
COM-202 - Signal Processing

Homework 2

24 February 2025, Monday

Please submit your answer to Exercise 6 by 6 March 2025, Thursday, 23:59

Exercise 1. Energy of complex-valued signals

Compute the energy of the signal defined as

x [n ] =

¨
�

1p
2

�n
+ j
�

1p
3

�n
n > 0

0 otherwise

Solution:

Ex =
∞
∑

n=−∞
|x [n ]|2 =

∞
∑

n=1

�

1

2

�n

+
�

1

3

�n

.

From the formula for the geometric sum, valid for |a |< 1, we have
∞
∑

n=1

(1/a )n =−1+
∞
∑

n=0

(1/a )n =
1

1−1/a
−1=

1

a −1

so that

Ex =
1

2−1
+

1

3−1
=

3

2

Exercise 2. Operators and linearity

A discrete-time signal operator is a transformation acting on the entire signal:

y=Fx

A linear operator has the following properties (where α is a complex-valued scalar):

F (αx) =αFx

F (x+y) =Fx+Fy
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(a) Show that the time-shift operator for infinite-length signals, defined by (S x)[n ] =
x [n +1], is a linear operator.

(b) Show that the squaring operator, defined by (Qx)[n ] = (x [n ])2 is not linear.

Solution:

(a) let p=αx. Then

(S (αx))[n ] = (S p)[n ] = p [n +1] =αx [n +1] =αx [n +1] =α(S x)[n ]

Similarly, let p= x+y, and

(S (x+y))[n ] = (S p)[n ] = p [n +1] = x [n +1] + y [n +1] = (S x)[n ] + (S y)[n ]

(b) (Q(αx))[n ] =α2 x 2[n ] =α2(Qx)[n ] ̸=α(Qx)[n ]

Exercise 3. Operators in matrix notation

Linear operators acting on finite-length signals can always be expressed as a matrix-vector
product. For example, consider the shift-by-one operator inCN , which is defined as a right
circular shift:

(S x) [n ] = x [(n −1) mod N ].

In vector notation we can write

S x= Sx

where the matrix S has the following form (using N = 4 for convenience):

D=







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0







Express in matrix form the following operators in C4:

(a) the first-difference operator, defined by (V x) [n ] = x [n ]− x [(n −1) mod N ]

(b) the averaging operator, defined by (A x) [n ] = (x [n ] + x [(n +1) mod N ])/2

(c) the time reversal operator, defined by (Rx) [n ] = x [−n mod N ]

Solution:
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(a)

V=







1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1






.

(b)

A=







0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

0.5 0 0 0.5






.

(c)

R=







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






.

Exercise 4. Elementary signal operators

Using elementary signal operators

(a) express δ in terms of u

(b) express u in terms of δ

(c) express the constant signal 1, which is equal to 1 for all n ∈Z, in terms of u and δ

(d) express the constant signal 1 terms of u only

(e) express x, with x [n ] = cos(2n ), in terms of the signal c, with c [n ] = cos(n ), and of any
of the previous signals

As a reminder

δ[n ] =

¨

1 n = 0

0 n ̸= 0

u [n ] =

¨

1 n ≥ 0

0 n < 0
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and

(S −1x)[n ] = x [n −1]

(V x)[n ] = x [n ]− x [n −1]

(Rx)[n ] = x [−n ]

(Qx)[n ] = x 2[n ]

(Ex)[n ] =
n
∑

k=−∞
x [k ]

Solution:

(a) We have u [n ]−u [n −1] =δ[n ] so

δ =V u

(b) Integration undoes differentiation also in discrete time so u [n ] =
∑n

k=−∞δ[k ]:

u= Eδ

(c) using time-reversal

1=Ru+u−δ

(d) using time-reversal and a shift

1=Ru+S −1u

(e) since cos(2α) = 2 cos2(α)−1 we can write

x= 2Qc−1

Exercise 5. Vector space

For each of the definitions given below, determine whether resulting space is a vector space
and, if not, explain why:

(a) the set of vectors
�

x0 x1

�T ∈R2 for which x1 = 3x0+1 and with the usual definitions
of scalar multiplication and vector addition
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(b) the set of vectors
�

x0 x1

�T ∈R2 with the standard definition for vector addition and
the following definition for scalar multiplication:

α

�

x0

x1

�

=

�

αx0

x1

�

Solution:

(a) not a vector space. The space does not contain the zero vector, and it is not closed under
either vector addition or scalar multiplication, eg.

α

�

x0

3x0+1

�

=

�

αx0

3αx0+α

�

but, except for α= 1,

3αx0+α ̸= 3(αx0) +1

(b) not a vector space. With that definition, scalar multiplication is no longer distributive:

(α+β )x=

�

(α+β )x0

x1

�

̸=αx+βx=

�

αx0

x1

�

+

�

β x0

x1

�

=

�

(α+β )x0

2x1

�

Exercise 6. Bases & Python

Consider the vector space V ⊂C8 spanned by the rows of H:

H=























1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1























.

(a) What is an easy way to prove that the rows in H do indeed form a basis?

(b) Use Python to verify point (a); obviously you can use numpy.

The basis described by H is called the Haar basis and it is one of the most celebrated cor-
nerstones of a branch of signal processing called wavelet analysis (which we won’t study in
this class). To get a feeling for its properties, however, consider the following set of Python
experiments:
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(c) Verify that HHH is a diagonal matrix, which means the vectors are orthogonal.

(d) Consider a constant signal x=
�

1 1 1 1 1 1 1 1
�

and compute its coefficients
in the Haar basis.

(e) Consider an alternating signal y =
�

1 −1 1 −1 1 −1 1 −1
�

and compute its
coefficients in the Haar basis.

Solution:

(a) The rows of H form a basis if they are linearly independent. A matrix has independent
rows if it has full row-rank, i.e. det(H) ̸= 0.

import numpy as np

H = np.array([[1, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, -1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, -1],
[1, 1, -1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, -1, -1],
[1, 1, 1, 1, -1, -1, -1, -1],
[1, 1, 1, 1, 1, 1, 1, 1],])

### Task (b)
print(f"rank(H) = {np.linalg.matrix_rank(H)}")
print(f"det(H) = {np.linalg.det(H)}") # alternative; must by != 0

### Task (c)
A = H @ H.T
assert np.allclose(np.diag(np.diag(A)), A)

### Task (d)
x = np.ones((8,))
x_c = H @ x # computes <H[k, :], x>, all similarity

# measures between rows of ‘H‘ and ‘x‘.
x_c /= np.linalg.norm(H, axis=-1)**2 # but rows of H are not

# unit-norm: need to account
# for this when computing
# coefficients.

print(f"x_c = {x_c}")
print(f"x = H.T @ x_c = {H.T @ x_c}")

### Task (e), {same process as (d)}
y = np.r_[1., -1, 1, -1, 1, -1, 1, -1]
y_c = H @ y
y_c /= np.linalg.norm(H, axis=-1)**2
print(f"y_c = {y_c}")
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print(f"y = H.T @ y_c = {H.T @ y_c}")

Exercise 7. Bases

Let {x(k )}k=0,...,N−1 be a basis for a subspace S . Prove that any vector z ∈ S is uniquely repre-
sented in this basis.

Hint: remember that the vectors in a basis are linearly independent and use this to prove the
thesis by contradiction.

Solution: Suppose by contradiction that the vector z ∈ S admits two distinct representa-
tions in the basis {x(k )}k=0,...,N−1. In other words, suppose that there exist two set of scalars
α0, . . . ,αN−1 and β0, . . . ,βN−1, with αi ̸=βi for all i , such that

z=
N−1
∑

k=0

αk x(k )

and

z=
N−1
∑

k=0

βk x(k ).

In this case we can write

N−1
∑

k=0

αk x(k ) =
N−1
∑

k=0

βk x(k )

or, equivalently,

N−1
∑

k=0

(αk −βk )x
(k ) = 0.

The above expression is a linear combination of basis vectors that and equals the zero vector.
Because {x(k )}k=0,...,N−1 are linearly independent, the only set of coefficients that satisfies the
above equation is a set of null coefficients so that it must be αi ̸=βi for all i , in contradiction
with the hypothesis.

7


