
COM-202 - Signal Processing

Solutions for Homework 8

Exercise 1. IIR Filter properties

Consider a causal, stable IIR filter with impulse response g [n ] and transfer function G (z ).

Which of the following statements are always true?

(a) The DTFT of g [n ] exists.

(b) The ROC of G (z ) includes the curve |z |= 0.5.

(c) The inverse filter H (z ) = 1/G (z ) is FIR.

(d) The inverse filter H (z ) = 1/G (z ) is stable.

(e) The system D (z ) = (1−3z −1)G (z ) is stable.

(f) The filter with transfer function C (z ) =G (z )G (z ) is stable.

Solution:

- True. The DTFT of g [n ] is G (ω), that is, it is the transfer function G (z ) computed over

the unit circle. Since the filter is stable, the ROC of G (z ) includes the unit circle and

therefore the DTFT exists.

- False. Since the filter is stable and causal, we know that the ROC includes the unit

circle and all circles of radius greater than one; however, a stable causal filter may still

have a pole with magnitude greater than 0.5 and in this case the ROC will not include

a circle with radius 0.5.

- False: since the zeros of G (z ) become the poles of the inverse filter, the inverse filter will

be FIR only if G (z ) has no zeros, which is not true in general for a stable IIR filter.

- False. since the zeros of G (z ) become the poles of the inverse filter, the inverse filter will

be stable only if all the zeros of G (z ) are inside the unit circle; however, all we know

about G (z ) is that it is a stable IIR filter, and so the zeros of G (z ) can be anywhere

without affecting its stability.

- True. D (z ) is the cascade of two stable filters, G (z ) and a stable FIR filter with transfer

function 1−3z −1.
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- True. The poles of C (z ) are in the same positions as the poles of G (z ) and only increase

their multiplicity (i.e. if G (z ) has a single pole in z0, then C (z ) has a double pole in

z0). If the poles of G (z ) are inside the unit circle, so are the poles of C (z ).

Exercise 2. FIR Filter properties

Answer the questions in the previous exercise once again, but this time assume that the

filter G (z ) is FIR.

Solution:

- True. The impulse response g [n ] has only a finite number of nonzero elements and the

DTFT of a finite-support sequence always exists.

- True. The ROC for FIR filters includes the entire complex plane, as a FIR transfer func-

tion has no pole.

- False: since the zeros of G (z ) become the poles of the inverse filter, the inverse filter will

actually always be IIR.

- False. An FIR can have zeros anywhere and so its inverse filter will not be stable in

general.

- True. D (z ) is still FIR.

- True. C (z ) is still FIR.

Exercise 3. Block diagram analysis

Consider the causal system implemented by the following block diagram:

x [n ] + z −1 b z −1
+ z −1 b y [n ]

2

(a) Compute the system’s transfer function H (z ).

(b) Plot the system’s poles and zeros on the complex plane.

(c) Determine if the system is stable.
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Solution:

(a) First, notice that we can simplify the block diagram as

x [n ] + G (z ) b y [n ]

where G (z ) represents the subsystem inside the feedback loop. The input-output rela-

tion in the z -domain can be written as

Y (z ) =G (z )[X (z )+ Y (z )]

yielding the transfer function

H (z ) =
G (z )

1−G (z )
.

The subsystem G (z ) is described by the block diagram:

z −1 b z −1
+ z −1

2

Since there are no feedback paths, the subsystem is an FIR filter and, from simple in-

spection, we can write

G (z ) = 2z −2+ z −3.

Plugging back this value in H (z )we have

H (z ) =
G (z )

1−G (z )
=

2z −2+ z −3

1−2z −2− z −3
.

(b) To find the poles, we need to factor the denominator; it is easy to see that z = −1 is a

root and so

H (z ) = 2z −2 1+ (1/2)z −1

(1+ z −1)(1− z −1− z −2)
.

Finally, the transfer function has a zero in z =−1/2 and poles in −1 and (1±
p

5)/2:
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(c) Since one of the poles is outside the unit circle, the system is not stable.

Exercise 4. Block diagram 1

Consider the causal system described by the following block diagram:

x [n ] + z −1 b + z −1 b y [n ]

+ b

w [n ] β

α α

−β

(a) Compute its transfer function H (z ) = Y (z )/X (z ).

(b) Assume now that

α= r cosθ

β = r sinθ

for 0 < r < 1 and 0 < θ < π/2. Describe the type of filter implemented by the block

diagram for this choice of coefficients and sketch its pole-zero plot.

Solution:

(a) Consider the auxiliary signal w [n ] coming out of the first delay block. Using z -transforms

we can write

W (z ) = z −1(X (z )+αW (z )−βY (z ))

Y (z ) = z −1(βW (z )+αY (z ))
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From this

W (z ) =
z −1

1−αz −1

�

X (z )−βY (z )
�

and, substituting back,

Y (z ) =
β z −2

1−αz −1
X (z )−

β 2z −2

1−αz −1
Y (z )+αz −1Y (z )

so that, finally,

H (z ) =
β z −2

1−2αz −1+ (α2+β 2)z −2
.

(b) When α= r cosθ and β = r sinθ the transfer function simplifies to

H (z ) =
r sinθ z −2

1−2r cosθ z −1+ r 2z −2
.

Except for the scalar factor β = r sinθ and the delay z −2, which do not affect the shape

of the magnitude response, this is the transfer function of a simple resonator with

a single pair of complex conjugate poles at r e ± jθ . Even if you do not remember the

formula for the resonator, you can easily compute the poles of this filter by finding the

roots of the denominator; for this multiply by z 2 and solve

z 2−2r cosθ z + r 2 = 0

The solutions are

z1,2 = (2r cosθ ±
p

4r 2(cos2θ −1))/2

= r (cosθ ±
p

−sin2θ )

= r e ± jθ

The pole-zero plot is as follows:
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Exercise 5. Block diagram 2

Consider the causal system described by the following block diagram:
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x [n ] b z −1 b z −1 b z −1

+ + + b y [n ]

+ b z −1

z −1

− 1
2 −1 1

2

− 1
4

(a) Compute its transfer function H (z ) = Y (z )/X (z ).

(b) Is the system stable?

(c) Draw a block diagram that implements the same transfer function using only two

delays (i.e. only two z −1 delay blocks).

Solution:

The system can be decomposed as the cascade of an FIR and an IIR filter

x [n ] B (z ) 1/A(z ) y [n ]

where

B (z ) = 1−
1

2
z −1− z −2+

1

2
z −3

and

A(z ) = 1− z −1+
1

4
z −2.

Since we will need to determine the stability of the system later, we can already factorize A(z )

by simple inspection as

A(z ) = (1− 1

2
z −1)2.

We can also try to see if the root of A(z ) is also a root of B (z ): indeed B (1/2) = 0. We can now

factor B (z ) either by performing polynomial division or by noticing that both+1 and−1 are

also roots; we have

B (z ) = (1− 1

2
z −1)(1− z −2).

With this:
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(a) The global transfer function is

H (z ) =
B (z )

A(z )
=

1− z −2

1− 1
2 z −1

.

(b) The pole of the system is in z = 1
2 so the system is stable.

(c) The system is an incomplete second order section, so we can use the standard Direct

Form II like so:

x [n ] + b + y [n ]

z −1

b

z −1

1/2

−1

Exercise 6. Poles and zeros

For each of the following pole-zero plots, sketch the magnitude response of the corre-

sponding filter.
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(In the plots, poles are represented by crosses and zeros by circles; if applicable, the mul-

tiplicity of each pole and zero is indicated by a number. The circle indicates the unit circle

on the complex plane).

Solution:

(a) The filter has 3 zeros at z = −1 and poles near z = 1, so its frequency response will be

zero atω=±π and large aroundω= 0. This is typical of a lowpass filter.

−π −π/2 0 π/2 π

(b) Here the situation is the reverse of the previous case: there are 3 zeros at z = 1 and

poles towards z = 1. Asω goes around the unit circle, the frequency response will start

at zero for ω = 0 and grow large as ω becomes larger than π/2. This is typical of a
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highpass filter:

−π −π/2 0 π/2 π

(c) Here the zeros in z = ±1 will set the frequency response to zero atω = 0 andω = ±π.

The complex-conjugate poles with phase around ±π/4 will “push up” the magnitude

response and create a bandpass filter:

−π −π/2 0 π/2 π

(d) This filter has only zeros and it is therefore an FIR. We can use the positions of the zeros

on the unit circle to approximately mark the values forωwhere the frequency response

is zero. The response will grow in amplitude as we move away from the zeros and, since

the zeros on the unit circle occur for |ω| > π/2, the filter is going to be a lowpass. The

two zeros on the real axis will result in a ripple in the passband.

−π −π/2 0 π/2 π
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Exercise 7. Filter design

Bellanger’s Approximation is an empirical formula used to estimate the length of an opti-

mal linear-phase FIR lowpass filter based on its design specifications. For a lowpass with

transition band [ωp , ωs ] and error tolerances of δp and δs in passband and stopband re-

spectively, the required filter length will be approximately

N ≈
−2 log10(10δpδs )

3(ωs −ωp )/2π
−1

Since the order is inversely proportional to the width of the transition band, “sharp” fil-

ters (i.e., filters with a narrow transition band) will require a lot of multiplications per out-

put sample. The following questions will ask you to analyze an alternative design strat-

egy called Interpolated FIR (IFIR), used to obtain sharp filters at a lower computational

cost.

To begin, assume you have designed an optimal N -tap FIR lowpass B (z ) with impulse re-

sponse b [n ] and with the following magnitude response (we’re showing just the positive

frequencies and neglecting the ripples):

φp φs0 π

|B
(ω
)|

The transition band of B (z ) has width∆B =φs−φp . We now build a derived FIR filter BI (z )

with impulse response

bI [n ] =

¨

b [n/2] for n even

0 for n odd

(a) Express BI (z ) in terms of B (z ).

(b) Sketch the magnitude response |BI (ω)|; you don’t need to draw the ripples but clearly

show the band edges and their values.

(c) Assuming that multiplications by zero can be ignored, what is the number of multi-

plications per output sample required by BI (z )?

Consider now the following cascade, used to implement a complete IFIR filter:

x [n ] BI (z ) L B (z ) y [n ]

(d) Describe and sketch the frequency response of a filter L B (z ) so that the cascade BI (z )L B (z )

implements a lowpass filter.

(e) Specify the passband and stopband frequencies of the lowpass implemented by the

cascade BI (z )L B (z ).
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(f) L B (z ) will be implemented as an optimal linear-phase FIR; find the passband and

stopband frequencies θp ,θs that maximize the width the transition band of L B (z ).

Consider now the following lowpass design specifications:

ωp = 0.3π

ωs = 0.31π

δp = δs = 0.01;

we want to compare a standard FIR implementation H (z ) with an IFIR implementation

Ĥ (z ) = BI (z )L B (z ) such that Ĥ (z ) has the same passband as H (z ).

(g) Estimate the order of a standard FIR implementation H (z )using Bellanger’s formula.

(h) For an IFIR implementation, determine the values ofφp andφs to use for the initial

filter B (z ) so that the final IFIR cascade Ĥ (z ) = BI (z )L B (z ) (for a suitable L B (z )) has

the same passband as H (z ).

(i) Estimate the order of an optimal linear phase FIR implementation of B (z ).

(j) Assume an optimal linear phase FIR implementation for L B (z ), using the maximum

transition band∆L possible and using δp = δs = 0.01; estimate the order of L B (z ).

(k) Using the above estimations, determine the number of operations per output sample

of the IFIR cascade BI (z )L B (z ).

Solution:

(a) BI (z ) =
∑∞

n=−∞bI [n ]z
−n =
∑∞

k=−∞ b [k ]z −2k = B (z 2).

(b) The frequency response is BI (ω) = B (e j 2ω), which causes a contraction of the original

frequency response; the magnitude looks like so:

φp /2 φs /2 π−φs/20 π

|B
I
(ω
)|

(c) BI (z ) is a 2N -tap filter, hence in principle we need 2N multiplications per output sam-

ple. However half those taps are zero-valued, hence N multiplications per output sam-

ple are sufficient.

(d) L B (z ) should be a lowpass filter that removes the high frequency component in BI (ω).
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(e) The cascade BI (z )L B (z ) is a lowpass with band edges:

ωp =φp/2

ωs =φs/2

(f) To minimize the computational cost of the cascade we can keep the transition band as

wide as possible. We could use the following values, for instance:

θp =φp/2

θs =π−φs/2

for a transition band of∆L =π− (φs +φp )/2.

φp /2 φs /2 π−φs/20 π

|B
I
|,|

L
B
|

(g) The estimated length is

N ≈ −2 log10(10 ·10−2 ·10−2)

3(0.31−0.3)π/2π
−1

=
6

0.015
−1= 399

(h) The prototype filter B (z ) has double the passband and stopband frequencies of the

lowpass H (z ), i.e.

φp = 0.6π

φs = 0.62π

(i) The estimated length is NB ≈ 6
0.03 −1= 199.

(j) ∆L =π− (φp +φs )/2= 0.39π and so NL ≈ 6
3·0.39π/2π −1= 6

3·0.39π/2π −1≈ 9.

(k) We will need 199 multiplications for BI (z ) and 9 for L B (z ) for a total of 208 multipli-

cations.
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