COM-202 - Signal Processing

Solutions for Homework 8

Exercise 1. lIR Filter properties

Consider a causal, stable IIR filter with impulse response g[n] and transfer function G(z).
Which of the following statements are always true?

(a)
(b)
(©)
(d)
(e)
(f)

The DTFT of g[n] exists.

The ROC of G(z) includes the curve |z| =0.5.
The inverse filter H(z)=1/G(z) is FIR.

The inverse filter H(z)=1/G(z) is stable.
The system D(z)=(1—3z"1)G(z) is stable.

The filter with transfer function C(z) = G(z)G(z) is stable.

Solution:

True. The DTFT of g[n] is G(w), that is, it is the transfer function G(z) computed over
the unit circle. Since the filter is stable, the ROC of G(z) includes the unit circle and
therefore the DTFT exists.

False. Since the filter is stable and causal, we know that the ROC includes the unit
circle and all circles of radius greater than one; however, a stable causal filter may still
have a pole with magnitude greater than 0.5 and in this case the ROC will not include
a circle with radius 0.5.

False: since the zeros of G(z) become the poles of the inverse filter, the inverse filter will
be FIR only if G(z) has no zeros, which is not true in general for a stable IIR filter.

False. since the zeros of G(z) become the poles of the inverse filter, the inverse filter will
be stable only if all the zeros of G(z) are inside the unit circle; however, all we know
about G(z) is that it is a stable IIR filter, and so the zeros of G(z) can be anywhere
without affecting its stability.

True. D(z) is the cascade of two stable filters, G(z) and a stable FIR filter with transfer
function1—3z71.



- True. The poles of C(z) are in the same positions as the poles of G(z) and only increase
their multiplicity (i.e. if G(z) has a single pole in z,, then C(z) has a double pole in
zy). If the poles of G(z) are inside the unit circle, so are the poles of C(z).

Exercise 2. FIR Filter properties

Answer the questions in the previous exercise once again, but this time assume that the
filter G(z) is FIR.

Solution:

- True. The impulse response g[n] has only a finite number of nonzero elements and the
DTFT of a finite-support sequence always exists.

- True. The ROC for FIR filters includes the entire complex plane, as a FIR transfer func-
tion has no pole.

- False: since the zeros of G(z) become the poles of the inverse filter, the inverse filter will
actually always be IIR.

- False. An FIR can have zeros anywhere and so its inverse filter will not be stable in
general.

- True. D(z) is still FIR.
- True. C(z) is still FIR.

Exercise 3. Block diagram analysis

Consider the causal system implemented by the following block diagram:

x[n] z7! [ z7! @ z7! yln]

.|

(a) Compute the system’s transfer function H(z).

(b) Plot the system’s poles and zeros on the complex plane.

(c) Determine if the system is stable.



Solution:

(a)

(b)

First, notice that we can simplify the block diagram as

x[n] —() G(2) yin]

where G(z) represents the subsystem inside the feedback loop. The input-output rela-
tion in the z-domain can be written as

Y(z)=G(z)[X(z)+ Y (z)]
yielding the transfer function

G(z)
1—-G(z)

H(z)=

The subsystem G(z) is described by the block diagram:

—| 71 @ sl
.|

Since there are no feedback paths, the subsystem is an FIR filter and, from simple in-
spection, we can write

G(z)=2z%+z".

Plugging back this value in H(z) we have

G(z)  2z7°+2z7°
1—-G(z) 1—2z-2—z3"

H(z)=

To find the poles, we need to factor the denominator; it is easy to see that z = —1 is a
root and so

1+(1/2)z7!
Q+z 1) (1—z1—2z2)

H(z)=2z"*

Finally, the transfer function has a zero in z =—1/2 and poles in—1 and (1 £ v/5)/2:



(1N
N

(c) Since one of the poles is outside the unit circle, the system is not stable.

Exercise 4. Block diagram 1

Consider the causal system described by the following block diagram:

w(n] B
z7! @ z

@
é a a
+
1

x[n] yln]

—B

(a) Compute its transfer function H(z)= Y (z)/X(z).
(b) Assume now that
a=rcosf

p=rsin0

for0 < r <1and 0 < 0 < /2. Describe the type of filter implemented by the block
diagram for this choice of coefficients and sketch its pole-zero plot.

Solution:

(a) Consider theauxiliary signal w[n] comingout of the first delay block. Using z -transforms
we can write

W(z)=2z""(X(z)+aW(z)—BY(2)
Y(z)=2"(BW(2)+aY(z)



From this

Z—l

W(2)=1—— (X(2)-pY(2))

and, substituting back,
—2 2,2
v@)= 5 X)L viya v
l1—az! l—az1
so that, finally,
-2
H(z)= Pz

1—2az1+(a?2+ f2)z2

(b) Whena=rcos@ and p =rsin @ the transfer function simplifies to

rsin0z=2

1—2rcosf@z-1+r2z-2"

H(z)=

Except for the scalar factor p = r sin 0 and the delay z=2, which do not affect the shape
of the magnitude response, this is the transfer function of a simple resonator with
a single pair of complex conjugate poles at re*i°. Even if you do not remember the
formula for the resonator, you can easily compute the poles of this filter by finding the
roots of the denominator; for this multiply by z* and solve

z2—2rcosfz+r>=0

The solutions are

z1,=(2rcos 0 £ v/4r2(cos2 0 —1))/2
=r(cos + vV —sin®0)

=re*/?

The pole-zero plot is as follows:

)
Ny

Exercise 5. Block diagram 2

Consider the causal system described by the following block diagram:
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x[n] z7! z7! z7!
T

O
O

") [ yin]

O——=

(a) Compute its transfer function H(z)= Y (z)/X(z).
(b) Is the system stable?

(c) Draw a block diagram that implements the same transfer function using only two
delays (i.e. only two z~! delay blocks).

Solution:

The system can be decomposed as the cascade of an FIR and an IIR filter

x[n] — B(z) 1/A(z) y[n]

where

1 1
B(z)=1—=z'—z%4-27°
and
2

1
Alz)= I_Z_I+ZZ_ )

Since we will need to determine the stability of the system later, we can already factorize A(z)
by simple inspection as

A(z):(l—%z_l)z.

We can also try to see if the root of A(z) is also a root of B(z): indeed B(1/2)=0. We can now
factor B(z) either by performing polynomial division or by noticing that both+1 and—1 are
also roots; we have

B(z)=(1— %z‘l)(l —z79).

With this:



(a) The global transfer function is

B(z) 1-z7

Alz) 1-1iz1

H(z)=

(b) The pole of the system is in z = } so the system is stable.

(c) The system is an incomplete second order section, so we can use the standard Direct
Form II like so:

x[n] ©, I © yin]

1/2

Exercise 6. Poles and zeros

For each of the following pole-zero plots, sketch the magnitude response of the corre-
sponding filter.
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X
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X
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2 2 Re \ Re
y "
X

(©) (d)
(In the plots, poles are represented by crosses and zeros by circles; if applicable, the mul-
tiplicity of each pole and zero is indicated by a number. The circle indicates the unit circle

on the complex plane).

Solution:

(a) The filter has 3 zeros at z = —1 and poles near z = 1, so its frequency response will be
zero at w = £7 and large around «w = 0. This is typical of a lowpass filter.

1 T 1
—T —1/2 0 /2 T

(b) Here the situation is the reverse of the previous case: there are 3 zeros at z = 1 and

poles towards z = 1. As w goes around the unit circle, the frequency response will start
at zero for « = 0 and grow large as w becomes larger than /2. This is typical of a
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highpass filter:

T 1 T
-7 —1/2 0 /2 T

(c) Here the zeros in z = =1 will set the frequency response to zero at w =0 and w = %7.
The complex-conjugate poles with phase around 1 /4 will “push up” the magnitude
response and create a bandpass filter:

T g T
-7 —1/2 0 /2 T

(d) This filter has only zeros and it is therefore an FIR. We can use the positions of the zeros
on the unit circle to approximately mark the values for w where the frequency response
is zero. The response will grow in amplitude as we move away from the zeros and, since
the zeros on the unit circle occur for |w| > /2, the filter is going to be a lowpass. The
two zeros on the real axis will result in a ripple in the passband.




Exercise 7. Filter design

Bellanger’s Approximation is an empirical formula used to estimate the length of an opti-
mal linear-phase FIR lowpass filter based on its design specifications. For a lowpass with
transition band [w,,, w,] and error tolerances of 6, and 6, in passband and stopband re-
spectively, the required filter length will be approximately

—2log,((106,0,)
~ 3(ws;—w,)/2m

Since the order is inversely proportional to the width of the transition band, “sharp” fil-
ters (i.e., filters with a narrow transition band) will require a lot of multiplications per out-
put sample. The following questions will ask you to analyze an alternative design strat-
egy called Interpolated FIR (IFIR), used to obtain sharp filters at a lower computational
cost.

To begin, assume you have designed an optimal N -tap FIR lowpass B(z) with impulse re-
sponse b[n] and with the following magnitude response (we're showing just the positive
frequencies and neglecting the ripples):

|B(w)|

I

0 o & n

The transition band of B(z) has width Ag = ¢;—¢,,. We now build a derived FIR filter B;(z)
with impulse response

b[n/2] forn even
bln]=
0 for n odd
(a) Express B;(z)in terms of B(z).

(b) Sketch the magnitude response |B;(w)|; you don’'t need to draw the ripples but clearly
show the band edges and their values.

(c) Assuming that multiplications by zero can be ignored, what is the number of multi-
plications per output sample required by B;(z)?

Consider now the following cascade, used to implement a complete IFIR filter:

x[n] —— By(z) Ly(z) — yln]

(d) Describe and sketch the frequencyresponse of afilter Ly (z)so that the cascade B;(z)Lg(z)
implements a lowpass filter.

(e) Specify the passband and stopband frequencies of the lowpass implemented by the
cascade B;(z)Lg(z).
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(f) Lp(z) will be implemented as an optimal linear-phase FIR; find the passband and
stopband frequencies 6, 6, that maximize the width the transition band of L(z).

Consider now the following lowpass design specifications:

w, =031
w,=0.317
0,=0,=0.01;

we want to compare a standard FIR implementation H(z) with an IFIR implementation
H(z) = B;(z)Lg(z) such that H(z) has the same passband as H(z).

(g) Estimate the order of a standard FIR implementation H(z) using Bellanger’s formula.

(h) For an IFIR implementation, determine the values of ¢ p and @ to use for the initial
filter B(z) so that the final IFIR cascade H(z) = B,(z)Lg(z) (for a suitable L(z)) has
the same passband as H(z).

(i) Estimate the order of an optimal linear phase FIR implementation of B(z).

(j) Assume an optimal linear phase FIR implementation for Lz(z), using the maximum
transition band A, possible and using 6, = 6, =0.01; estimate the order of Lg(z).

(k) Usingthe above estimations, determine the number of operations per output sample
of the IFIR cascade B;(z)Ly(z).

Solution:
@ Bi(z)=Y " blnlz"=>"__ blklz"% = B(z?).

(b) The frequency response is B;(w) = B(e/?®), which causes a contraction of the original
frequency response; the magnitude looks like so:

|B; ()

I 1

T
0 ¢p/2 ¢s/2 7T_¢s/2 s

(¢) Bi(z)isa2N -tap filter, hencein principle we need2N multiplications per output sam-
ple. However halfthose taps are zero-valued, hence N multiplications per output sam-
ple are sufficient.

(d) Lg(z) should be a lowpass filter that removes the high frequency component in B;(w).
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(e) The cascade B;(z)Lg(z) is a lowpass with band edges:

Wy, =¢,/2
wS = ¢S/2

(f) To minimize the computational cost of the cascade we can keep the transition band as
wide as possible. We could use the following values, for instance:

0,=¢,/2
Hs:ﬂ_¢s/2

for a transition band of A;, = t— (¢ + ¢ ,)/2.

= ————

By, | Ll
/

T
0 Op/2 ¢,/2 T—@s/2 T

(g) The estimated length is

—2log,,(10-1072-107?)
= 3(0.31-0.3)%/27

6
= ————1=399
0.015

(h) The prototype filter B(z) has double the passband and stopband frequencies of the
lowpass H(z), i.e.

¢,=0.67
¢, =0.621

(i) The estimated length is Ny ~ 5= —1=199.

() AL =m—(p,+¢)/2=0.397 and s0 N; ~ 5539737 — 1 = 55507732 — 1 ~9.

(k) We will need 199 multiplications for B;(z) and 9 for Lg(z) for a total of 208 multipli-
cations.
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