
COM 202 - Signal Processing

2025 Final Exam Solutions

Multiple Choice Questions: each multiple choice question is worth 4 points.

Exercise 1. Signal Processing in Python

What is the output obtained by running the following code?

import numpy as np

def myfun(x: np.ndarray, h: np.ndarray) -> np.ndarray:
out = []
for i in range(len(x) - len(h) + 1):

v = np.sum(x[i:i+len(h)] * h[::-1])
out.append(v)

return out

print( myfun(np.array([0,1,-2,3,0,2]), np.array([-1,1,-1])) )

a) [3 -6 5 -5]

b) [0 -1 3 -6 5 -5 2 -2]

c) [-5 5 -6 3]

d) [3 -6 5 -5 2]

Solution: The code computes the convolution of the input arrays at all indexes for which the

arrays fully overlap; the correct answer is [3, -6, 5, -5]

Exercise 2. DTFT in Python

Consider a real-valued, finite support sequence x, where x [n ] is zero for n 6∈ [0, N − 1].

Given a frequency valueω0 = 2π (A/B ), where A, B are nonzero integers, you want to com-

pute numerically the value |X (ω0)|, i.e. the magnitude of the DTFT of the sequence at

ω= 2π (A/B ).

Which of the following Python functions does not return the value |X (2π(A/B ))| ?
a) def dtft_point(A, B, x):

return np.abs(np.sum(x * np.exp(-2j * np.pi * A / B)))

b) def dtft_point(A, B, x):
N = len(x)
return np.abs(np.fft.fft(x, N * B)[N * A])

1



c) def dtft_point(A, B, x):
w = 2 * np.pi * np.arange(len(x)) * A / B
return np.abs(np.sum(x * np.exp(-1j * w)))

d) def dtft_point(A, B, x):
t = 2 * np.pi * np.arange(len(x)) * A / B
return np.sqrt(np.sum(x * np.cos(t)) ** 2 + np.sum(x * np.sin(t)) ** 2)

Solution:

The incorrect function is:

def dtft_point(A, B, x):
return np.abs(np.sum(x * np.exp(-2j * np.pi * A / B)))

since the exponential is missing the index variable and so it returns the value

�

�

�

∑N

n=0
x [n ]e − j 2π (A/B )

�

�

�=
�

�

�

∑N

n=0
x [n ]

�

�

�= |X (0)|.

Exercise 3. DFT

Consider two sequences x, y∈C4 whose length-4 DFTs are, respectively,

X=
�

1+ j 2 1−2 j 3 j
�T

Y=
�

1+ j 2 0 3 j
�T

Indicate the value of the squared distance between x and y, namely, the value of

‖x−y‖2 =
3
∑

n=0

|x [n ]− y [n ]|2.

a) 5
4

b)
p

5
4

c) 5

d)
p

5

Solution: The correct answer is 5
4 .

Let z= x−y. Since the DFT is linear, Z=X−Y; by the energy conservation property of the

DFT (an orthogonal change of basis) we have

3
∑

n=0

|x [n ]− y [n ]|2 =
3
∑

n=0

|z [n ]|2 =
1

4

3
∑

k=0

|Z [k ]|2 =
1

4
|1−2 j |2 = 5

4
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Exercise 4. DFT

Compute the 4 DFT coefficients of the length-4 signal x=
�

2 1 1 1
�T

.

a) X=
�

5 1 1 1
�T

b) X=
�

1 1 1 5
�T

c) X=
�

5 0 0 0
�T

d) X=
�

1 1 1 2
�T

Solution: The correct answer is X=
�

5 1 1 1
�T

.

One way to solve the problem is to write

x [n ] =δ[n ] +1

The DFT coefficients of these two signals are standard (see Appendix B) and we obtain

X [k ] = 1+4δ[k ]

and thus X=
�

5 1 1 1
�T

.

Exercise 5. Transfer function

What is the transfer function of the system represented by the following block diagram?

x [n ]

+

z −1

z −1

+ y [n ]

−2/3

−3/2

a) H (z ) =
1− (3/2)z −1− z −2

1+ (2/3)z −1

b) H (z ) =
1− (3/2)z −1− z −2

1− (2/3)z −1
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c) H (z ) =
1− (3/2)z −1

1+ (2/3)z −1

d) H (z ) = 1

Solution: The transfer function of the top branch is that of a first-order feedback loop

Ht (z ) =
1

1+ (2/3)z −1

while the bottom branch is a simple delay with a gain term:

Hb (z ) = (−3/2)z −1

The two branches are connected in parallel and so the global transfer function is

H (z ) =Ht (z )+Hb (z ) =
1− (3/2)z −1− z −2

1+ (2/3)z −1
.

Exercise 6. DTFT

Given a real-valued, discrete-time signal x with DTFT X (ω), indicate the correct expression

for the DTFT of the signal

y [n ] =

¨

2x [n ] n even,

2x [−n ] n odd.

[Hint: rewrite the definition of y [n ] using the fact that the sequence 1+ e − jπn is zero for n odd while

the sequence 1− e − jπn is zero for n even.]

a) Y (ω) = X (ω)+X (ω−π)+X (−ω)−X (−ω−π)
b) Y (ω) = X (ω)+X ∗(ω)+X (−ω)+X ∗(−ω)
c) Y (ω) = (1/2)X (ω/2)+ (1/2)X (−ω/2)
d) Y (ω) = 2X (ω)+2X ∗(−ω)

Solution:

The signal y can be expressed as

y [n ] = (1+e − jπn ) x [n ]+(1−e − jπn ) x [−n ] = x [n ]+x [−n ]+e − jπn (x [n ]−x [−n ]) = x [n ]+x [−n ]+e jπn (x [n ]−x [
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since e − jπn = e − jπn . Using the DTFT properties of linearity and phase shift, we have

Y (ω) = X (ω)+X (ω−π)+X (−ω)−X (−ω−π).

Exercise 7. Frequency response

Consider a stable, causal LTI system with transfer function

H (z ) =
(z −2+1) (0.17+0.67z −1+ z −2+0.67z −3+0.17z −4)

1−0.78z −1−0.68z −2−0.18z −3−0.03z −4

The magnitude of the system’s frequency response |H (ω)| is shown in one of the following

plots. Indicate which one.

a)

−π −π/2 0 π/2 π

b)

−π −π/2 0 π/2 π

c)

−π −π/2 0 π/2 π

d)

−π −π/2 0 π/2 π
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Solution:

The initial term (1+z −2) in the transfer function corresponds to a pair of complex-conjugate

zeros on the unit circle at z =± j = e ± jπ/2. The magnitude response will therefore be exactly

zero atω=±π/2 and only one plot fulfills this condition.

Exercise 8. System Properties

Consider the system defined by the input-output relationship

y [n ] =
1

2L +1

n+L
∑

k=n−L

x [k ] (1)

for L a positive integer. Which of the following statements is false?

a) This system is causal

b) This system is BIBO stable

c) This system is a low-pass filter

d) This system is LTI

Solution:

The system is not causal since its the output at time n depends on L future samples (as well as

L past samples). Indeed, the system is a zero-centered Moving Average of length 2L+1.

Exercise 9. Interpolation

A five-sample discrete-time signal x [n ] is interpolated into a function xc (t ) using a first-

order local interpolator with interpolation interval Ti = 1:

xc (t ) =

4
∑

n=0

x [n ] i1(t −n ), t ∈R, 0≤ t ≤ 4

where

i1(t ) =

¨

1− |t | |t | ≤ 1

0 otherwise

This results in an interpolated function xc (t )where data points are connected with straight

lines. The function is then resampled with period Ts = 0.5 to produce the sequence y [n ] =

xc (nTs ).
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Which of the following statements is true ?

a) y [1] = (x [0] + x [1])/2

b) y [1] = x [1]

c) y [1] = 0

d) y [1] = (x [0] + x [2])/2

Solution: The correct answer is y [1] = (x [0] + x [1])/2. The interpolator connects the dots

between each sample in x [n ]. Then, the sampling picks out the original values of x [n ] as

well as the interpolated values in between each sample.

Exercise 10. Image Processing

Consider an digital image model in which pixels are encoded over 101 distinct grayscale

levels, from black (zero) all the way to white (100). In this model, the 2D signal defined

as

c [n1, n2] = 50 (1− (−1)n1+n2).

forms the the checkerboard pattern shown in figure (a), with neighboring pixels alternating

between black and white.

The signal c [n1, n2] is filtered with a zero-centered, 3×3 FIR and the output is the uniformly

gray image shown in figure (b) (assume the input image is so large that border effects can

be neglected).

(a) (b)

Which of the four FIRs listed below turns the checkerboard into a uniformly gray image?
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a) h [n1, n2] =
1

8





1 1 1

1 0 1

1 1 1





b) h [n1, n2] =
1

9





1 1 1

1 1 1

1 1 1





c) h [n1, n2] =
1

4





0 1 0

1 0 1

0 1 0





d) h [n1, n2] =
1

5





1 0 1

0 1 0

1 0 1





Solution:

The correct filter is h [n1, n2] =
1

8





1 1 1

1 0 1

1 1 1



 since, no matter where it’s placed on the checker-

board, its 8 samples with value one will overlap with 4 white pixels.

Exercise 11. Digital storage

A 10-second piece of analog audio is sampled at Fs = 40000 Hz and quantized with 4 bits

per sample. How many bits would it take to store the digital data uncompressed?

(a) 16 ·105 bits

(b) 106 bits

(c) 8 ·104 bits

(d) more bits than atoms in the universe

Solution: The correct answer is 16 · 105 bits. At 40000 Hz we have 4× 105 samples over ten

seconds. Taking four bits for each sample gives the correct asnwer.
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Exercise 12. Constant-Coefficient Difference Equations (16 points)

A causal discrete-time filter is defined by the difference equation

y [n ] = x [n ]− 1

6
x [n −1]−αx [n −2] +

2

3
y [n −1]

where α is a real number.

(a) [4 pts] Compute the expression for the transfer function H (z ).

(b) [2 pts] Is the system stable?

(c) [4 pts] For what values of α does the system become an FIR filter? Call this value α0.

(d) [6 pts] Usingα=α0, find a signal x [n ] such that, when x [n ] is the input to the system,

the output is y [n ] =δ[n ].

Solution:

(a) the transfer function is

H (z ) =
1− 1

6 z −1−a z −2

1− 2
3 z −1

(b) The system is stable since its single pole in z = 2
3 is less than one in magnitude.

(c) The system is an FIR filter only if there are no poles and, for this to happen, H (z ) should

have a zero in 2/3 that cancels the existing pole. From

1− 1

6
z −1−a z −2
�

�

z=2/3
=

3

4
−a

9

4
= 0

we obtain α0 =
1
3 .

(d) Since Y (z ) = H (z )X (z ), if y [n ] = δ[n ] then Y (z ) = 1 and so the z -transform of the

desired input signal will be X (z ) = 1/H (z ). When α = α0 =
1
3 , the transfer function

becomes

H (z ) = 1+
1

2
z −1

and therefore

X (z ) =
1

1+ 1
2 z −1

.

This corresponds to an exponentially decaying signal (you can remember the impulse

response of a leaky integrator, for instance) and we will have

x [n ] =

�

−1

2

�n

u [n ]
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Exercise 13. Sampling (12 points)

Consider the continuous-time system shown in figure (a) below, whose output is the sum

of its two input signals. In order to implement this system, you build the device shown in

figure (b), using two samplers and an ideal sinc interpolator, all of which work at the same

rate Fs .

x1(t )

+ y (t )

x2(t )

x1(t )

+ ŷ (t )

x2(t )

System-(a) System-(b)

In the following questions, the continous-time signals s1(t ) and s2(t ) are known to be real-

valued and bandlimited, and their maximum positive frequency is FN = 4000 Hz.

(a) [4 pts] Determine the minimum value for the rate Fs so that when the inputs are

x1(t ) = s1(t )and x2(t ) = s2(t ), System-(b) produces exactly the same output as System-

(a). What is the corresponding sampling interval Ts ?

(b) [4 pts] Suppose now that the two input signals are x1(t ) = s1(t −t0) and x2(t ) = s2(t +t0)

for some t0 > 0. For the two systems to produce the same result, should you change

the value of the rate Fs with respect to the previous case?

(c) [4 pts] Finally, suppose that the inputs are x1(t ) = s1(αt ) and x2(t ) = s2(αt ) with 0 <

α < 1. For the two systems to still produce the same result, should you change the

value of the rate Fs with respect to the first case? Does Ts become bigger, smaller, or

stay the same?

Solution:

(a) Since the signals are real, the magnitude of the CTFT is symmetric, and so the smallest

negative frequency is negative 4000 Hz. According to the sampling theorem, Fs = 8000

Hz and Ts =
1

8000 seconds.

(b) Since a shift in time corresponds to scaling by a complex exponential in the frequency

domain, this does not impact the maximum positive frequency. Thus, Fs and Ts are

the same as in part a)

(c) The CTFT of the new signals will be 1
αX1

�

ω
α

�

and 1
αX2

�

ω
α

�

. Thus, the new maximum

positive frequency will be αFN < FN . Since the bandwidth of both signals becomes

smaller, you have two alternative options:
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- you can use the same sampling rate as before (and Ts remains unchanged as well);

the system will work as intended although internally the signals will be oversam-

pled by a factor 1/α;

- you can reduce the sampling rate to Fs = 8000·αHz and Ts =
1

8000·α seconds, which

will minimize the number of samples (and thus the number of operations) per

second.

Exercise 14. Multirate interpolation (12 points)

Consider two possible implementations of a multirate system that increases the rate of the

input by a factor of two. In both implementations, all filters are FIR.

System A, shown in the following diagram, uses a lowpass filter with cutoff frequencyωc =

π/2 after the upsampler; the impulse response of the filter h [n ] has length M = 2L .

x [n ] 2 ↑ H (z ) w [n ]

System B, shown in the following diagram, uses two filters and two upsamplers in paral-

lel:

x [n ] b G0(z ) 2 ↑ + y [n ]

G1(z ) 2 ↑ z −1

y0[n ]

y1[n ]

(a) [2 pts] Determine CA, the number of multiplications per input sample required by

System A.

(b) [4 pts] In system B, call y0[n ] and y1[n ] the outputs of the two FIR filters G0(z ) and

G1(z ). Express y [n ] in terms of y0[n ] and y1[n ].

(c) [4 pts] Given h [n ], the length-2L impulse reponses of the filter H (z ) in System A,

determine the the impulse responses of the filters G0(z ) and G1(z ) in System B so

that the two systems produce the same output.

(d) [2 pts] What is CB , the number of multiplications per input sample required by Sys-

tem B?

Solution:
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(a) In System A every output sample w [n ] is generated by an FIR filter of length M , which

will require M multiplications. Since the input signal x [n ] is upsampled by two before

it reaches the filter, the FIR must compute two ouput samples for each input sample

and so, in total, the number of multiplications per input sample is

CA = 2M

(b) in System B, call pi [n ] the signals exiting the two upsamplers; we have







pi [2n ] = yi [n ]

pi [2n +1] = 0

After the delay on the bottom branch, y [n ] = p0[n ] +p1[n −1] and so







y [2n ] = p0[2n ] +p1[2n −1] = p0[2n ] +p1[2(n −1)+1] = y0[n ]

y [2n +1] = p0[2n +1] +p1[2n ] = y1[n ]

The sequence of output samples y [n ] is thus the interleaving of the the sequences y0[n ]

and y1[n ]; starting at n = 0, for instance, the output is

y [0] = y0[0], y [1] = y1[0], y [2] = y0[1], y [3] = y1[1], y [4] = y0[2], y [5] = y1[2], . . .

(c) there are two ways of solving this question:

- Working in the time domain, the signals produced by the two FIR filters in sys-

tem B are

yi [n ] = (g i ∗ x )[n ] =

Mi−1
∑

k=0

g i [k ]x [n −k ], i = 0, 1

where M0,1 are the lengths of the two impulse responses g0,1[n ]. Since we want

y [n ] =w [n ], let’s look at the even- and odd-indexed values of w [n ]. In System A,

call x2[n ] the signal exiting the upsampler:

x2[n ] =

¨

x [n/2] n even

0 n odd

With this, the even-indexed output samples are computed as

w [2n ] = (h ∗ x2)[2n ]

=

M−1
∑

k=0

h [k ]x2[2n −k ]

=

M /2−1
∑

i=0

h [2i ]x2[2n −2i ]
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(because, since x2[n ] = 0 for n odd, all terms for k odd are equal to zero)

=

L−1
∑

i=0

h [2i ]x [n − i ].

In order to have w [2n ] = y0[n ] it must be

L−1
∑

i=0

h [2i ]x [n − i ] =

M0∑

k=0

g0[k ]x [n −k ]

meaning that G0(z ) is a length-L FIR whose impulse response contains the even-

indexed samples of h [n ]. Similarly, for the odd-indexed output samples, we ob-

tain

w [2n +1] =

L−1
∑

i=0

h [2i +1]x [n − i ] =

M1∑

k=0

g1[k ]x [n −k ]

so that, in the end, System A and System B are equivalent if

g i [k ] =

¨

h [2k + i ] 0≤ k < L =M /2

0 otherwise
i = 0, 1.

- Working in the z -transform domain, we have

W (z ) =H (z )X (z 2)

Y (z ) =G0(z
2)X (z 2)+ z −1G1(z

2)X (z 2) = (G0(z
2)+ z −1G1(z

2))X (z 2)

so that, in order to have Y (z ) =W (z ) it must be

H (z ) =G0(z
2)+ z −1G1(z

2).

which means

M−1
∑

n=0

h [n ]z −n =

M0−1
∑

n=0

g0[n ]z
−2n +

M1−1
∑

n=0

g1[n ]z
−(2n+1)

This equation relates two polynomials in z and by comparing the coefficients of

each power of z we can establish that

g0[n ] = h [2n ], n = 0, 1, . . . , L

g1[n ] = h [2n +1], n = 0, 1, . . ., L

(d) In system B, every input sample is processed in parallel by two FIR filters of length L,

so the total number of multiplications per input sample is

CB = L + L =M =CA/2
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Exercise 15. Optimal Denoising (12 points)

In the system shown in figure (a) below:

- the input x is a random process whose Power Spectral Density Px (ω) is shown fig-

ure (b) forω∈ [−π,π]; the PSD is described analytically by the expression

Px (ω) =







2π

�

1− |ω|
α

�

|ω| ≤α
0 a < |ω| ≤π

- η is a zero-mean, white noise process with PSD Pη(ω) =σ
2, independent of the input

process x

- the denoising filter H (z ) is an ideal lowpass with cutoff frequency λ

H (ω) = rect
� ω

2λ

�

x + H (z ) y

η

α−α

2π
Px (ω)

−π 0 π

0

(a) (b)

A performance metric for this system is the Signal to Noise-and Distortion ratio (SNDR);

this is defined as the the power of the “clean” input process x divided by the power of the

error signal e= y−x, which will depend on the chosen cutoff frequency λ. Remember

that the total power of a process can be obtained as the integral of its PSD over [−π,π]

so that:

SNDRλ =

1
2π

∫ π

−πPx (ω)dω

1
2π

∫ π

−πPe (ω)dω

(a) [3 pts] compute the SNDR when λ=π (which is equivalent to removing the lowpass

filter)

(b) [3 pts] compute the SNDR when λ=α

(c) [6 pts] what is the optimal cutoff frequency λopt that maximizes the SNDR?

Solution:
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The total power of the input is the integral of the input’s PSD, namely, the area of the triangle

of base 2α and height 2π:

Wx =
1

2π

∫ π

−π
Px (ω)dω= α

The error signal is

e= y−x=h ∗ (x+η)−x= h ∗η+h ∗x−x

The filter is an ideal lowpass, so H (ω) = 1 over [−λ,λ] and zero otherwise; therefore

h ∗x−x=hc ∗x

where hc is the impulse response of the complementary highpass filter

Hc (ω) =H (ω)−1

Since η and x are independent, the PSD of the error signal is

Pe (ω) = |H (ω)|2σ2+ |Hc (ω)|2Px (ω)

The total power of the error is the integral of the error’s PSD, and it will depend on the cutoff

frequency λ; since the PSD is symmetric, we have:

We (λ) =
1

2π

∫ π

−π
|H (ω)|2σ2dω+

1

2π

∫ π

−π
|Hc (ω)|2Px (ω)dω

=
1

π

∫ λ

0

σ2dω+
1

π

∫ π

λ

Px (ω)dω

=
λ

π
σ2+D (λ)

If we draw a picture of the PSDs and the filter as in the figure below, we can see that D (λ)

can be evaluated geometrically as the area of the shaded region, a right triangle with sides

(α−λ) and 2π(1−λ/α):

D (λ) =
1

π

∫ π

λ

Px (ω)dω=

¨

(α−λ)2
α 0<λ<α

0 α≤λ≤π

σ2

2π(α−λ)/α

2π

λ α

Px (ω)

H (ω)

Pη(ω)

−π 0 π

0
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(a) If λ=π, We (π) =σ
2 so the SNDR is

SNDRπ =
α

σ2

(b) If λ≥α, the PSD of the input is not affected by the lowpass operation whereas the PSD

of the noise is set to zero for |ω|>λ; the power of the error is We (λ) = (σ
2/π)λ and the

SNDR for λ= α is thus

SNDRα =
π

σ2
≥ SNDRπ

(c) Since the power of the signal is a constant, the maximum SNDR is achieved by the

cutoff frequency that minimizes the power of the error. For λ ≥ α, We (λ) decreases

linearly with λwhereas for 0≤λ<αwe have

We (λ) =
σ2

π
λ+
(α−λ)2
α

;

this is a quadratic function of the cutoff frequency whose global minimum can be

found by solving

∂ We

∂ λ
=
σ2

π
−2
(α−λ)
α

= 0.

This gives the optimal cutoff frequency

λopt =α

�

1− σ
2

2π

�
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