

COM-202 - Signal Processing

Solutions for Homework 1

Exercise 1. Digital signals

Say which of the following signals are analog and which are digital:

- (a) Music recorded on a CD.
- (b) Music listened by the audience at a live concert.
- (c) Music recorded on a LP record (vinyl).
- (d) Photo recorded using a photographic film.
- (e) Photo recorded using a CCD sensor.
- (f) A page on a book.
- (g) The image of a book page on a Kindle.

Solution:

- (a) *Music recorded on a CD : digital*
- (b) *Music listened by the audience at a live concert : analog*
- (c) *Music recorded on a LP record (vinyl) : analog*
- (d) *Photo recorded using a photographic film : analog*
- (e) *Photo recorded using a CCD sensor : digital*
- (f) *A page on a book : analog*
- (g) *The image of a book page on a Kindle : digital*

Exercise 2. Sampling music

A music song recorded in a studio is stored as a digital sequence on a CD. The analog signal representing the music is 2 minutes long and is sampled at a frequency $f_s = 44100 \text{ s}^{-1}$. How

many samples should be stored on the CD?

Solution: To compute the number of samples N , we need to multiply the length in seconds of the signal by the sampling frequency, i.e., the number of samples per second:

$$N = 44100 \times 2 \times 60 = 5,292,000$$

This assumes that the audio is mono; for stereo data, there are two independent channels so the number of samples is double.

Exercise 3. Basic signal operations

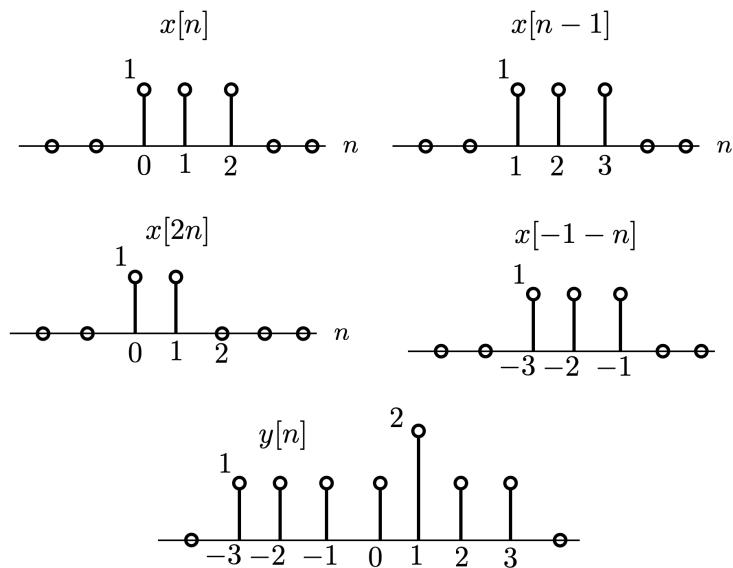
Consider the discrete-time signal:

$$x[n] = \begin{cases} 1, & 0 \leq n \leq 2, \\ 0, & \text{otherwise.} \end{cases} \quad (1)$$

Sketch $y[n] = x[n-1] + x[2n] + x[-1-n]$ and carefully label both axes in the plot.

Solution:

(b)



Exercise 4. Periodicity

For each of the following signals, determine if the signal is periodic and, if so, find its period.

$$(a) x_1[n] = \cos\left(\frac{6\pi}{7}n + 1\right)$$

$$(b) x_2[n] = \sin\left(\frac{\pi}{2}n\right)\cos\left(\frac{\pi}{4}n\right)$$

$$(c) x_3[n] = \cos\left(\frac{n}{8} - \pi\right)$$

Solution:

(a) The signal is periodic with period $N = 7$. Indeed we can write $\cos\left(\frac{6\pi}{7}n + 1\right) = \cos\left(\frac{6\pi}{7}(n + N) + 1\right)$; noting that the cosine has a period of 2π , we obtain $\frac{6\pi}{7}N = 2\pi m$ for some integer m . The smallest integer solution is $N = 7$ for $m = 3$.

(b) The signal is periodic with period $N = 8$. Note that $\sin\left(\frac{\pi}{2}n\right)$ is periodic with period $N_1 = 4$ and $\cos\left(\frac{\pi}{4}n\right)$ is periodic with period $N_2 = 8$. The overall period is the least common multiple of N_1 and N_2 .

(c) The signal is not periodic since the equation $\frac{N}{8} = 2\pi$ does not have integer solutions.

Exercise 5. Energy and power

For each of the following signals, determine if the signal is an energy signal or a power signal and, accordingly, compute its energy or its power:

$$(a) x_1[n] = \begin{cases} n & 0 \leq n \leq 6 \\ 2 & 6 < n \leq 8 \\ 0 & \text{otherwise} \end{cases}$$

$$(b) x_2[n] = (1 + |n|)^{-1}$$

$$(c) x_3[n] = e^{jn}$$

Solution:

(a) The signal is non-zero only for $n \in \{0, \dots, 8\}$ and so

$$E_{x_1} = \sum_{n=-\infty}^{+\infty} |x_1[n]|^2 = \sum_{n \in \{0, \dots, 6\}} |n|^2 + \sum_{n \in \{7, 8\}} |2|^2 = 0^2 + 1^2 + \dots + 6^2 + 2 \cdot 2^2 = 99,$$

and since this value is finite, $y[n]$ is an energy signal.

(b) The signal is an energy signal since

$$\begin{aligned}
E_{x_2} &= \sum_{n=-\infty}^{\infty} |x_2[n]|^{-2} \\
&= \sum_{n=-\infty}^{\infty} |1+|n||^{-2} \\
&= 2 \sum_{n=0}^{\infty} |1+n|^{-2} - 1 \\
&= 2 \sum_{n=1}^{\infty} \frac{1}{n^2} - 1 \\
&= \frac{\pi^2}{3} - 1
\end{aligned}$$

(c) Since $|x_3[n]| = 1$ for all n , clearly this is a power signal. Its power is

$$P_{x_3} = \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=-N}^N |x_3[n]|^2 = 1$$

Exercise 6. Moving average

Consider the following signal,

$$x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2].$$

Compute its moving average $y[n] = \frac{x[n]+x[n-1]}{2}$, where we call $x[n]$ the input and $y[n]$ the output.

Solution: We compute $y[n]$ by substituting the expression for $x[n]$ into $y[n] = (x[n] + x[n-1])/2$:

$$y[n] = \frac{\delta[n] + 2\delta[n-1] + 3\delta[n-2] + \delta[n-1] + 2\delta[n-2] + 3\delta[n-3]}{2}$$

By collecting the delta signals that have the same delay we finally obtain:

$$y[n] = 0.5\delta[n] + 1.5\delta[n-1] + 2.5\delta[n-2] + 1.5\delta[n-3]$$

$$= \begin{cases} 0.5 & n = 0 \\ 1.5 & n = 1 \\ 2.5 & n = 2 \\ 1.5 & n = 3 \\ 0 & \text{otherwise} \end{cases}$$
