COM-202 - Signal Processing

Solutions for Homework 12

Exercise 1. Quantization

Consider a white random process x whose samples are uniformly distributed over the in-
terval [—1,1]. The signal is sent through a uniform quantizer with step size A to obtain the
signal X. The quantization error can be modeled as a white noise process whose samples
are uniformly distributed over the interval [-A/2, A/2]; each quantized sample is thus

x[n]=Q(x[n])=x[n]+e[n]
where e[n] is independent of x[n].

After quantization, the signal is processed by a filter with impulse response

h[n]zwu[n]

to obtain the signal y=h xX.
(a) compute the SNR of the quantized signal X

(b) compute the SNR of the filtered signal y (ie the power ratio between the filtered clean
signal and the filtered quantization noise)

(c) could you improve the SNR using a different filter?

Solution:

(a) the signal is i.i.d. and uniformly distributed over [—1,1] so its variance is o> = 1/3.
The error is also i.i.d, and and uniformly distributed over [—A/2,A /2] so its variance
iso?=A?/12. The SNR is thus
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The PSD of the filter’s output is

Py(w)=H(w) Py(w)
= [H()P* (P(w)+ Po(w))
= |H() P(w)+|H(w) P.(w)
where the last term is the PSD of the error at the filter’s output. Since the variance of a
random process is the integral of its PSD, the SNR at the ouptut of the filter is
[Z I H(@)? P(w)dw
[T H(@)2P(w)dw
o2 [ |H(w)Pdw
02 [T |H(@)Pdo
= SNR,

SNR, =

(c) the SNR of the filter’s output does not depend on the filter! Moral of the story: a linear
filter cannot improve the SNR due to quantization if the quantizer matches the input.

Exercise 2. 2D FIR filtering

Consider a two-dimensional discrete-space signal x[n,, n,] that is nonzero only over a 8 x8
square region. The following figure, called a support representation, shows as individual
dots the locations of the nonzero values of the signal:
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Consider now a set of 2D filters with impulse responses h;[n,, n,], for i = 1,...,6. All fil-
ters are 3 x 3 FIRs and the positions of their nonzero samples are shown in the following
figure:
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Call y,[n,, n,] = (h; x x)[n,, n,] the signal obtained by filtering x[n,, n,] with f;[n,, n,]; since

the input signal has finite support, y;[n,, n,] will also be a finite-support signal.

The following figure shows the support representations of y,[n;, n,] in random order; for

each one of them, determine the correct value of i. If you prefer, you can also solve this

exercise by writing some Python code.
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Solution:

the six (filter — plot) pairs are: hy — 4,h, = 5,h; — 2, h; — 3, h; — 6, hg — 1

You can determine these associations by mentally "sliding" the space-reversed impulse re-



sponses over the support of the input as in the computation of the convolution sum; but
rememeber that in 2D you need to flip the impulse response along both dimensions.

Exercise 3. Bilinear interpolation
A square image of size N x N is built in the following way:

- the pixels in the upper left corner and in the lower right corner are set to a value of
255 (white)

- the pixels in the upper right corner and in the lower left corner are set to a value of 0
(black)

- every other pixel in the image is the result of a bilinear interpolation between the
four corners

Which one of the following plots shows the correct image? Feel free to write a few lines of
Python to help you find the answer.

o IF
- |,

Image (f). Here’s a short code snippet to check the result

Solution:

import matplotlib.pyplot as plt
import numpy as np

N = 128



X = np.zeros ((N, N))
x[0,0] x[N-1, N-1]

255

# bilinear interpolation from four corners
for nl in range(N) :
for n2 in range(N) :

b = x[0,0] » (N — nl) (N — n2) +\
x[0, N-1]1 (N — nl) * n2 +\
x[N-1, N-1] * nl x n2 +\

X[N-1, 0] = nl * (N - n2)
x[nl, n2] = b / (N = N)

plt.gray();
plt.matshow (x) ;

Exercise 4. Deadzone Quantization

We have seen that one of the fundamental ingredients of JPEG compression is the deadzone
quantizer, i.e. a quantizer with a quantization interval centered around zero. To see the
effects of deadzone quantization on SNR consider the following problem.

Assume x is an i.i.d. discrete-time random signal with |x[n]| < 1 for all n. Consider the
following uniform 2-bit quantizers for the [—1, 1] interval:

uniform quantizer deadzone quantizer

3/4 ifl1/2<x<1 .
. 2/3 if1/3<x<1
0. (x) 1/4 ifo<x<1/2 0u(x) 0 if[x] < 1/3
xX)= X)= I | x| <
u —1/4 if—1/2<x<0 ¢ :
. —2/3 if-1<x<-1/3
—3/4 if-1<x<-1/2
2,(x) L4(x)
1+ 1
p [ 2 &
L 3
2 L
L L L Ix L L ’ L Ix
ik = SE i
2 —
_1 +4 _1 i .

Both quantizers operate at two bits per sample but the deadzone quantizer "wastes" a frac-
tion of a bit since it has only 3 quantization intervals instead of 4.



Assume that each sample x[7] has the following probability distribution:

0 if |a| >1
Plxln]=a]=1{P ifla|=0

> otherwise

In other words, each sample is either zero with probability p or drawn from a uniform
distribution over the [—1, 1] interval; the probability density function for such a distribution
can be expressed as:

l1-p

fx)=—5 +pé(x)

where the Dirac delta encodes the specific probability of a sample being equal to zero.

Determine the minimum value of p for which it is better to use the deadzone quantizer,
i.e. the value of p for which the MSE of the deadzone quantizer becomes smaller than the
MSE of the uniform quantizer.

Hint: remember that the formula for the MSE of a scalar quantizer over the[—1, 1] interval (under the hypothe-
ses of iid samples with distribution f(x)) is

1
o? =J [2(x)—x]* f(x)dx
-1

For a uniform quantizer with M quantization levels (as the ones in this exercise) if the input distribution is
uniform (i.e. f(x)=1/2) the above simplifies to:

QEI=x) s dx=1 =" “ e

) f 1 AN /MR 1

Solution:

The number of quantization levels in the two quantizers are M = M, = 4 for the normal
2-bit quantizer and M = M, = 3 for the deadzone quantizer. Let's compute the MSE for the
normal quantizer using the composite pdf for the input

1

ot = | @uw-xp(FE+potn) dx

-1

=1-p) | @)-xF5dx+p f (Qux)—x) 5(x)dx

1
3M?

=(1-p) + plQ,(0)
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where we have used the fact that the normal quantizer maps zero to 1/4; similarly, for the
deadzone quantizer (which maps zero to zero):

ot = | (@uw-xP (5P pot) dx
1
3M?

=(1—-p) + plQu(0)?

1

=(1—p)—
(1=p)%

from which we find
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