
COM-202 - Signal Processing

Solutions for Homework 10

Exercise 1. Continuous-time Fourier Transform

(a) Using the Fourier transform formula, find the Fourier transform of the following sig-

nals

- x1(t ) = e −a t u (t ), with R e (a )> 0

- x2(t ) = e a t u (−t ), with R e (a )> 0

Recall that the unit step u (t ) is defined as

u (t ) =

¨

1, t > 0

0, t < 0.

(b) Using the Fourier transform formula, prove the following properties of the continuous-

time Fourier transform

- Scaling property: x (a t )
CTFT
←→ 1

|a |X
�

f

a

�

where a 6= 0

- Shift in time property: x (t − t0)
CTFT
←→ e − j 2π f t0 X (f )

Solution:

(a) Both signals are in L2(R) and so the Fourier transform formula will converge. Note

that there are different conventions about what happens to u (t ) at zero. The value of

this single point will not affect any of our results and we leave it unspecified.

Using the transform formula we obtain

X1(f ) =

∫ ∞

−∞

x1(t )e
− j 2π f t d t =

∫ ∞

−∞

e −a t u (t )e − j 2π f t d t

=

∫ ∞

0

e −(a+ j 2π f )t d t = −
1

a + j 2π f
e −(a+ j 2π f )t

�

�

�

�

0

−∞

=
1

a + j 2π f
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and

X2(f ) =

∫ ∞

−∞

x2(t )e
− j 2π f t d t =

∫ ∞

−∞

e a t u (−t )e − j 2π f t d t

=

∫ 0

−∞

e (a− j 2π f )t d t = −
1

a − j 2π f
e (a− j 2π f )t

�

�

�

�

0

−∞

=
1

−a + j 2π f

(b) We can prove the scaling property directly from the transform formula. Let y (t ) =

x (a t ). For a<0,

Y (f ) =

∫ ∞

−∞

x (a t )e − j 2π f t d t =

∫ −∞

∞

1

a
x (s )e − j 2π f s/a d s

=
1

|a |

∫ ∞

−∞

x (s )e − j 2π f /a s d s =
1

|a |
X (f /a )

For a > 0 the result follows analogously.

We can similarly prove the shift in time property directly from the transform formula.

Let y (t ) = x (t − t0),

Y (f ) =

∫ ∞

−∞

x (t − t0)e
− j 2π f t d t =

∫ ∞

−∞

1

a
x (s )e − j 2π f (s+t0)d s

= e − j 2π f t0

∫ ∞

−∞

1

a
x (s )e − j 2π f s d s = e − j 2π f t0 X (f )

Exercise 2. Sampling Sinusoids

(a) Consider a sampler operating at a sampling frequency Fs = 500 Hz. Which of the

following signals can be converted to discrete-time sequences with no loss of infor-

mation by this system?

- x1(t ) = cos(2π f1t ), with f1 = 100 Hz

- x2(t ) = sin(2π f2t ), with f2 = 225 Hz

- x3(t ) = sin(2π f3t ), with f3 = 1250 Hz

- x4(t ) = cos(2π f1t )+ sin(2π f4t ), with f1 = 100 Hz and f4 = 400 Hz

(b) A second sampler operates by sampling its input every Ts = 0.5×10−3 seconds. Which

of the following signals can be converted to discrete-time sequences with no loss of

information by this system?

- x5(t ) = cos(2π f5t ), with f5 = 500 Hz

- x6(t ) = sin(2π f3t ), with f3 = 1250 Hz
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- x7(t ) = cos(2π f6t )+ sin(2π f7t ), with f6 = 250 Hz and f7 = 150 Hz

- x8(t ) = sin(2π f8t ), with f8 = 750 Hz

Solution:

According to the sampling theorem, a signal can be sampled with no loss of information as

long as the sampling frequency is larger than its total bandwidth.

The spectrum of a sinusoidal signal at frequency f0 is zero for | f |> f0 so the total bandwidth

is 2 f0. For each signal, therefore, we need to check if the sampling frequency is larger than

twice the frequency of its fastest component.

(a) the first sampler works at a rate Fs = 500 Hz; therefore

- Fs > 2 f1 = 200: the signal x1(t ) can be sampled with no loss of information

- Fs > 2 f2 = 450: the signal x2(t ) can be sampled with no loss of information

- Fs < 2 f3 = 2500: NO, the signal x3(t )will be aliased

- Fs > 2 f1 = 200 but Fs < 2 f4 = 800: NO, the signal x4(t )will be aliased

(b) the second sampler works a rate Fs = 1/Ts = 2000 Hz; therefore

- Fs > 2 f5 = 1000: the signal x5(t ) can be sampled with no loss of information

- Fs < 2 f3 = 2500: the signal x6(t )will be aliased

- Fs > 2 f6 = 500 and Fs > 2 f7 = 300: the signal x7(t ) can be sampled with no loss of

information

- Fs > 2 f8 = 1500: the signal x8(t ) can be sampled with no loss of information

Exercise 3. Raw sampling

The continuous-time signal

x (t ) =

4
∑

m=1

m cos(2π f0m t )

with f0 = 300 Hz, is raw-sampled into the discrete-time signal x [n ] = x (nTs ) using Ts =

5 ·10−4 seconds. Sketch the DTFT of x [n ].

Solution:
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The sampling frequency is Fs = 1/Ts = 104/5= 2000 Hz. Since the continuous-time signal is

simply a linear combination of four pure sinusoids, we can determine for each term in the

sum whether the sinusoid will be aliased or not:

- for the first term (m = 1) f0 = 300< Fs/2= 1000 so there will be no aliasing

- for the second term (m = 2) 2 f0 = 600< Fs/2= 1000 so there will be no aliasing

- for the third term (m = 3) 3 f0 = 900< Fs/2= 1000 so there will be no aliasing

- for the second term (m = 4) 4 f0 = 1200> Fs/2= 1000 so this component will be aliased

The discrete-time signal will be

x [n ] = x (nTs ) =

4
∑

m=1

m cos(ωm n )

where

ωm = 2π
m f0

Fs

=
3m

10
π, m = 1, 2, 3

whereasω4 will be wrapped over the [−π,π] interval:

ω4 =

�

6

5
π

�+π

−π

=
6

5
π−2π=−

4

5
π

Since the generalized DTFT of each cosine component is a pair of periodized Dirac deltas at

±ωm , the DTFT X (ω)will look like so:

0

π

2π

3π

4π

−π −4π/5 −3π/5 −2π/5 −π/5 0 π/5 2π/5 3π/5 4π/5 π

Alternately, the solution can be worked out in the frequency domain starting from the gener-

alized CTFT of the continuous-time signal, which contains 8 Dirac deltas at the frequencies

±m f0, for m = 1, 2, 3, 4:

X c (f ) =

4
∑

m=−4
m 6=0

|m |δ(f −m f0)
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After sampling, the periodized spectrum is

X (ω) = Fs

∞
∑

k=−∞

X c

� ω

2π
Fs +k Fs

�

= Fs

4
∑

m=−4
m 6=0

|m |

∞
∑

k=−∞

δ
� ω

2π
Fs +k Fs −m f0

�

= Fs

4
∑

m=−4
m 6=0

|m |

∞
∑

k=−∞

δ

�

Fs

2π

�

ω−2π
m f0

Fs

+2πk

��

=

4
∑

m=−4
m 6=0

|m |

∞
∑

k=−∞

2πδ

�

ω−
3m

10
π+2πk

�

=

4
∑

m=−4
m 6=0

|m |δ̃

�

ω−
3m

10
π

�

which yields the same plot as before. Note that we had to use the scaling property of the

Dirac delta, δ(t /α) ≡ αδ(t ), which is perhaps not widely known. Hence the preference for

the time-domain approach.

Exercise 4. Bandwidth of a signal

Consider a bandlimited continuous-time signal x (t ) whose total bandwidth is W Hz (in

other words, the spectrum X (f ) is zero for | f | >W /2. Determine the maximum possible

bandwidth for each of the following signals, assuming that X (f ) 6= 0 over its entire band-

width:

(a) x1(t ) = x (t )− x (t −1)

(b) x2(t ) = x 2(t )

(c) x3(t ) = 2x (t )cos(2πW t )

(d) x4(t ) = (x ∗h )(t ) where h (t ) = sinc((W /3)t )

Solution:

(a) X1(f ) = (1 − e − j 2π f )X (f ); since X (f ) = 0 for | f | > W /2, X1(f ) will also be zero for

| f |>W /2 so the bandwidth remains the same.

(b) since x2(t ) = x (t )x (t ), X2(f ) is the convolution of X (f )with itself:

X2(f ) =

∫ ∞

−∞

X (φ)X (f −φ)dφ =

∫ W /2

−W /2

X (φ)X (f −φ)dφ
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The argument of the integral will be zero if f −φ >W /2 or f −φ <−W /2. In the first

case, this means f > W /2+φ and, since −W /2 ≤ φ ≤ W /2, this means that X2(f )

will be zero for f >W /2+W /2=W . Similarly, in the second case, X2(f ) will be zero

for f <−W /2−W /2=−W . In the end the total bandwidth for X2(f )will be doubled,

that is, 2W Hz

(c) x3(t ) is a modulated version of x (t ) and X3(f ) = X (f −W )+X (f +W ); the support of

X (f −W ) goes from W −W /2 to W +W /2 whereas the support of X (f +W ) goes from

−W −W /2 to−W +W /2. In the end, the total bandwidth is W +W /2−(−W −W /2) =

3W

(d) h (t ) is the impulse response of a continuous-time ideal lowpass filter with cutoff fre-

quency W /6 so the total bandwidth of x4(t )will be W /3

Exercise 5. Discrete-time implementation of analog systems

Consider the continuous-time system shown in figure (a) below, whose output is the prod-

uct of its two input signals. In order to implement a discrete-time version of this system,

you build the device shown in figure (b), using two samplers and an ideal sinc interpolator,

all of which work at the same rate Fs .

x1(t )

× y (t )

x2(t )

x1(t )

× ŷ (t )

x2(t )

(a) (b)

You know that the real-valued, continous-time input signals are bandlimited, with a max-

imum positive frequency FN = 8000 Hz. Determine the minimum value for the rate Fs so

that the discrete-time implementation produces exactly the same output as the continuous-

time original system. Explain in detail your choice and, if in doubt, “test” the discrete-time

system using the input signals x1(t ) = x2(t ) = x (t ) = sinc(2FN t ).

Solution:

Since the input signals are bandlimited to 8000 Hz, it is tempting to sample and interpolate

at a rate of Fs = 2FN = 16000 Hz. The multiplication of two signals is however a nonlin-

ear operation that actually changes the bandwdith of the signals and therefore we need a

higher rate. For example, consider the test signal x (t ) = sinc(2FN t ); in the frequency do-

main, X (f ) = (1/(2FN ))rect(f /(2FN )), showing that the signal is indeed 16kHz-bandlimited.
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Using x1(t ) = x2(t ) = x (t ) as the inputs, the continuous-time system outputs the signal

y (t ) = sinc2(2FN t )

On the other hand, if the discrete-time system works at Fs = 2FN , the sampling interval is

Ts = 1/(2FN ) and we have

x1,2[n ] = x (nTs ) = sinc(n ) = δ[n ]

x1[n ]x2[n ] =δ
2[n ] = δ[n ]

ŷ (t ) =
∑

n

x1[n ]x2[n ]sinc

�

t −nTs

Ts

�

= sinc(t /Ts ) = sinc(2FN t ) 6= y (t ).

Indeed, using the continuous-time version of the modulation theorem,

CTFT{x1 x2}(f ) = (X1 ∗X2)(f ) =

∫ ∞

−∞

X1(φ)X2(f −φ)dφ ==

∫ FN

−FN

X1(φ)X2(f −φ)dφ;

as we have seen in an earlier exercise, the argument of the integral will be zero for f −φ > FN

or for f −φ < −FN and, since −FN ≤ φ ≤ FN , the support of (X1 ∗ X2)(f ) will be the interval

[−2FN , 2FN ], which is twice the bandwidth of the input.

Therefore, the sampling rate in the discrete-time system needs to be at least Fs = 4FN =

32000 Hz.

As a side note, this fact is particularly important in digital audio processing systems that

implement nonlinear effects such as distortion. Audio signals can be sampled at 48 kHz with

no loss of information since the humans cannot hear frequencies above 20 kHz; however, if

the internal processing is nonlinear, a digital audio workstation must use a sampling rate

of at least 96 kHz to prevent aliasing artefacts.

Exercise 6. Mystery Signal

Consider the following setup, where a sinusoidal input of unknown frequency is first raw-

sampled at a rate Fs = 500 Hz and then sinc-interpolated at a rate Fi = 250 Hz.

cos(2π f0t ) cos(2π f1t )

Fs Fi

You measure the frequency of the output sinusoid and find out that f1 = 50 Hz. Which of

the following input frequencies would produce the measured output?

(a) f0 = 100 Hz

(b) f0 = 150 Hz
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(c) f0 = 400 Hz

(d) f0 = 600 Hz

Solution: Call x [n ] = cos(2π(f0/Fs )n ) = cos(ω0n ) the discrete-time signal produced by the

raw sampler; the frequency of this oscillation is

ω0 =

�

2π
f0

Fs

�+π

−π

where the notation [θ ]+π
−π

indicates that the angle θ has been wrapped over the [−π,+π] in-

terval. Mathematically, the wrapping operation can be expressed as

[s ]+a
−a
= s −2a

�

s

2a
+

1

2

�

;

algorithmically, the value [s ]+a
−a

can be computed by repetedly adding or subtracting 2a to s

until the result is within [−a , a ]. Note that for any c ∈R

[c s ]+a
−a
= c
�

[s ]
+a/c

−a/c

�

since

[c s ]+a
−a
= c s −2a

�

c s

2a
+

1

2

�

= c

�

s −2(a/c )

�

s

2(a/c )
+

1

2

��

= c
�

[s ]
+a/c

−a/c

�

and therefore

ω0 =

�

2π
f0

Fs

�+π

−π

= 2π

�

f0

Fs

�+1/2

−1/2

=
2π

Fs

�

f0

�+Fs /2

−Fs /2

After the interpolator, the frequency of the output is going to be

f1 =
ω0

2π
Fi =

Fi

Fs

�

f0

�+Fs /2

−Fs /2
=

1

2

�

f0

�+250

−250

and so

(a) if f0 = 100 Hz, then f1 =
1
2 [100]+250

−250
= 100/2= 50 Hz

(b) if f0 = 150 Hz, then f1 =
1
2 [150]+250

−250
= 150/2= 75 Hz

(c) if f0 = 400 Hz, then f1 =
1
2 [400]+250

−250
= (400−500)/2=−50 Hz

(d) if f0 = 600 Hz, then f1 =
1
2 [600]+250

−250
= (600−500)/2= 50 Hz

Since cos(−2π f t ) = cos(2π f t ), the frequency of the input could be 100, 400, or 600 Hz.
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Exercise 7. Aliasing in Time?

Consider an N -periodic discrete-time signal x̃, with N an even integer, and let X̃ be its N -

point DFS:

X̃ [k ] =

N−1
∑

n=0

x̃ [n ]e − j 2π
N n k k ∈Z

Consider now a vector Ỹ of length N /2 obtained by selecting the even-numbered elements

of X̃:

Y [m ] = X̃ [2m ], m = 0, 1, . . . , N /2.

If we now compute the inverse DFS of Ỹ we obtain the (N /2)-periodic signal ỹ

ỹ [n ] =
2

N

N /2−1
∑

k=0

Ỹ [k ]e j 2π
N /2 n k n ∈Z.

Express ỹ in terms of x̃ and describe their relationship.

Solution:

ỹ [n ] =
2

N

N /2−1
∑

k=0

Ỹ [k ]e j 2π
N /2 n k

=
2

N

N /2−1
∑

k=0

X̃ [2k ]e j 2π
N /2 n k

=
2

N

N /2−1
∑

k=0

N−1
∑

i=0

x̃ [i ]e − j 2π
N (2k )i e j 2π

N /2 n k

=
2

N

N−1
∑

i=0

x̃ [i ]

N /2−1
∑

k=0

e j 2π
N /2 (n−i )k

Now

N /2−1
∑

k=0

e j 2π
N /2 (n−i )k =

�

N /2 if (n − i ) is a multiple of (N /2)

0 otherwise

so that the only nonzero terms in the outer sum (that for index i ) are those for i = n and

i = n +N /2. In the end

ỹ [n ] = x̃ [n ] + x̃ [n +N /2].

or, in compact form

ỹ= x̃+S N /2x̃.
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Since x̃ is N -periodic, ỹ is an (N /2)-periodic sequence obtained by summing two copies of x̃

shifted by N /2 samples. This “time aliasing” is the dual of the frequency aliasing we incur

when we sample too slowly in time; in this case, by dropping half of the DFS coefficients we

are not “sampling enough” in frequency and thus the signal gets aliased in time.
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