

the sample h [C ]; the antisymmetry condition becomes

h [n ] =−h [2C −n ] n = 0, . . . , 2C .

For n = C , the expression yields h [C ] = −h [C ], which implies that h [C ] = 0 (i.e. the mid-

point of an antisymmetric impulse response is necessarily equal to zero).

Consider now a noncausal shifted version of the original impulse response centered around

the midpoint, hc [n ] = h [n+C ]; the antisymmetry condition for this filter is simply hc [−n ] =

−hc [n ] and its transfer function is

Hc (z ) =

C
∑

n=−C

h [n ]z −n

=

−1
∑

n=−C

h [n ]z −n +

C
∑

n=1

h [n ]z −n

=

C
∑

n=1

h [n ](z −n − z n ).

To find the frequency response, let’s evaluate Hc (z ) on the unit circle:

Hc (ω) =

C
∑

n=1

h [n ](e − jωn − e jωn )

=−2 j

C
∑

n=1

h [n ]sin(ωn )

=

�

2

C
∑

n=1

h [n ]sin(ωn )

�

e − j π2 .

Since the term in brackets is real-valued, the phase response of Hc (ω) is constant and equal

to −π/2.
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To find the phase response of the original filter, we simply shift the impulse response back to

its causal formulation and obtain

H (ω) = e − jωC Hc (ω) =

�

2

C
∑

n=1

h [n ]sin(ωn )

�

e − j (ωC+ π2 )

whose phase is linear inω.

Exercise 4. Discrete-time system diagram

Consider the causal system described by the following block diagram. Assume a causal

input (x [n ] = 0 for n < 0) and zero initial conditions.

x [n ] b + b + y [n ]

z −1

+ b z −3

z −1

y0[n ]

−1

w [n ]

y1[n ]

(a) Find the three constant-coefficients difference equations that describe the relation-

ship between the input x [n ] and y0[n ], y1[n ], y [n ].

(b) Find H0(z ), H1(z ) and H (z ), the transfer functions associated to the three CCDEs you

found in the previous point.

(c) Is the whole system stable?

(d) Consider the input x [n ] = u [n ], where, as usual, u [n ] = 1 for n ≥ 0 and u [n ] = 0 for

n < 0. How do y0[n ],y1[n ] and y [n ] evolve over time? Sketch their values.

Solution:

(a) (i) The upper branch is a integrator:

y0[n ] = x [n ] + y0[n −1].

(ii) The lower branch is the cascade of an integrator followed by a delay. The easi-

est way to find the CCDE is by remembering that the order of the elements in a
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cascade of filters does not matter. We can therefore swap the delay and the inte-

grator to obtain the CCDE describing the output of an integrator when the input

is delayed by 3

y1[n ] = x [n −3] + y1[n −1].

Alternatively, call w [n ] the signal before the delay so that y1[n ] = w [n − 3]; this

relationship is time-invariant and therefore it is also

w [n ] = y1[n +3]

w [n −1] = y1[n +2]

Since w [n ] is the output of an integrator, we have

w [n ] = x [n ] +w [n −1]

which we can write as

y1[n +3] = x [n ] + y1[n +2].

By shifting the above CCDE in time we obtain once again

y1[n ] = x [n −3] + y1[n −1].

(iii) Since y [n ] = y0[n ]− y1[n ], the global input-output CCDE is

y [n ] = y0[n ]− y1[n ]

= x [n ] + y0[n −1]− x [n −3]− y1[n −1]

= x [n ]− x [n −3] + (y0[n −1]− y1[n −1])

= x [n ]− x [n −3] + y [n −1].

(b) The transfer functions are easily derived:

H0(z ) =
1

1− z −1

H1(z ) =
z −3

1− z −1

H (z ) =
1− z −3

1− z −1
=
(1− z −1)(1+ z −1+ z −2)

1− z −1
= 1+ z −1+ z −2.

(c) The system is BIBO stable since the overall transfer function has only zeros and there-

fore the system implements an FIR filter.

(d) The first subsystem is a simple integrator: at each step the previous output is summed

to the current input. Since the input is a step sequence, the output for n ≥ 0 will be:

y [0] = x [0] = 1

y [1] = y [0] + x [1] = 2

y [2] = y [1] + x [2] = 3

. . .

y [n ] = n +1
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or, concisely,

y0[n ] = (n +1)u [n ].

The lower subsystem is identical to the first, except it is followed by a delay by three;

therefore

y1[n ] = y0[n −3] = (n −2)u [n −3].

Finally, since the overall transfer function is FIR, the system’s ouput is simply y [n ] =

u [n ]+u [n−1]+u [n−2]; this is the superposition of three unit step sequences delayed

by one each; since y [0] = 1, y [1] = 2, and y [n ] = 3 for n ≥ 2, we can write

y [n ] = 3−2δ[n ]−δ[n −1].

Exercise 5. Impulse response from poles and zeros

Compute the impulse response of the causal filter with the following pole-zero plot:

1

Re

Im

a α b

Solution:

The system has a pole in z =α and a zero in z = 1. We can write the transfer function of the

system as

H (z ) =
1− z −1

1−αz −1
=

1

1−αz −1
− z −1 1

1−αz −1
.

A first-order section with a pole in z = α has a transfer function G (z ) = 1/(1− αz −1) and

impulse response g [n ] = αn u [n ]. Therefore the impulse response of the above system is

h [n ] = g [n ]− g [n −1] = αn u [n ]−αn−1u [n −1] =









0 n < 0

1 n = 0

αn−1(α−1) n > 0

.
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Exercise 6.

A causal LTI system is described by the following difference equation, where b is a real

number.

y [n ] + (b +1)2 y [n −1] + (2b 3+ b 2)y [n −2] = x [n ].

(a) Find the transfer function H (z ) and the range of b such that the system is stable.

(b) Sketch a block diagram implementing this system.

Solution:

(a) Taking the z -Transform on both sides of the difference equation, we have

H (z ) =
Y (z )

X (z )
=

1

1+ (b +1)2z −1+ (2b 3+ b 2)z −2
=

1

(1+ b 2z −1)(1+ (2b +1)z −1)
,

whose two poles are at z =−b 2 and z =−2b −1.

Since the system is causal, the ROC extends outwards from a circle passing through

the pole with largest magnitude. For the system to be stable the ROC must contain the

unit circle and for this to happen we must have

max{b 2, |2b +1|}< 1

that is,

−1< b < 0.

(b) A straightforward implementation of this filter is via a standard second-order section

where only the feedback branches have nonzero weights

x [n ] + b y [n ]

z −1

+ b

z −1

−(b +1)2

−2b 3− b 2
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Alternately, since we already have the transfer function in factored form and since the

two poles are real-valued, we can implement the system as a cascade of two first-order

feedback loops as shown in the following figure; the advantage of this implementation

is that it uses the actual values of the poles and therefore any potential issues due to

limited numerical precision are mitigated.

x [n ] + b + b y [n ]

z −1 z −1

−(2b +1) −b 2
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