
COM-202 - Signal Processing

Solutions for Homework 12

Exercise 1. Quantization

Consider a white random process x whose samples are uniformly distributed over the in-

terval [−1, 1]. The signal is sent through a uniform quantizer with step size∆ to obtain the

signal x̂. The quantization error can be modeled as a white noise process whose samples

are uniformly distributed over the interval [−∆/2,∆/2]; each quantized sample is thus

x̂ [n ] =Q (x [n ]) = x [n ] + e [n ]

where e [n ] is independent of x [n ].

After quantization, the signal is processed by a filter with impulse response

h [n ] =
a n + (−a )n

2
u [n ]

to obtain the signal y=h ∗ x̂.

(a) compute the SNR of the quantized signal x̂

(b) compute the SNR of the filtered signal y (ie the power ratio between the filtered clean

signal and the filtered quantization noise)

(c) could you improve the SNR using a different filter?

Solution:

(a) the signal is i.i.d. and uniformly distributed over [−1, 1] so its variance is σ2
x
= 1/3.

The error is also i.i.d, and and uniformly distributed over [−∆/2,∆/2] so its variance

isσ2
e
=∆2/12. The SNR is thus

SNRx =
σ2

x

σ2
e

=
4

12

12

∆2
=

�

∆

2

�−2

(b) both signal and quantization error are white signals so their PSDs are

Px (ω) =σ
2
x

Pe (ω) =σ
2
e

1



The PSD of the filter’s output is

Py (ω) = |H (ω)|
2 Px̂ (ω)

= |H (ω)|2 (Px (ω)+Pe (ω))

= |H (ω)|2 Px (ω)+ |H (ω)|
2 Pe (ω)

where the last term is the PSD of the error at the filter’s output. Since the variance of a

random process is the integral of its PSD, the SNR at the ouptut of the filter is

SNRy =

∫ π

−π
|H (ω)|2 Px (ω)dω
∫ π

−π
|H (ω)|2 Pe (ω)dω

=
σ2

x

σ2
e

∫ π

−π
|H (ω)|2 dω
∫ π

−π
|H (ω)|2 dω

= SNRx

(c) the SNR of the filter’s output does not depend on the filter! Moral of the story: a linear

filter cannot improve the SNR due to quantization if the quantizer matches the input.

Exercise 2. 2D FIR filtering

Consider a two-dimensional discrete-space signal x [n1, n2] that is nonzero only over a 8×8

square region. The following figure, called a support representation, shows as individual

dots the locations of the nonzero values of the signal:

Consider now a set of 2D filters with impulse responses hi [n1, n2], for i = 1, . . . , 6. All fil-

ters are 3× 3 FIRs and the positions of their nonzero samples are shown in the following

figure:
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Call yi [n1, n2] = (hi ∗ x )[n1, n2] the signal obtained by filtering x [n1, n2]with fi [n1, n2]; since

the input signal has finite support, yi [n1, n2]will also be a finite-support signal.

The following figure shows the support representations of yi [n1, n2] in random order; for

each one of them, determine the correct value of i . If you prefer, you can also solve this

exercise by writing some Python code.

Solution:

the six (filter→ plot) pairs are: h1→ 4, h2→ 5, h3→ 2, h4→ 3, h5→ 6, h6→ 1

You can determine these associations by mentally "sliding" the space-reversed impulse re-
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sponses over the support of the input as in the computation of the convolution sum; but

rememeber that in 2D you need to flip the impulse response along both dimensions.

Exercise 3. Bilinear interpolation

A square image of size N ×N is built in the following way:

- the pixels in the upper left corner and in the lower right corner are set to a value of

255 (white)

- the pixels in the upper right corner and in the lower left corner are set to a value of 0

(black)

- every other pixel in the image is the result of a bilinear interpolation between the

four corners

Which one of the following plots shows the correct image? Feel free to write a few lines of

Python to help you find the answer.

Solution:

Image (f). Here’s a short code snippet to check the result

import matplotlib.pyplot as plt

import numpy as np

N = 128
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x = np.zeros((N, N))

x[0,0] = x[N-1, N-1] = 255

# bilinear interpolation from four corners

for n1 in range(N):

for n2 in range(N):

b = x[0,0] * (N - n1) * (N - n2) +\

x[0, N-1] * (N - n1) * n2 +\

x[N-1, N-1] * n1 * n2 +\

x[N-1, 0] * n1 * (N - n2)

x[n1, n2] = b / (N * N)

plt.gray();

plt.matshow(x);

Exercise 4. Deadzone Quantization

We have seen that one of the fundamental ingredients of JPEG compression is the deadzone

quantizer, i.e. a quantizer with a quantization interval centered around zero. To see the

effects of deadzone quantization on SNR consider the following problem.

Assume x is an i.i.d. discrete-time random signal with |x [n ]| ≤ 1 for all n . Consider the

following uniform 2-bit quantizers for the [−1, 1] interval:

uniform quantizer deadzone quantizer

Qu (x ) =













3/4 if 1/2≤ x ≤ 1

1/4 if 0≤ x < 1/2

−1/4 if −1/2≤ x < 0

−3/4 if −1≤ x <−1/2

Qd (x ) =









2/3 if 1/3≤ x ≤ 1

0 if |x |< 1/3

−2/3 if −1≤ x ≤−1/3

1
2 1−1

2−1
−1
2

−1

1
2

1
Qn (x )

x

1
3

2
3 1−1

3
−2
3−1 −1

3
−2
3

−1

1
3

2
3

1
Qd (x )

x

Both quantizers operate at two bits per sample but the deadzone quantizer "wastes" a frac-

tion of a bit since it has only 3 quantization intervals instead of 4.
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Assume that each sample x [n ] has the following probability distribution:

P [x [n ] =α] =









0 if |α|> 1

p if |α|= 0
1−p

2
otherwise

In other words, each sample is either zero with probability p or drawn from a uniform

distribution over the [−1, 1] interval; the probability density function for such a distribution

can be expressed as:

f (x ) =
1−p

2
+pδ(x )

where the Dirac delta encodes the specific probability of a sample being equal to zero.

Determine the minimum value of p for which it is better to use the deadzone quantizer,

i.e. the value of p for which the MSE of the deadzone quantizer becomes smaller than the

MSE of the uniform quantizer.

Hint: remember that the formula for the MSE of a scalar quantizer over the [−1, 1] interval (under the hypothe-

ses of iid samples with distribution f (x )) is

σ2 =

∫ 1

−1

[Q(x )− x ]2 f (x )d x

For a uniform quantizer with M quantization levels (as the ones in this exercise) if the input distribution is

uniform (i.e. f (x ) = 1/2) the above simplifies to:

σ2 =

∫ 1

−1

(Q (x )− x )2
1

2
d x =

∆
2

12
=
(2/M )2

12
=

1

3M 2

Solution:

The number of quantization levels in the two quantizers are M = Mu = 4 for the normal

2-bit quantizer and M =Md = 3 for the deadzone quantizer. Let’s compute the MSE for the

normal quantizer using the composite pdf for the input

σ2
n
=

∫ 1

−1

(Qu (x )− x )2
�

1−p

2
+pδ(x )

�

d x

= (1−p )

∫ 1

−1

(Qu (x )− x )2
1

2
d x +p

∫ 1

−1

(Qu (x )− x )2δ(x )d x

= (1−p )
1

3M 2
n

+p [Qu (0)]
2

= (1−p )
1

48
+p

1

16
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where we have used the fact that the normal quantizer maps zero to 1/4; similarly, for the

deadzone quantizer (which maps zero to zero):

σ2
d
=

∫ 1

−1

(Qd (x )− x )2
�

1−p

2
+pδ(x )

�

d x

= (1−p )
1

3M 2
d

+p [Qd (0)]
2

= (1−p )
1

27

from which we find

σ2
d
<σ2

n
for p >

21

102
≈ 20%
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