

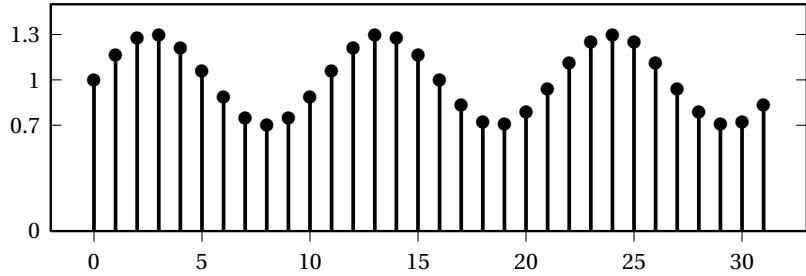
COM 202 - Signal Processing

Sample Midterm

Multiple Choice Questions: each multiple choice question is worth 4 points.

Exercise 1.

Consider the finite-length discrete-time signal $\mathbf{x} \in \mathbb{C}^{32}$ shown in this figure:



What is the DFT of this signal?

a)

$$X(k) = \begin{cases} 32, & k = 0, \\ \frac{24}{5}e^{-j\pi/2}, & k = 3, \\ \frac{24}{5}e^{j\pi/2}, & k = 29, \\ 0, & \text{otherwise} \end{cases}$$

b)

$$X(k) = \begin{cases} \frac{24}{5}, & k = 3 \text{ and } k = 29, \\ 0, & \text{otherwise} \end{cases}$$

c)

$$X(k) = \begin{cases} \frac{128}{5}, & k = 0, \\ \frac{48}{5}e^{-j\pi}, & k = 3, \\ \frac{24}{5}e^{j\pi/4}, & k = 29, \\ 0, & \text{otherwise} \end{cases}$$

d)

$$X(k) = \begin{cases} 32, & k = 1, \\ 24, & k = 7, \\ 16, & k = 30, \\ 0, & \text{otherwise} \end{cases}$$

Exercise 2.

The 32 samples of the discrete-time signal \mathbf{x} shown in the figure below were obtained using a random number generator.



Say if it is possible to determine 32 complex numbers C_0, C_1, \dots, C_{31} so that the signal in the plot can be expressed as

$$x[n] = \sum_{k=0}^{31} C_k e^{j \frac{\pi}{16} nk}.$$

- a) Yes, $C_k = X[k]/N$, where $\mathbf{X} = \text{DFT}\{\mathbf{x}\}$.
- b) No, \mathbf{x} doesn't look like a linear combination of complex exponentials.
- c) No, because \mathbf{x} is real-valued.
- d) Yes, $C_k = X[k]$, where $\mathbf{X} = \text{DFT}\{\mathbf{x}\}$.

Exercise 3.

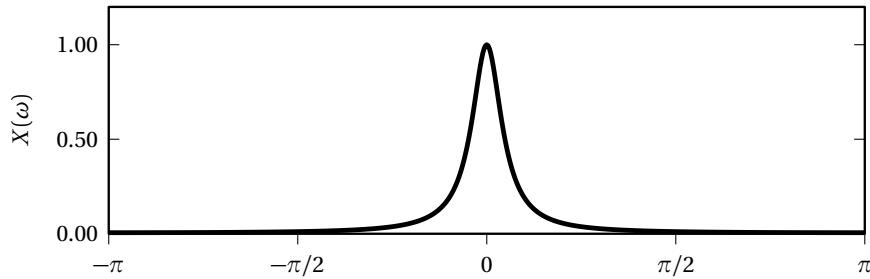
Given the matrix \mathbf{H} below, for what values of c_1, c_2, c_3, c_4 do the rows of \mathbf{H} form an *orthonormal* basis in \mathbb{C}^4 ?

$$\mathbf{H} = \begin{bmatrix} c_1 & c_1 & c_1 & c_1 \\ c_2 & c_2 & -c_2 & -c_2 \\ c_3 & -c_3 & 0 & 0 \\ 0 & 0 & c_4 & -c_4 \end{bmatrix}$$

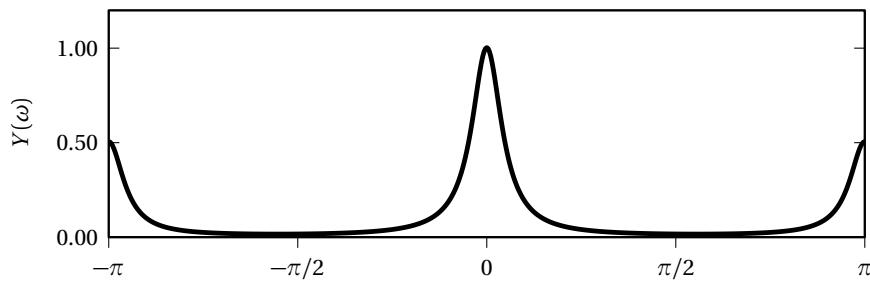
- a) $c_1 = c_2 = \frac{1}{2}$ and $c_3 = c_4 = \frac{1}{\sqrt{2}}$
- b) None.
- c) $c_1 = c_2 = \frac{1}{4}$ and $c_3 = c_4 = \frac{1}{2}$
- d) $c_1 = c_2 = c_3 = c_4 = 1$

Exercise 4.

Consider the infinite-length signal \mathbf{x} whose DTFT $X(\omega)$ is shown in the following picture:



Consider now the following plot showing $Y(\omega)$, the DTFT of the infinite-length signal \mathbf{y} :



What is the correct definition of \mathbf{y} ?

- a) $y[n] = x[n] + \frac{1}{2}e^{j\pi n}x[n]$
- b) $y[n] = x[n] + \frac{1}{2}x[n - \pi n]$
- c) $y[n] = \frac{1}{2}e^{-j\pi n}x[n] + \frac{1}{2}e^{j\pi n}x[n]$
- d) $y[n] = x[n]\left(1 + \left(\frac{1}{2}\right)^{|n|}\right)$

Exercise 5.

Consider a causal filter with transfer function

$$H(z) = \frac{1+7z^{-4}}{4+z^{-2}}$$

Which of the following statements is correct?

- a) The region of convergence of the transfer function includes the unit circle
- b) The filter is FIR
- c) The filter is unstable
- d) The filter has four poles

Exercise 6.

What is the output obtained after running the following Python code?

```
import numpy as np

N = 4
w = np.pi / N
a = np.arange(N)
print( np.dot(np.exp(-2j * w * np.outer(a, a))), np.ones(N) )
```

- a) [1.0 1.0 1.0 1.0]
- b) [3.14159265359j 0.0 0.0 -3.14159265359j]
- c) [4.0 0.0 0.0 0.0]
- d) [1.0 1.0j -1.0 -1.0j]

Exercise 7.

A discrete-time system is defined by an input-output relationship $y[n] = x[-n]$. Which of the following claims about the system is true?

- a) The system is linear
- b) The system is time-invariant
- c) The system is causal
- d) The system is LTI

Exercise 8.

Which of the following claims about properties of infinite-length discrete-time signals is false?

- The signal $x[n] = \sin(\frac{n}{2}) + \cos(\frac{n}{3})$ is periodic
- If $x[n]$ has finite energy, then $\lim_{n \rightarrow \infty} |x[n]| = 0$
- A non-zero bounded periodic discrete-time signal must have finite power
- Given a real $a > 0$, the signal $x[n] = e^{-an} u[n]$ is in ℓ_2

Exercise 9.

LTI Systems: This question is worth 20 points.

An LTI system is given by the following difference equation

$$y[n] = \lambda_1 y[n-1] + \lambda_2 x[n]$$

where $\lambda_1, \lambda_2 > 0$ are real numbers.

(a) Assume that the system satisfies the condition of initial rest. That is, if $x[n] = 0$ for all $n < n_0$, then $y[n] = 0$ for all $n < n_0$. Find the impulse response of the system. Is this system an FIR or an IIR filter?

(b) For which values of λ_1 and λ_2 is this system stable? Justify your answer.

(c) Let $\lambda_1 = \lambda_2 = \frac{1}{2}$. Given the input signal $x[n] = \left(\frac{1}{4}\right)^n u[n]$ to the system, compute the output $y[n]$.

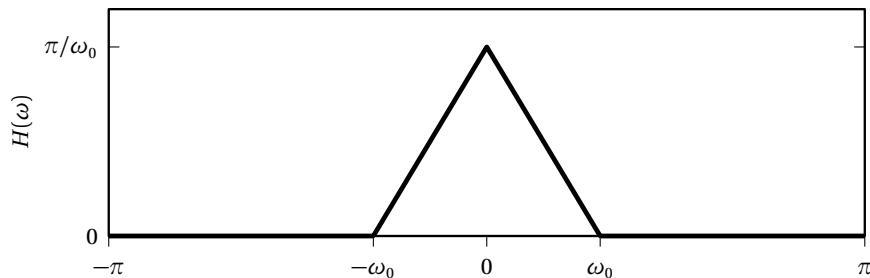
Exercise 10.

DTFT. This question is worth 22 points.

Consider an LTI system with frequency response

$$H(\omega) = \begin{cases} \frac{\pi}{\omega_0} \left(1 - \left|\frac{\omega}{\omega_0}\right|\right), & |\omega| \leq \omega_0, \\ 0, & \text{otherwise,} \end{cases}$$

for some value $0 \leq \omega_0 < \frac{\pi}{2}$. The real-valued frequency response has thus a triangular shape as in the following illustration:



(a) Is the system a low-pass, a high-pass, or a band-pass filter?

(b) Is the system causal?

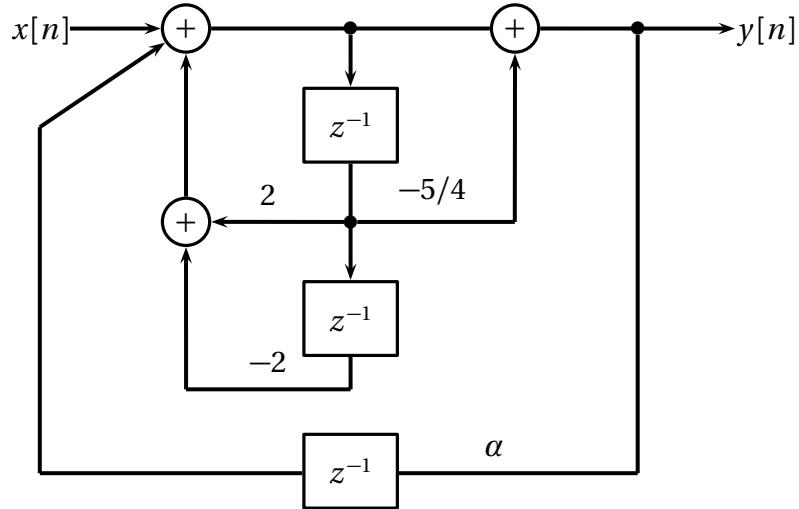
(c) Find the system's response to the input signal $x[n] = 1 + \cos\left(\frac{\omega_0}{2}n\right) + \cos(2\omega_0 n)$.

(d) Let \mathbf{h} be the impulse response of the system. Show that $\sum_{n \in \mathbb{Z}} |h[n]|^2 = \frac{\pi}{3\omega_0}$.

Exercise 11.

System analysis. This question is worth 26 points.

Consider the causal LTI system shown in the following block diagram and let $\alpha = -2$:



- (a) Compute the system's transfer function $H(z)$
- (b) Plot the system's poles and zeros on the complex plane
- (c) Sketch the magnitude of the system's frequency response $|H(\omega)|$
- (d) Find the transfer function of a *stable* filter $G(z)$ so that $|H(z)G(z)| = 1$
- (e) Would the system be stable if we removed the lowest branch (i.e. if we set $\alpha = 0$)?
