
COM-202 - Signal Processing

Solutions for Homework 11

Exercise 1. Multirate Signal Processing

Consider a real-valued discrete-time signal x [n ]with the following spectrum (shown here

between 0 andπ and, because the signal is real, symmetric for negative frequencies):

X (ω)
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Now consider the following multirate processing scheme in which L (z ) is an ideal lowpass

filter with cutoff frequency π/2 and H (z ) is an ideal highpass filter with cutoff frequency

π/2:
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Plot the four spectra Y1(ω), Y2(ω), Y3(ω), Y4(ω).

Solution:
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Exercise 2. Digital processing of continuous-time signals

In your grandmother’s attic you just found a treasure: a collection of super-rare 78rpm

vinyl jazz records. The first thing you want to do is to transfer the recordings to compact

discs, so you can listen to them without wearing out the originals. Your idea is obviously to

play the record on a turntable and use an A/D converter to convert the line-out signal into

a discrete-time sequence, which you can then burn onto a CD. The problem is, you only

have a “modern” turntable, which plays records at 33rpm. Since you’re a DSP wizard, you

know you can just go ahead, play the 78rpm record at 33rpm and sample the output of the

turntable at 44.1 KHz. You can then manipulate the signal in the discrete-time domain so

that, when the signal is recorded on a CD and played back, it will sound right.

Design a system which performs the above conversion. If you need to get on the right track,

consider the following:

- Call s (t ) the continuous-time signal encoded on the 78rpm vinyl (the jazz music)

- Call x (t ) the continuous-time signal you obtain when you play the record at 33rpm

on the modern turntable

- Let x [n ] = x (nTs ), with Ts = 1/44100.

and answer the following questions:

(a) Express x (t ) in terms of s (t ).

(b) Sketch the Fourier transform X (f )when S (f ) is as in the following figure. The highest

positive frequency of S (f ) is FN = 16000 Hz (old records have a smaller bandwidth
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than modern ones).

|S f )|

FN−FN

(c) Design a system to convert x [n ] into a sequence y [n ] so that, when you interpolate

y [n ] to a continuous-time signal y (t )with interpolation period Ts , you obtain Y (f ) =

S (f ).

(d) What if you had a turntable which plays records at 45rpm? Would your system be

different? Would it be better?

Solution:

(a) Playing the record at lower rpm slows the signal down by a factor 33/78. Therefore

x (t ) = s

�
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(b) From the rescaling property of the Fourier transform

X (f ) =
26
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|X (f )|

6769Hz

(c) We need to change the sampling rate so that, when y [n ] is interpolated at 44.1 KHz its

spectrum is equal to S (f ). The rational sampling rate change factor is clearly 33/78

which is simply 11/26 after factoring. The processing scheme is as follows:

xc (t ) Samp ↑ 11 L (z ) ↓ 26 Interp yc (t )
x [n ] y [n ]

where L (z ) is a lowpass filter with cutoff frequency π/26 and gain L0 = 11; both the
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sampler and interpolator work at Fs = 1/Ts = 44100 Hz. We have:
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Yc (f ) = (1/Fs )Y (2π f /Fs )
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(d) The sampling rate change scheme stays the same except that now 45/78 = 15/26. There-

fore, the final upsampler has to compute more samples than in the previous scheme.

The computational load of the sampling rate change is entirely dependent on the fil-

ter L (z ). If we upsample more before the output, we need to compute more filtered

samples and therefore at 45rpm the scheme is less efficient.

Exercise 3. Oversampled sequences

Consider a real-valued infinite sequence x [n ] for which:

X (ω) = 0
π

3
≤ |ω| ≤π

A single sample of x [n ]may have been corrupted and we would like to approximately or

exactly recover it. We denote n0 the time index of the corrupted sample and x̂ [n ] the cor-

responding corrupted sequence.

(a) Specify a strategy for exactly recovering x [n ] from x̂ [n ] if n0 is known.

(b) What would you do if the value of n0 is not known?

(c) Now suppose we have k − 1 corrupted samples: what is the condition that X (e jω)

must satisfy to be able to exactly recover x [n ]?

Solution:

Given that X (ω) = 0 for π3 ≤ |ω| ≤π, x [n ] can be thought of as a signal that has been sampled

at 3 times the minimal sampling frequency. Therefore, we can downsample the signal at

least by a factor of 3 without loss of information.
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(a) Assume n0 is odd; we can then downsample x [n ] by 2, without loss of information

and the corrupted sample will be discarded in the downsampling operation. We can

then upsample by 2 and recover the original signal eliminating the error. If n0 is even,

simply shift the signal by 1 and perform the same operation.

(b) If the value of n0 is not known, we need to determine whether n0 is odd or even. We

can write

x̂ [n ] = x [n ]−εδ[n −n0]

and therefore

X̂ (ω) = X (ω)−εe − jωn0

Now, if we compute the DTFT atω= π2 we have:

X̂ (
π

2
) = X (

π

2
)+ε(− j )n0 = ε(− j )n0

since, by hypothesis, X (π2 ) = 0. Therefore, If X̂ (π2 ) is real, n0 is even and if it is imaginary,

n0 is odd.

(c) If there are k −1 corrupted samples, the worst case is when the corrupted samples are

consecutive. In that case we need to downsample x̂ [n ] by a factor of k and then up-

sample it back. To do so without loss of information it must be:

X (ω) = 0 for
π

k
≤ |ω| ≤π.
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