

COM-202 - Signal Processing

Homework 7

Please submit your answer to Exercise 5 by Apr 10, 2025

Exercise 1. A simple model for a bank

A simple discrete-time feedback loop with a single delay can be used to describe an elementary banking model where compound interest accrues yearly. Assume the following:

- you can only deposit (or withdraw) funds from your account on January 1st of each year; call the yearly deposit $x[n]$, with $n = 0$ when you open the account;
- on December 31st each year, the bank looks at your total assets and adds R percent of it to your account the next day; R is the interest rate;
- let's assume for simplicity that you never take any money out, so your balance is always positive.

With these assumptions we can model $y[n]$, the amount of money in your account in year n , via the recursive equation

$$y[n] = \alpha y[n-1] + x[n]$$

where $\alpha = 1 + R$.

Compute the closed-form expression for $y[n]$ when $x[n] = \beta u[n]$, that is, when you deposit β units of currency in your account every year.

Exercise 2. Allpass filters

An allpass filter is a filter whose magnitude response is a constant. Allpass filters are useful when we need to modify only the phase of an input signal.

(a) Consider a discrete-time LTI system with transfer function

$$H(z) = \frac{1 - (1/a)z^{-1}}{1 - az^{-1}}$$

where a is a real-valued constant. Show that the system is allpass, i.e., show that $|H(\omega)| = d$ for all values of the frequency ω .

(b) Determine the magnitude response of a filter with transfer function

$$G(z) = \frac{1 - (1/a)z^{-1}}{1 - az^{-1}} \frac{1 - (1/b)z^{-1}}{1 - bz^{-1}} \frac{1 - (1/c)z^{-1}}{1 - cz^{-1}}$$

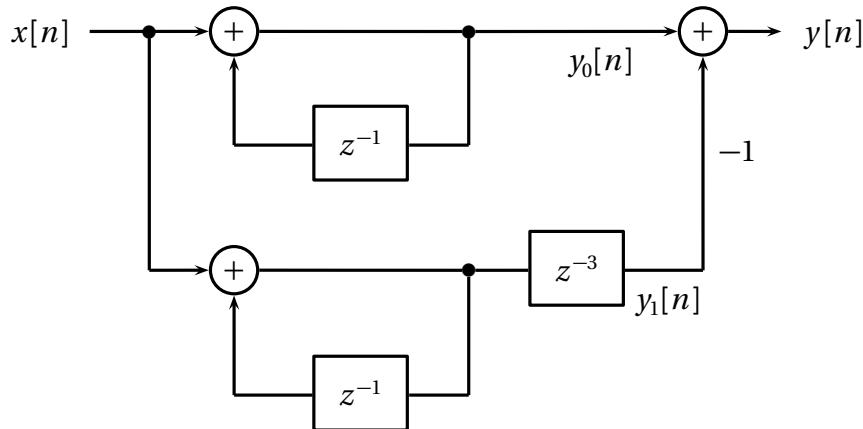
where a, b , and c are real-valued constants.

Exercise 3. Linear phase

Show that a causal, odd-length, antisymmetric FIR filter has a linear phase response. Recall that, for an FIR of length M , symmetry (or antisymmetry) is around the midpoint of the impulse response so that, in this case, the antisymmetry condition translates to $h[n] = -h[M - 1 - n]$ for $n = 0, \dots, M - 1$.

Exercise 4. Discrete-time system diagram

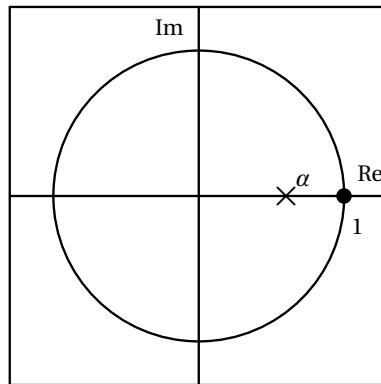
Consider the causal system described by the following block diagram. Assume a causal input ($x[n] = 0$ for $n < 0$) and zero initial conditions.



- Find the three constant-coefficients difference equations that describe the relationship between the input $x[n]$ and $y_0[n], y_1[n], y[n]$.
- Find $H_0(z), H_1(z)$ and $H(z)$, the transfer functions associated to the three CCDEs you found in the previous point.
- Is the whole system stable?
- Consider the input $x[n] = u[n]$, where, as usual, $u[n] = 1$ for $n \geq 0$ and $u[n] = 0$ for $n < 0$. How do $y_0[n], y_1[n]$ and $y[n]$ evolve over time? Sketch their values.

Exercise 5. Impulse response from poles and zeros

Compute the impulse response of the causal filter with the following pole-zero plot:



Exercise 6.

A causal LTI system is described by the following difference equation, where b is a real number.

$$y[n] + (b + 1)^2 y[n - 1] + (2b^3 + b^2) y[n - 2] = x[n].$$

- Find the transfer function $H(z)$ and the range of b such that the system is stable.
- Sketch a block diagram implementing this system.
