

COM-202 - Signal Processing

Solutions for Homework 8

Exercise 1. IIR Filter properties

Consider a causal, stable IIR filter with impulse response $g[n]$ and transfer function $G(z)$. Which of the following statements are always true?

- (a) The DTFT of $g[n]$ exists.
- (b) The ROC of $G(z)$ includes the curve $|z| = 0.5$.
- (c) The inverse filter $H(z) = 1/G(z)$ is FIR.
- (d) The inverse filter $H(z) = 1/G(z)$ is stable.
- (e) The system $D(z) = (1 - 3z^{-1})G(z)$ is stable.
- (f) The filter with transfer function $C(z) = G(z)G(z)$ is stable.

Solution:

- *True. The DTFT of $g[n]$ is $G(\omega)$, that is, it is the transfer function $G(z)$ computed over the unit circle. Since the filter is stable, the ROC of $G(z)$ includes the unit circle and therefore the DTFT exists.*
- *False. Since the filter is stable and causal, we know that the ROC includes the unit circle and all circles of radius greater than one; however, a stable causal filter may still have a pole with magnitude greater than 0.5 and in this case the ROC will not include a circle with radius 0.5.*
- *False: since the zeros of $G(z)$ become the poles of the inverse filter, the inverse filter will be FIR only if $G(z)$ has no zeros, which is not true in general for a stable IIR filter.*
- *False. since the zeros of $G(z)$ become the poles of the inverse filter, the inverse filter will be stable only if all the zeros of $G(z)$ are inside the unit circle; however, all we know about $G(z)$ is that it is a stable IIR filter, and so the zeros of $G(z)$ can be anywhere without affecting its stability.*
- *True. $D(z)$ is the cascade of two stable filters, $G(z)$ and a stable FIR filter with transfer function $1 - 3z^{-1}$.*

- True. The poles of $C(z)$ are in the same positions as the poles of $G(z)$ and only increase their multiplicity (i.e. if $G(z)$ has a single pole in z_0 , then $C(z)$ has a double pole in z_0). If the poles of $G(z)$ are inside the unit circle, so are the poles of $C(z)$.

Exercise 2. FIR Filter properties

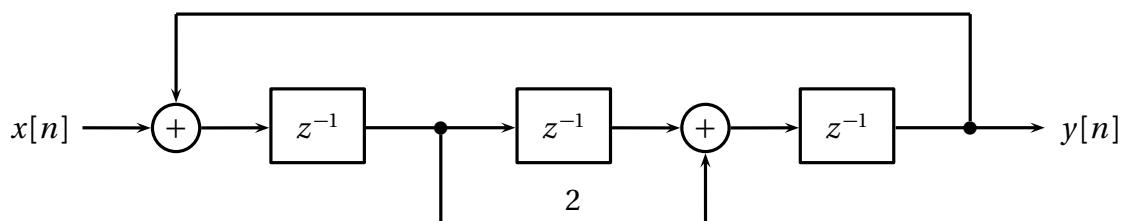
Answer the questions in the previous exercise once again, but this time assume that the filter $G(z)$ is FIR.

Solution:

- True. The impulse response $g[n]$ has only a finite number of nonzero elements and the DTFT of a finite-support sequence always exists.
- True. The ROC for FIR filters includes the entire complex plane, as a FIR transfer function has no pole.
- False: since the zeros of $G(z)$ become the poles of the inverse filter, the inverse filter will actually always be IIR.
- False. An FIR can have zeros anywhere and so its inverse filter will not be stable in general.
- True. $D(z)$ is still FIR.
- True. $C(z)$ is still FIR.

Exercise 3. Block diagram analysis

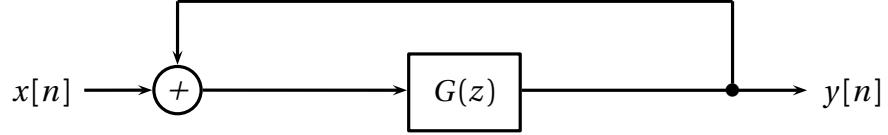
Consider the causal system implemented by the following block diagram:



- Compute the system's transfer function $H(z)$.
- Plot the system's poles and zeros on the complex plane.
- Determine if the system is stable.

Solution:

(a) First, notice that we can simplify the block diagram as



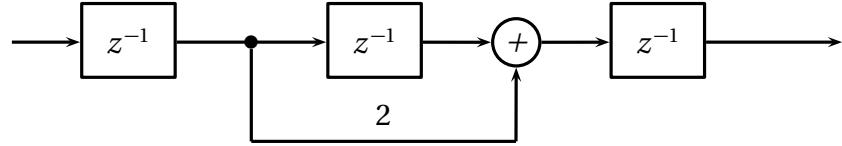
where $G(z)$ represents the subsystem inside the feedback loop. The input-output relation in the z -domain can be written as

$$Y(z) = G(z)[X(z) + Y(z)]$$

yielding the transfer function

$$H(z) = \frac{G(z)}{1 - G(z)}.$$

The subsystem $G(z)$ is described by the block diagram:



Since there are no feedback paths, the subsystem is an FIR filter and, from simple inspection, we can write

$$G(z) = 2z^{-2} + z^{-3}.$$

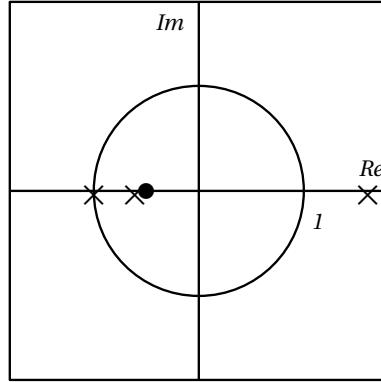
Plugging back this value in $H(z)$ we have

$$H(z) = \frac{G(z)}{1 - G(z)} = \frac{2z^{-2} + z^{-3}}{1 - 2z^{-2} - z^{-3}}.$$

(b) To find the poles, we need to factor the denominator; it is easy to see that $z = -1$ is a root and so

$$H(z) = 2z^{-2} \frac{1 + (1/2)z^{-1}}{(1 + z^{-1})(1 - z^{-1} - z^{-2})}.$$

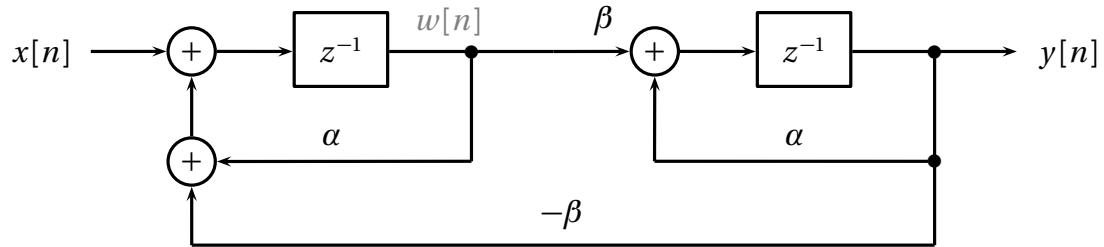
Finally, the transfer function has a zero in $z = -1/2$ and poles in -1 and $(1 \pm \sqrt{5})/2$:



(c) Since one of the poles is outside the unit circle, the system is not stable.

Exercise 4. Block diagram 1

Consider the causal system described by the following block diagram:



(a) Compute its transfer function $H(z) = Y(z)/X(z)$.

(b) Assume now that

$$\alpha = r \cos \theta$$

$$\beta = r \sin \theta$$

for $0 < r < 1$ and $0 < \theta < \pi/2$. Describe the type of filter implemented by the block diagram for this choice of coefficients and sketch its pole-zero plot.

Solution:

(a) Consider the auxiliary signal $w[n]$ coming out of the first delay block. Using z -transforms we can write

$$W(z) = z^{-1}(X(z) + \alpha W(z) - \beta Y(z))$$

$$Y(z) = z^{-1}(\beta W(z) + \alpha Y(z))$$

From this

$$W(z) = \frac{z^{-1}}{1 - \alpha z^{-1}} (X(z) - \beta Y(z))$$

and, substituting back,

$$Y(z) = \frac{\beta z^{-2}}{1 - \alpha z^{-1}} X(z) - \frac{\beta^2 z^{-2}}{1 - \alpha z^{-1}} Y(z) + \alpha z^{-1} Y(z)$$

so that, finally,

$$H(z) = \frac{\beta z^{-2}}{1 - 2\alpha z^{-1} + (\alpha^2 + \beta^2)z^{-2}}.$$

(b) When $\alpha = r \cos \theta$ and $\beta = r \sin \theta$ the transfer function simplifies to

$$H(z) = \frac{r \sin \theta z^{-2}}{1 - 2r \cos \theta z^{-1} + r^2 z^{-2}}.$$

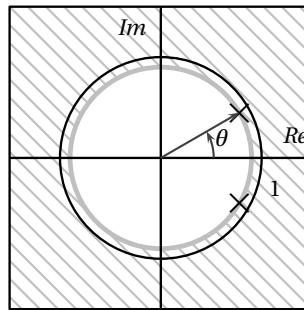
Except for the scalar factor $\beta = r \sin \theta$ and the delay z^{-2} , which do not affect the shape of the magnitude response, this is the transfer function of a simple **resonator** with a single pair of complex conjugate poles at $r e^{\pm j\theta}$. Even if you do not remember the formula for the resonator, you can easily compute the poles of this filter by finding the roots of the denominator; for this multiply by z^2 and solve

$$z^2 - 2r \cos \theta z + r^2 = 0$$

The solutions are

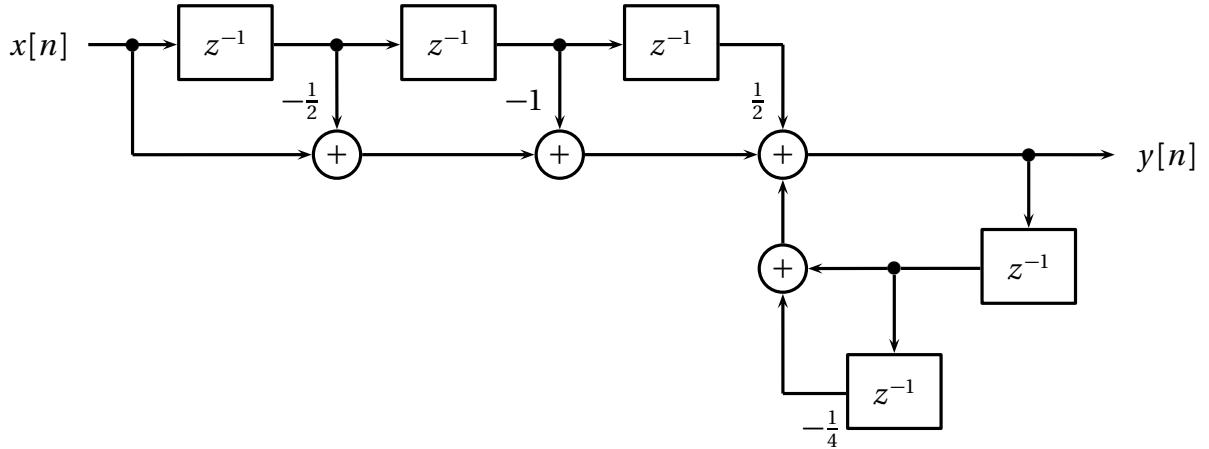
$$\begin{aligned} z_{1,2} &= (2r \cos \theta \pm \sqrt{4r^2(\cos^2 \theta - 1)})/2 \\ &= r(\cos \theta \pm \sqrt{-\sin^2 \theta}) \\ &= r e^{\pm j\theta} \end{aligned}$$

The pole-zero plot is as follows:



Exercise 5. Block diagram 2

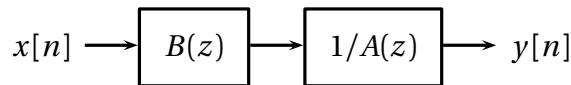
Consider the causal system described by the following block diagram:



- (a) Compute its transfer function $H(z) = Y(z)/X(z)$.
- (b) Is the system stable?
- (c) Draw a block diagram that implements the same transfer function **using only two delays** (i.e. only two z^{-1} delay blocks).

Solution:

The system can be decomposed as the cascade of an FIR and an IIR filter



where

$$B(z) = 1 - \frac{1}{2}z^{-1} - z^{-2} + \frac{1}{2}z^{-3}$$

and

$$A(z) = 1 - z^{-1} + \frac{1}{4}z^{-2}.$$

Since we will need to determine the stability of the system later, we can already factorize $A(z)$ by simple inspection as

$$A(z) = (1 - \frac{1}{2}z^{-1})^2.$$

We can also try to see if the root of $A(z)$ is also a root of $B(z)$: indeed $B(1/2) = 0$. We can now factor $B(z)$ either by performing polynomial division or by noticing that both $+1$ and -1 are also roots; we have

$$B(z) = (1 - \frac{1}{2}z^{-1})(1 - z^{-2}).$$

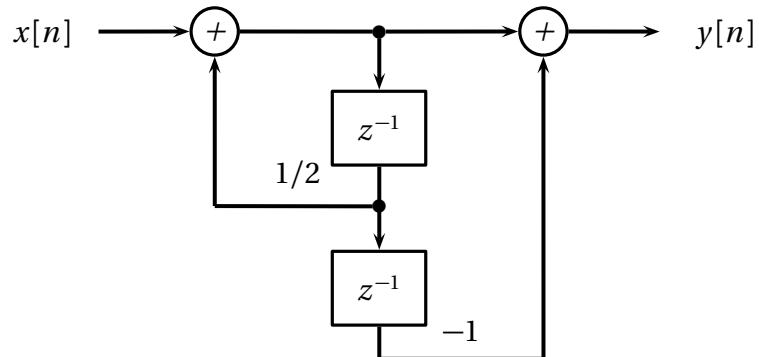
With this:

(a) The global transfer function is

$$H(z) = \frac{B(z)}{A(z)} = \frac{1 - z^{-2}}{1 - \frac{1}{2}z^{-1}}.$$

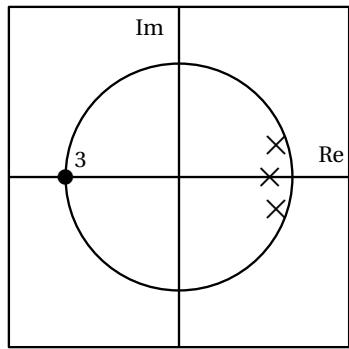
(b) The pole of the system is in $z = \frac{1}{2}$ so the system is stable.

(c) The system is an incomplete second order section, so we can use the standard Direct Form II like so:

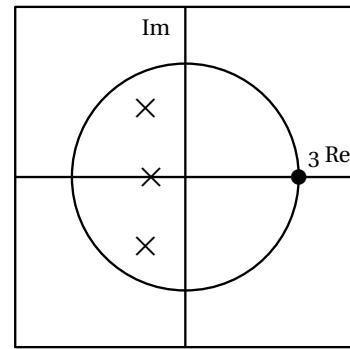


Exercise 6. Poles and zeros

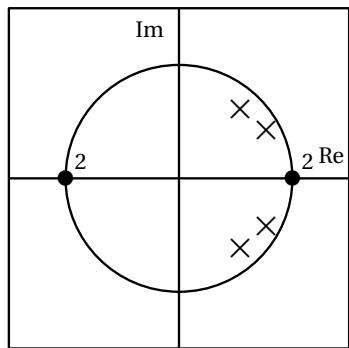
For each of the following pole-zero plots, sketch the magnitude response of the corresponding filter.



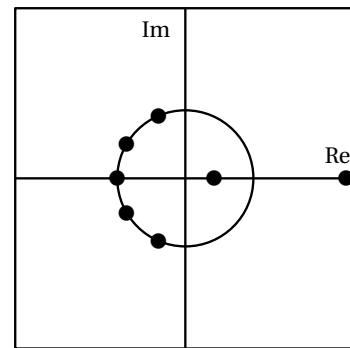
(a)



(b)



(c)

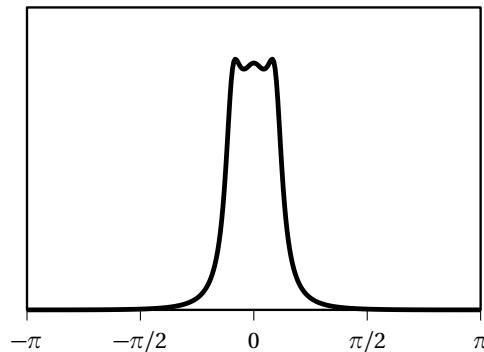


(d)

(In the plots, poles are represented by crosses and zeros by circles; if applicable, the multiplicity of each pole and zero is indicated by a number. The circle indicates the unit circle on the complex plane).

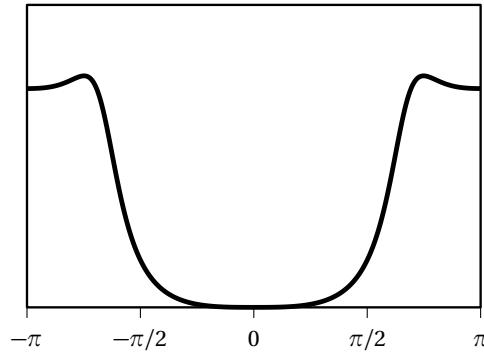
Solution:

(a) The filter has 3 zeros at $z = -1$ and poles near $z = 1$, so its frequency response will be zero at $\omega = \pm\pi$ and large around $\omega = 0$. This is typical of a lowpass filter.

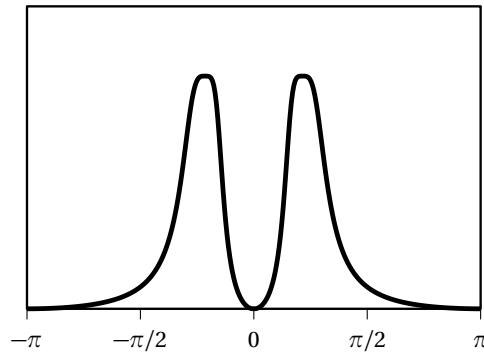


(b) Here the situation is the reverse of the previous case: there are 3 zeros at $z = 1$ and poles towards $z = 1$. As ω goes around the unit circle, the frequency response will start at zero for $\omega = 0$ and grow large as ω becomes larger than $\pi/2$. This is typical of a

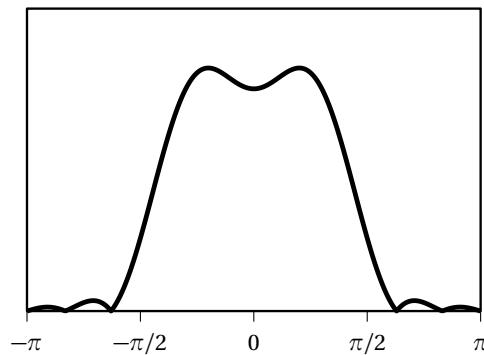
highpass filter:



(c) Here the zeros in $z = \pm 1$ will set the frequency response to zero at $\omega = 0$ and $\omega = \pm\pi$. The complex-conjugate poles with phase around $\pm\pi/4$ will “push up” the magnitude response and create a bandpass filter:



(d) This filter has only zeros and it is therefore an FIR. We can use the positions of the zeros on the unit circle to approximately mark the values for ω where the frequency response is zero. The response will grow in amplitude as we move away from the zeros and, since the zeros on the unit circle occur for $|\omega| > \pi/2$, the filter is going to be a lowpass. The two zeros on the real axis will result in a ripple in the passband.



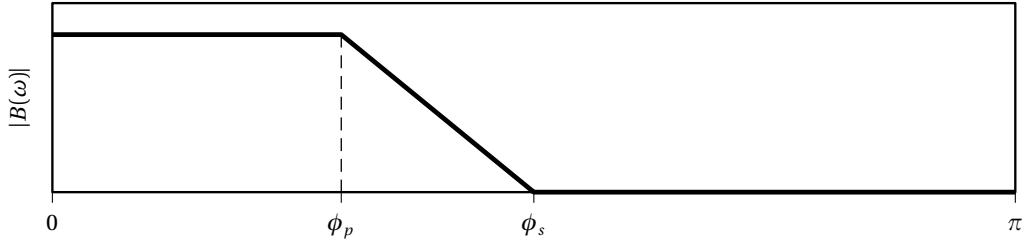
Exercise 7. Filter design

Bellanger's Approximation is an empirical formula used to estimate the length of an optimal linear-phase FIR lowpass filter based on its design specifications. For a lowpass with transition band $[\omega_p, \omega_s]$ and error tolerances of δ_p and δ_s in passband and stopband respectively, the required filter length will be approximately

$$N \approx \frac{-2 \log_{10}(10\delta_p\delta_s)}{3(\omega_s - \omega_p)/2\pi} - 1$$

Since the order is inversely proportional to the width of the transition band, “sharp” filters (i.e., filters with a narrow transition band) will require a lot of multiplications per output sample. The following questions will ask you to analyze an alternative design strategy called *Interpolated FIR* (IFIR), used to obtain sharp filters at a lower computational cost.

To begin, assume you have designed an optimal N -tap FIR lowpass $B(z)$ with impulse response $b[n]$ and with the following magnitude response (we’re showing just the positive frequencies and neglecting the ripples):

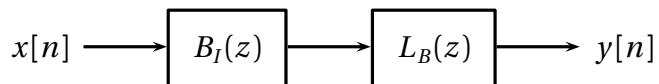


The transition band of $B(z)$ has width $\Delta_B = \phi_s - \phi_p$. We now build a derived FIR filter $B_I(z)$ with impulse response

$$b_I[n] = \begin{cases} b[n/2] & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases}$$

- (a) Express $B_I(z)$ in terms of $B(z)$.
- (b) Sketch the magnitude response $|B_I(\omega)|$; you don’t need to draw the ripples but clearly show the band edges and their values.
- (c) Assuming that multiplications by zero can be ignored, what is the number of multiplications per output sample required by $B_I(z)$?

Consider now the following cascade, used to implement a complete IFIR filter:



- (d) Describe and sketch the frequency response of a filter $L_B(z)$ so that the cascade $B_I(z)L_B(z)$ implements a lowpass filter.
- (e) Specify the passband and stopband frequencies of the lowpass implemented by the cascade $B_I(z)L_B(z)$.

(f) $L_B(z)$ will be implemented as an optimal linear-phase FIR; find the passband and stopband frequencies θ_p, θ_s that maximize the width the transition band of $L_B(z)$.

Consider now the following lowpass design specifications:

$$\omega_p = 0.3\pi$$

$$\omega_s = 0.31\pi$$

$$\delta_p = \delta_s = 0.01;$$

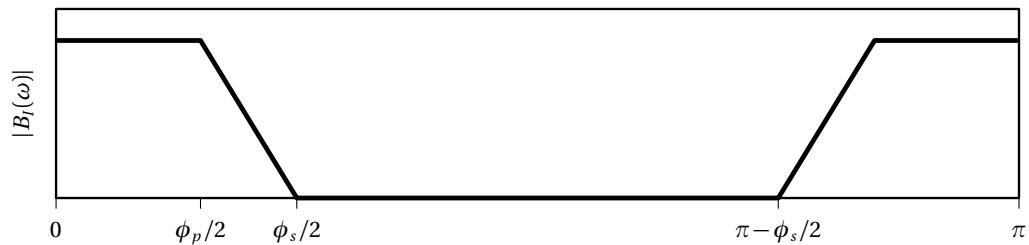
we want to compare a standard FIR implementation $H(z)$ with an IFIR implementation $\hat{H}(z) = B_I(z)L_B(z)$ such that $\hat{H}(z)$ has the same passband as $H(z)$.

- (g) Estimate the order of a standard FIR implementation $H(z)$ using Bellanger's formula.
- (h) For an IFIR implementation, determine the values of ϕ_p and ϕ_s to use for the initial filter $B(z)$ so that the final IFIR cascade $\hat{H}(z) = B_I(z)L_B(z)$ (for a suitable $L_B(z)$) has the same passband as $H(z)$.
- (i) Estimate the order of an optimal linear phase FIR implementation of $B(z)$.
- (j) Assume an optimal linear phase FIR implementation for $L_B(z)$, using the maximum transition band Δ_L possible and using $\delta_p = \delta_s = 0.01$; estimate the order of $L_B(z)$.
- (k) Using the above estimations, determine the number of operations per output sample of the IFIR cascade $B_I(z)L_B(z)$.

Solution:

(a) $B_I(z) = \sum_{n=-\infty}^{\infty} b_I[n]z^{-n} = \sum_{k=-\infty}^{\infty} b[k]z^{-2k} = B(z^2)$.

(b) The frequency response is $B_I(\omega) = B(e^{j2\omega})$, which causes a contraction of the original frequency response; the magnitude looks like so:



- (c) $B_I(z)$ is a $2N$ -tap filter, hence in principle we need $2N$ multiplications per output sample. However half those taps are zero-valued, hence N multiplications per output sample are sufficient.
- (d) $L_B(z)$ should be a lowpass filter that removes the high frequency component in $B_I(\omega)$.

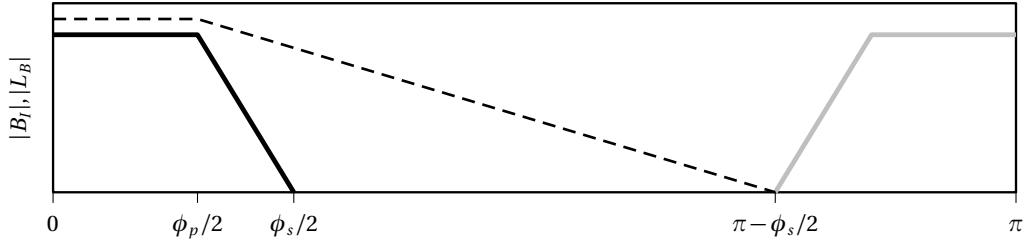
(e) The cascade $B_I(z)L_B(z)$ is a lowpass with band edges:

$$\begin{aligned}\omega_p &= \phi_p/2 \\ \omega_s &= \phi_s/2\end{aligned}$$

(f) To minimize the computational cost of the cascade we can keep the transition band as wide as possible. We could use the following values, for instance:

$$\begin{aligned}\theta_p &= \phi_p/2 \\ \theta_s &= \pi - \phi_s/2\end{aligned}$$

for a transition band of $\Delta_L = \pi - (\phi_s + \phi_p)/2$.



(g) The estimated length is

$$\begin{aligned}N &\approx \frac{-2 \log_{10}(10 \cdot 10^{-2} \cdot 10^{-2})}{3(0.31 - 0.3)\pi/2\pi} - 1 \\ &= \frac{6}{0.015} - 1 = 399\end{aligned}$$

(h) The prototype filter $B(z)$ has double the passband and stopband frequencies of the lowpass $H(z)$, i.e.

$$\begin{aligned}\phi_p &= 0.6\pi \\ \phi_s &= 0.62\pi\end{aligned}$$

(i) The estimated length is $N_B \approx \frac{6}{0.03} - 1 = 199$.

(j) $\Delta_L = \pi - (\phi_p + \phi_s)/2 = 0.39\pi$ and so $N_L \approx \frac{6}{3 \cdot 0.39\pi/2\pi} - 1 = \frac{6}{3 \cdot 0.39\pi/2\pi} - 1 \approx 9$.

(k) We will need 199 multiplications for $B_I(z)$ and 9 for $L_B(z)$ for a total of 208 multiplications.