

COM-202 - Signal Processing

Homework 8

Please submit your answer to Exercise 6 by Apr 17, 2025

Exercise 1. IIR Filter properties

Consider a causal, stable IIR filter with impulse response $g[n]$ and transfer function $G(z)$. Which of the following statements are always true?

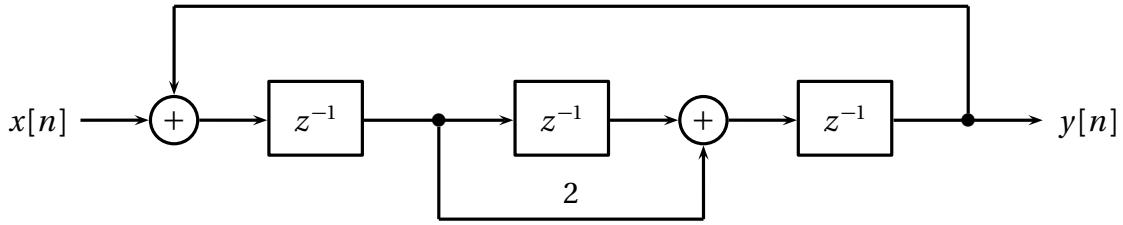
- (a) The DTFT of $g[n]$ exists.
- (b) The ROC of $G(z)$ includes the curve $|z| = 0.5$.
- (c) The inverse filter $H(z) = 1/G(z)$ is FIR.
- (d) The inverse filter $H(z) = 1/G(z)$ is stable.
- (e) The system $D(z) = (1 - 3z^{-1})G(z)$ is stable.
- (f) The filter with transfer function $C(z) = G(z)G(z)$ is stable.

Exercise 2. FIR Filter properties

Answer the questions in the previous exercise once again, but this time assume that the filter $G(z)$ is FIR.

Exercise 3. Block diagram analysis

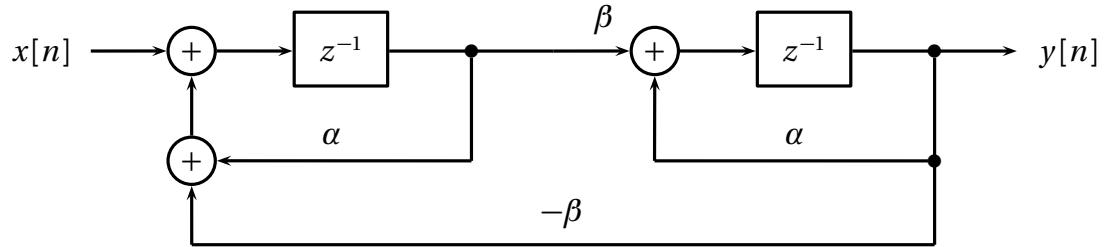
Consider the causal system implemented by the following block diagram:



- (a) Compute the system's transfer function $H(z)$.
- (b) Plot the system's poles and zeros on the complex plane.
- (c) Determine if the system is stable.

Exercise 4. Block diagram 1

Consider the causal system described by the following block diagram:



- (a) Compute its transfer function $H(z) = Y(z)/X(z)$.
- (b) Assume now that

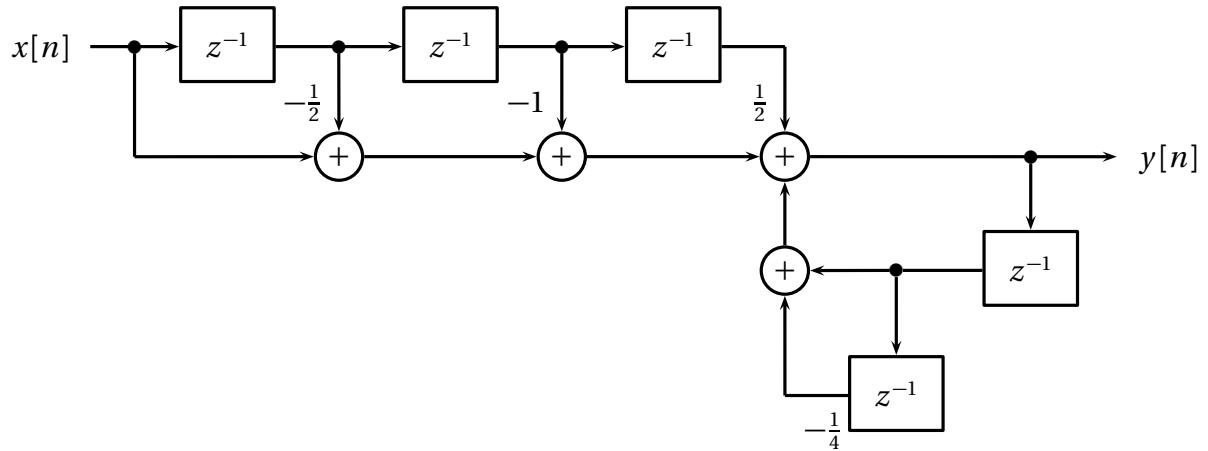
$$\alpha = r \cos \theta$$

$$\beta = r \sin \theta$$

for $0 < r < 1$ and $0 < \theta < \pi/2$. Describe the type of filter implemented by the block diagram for this choice of coefficients and sketch its pole-zero plot.

Exercise 5. Block diagram 2

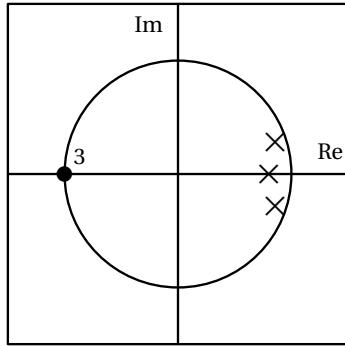
Consider the causal system described by the following block diagram:



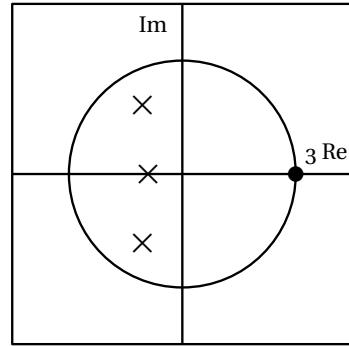
- (a) Compute its transfer function $H(z) = Y(z)/X(z)$.
- (b) Is the system stable?
- (c) Draw a block diagram that implements the same transfer function **using only two delays** (i.e. only two z^{-1} delay blocks).

Exercise 6. Poles and zeros

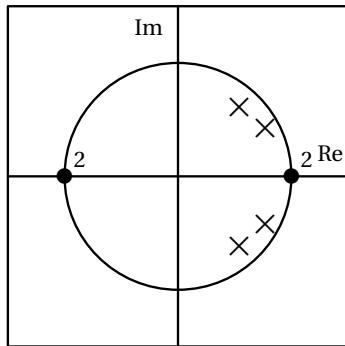
For each of the following pole-zero plots, sketch the magnitude response of the corresponding filter.



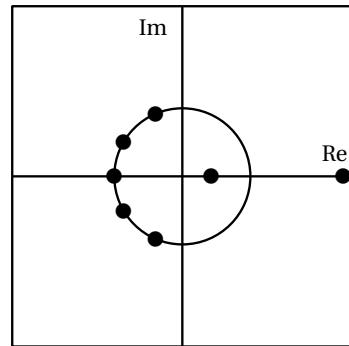
(a)



(b)



(c)



(d)

(In the plots, poles are represented by crosses and zeros by circles; if applicable, the multiplicity of each pole and zero is indicated by a number. The circle indicates the unit circle on the complex plane).

Exercise 7. Filter design

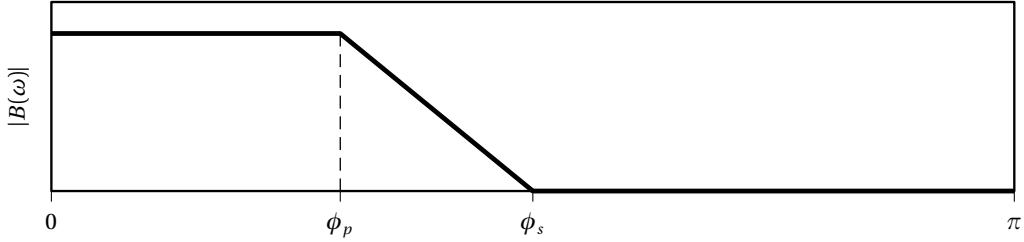
Bellanger's Approximation is an empirical formula used to estimate the length of an optimal linear-phase FIR lowpass filter based on its design specifications. For a lowpass with transition band $[\omega_p, \omega_s]$ and error tolerances of δ_p and δ_s in passband and stopband respectively, the required filter length will be approximately

$$N \approx \frac{-2 \log_{10}(10\delta_p \delta_s)}{3(\omega_s - \omega_p)/2\pi} - 1$$

Since the order is inversely proportional to the width of the transition band, "sharp" filters (i.e., filters with a narrow transition band) will require a lot of multiplications per output sample. The following questions will ask you to analyze an alternative design strategy called *Interpolated FIR* (IFIR), used to obtain sharp filters at a lower computational cost.

To begin, assume you have designed an optimal N -tap FIR lowpass $B(z)$ with impulse response $b[n]$ and with the following magnitude response (we're showing just the positive

frequencies and neglecting the ripples):

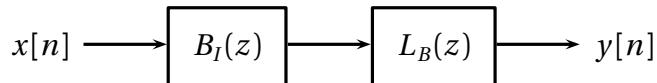


The transition band of $B(z)$ has width $\Delta_B = \phi_s - \phi_p$. We now build a derived FIR filter $B_I(z)$ with impulse response

$$b_I[n] = \begin{cases} b[n/2] & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases}$$

- (a) Express $B_I(z)$ in terms of $B(z)$.
- (b) Sketch the magnitude response $|B_I(\omega)|$; you don't need to draw the ripples but clearly show the band edges and their values.
- (c) Assuming that multiplications by zero can be ignored, what is the number of multiplications per output sample required by $B_I(z)$?

Consider now the following cascade, used to implement a complete IFIR filter:



- (d) Describe and sketch the frequency response of a filter $L_B(z)$ so that the cascade $B_I(z)L_B(z)$ implements a lowpass filter.
- (e) Specify the passband and stopband frequencies of the lowpass implemented by the cascade $B_I(z)L_B(z)$.
- (f) $L_B(z)$ will be implemented as an optimal linear-phase FIR; find the passband and stopband frequencies θ_p, θ_s that maximize the width the transition band of $L_B(z)$.

Consider now the following lowpass design specifications:

$$\omega_p = 0.3\pi$$

$$\omega_s = 0.31\pi$$

$$\delta_p = \delta_s = 0.01;$$

we want to compare a standard FIR implementation $H(z)$ with an IFIR implementation $\hat{H}(z) = B_I(z)L_B(z)$ such that $\hat{H}(z)$ has the same passband as $H(z)$.

- (g) Estimate the order of a standard FIR implementation $H(z)$ using Bellanger's formula.
- (h) For an IFIR implementation, determine the values of ϕ_p and ϕ_s to use for the initial filter $B(z)$ so that the final IFIR cascade $\hat{H}(z) = B_I(z)L_B(z)$ (for a suitable $L_B(z)$) has the same passband as $H(z)$.

- (i) Estimate the order of an optimal linear phase FIR implementation of $B(z)$.
- (j) Assume an optimal linear phase FIR implementation for $L_B(z)$, using the maximum transition band Δ_L possible and using $\delta_p = \delta_s = 0.01$; estimate the order of $L_B(z)$.
- (k) Using the above estimations, determine the number of operations per output sample of the IFIR cascade $B_I(z)L_B(z)$.
