JEAN-YVES LE BOUDEC, PATRICK THIRAN,

RUDIGER URBANKE

SCIENCES DE L'INFOR-
MATION

NOVEMBER 28, 2014

LES FICHIERS ECHANGES SUR INTERNET et stockés sur les disques
durs contiennent de l'information qui deviendra finalement du
texte, des images ou des sons. Comment cette information est-elle
mesurée et comprimée ? comment est-elle sécurisée pour éviter

les copies illicites ? comment est-elle protégée contre les erreurs
lors d"une recopie ? Ce sont les trois questions auxquelles ce livre
répond.

Il s’adresse aux étudiants de premiére année de I'enseignement
supérieur, et au-dela, a toute personne intéressée a une premiere
approche scientifique des sciences de l'information. Les pré-requis
sont une formation de base en mathématiques du niveau de la fin
de l'enseignement secondaire. Il est issu des supports du cours
“Sciences de I'Information” donné en premiére année d’informa-
tique et de systémes de communication a la faculté 1&C de 'EPFL.

Ce livre a été écrit avec le souci constant de délivrer les idées
profondes qui sous-tendent les théories, tout en restant aussi simple
que possible, mais sans déformer la vérité scientifique. Nous avons
mis en avant les concepts fondamentaux a chaque fois que cela sim-
plifie ’exposé, méme si en apparence la description peut paraitre
plus longue. Ainsi par exemple, nous présentons le théoréme des
restes chinois comme un isomorphisme, plutét que comme une
méthode astucieuse pour résoudre un certain type d’équations; ou
encore, nous présentons le théoreme d’Euler comme un cas parti-
culier du théoréme plus simple qui dit que la période d’un élément
d’un groupe fini divise le nombre d’éléments du groupe. Cette ap-
proche, qui dévoile les structures sous I'habillage des algorithmes,
nous semble essentielle a la compréhension des sciences de l'infor-
mation ; elle vise aussi a cultiver chez le lecteur 1’habitude de recon-
naitre des abstractions communes dans des situations apparemment
tres différentes — ce qui est a la base de la pensée algorithmique
moderne. Et peut-étre permettra-t-elle a la lectrice ou au lecteur de
percevoir une certaine beauté dans les sciences de l'information...

DANs LA PARTIE I nous découvrons comment définir la quantité
d’information et sa mesure, en utilisant des axiomes simples et in-
tuitifs. Les concepts essentiels qui apparaissent sont ’entropie et
I'entropie conditionnelle. La définition méme de ces concepts est
basée sur une interprétation probabiliste du monde; il n’est cepen-
dant pas nécessaire de connaitre en détail la théorie des probabilités
car les concepts nécessaires sont expliqués de maniére élémen-
taire dans un chapitre de rappel. Les codes de source permettent
de comprimer n'importe quel fichier numérique ; leurs propriétés
fondamentales sont analysées et expliquées sur des exemples tres
simples. Cela permet d’aborder le premier théoreme de la théorie
de l'information, qui établit que la quantité d’information, définie
plus haut a partir d’axiomes intuitifs, correspond exactement a la
taille en bits que peut obtenir le meilleur code de source.

Dans la partie II nous découvrons comment sécuriser 1'informa-
tion par la cryptographie. Nous analysons tout d’abord ce qu’est

la confidentialité parfaite — cela dérive simplement des concepts

de la partie I. La cryptographie est fille de la théorie des nombres;
nous en donnons une présentation aussi élémentaire et pratique
que possible, sans en cacher les idées fondamentales. Pour cela,
nous introduisons l'arithmétique modulaire et quelques éléments
d’algebre abstraite, ce qui forme aussi le sur lequel est bati la partie
suivante. La présentation et ’analyse de l'algorithme de cryptogra-
phie asymétrique RSA en découlent alors simplement.

La partie III est consacrée a la protection de l'information contre
les erreurs qui apparaissent durant 1’écriture, la lecture, la trans-
mission ou le stockage. Les concepts fondamentaux sont la distance
minimale et la borne de Singleton, qui permettent de quantifier la
puissance correctrice d"un code correcteur. Pour la réalisation pra-
tique de codes, nous avons choisi de présenter les codes linéaires :
ce sont parmi les plus puissants et les plus commodes a analyser.
Cela nous permet de permet de présenter et comprendre les codes
de Reed Solomon, qui sont parmi les plus efficaces et les plus uti-
lisés. Ici aussi, la présentation n’essaie pas d’escamoter la théorie
sous-jacente, qui est celle des espaces vectoriels sur des corps finis —
une théorie particulierement puissante et dont la beauté est immé-
diatement accessible a toute personne ayant étudié un petit peu de
géométrie vectorielle élémentaire.

UNE LECTURE INTERACTIVE de ce livre est facilitée et encouragée
par les nombreuses questions en marge, qui ont été insérées dans le
but de d’activer compréhension profonde.

Pour la commodité du lecteur, I'index rassemble tous les termes
nouveaux et permet de les retrouver rapidement dans leur contexte.

Les preuves des théoremes sont classées en deux niveaux de
difficultés. Les preuves signalées par ce signe © sont des preuves
faciles mais qui illustrent bien la logique et la fagon de raisonner en
sciences de l'information ; chacun(e) devrait les étudier. Les autres
preuves sont abordables mais demandent plus de temps et peuvent
étre omises. Les chapitres, sections, questions marqués par cet autre
signe x peuvent étre omis sans risque pour la compréhension glo-
bale.

DE NOMBREUSES PERSONNES ont contribué a ce livre de maniére
directe ou indirecte, en particulier : Gregory Dyke, Iryna Andriya-
nova, Shrinivas Kudekar, Ramtin Pedarsani, Bastani Parizi Mani,
Nicolas Gast et Dan-Cristian Tomozei.

Que tous soient remerciés ici.

Jean-Yves Le Boudec, Patrick Thiran, Riidiger Urbanke

Q. 1. Ou se trouve la réponse a une
question en marge ?

Table des matiéres

I Codage de Source 7
Préliminaires de Probabilités 8
Information et Entropie 14
Codage de Source 20

Efficacité d’un Code de Source 31
Entropie Conditionnelle 36
Théoreme du Codage de Source 42
II Cryptographie 52

La Cryptographie 53
Arithmétique 59

Arithmétique Modulaire 67
Eléments d’Algebre Abstraite 75

Cryptographie Asymétrique 83

11

12

13

14

III Codes Correcteurs 90

Les Codes Correcteurs ou Détecteurs
Corps Finis et Espaces Vectoriels
Codes Linéaires 109

Codes de Reed-Solomon 117
Bibliographie 127

Réponses aux Questions en Marge

Index 144

91

100

128

I
Codage de Source

0
Préliminaires de Probabilités

COMBIEN D'INFORMATION un message contient-il ? Comment
mesurer l'information ? Pourquoi est-il possible de comprimer
des données sans en perdre ? Ce sont quelques unes des questions
que nous allons aborder dans cette partie. Pour cela nous allons
découvrir le concept central d’entropie d"une source d’information.
Mais avant de définir 1’entropie, il nous faut modéliser les sources
de données informatiques en utilisant quelques concepts simples de
la théorie des probabilités, que nous rappelons maintenant.

0.1 Source et Probabilité

Nous appelons source la donnée d'un ensemble fini appelé al-
phabet A et d’une densité de probabilité, c’est a dire d’une application
p: A — [0,1] satisfaisant } ;c 4 p(s) = 1. Les éléments de A sont
appelés les symboles.

Exemple o.1 (Piece Non Biaisée) A = {“P”,“F"}, p(“P”) =
p(“F”) =0.5.

Exemple 0.2 (Le Vélo d’Anne) Anne préte son vélo a Bernard mais ne
lui donne pas le numéro du cadenas, qui est un nombre de 4 chiffres. Ber-
nard pense pouvoir le deviner et appelle Anne, qui n’accepte de répondre
qu’a une seule question, et par oui ou non. Ici A = {“Oui”,“Non"} et
p(“Oui”) = 0.0001, p(“Non”) = 0.9999.

Exemple 0.3 (Dé Non Pipé) A = {1,2,3,4,5,6} et p(i) = 1/6 pour
tout i € A.

Exemple 0.4 (Deux Tirages Successifs d'un Dé Non Pipé) A =
{1,2,3,4,5,6} x {1,2,3,4,5,6} et p(i,j) = 1/36 pour tout (i,j) € A.

On dit que tous les symboles de la source sont équiprobables, ou
encore que la densité de probabilité est uniforme quand p(s) = 1/m
pour tout s € A, ot M = card(.A) est le nombre de symboles dans
I'alphabet. Les symboles des sources des Exemples 0.1, 0.3 et 0.4
sont équiprobables. Ce n’est pas le cas pour 'Exemple o.2.

Une application d’un ensemble E vers
un ensemble F fait correspondre a tout
élément x de E un et un seul élément
de F (appelé I'image de x). Une fonction
d’un ensemble E vers un ensemble F
fait correspondre a certains élément

de E un et un seul élément de F. Le
domaine de définition d"une fonction
est le sous-ensemble de E constitué
des éléments qui ont une image. Ainsi
x ~ x? définit une application de R
vers IR, alors que x — /x définit une
fonction de R vers R, dont le domaine
de définition est [0, +00); x — /x
définit une application de [0, +o0) vers
R.

Dans la notation d’intervalle telle que
[0,1), 0 est inclus et 1 est exclus, alors
que dans la notation [0, 1], les deux
bornes 0 et 1 sont incluses.

La notation Y ¢¢ 4 p(s) veut dire
la somme de tous les p(s) quand s
prend toutes les valeurs possibles dans
I'ensemble fini A.

En théorie des probabilités, une source
est appelée “variable aléatoire discrete".

On dit que les sources des exemples
0.1 et 0.2 sont binaires (A a 2 éléments).

Le signe x est le produit cartésien. 11
signifie que A est I'ensemble des

36 couples (i,j) aveci = 1,2...,6 et

j = 1,2,..,6. Un couple est une suite
de deux éléments; 1’ordre compte et il
peut y avoir des répétitions.

Si A est un ensemble fini, card(A) est
le nombre d’éléments de A et se lit
cardinal de A.

PRELIMINAIRES DE PROBABILITES ¢

0.2 Probabilité d'un Evénement, Indépendance, Probabilités Condi-
tionnelles

On appelle événements les sous-ensembles de A ; on dit que la
probabilité d'un événement E est

def
P(E) =} p(s)
s€E
Exemple 0.5 (Suite de 'Exemple 0.4) E = {(i,j) € A tels que i = j}.

E modélise I'événement “Les deux dés ont produit le méme résultat”. On a

P(E) = p(1,1) + p(2,2) + p(3,3) + p(4,4) + p(5,5) + p(6,6) = 1/6

BN C se lit “B inter C". C’est le sous-

On dit que deux sous-ensembles B et C sont indépendants si ensemble obtenu en prenant tous
les éléments de l'alphabet qui sont
P(B ﬂC) — P(B)P(C) a la fois dans B et C. En langage

d’événements, on dit aussi “B et C"

L'indépendance exprime que la réalisation d’un événement ne
donne aucune information sur l’autre.

Exemple 0.6 (Suite de I’'Exemple 0.4) B = {(6,]) avecj € {1,...,6}}.
B est I'événement “Le premier tirage vaut 6”. Ona P(B) = 6 3z =
1/6, BNE = {(6,6)} et P(BNE) = 1/3 = P(B)P(E), donc B

et E sont indépendants. Savoir que le premier tirage vaut 6 n’aide pas

a savoir si les deux tirages sont égaux, et réciproquement. Soit C = Quand P(E) = 1 on dit que I'événe-
{(i,j) € A:i+j > 10} (“la somme des tirages vaut au moins 10”). On ment E est “certain”.
a:
P(C) = p(4,6)+p(55)+p(56)+p(6,4)+p(6,5) +p6,6)=1/6
BNC = {(6,4),(6,5),(6,6)}
P(BNC) = 3/36 # P(B)P(C)

donc B et C ne sont pas indépendants. Savoir que le premier tirage vaut
6 donne de 'information sur la somme, qui a plus de chance de valoir au
moins 10.

Soient B et C deux sous-ensembles de A avec P(C) > 0.La
probabilité conditionnelle de B sachant C est

def P(BNC)
P(BIC) = ——=—+
(BI0) % =5
Elle exprime la probabilité que 1’on assigne a B quand on suppose a
priori que C est réalisé. P(CIC) = 1, comme il faut s’y at-
Soient B et C deux sous-ensembles tels que P(B) > 0 et P(C) > tendre, C est certain sachant C!

0. B et C sont indépendants si et seulement si P(B|C) = P(B), ou
bien encore si et seulement si P(C|B) = P(C).

Exemple 0.7 (Suite de 1’'Exemple 0.6) Calculons la probabilité P(B|C),
c’est a dire la probabilité que le premier tirage soit 6 sachant que la somme
des deux tirages vaut au moins 10 :

P(BNC) 3/36

PBIC) = “pa” =17 =

0.5

10 SCIENCES DE L'INFORMATION

Notons que P(B|C) # P(B), c’est a dire que B et C ne sont pas indépen-
dants. Par contre.

P(BIE) = P(If(g)E) = 11//—3: —1/6 = P(B)

c’est a dire que B et E sont indépendants, comme on le sait déja.

0.3 Sources Composées, Source Indépendantes

Dans I’Exemple 0.4 (deux tirages successifs d'un dé), 'alphabet
de la source est un produit cartésien A = A4 x A (avec A = Ay =
{1,2,3,4,5,6}), C'est a dire que la source S produit un symbole de
la forme (i,f) aveci € {1,2,3,4,5,6} etj € {1,2,3,4,5,6}. On dit
qu’on a une source composée a deux composantes. On peut dériver
de la source composée S deux sources marginales qui sont Sy, le
résultat du premier tirage, et Sy, le résultat du deuxieme tirage.
L'alphabet de S est A; = {1,2,3,4,5,6}, idem pour S. La densité
de probabilité ps, de S; est déduite de la densité de probabilité p
de S par la formule :

ps,(i) = ¥ plij) =16, Vi€ {1,2,3,4,56}
jeAr

Plus généralement, on dit qu'une source S est une source composée
si son alphabet est de la forme A = 4 x Ap x ... x A;. Cela modé-
lise une suite de n observations. A partir d’une source composée on
peut dériver n sources marginales, obtenues en considérant chaque
composante individuellement, ce qu’on écrit

S = (51,52, Sn)

La source marginale Sy a pour alphabet Ay et pour densité de pro-
babilité
def

ps.(s) = Z P(S1, s Sk—1,5, Skt1s s Sn)
s1€A; wsSk—1 E.Ak,],sk+] 6Ak+1/-~r5n eA,
(1)

Notons que la densité marginale de probabilité est une densité de
probabilité (comme le nom l'indique), et donc en particulier

Y, ps(s) =1 2)
s€ Ay

Exemple 0.8 (Somme de Deux Dés Codée Sur Deux Chiffres) Lisa
lance deux dés non pipés et annonce la somme des deux nombres obtenus,
codée comme un entier décimal a 2 chiffres. Par exemple si les dés donnent
5 et 6, Lisa annonce 11 ; si les dés donnent 2 et 2, Lisa annonce 04. La
source L ainsi obtenue a pour alphabet A = Ay x Ay oit Ay = {0,1} et
Ay =1{0,1,2,3,4,5,6,7,8,9} cest a dire qu'un symbole de la source est
de la forme (i,]) aveci € Aj et j € Ajp.

La densité de probabilité de la source est donnée dans la table 1. Ex-
pliquons par exemple comment est obtenue py (1,1), c’est-a dire la pro-
babilité que la somme des deux dés soit 11. Considérons la source S de

Q. 2. Quelle est la densité de probabi-
lité de S, dans I'Exemple 0.4 ?

L'expression “Vi € E" se lit “quel que
soiti € E". L'expression “Ji € E" se lit
“il existe i € E".

Dans I'Equation (2) nous pour-

rions écrire Y ¢ 4, Ps, (sx) ou
LtruceA, Ps; (truc) au lieu de

Ysed, Ps,(s) : la variable de som-
mation est muette et son identificateur
n’a qu'un sens local a l'intérieur de
I'expression sur laquelle porte le signe

5.

PRELIMINAIRES DE PROBABILITES 11
I"Exemple 0.4 qui donne les résultats des deux dés. La probabilité deman- i| 0 1
5 i1it6 de 1évé i pLig) P, ()
dée est la probabilité de I'événement (5,6), (6,5) pour la source S, donc 5 375 3¢
vaut 1 1 ’ 1 0 2/36 | 2/36
1,1) = 56) 4 15(6,5) = — + — = — 2 1/36 1/36 | 2/36
pLl) = ps(5:6) +ps(6,5) = 35+ 35 = 35 3 2/36 0 | 2/36
Soient Ly et Ly les sources marginales de L, i.e. Ly est le premier chiffre 4 3/3 0 3/36
N . ey s 5 4/36 0 4/36
de la somme et Ly le deuxiéme. Les densités de probabilités de Ly et L, p 5§3 p 0 5;36
peuvent s’obtenir par I'Eq.(1) ; par exemple : 7 6/36 0 6/36
8 5/36 0 5/36
pL, (0) = pr(00) + pr(01) + pr(02) + p(03) + pr(04) 9 4/3 0 | 4/36
+pL(05) + pL(06) + pL(07) + pL(08) + pL(09) pu() | 5/6 176
=040+ 3% + 3276 + 3‘% + % + 3% + % + % + % = % = g TaBLE 1: Densité de probabilité py (i, j)
de la source L de I'Exemple 0.8 et
Définition 0.1 On dit que les sources marginales Sy, ..., Sy, sont des des deux sources margir,‘?l‘fs Ly et
o . L. pr(i,]) est la probabilité que la
sources indépendantes st somme des deux dés soit ij, py, (i) la

probabilité que le premier chiffre de

P(Sl, 52, ...,Sn) = Ps; (Sl)Psz (52)-"775" (Sn)r V(Sl, 52 s Sn) €A la somme soit i et p, () la probabilité

que le premier chiffre de la somme s
Exemple 0.9 (Suite de ’'Exemple 0.4, deux tirages successifs d'un dé.) /-
La source S1 donne le résultat du tirage du premier dé, Sy du deuxiéme.
Onap(i,j) = /36 = ps,(i)ps,(j) pour touti € {1,2,3,4,5,6} et
j € {1,2,3,4,5,6}, donc les sources sont indépendantes. Pour un obser- Q. 3. Les deux sources marginales

vateur qui connait la densité de probabilité de S, c’est a dire qui sait que le de 'Exemple 0.8 sont-elles indépen-
L, . . . ?
dé n’est pas pipé, observer le résultat du premier tirage ne donne aucune dantes

information sur le deuxiéme tirage.

Définition 0.2 Si S est une source composée i deux composantes, la
densité conditionnelle de la source marginale Sy sachant que S1 = s est
définie pour tout sy € Ay tel que ps, (s1) > 0 par

def P (51,52)
= "——=5, VY(s;,sn)€e A
p52‘51(52|51) pSl(Sl) (Sl 52) (3)

Si ps,(s1) = 0 la densité conditionnelle de la source marginale S,
sachant que S; = s nest pas définie. La densité conditionnelle de
la source marginale S, sachant que S; = s; exprime ce que nous

savons de S, quand on nous révele que S; = sy. Notons cependant qu’il n’y pas de
concept de temps ni de causalité
. . L dans cette définition : on n’a pas
ginales, auquel cas on peut faire de nombreuses combinaisons ; besoin qu’une source soit observée

nous ne les écrivons pas en toute généralité car la notation de- avant I'autre pour définir la densité
conditionnelle.

La définition s’étend facilement a plus de deux sources mar-

vient lourde, mais il est facile de la deviner; par exemple, si S =
(S1,52,...,Su) on peut définir la densité marginale de (Sq,S;) sa-
chant que (S3, ..., Sn) = (s3,...,5,) par

p(s1, s Sn)
$1,52/83, e Sn) =
A PSs,...Sn (83 - 5n)

avec ps,, s, (83,....51) = Y (s1,50) €A1 x A P(51,52,53, s Sn)-

Le théoreme suivant est essentiel pour comprendre ce que signi-
fie 'indépendance. En bref, il exprime que deux sources marginales
sont indépendantes si et seulement si la densité conditionnelle de
I'une sachant I'autre ne dépend pas de l'autre. La propriété d’indé-
pendance exprime donc que 1’observation d'une source marginale
ne donne aucune information sur 'autre, pour un observateur qui
connait la densité de probabilité de la source S.

oit

12 SCIENCES DE L'INFORMATION

Théoreéme o.1 Soit S = (S1,S;) une source composée. Les propriétés
suivantes sont équivalentes

1. les deux sources marginales Sy et Sy sont indépendantes, c’est a dire
p(s1,52) = ps, (s1)ps, (s2), V(s1,52) € A;

2. la densité conditionnelle de Sy sachant que S1 = s1 (qui est définie
pour tout s tel que ps, (s1) > 0) vaut pg, s, (s2[s1) = ps,(s2),
V(s1,82) € A;

3. la densité conditionnelle de Sy sachant que S = sq (qui est définie
pour tout sy tel que pg, (s1) > 0) ne dépend pas de la valeur de s ;

Preuve :

(1) = (2) Supposons que S; et S sont indépendantes. Donc
p(s1,52) = ps,(s1)ps,(s2) pour tout (s1,52) € A. Soit s; tel
que ps, (52) > 0. Alors ps,js, (sals1) = P10 — g (6) ce
2[51 ps, (s1)
qui montre (2)
(2) = (1) Soit sq tel que pg, (s1) > 0. En utilisant la définition de la
densité conditionnelle :

p(s1,52) = ps, (s1)ps, (s2)- (4)

Il reste a montrer que 1'égalité précédente vaut aussi pour un
éventuel s; tel que pgs, (s1) = 0. Soit donc un s; € A; fixé, tel que
ps,(s1) = 0. Nous avons :

ps,(s1) =) p(s,52) =0
sHeA)

or si une somme de nombres > 0 est nulle, c’est que chaque
élément de la somme est nulle. Donc p(s1,s2) = 0 pour tout
sp € Ap. Donc l'égalité (4) vaut aussi pour notre s; fixé. En
résumé, nous avons montré que 1'égalité (4) vaut pour tous s; €
Ay, 50 € Ay, ce qui montre que Sq et Sy sont indépendantes.

(2) = (3) Cest évident : nous supposons que pg, s, (s2(s1) =
ps,(s2) qui ne dépend pas de s; donc (3) est vrai.

(3) = (2) Nous supposons que pg,|s, (s2/s1) ne dépend pas de
s1. Donc nous pouvons écrire pg, s, (s2(s1) = ¢(s2) ot ¢ est
une certaine application définie sur A;. Donc, en utilisant la
définition de la densité conditionnelle, pour s; tel que pg, (s1) >
0:

p(s1,52) = ps, (s1)9(s2) (5)

Cette égalité reste vraie si pg, (s1) = 0 car nous avons vu plus
haut qu’alors p(s1,s2) = 0. En sommant cette égalité sur toutes
les valeurs de s; dans .4 nous obtenons & gauche la densité
marginale de S, donc, pour tout s, € Aj :

ps,(s2) = l ;4 Ps, (51)] @(s2) = ¢(s2)

(le crochet vaut 1, car ps, est une densité de probabilité sur A;).
Cela montre que (2) est vraie.

L’ordre des deux sources dans ce
théoréme n’a pas d’importance et peut
étre inversé. Ainsi nous pouvons dire
que S; et S sont indépendantes si et
seulement si la densité conditionnelle
de S; sachant que S, = s, (qui est
définie pour tout s, tel que ps, (s2) >
0) ne dépend pas de la valeur de s;.

Q. 4. Supposons que la densité condi-
tionnelle de S; sachant que S, = s, ne
dépende pas de la valeur de s, pour
tout s, tel que ps, (s2) > 0. Peut on
conclure que la densité conditionnelle
de S, sachant que S; = 51 ne dépend
pas de la valeur de s, pour tout s; tel
que ps, (s1) > 02

PRELIMINAIRES DE PROBABILITES

Nous avons montré (1) < (2) et (2) & (3). O

Exemple o.10 (Suite de ’'Exemple 0.8) L; est le premier chiffre de la
somme de deux dés, et Ly le deuxiéme. La densité de probabilité condition-
nelle du deuxiéme chiffre sachant le premier est donnée par la Table 2. Elle
est obtenue par application de I'Eq.(3) ; par exemple

_pe(02) _ 136 _ 1
Pr,|L, (210) = pr, (0) — 376 — 30
Les deux sources ne sont pas indépendantes, la densité conditionnelle de
Ly sachant que L1 = i dépend de i (i.e. les deux dernieres colonnes de la
Table 2 ne sont pas identiques).

i 0 1
j PLZ\Ll(f\i)
0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0

TaBLE 2: Densité conditionnelle du

13

deuxiéme chiffre L, de 'Exemple 0.8
sachant que le premier est L1 = i.

Q. 5. Quelle est la densité condition-

nelle pg, s, (i,j) de Sy sachant que

Sp = j dans I'Exemple 0.9?

1
Information et Entropie

QUELLE QUANTITE D'INFORMATION Y a-t-il dans une source déli-
vrant des messages ? C’est la question a laquelle ce chapitre répond,
sous le nom d’“entropie". Avant d’introduire cette notion, il nous
faut introduire le concept d’“information” d’un événement.

1.1 Comment Mesurer I'Information

Considérons une source discreéte d'information S = (A, p) dé-
livrant un message, ou symbole s € A avec la probabilité p(s).
Lorsqu’on regoit un tel message s, si p(s) = 1 (et donc p(s’) = 0
pour tout s’ # s), il n’y a aucune surprise a recevoir le symbole s,
celui-ci n"apporte aucune information. Par contre, si p(s) = 0.0001,
la “surprise" de recevoir s parmi les M symboles que la source peut
délivrer est beaucoup plus grande, ainsi que la quantité d’informa-
tion apportée. L'information réside dans 1'effet de surprise qu’elle
engendre et croit donc en sens inverse de la probabilité.

On cherche a définir 'information I(E) d’un événement E ; pour
cela, il est donc naturel de prendre une fonction décroissante de la
probabilité P(E) de cet événement, c’est a dire de poser I(E) .
¢(P(E)), ot ¢ : [0,1] — R™ est une fonction décroissante qu’il nous
faut maintenant déterminer. Il y a beaucoup de telles fonctions
décroissantes ; pour en choisir une, nous sommes guidés par le
désir d’obtenir la propriété suivante :

si B et C sont indépendants, alors I(BNC) = I(B) + I(C)

qui exprime que quand deux événements sont indépendants, obser-
ver I'un et ’autre donne la somme des informations qu’on obtient
en observant I'un ou l'autre séparément.

Comme la probabilité de deux événements indépendants est le
produit des probabilités, la fonction ¢ doit vérifier ¢(pq) = ¢(p) +
¢(q). Cette condition est satisfaite si on prend ¢(p) = —log,(p)
o b est un nombre positif a déterminer, c’est a dire que 1’on prend
I(E) = —log,(P(E)). C’est méme le seul choix possible si I'on
impose que ¢ soit une fonction continue.

On pourrait choisir b comme on le souhaite, mais aujourd’hui
tout le monde est d’accord pour prendre b = 2 :

log(x) est le logarithme népérien,
ou naturel, de x, défini pour x > 0

def s s
par log(x) = N &t est a dire

que la dérivée de log(x) est 1/x et
log(1) = 0. log est une fonction
dérivable, donc continue, et est une
application (0, +00) — R, qui satisfait
log(xy) = log(x) + log(y).

Le nombre e est défini par log(e) = 1.
Pour b > 0, le logarithme a base
b est log;, (x) def iggzz;
log, (xy) = log,(x) +log, (y) et
log, (b) = 1. On utilise fréquemment
le logarithme décimal (b = 10) et le
logarithme binaire (b = 2).

On peut montrer que les fonctions
logarithmes a base b sont les seules
fonctions f : (0, +o0) — R qui soient
continues et satisfassent f(xy) =
)+ ().

Notons que log, (1) = Oet
log, (1/x) = —log, (x).

; il vérifie

x log,(x)
0o —o0
2710~1073% -10
025 -2
05 -1
1 0
2 1
4 2
10 3.32219
256 8
1024 10
1048 576 20

TABLE 1.1: Quelques valeurs de
log, (x).

Définition 1.1 Soit (A, p) une source et E un sous-ensemble de A.
L’information de 1'événement E est I1(E) def_ log,(P(E))

L'unité d’information est le bit, parfois aussi appelé shannon.

Exemple 1.1 Anne et Bernard jouent aux échecs et tirent au sort le
joueur qui aura les blancs. C'est Anne qui est choisie. L'information
recue peut étre modélisée par une source semblable au Pile ou Face de
I"Exemple 0.1, et l'information recue est —log,(0.5) = 1 bit.

Exemple 1.2 (Le Vélo d’Anne, suite) Bernard demande a Anne si

le numeéro de son cadenas est 6987, et Anne répond non. L'informa-

tion regue par Bernard est 10g(0.9999) ~ 1.4 -10~* bit, c’est a dire
presque rien. Si Bernard avait vu juste, I'information recue aurait été
—log, (107*) ~ 13.3 bits. Supposons qu’au lieu de deviner un numéro
au hasard, Bernard pose la question “Le numéro est-il inférieur a 50007?”.
La réponse sera oui avec probabilité 0.5 et non avec la méme probabilité.
Quelle que soit la réponse, Bernard recevra 1 bit d'information.

1.2 Entropie d'une Source

Nous avons introduit la notion d’information d’un événement,
mais nous allons voir maintenant que cela ne suffit pas et que la
notion centrale est celle d’entropie. Pour voir pourquoi l'information
ne suffit pas, considérons de nouveau le début de 'Exemple 1.2.
Savoir que Bernard recoit 13.3 bits d'information s’il a vu juste ne
donne pas une bonne mesure, car la probabilité de cet événement
est trés faible (10~%). En pratique, on est presque stir de tomber
dans I'autre cas, c’est a dire que Bernard n’a pas vu juste et recoit
1.4 - 10~* bit d’information. C’est pourquoi on utilise 'information
moyenne, appelée entropie :

Définition 1.2 Soit S = (A, p) une source. L’entropie de S est

def
H(S) = =) p(s)logy(p(s)).
scA
Dans cette définition, si p(s) = 0 pour un certain s, on remplace par

convention le terme p(s)log,(p(s)) de la somme par 0.

L’'unité d’entropie est la méme que 1'unité d ‘information, a savoir,
le bit ou shannon.

Exemple 1.3 (Suite de ’'Exemple 1.2) Soit S la source qui modélise la
réponse a la question de Bernard : “ton numeéro est-il 6987 ?". L'entropie
de S est H(S) = 0.0001 - 13.3 4 0.99991.4 - 10* = 0.0015 bit.

Si au lieu de cela Bernard pose la question “ton numéro est-il infé-
rieur a 5000 ?”, l'entropie de la réponse est H(S) = —0.5log,(0.5) —
0.51l0g,(0.5) = 1 bit.

On peut généraliser 'exemple précédent : I'entropie d"une source
binaire, c’est a dire qui émet deux symboles, disons 0 et 1, avec les
probabilités g et (1 — g), vaut :

def

h(g) = —qlog,(9) — (1 —q)log,(1 —¢q) (1.1)

INFORMATION ET ENTROPIE 15

Claude E. Shannon (1916 — 2001) a
inventé en 1948 la théorie de l'informa-
tion que nous étudions ici.

C.E. Shannon. The mathematical
theory of communication. Bell Syst.
Tech.], 27:379-423, 1948

Le choix de b = 2 dans la définition de
I'information vient du désir d’obtenir
une quantité d’information égale a 1
bit dans I'exemple 1.1.

L’équipe d’Alan Turing qui travaillait
a décrypter la machine allemande
Enigma pendant la deuxieme guerre
mondiale utilisait le déciban, qui est
le dixiéme de 1'unité d’information
obtenue en prenant b = 10. On utilise
parfois aussi le nat, qui correspond a
b=e.

Q. 6. Combien de bits vaut un déci-
ban?

Entropie de source binaire

°
>

H(S) = H(a)
°
@

FIGURE 1.1: La fonction q — h(q),
donnant l'entropie d'une source
binaire.

16 SCIENCES DE L'INFORMATION

voir Figure 1.1.

1.3 Propriétés de I'Entropie

La propriété suivante exprime que les seules sources d’entropie
nulle (qui n’apportent aucune information) sont les sources cer-
taines. Elle dérive immédiatement de la définition de I'entropie, ce
qui ne I'empéche pas d’étre importante en pratique.

Théoreme 1.1 1. H(S) >0

2. Sipour un certains € A, p(s) = 1 (i.e. la source émet le symbole s
avec certitude, et donc p(s') = 0 pour s’ # s), alors H(S) = 0.

3. Réciproquement, si H(S) = 0, alors il existe uns € A tel que
p(s) = 1et p(s') = 0 pour tous les autres symboles s’ # s.

Preuve : (1) H(S) est une somme de termes > 0 donc est > 0.

(2) Si p(s) = 1 alors il suffit d’appliquer la définition et on trouve
H(S)=0.

(3) Nous supposons donc que I'entropie de S vaut 0. L'entropie

est une somme de S termes, qui sont tous > 0. Donc si la somme
est nulle, c’est que chaque terme est nul. Si p(s) € (0,1) alors
—p(s)log,(p(s)) > 0, ce qui n’est pas possible. Donc p(s) = 0 ou 1
pour tout s € A. Comme la somme des probabilités vaut 1, il faut
qu’exactement un des p(s) soit égal a 1. O

Dans I’Exemple de la source binaire illustrée en Figure 1.1, nous
voyons que l'entropie est maximum quand les symboles de source
sont équiprobables. Cette propriété est importante et est vraie en
général ; avant de voir pourquoi, nous avons besoin de la propriété
suivante de la fonction log :

Théoréeme 1.2 (Concavité de log, Inégalité de Jensen) Le logarithme
d’une moyenne est supérieur ou égal a la moyenne des logarithmes.

Plus précisément, soient M nombres x; > 0 et M coefficients a; > 0
avec a1 + ... +ap = 1; alors

log, (@1x1 + ... +apxpnr) > aglog,(x1) + ... +aplog, (xpm) (1.2)

S’il y a égalité dans Eq.(1.2) et a; > 0 pour tout i, alors tous les x; sont
égaux.

Nous ne démontrons pas ce théoréme, mais signalons simple-
ment qu’il est di au fait que la fonction log, est concave, c’est
a dire que le graphe de la fonction est au-dessus des cordes (Fi-
gure 1.2). Nous sommes maintenant en mesure de montrer 1'inéga-
lité principale de I'entropie :
Théoréme 1.3 Soit S une source avec un alphabet de M symboles.
1. H(S) < log,(M)
2. Siles M symboles de la source sont équiprobables, alors H(S) =
log, (M)
3. Si H(S) = log,(M) alors les M symboles de la source sont équipro-
bables.

Q. 7. Pour quelle valeur de g I'entropie
h(q) est-elle maximum ? minimum ?

Q. 8. Comparer h(q) et h(1—q)

2 T T T

ok
yo=log, (x,)
log, (x) 2

log,(moyenne des

Y=oyt ay; gl moyenne des log,(x)

yi=log, (%))
Bl

\
Il Il
0 02 04 06

x; x=ogxt o, X

-8

FIGURE 1.2: Tout x compris entre x;

et xp peut se mettre sous la forme

X = a1x1 + apxp avec ag € [0,1]
etay = 1 —wy. Soity; = 10g2(x1)
ety, = log,(x2);y = a1y1 + axy>
est 'ordonnée du point de la corde
d’abscisse x. L'inégalité (1.2) exprime
que log,(x) > y, ce qui signifie que la
corde est au-dessous du graphe.

Une fonction qui possede la propriété
que son graphe est au-dessus de ses
cordes est dite concave. Si une fonction
définie sur un intervalle est deux fois
dérivable et sa dérivée seconde est
négative, elle est concave. C’est le cas
de la fonction log, puisque sa dérivée
seconde est @.

L'inégalité de Jensen (1.2) est vraie
si 'on remplace log, par une fonction
concave quelconque.

Une fonction qui possede la pro-
priété que son graphe est au-dessous
de ses cordes est dite convexe. Si une
fonction définie sur un intervalle est
deux fois dérivable et sa dérivée se-
conde est positive, elle est convexe.
L'inégalité de Jensen (1.2) est vraie
dans l'autre sens si I'on remplace log,
par une fonction convexe. La fonction
x — x2 est convexe, donc le carré
d’une moyenne est inférieur ou égal a
la moyennes des carrés.

INFORMATION ET ENTROPIE

©Preuve : (1) Soit une source quelconque avec M symboles.
(1a) Supposons d’abord que p(s) > 0 pour tout s € A. Utilisons la
notation A = {sy,...,sp}. L'entropie de la source est

H(S) = —p(s1)logy(p(s1)) — .. — p(sm) logy(p(sm))
= p(s1)log, (P(l)) + ...+ p(sm) log, (p(jM)>

Appliquons l'inégalité (1.2) a a; = p(s;) et x; = ﬁ, et obtenons

log, (1+..+1) > H(S)
log, (M) > H(S)

(1b) 11 reste & montrer I'inégalité quand p(s;) = 0 pour certains

i. Soit S’ la source obtenue en supprimant de S les symboles qui
ont une densité de probabilité nulle. Nous avons H(S") = H(S)
d’apres la définition de 1’entropie H. La source S’ possede M’ < M
symboles et tous les symboles de S’ ont une densité de probabilité
non nulle. Nous pouvons appliquer (1a) a S’ et

1. G. Michaud-Briere, Y. Pearson,

17

_ ! / S. Perreault, and L.-O. Roof. La cryp-
H(S) o H(S) = lOgZ(M) < logz(M) tographie. http://nomis80.0rg/

cryptographie/cryptographie.html,

(2) Pour une source dont tous les M symboles sont équiprobables 2002
ona:

1 1

1 1 1
= M log, (M) + ... + i log, (M) = MM log, (M) = log,(M)

log, (/M)

lettre fréquence

A 8,11

(3) Nous supposons que H(S) = log,(M). Il n’est pas possible que
p(s;) = 0 pour certains i car nous avons vu en (1b) que dans un tel

B 1

cas H(S) < log,(M). Appliquons le Théoreme 1.2 a a; = p(s;) et C (3):28
xX; = ﬁ. Nous avons égalité dans 1'inégalité de Jensen, et a; > 0 g 147',2689
donc tous les x; sont égaux, c’est a dire que les M symboles sont F 1,13
équiprobables. Sln| G 1,19
H 0,74

I 7,24

. J 0,18

Exemple 1.4 (Entropie d’un robot-page francophone) Les fré- K 0,02
quences d’apparition des caracteres du Frangais ont été calculées* et on L 599
trouve les valeurs données dans la table 1.2. L'entropie calculée a partir de II\\I/[;22
cette table est 3.95 bits : comparez a I'entropie maximale pour une source o 5,20
de 26 symboles, qui est log,(26) ~ 4.70. 5 22;
A quoi correspond cette entropie ? A celle d’une source qui tire au sort R 6. e
une lettre selon la répartition de la langue frangaise. C'est peut-étre le S 8,87
cas d'un “robot-page”, une machine qui ouvre un livre a une page au g] ;;"3‘
hasard et lit une lettre, tirée au sort dans la page. Les textes francais ne \% 1,28
sont pas (sauf exception) produits par des robots-pages, et nous verrons en ‘;(V 0,06
Section 5.1 que I'entropie par caracteére du Frangais est bien plus faible v gﬁg
que 3.95 bits. V4 0,12

TaBLE 1.2: Fréquences des lettres du

Francais, exprimées en pourcentages.

http://nomis80.org/cryptographie/cryptographie.html
http://nomis80.org/cryptographie/cryptographie.html

18 SCIENCES DE L'INFORMATION

1.4 Entropie d'une Source Composée

Soit S une source composée avec deux marginales S = (51, S3).
Nous pouvons calculer I'entropie de la source et de ses marginales;
faisons-le pour deux exemples.

Exemple 1.5 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
La densité de probabilité de L = (L1, Lp) est donnée dans la Table 1
(page 11), d’oir on trouve :

H(L) = 3.27 bits

La densité marginale du premier chiffre L1 est donnée dans la derniere
ligne de la Table 1 (page 11), d’oix :

H(Ly) = —5/6log,(5/6) — 1/6log,(1/6) = 0.65 bit

La densité marginale du deuxiéme chiffre Ly est donnée dans la derniere
colonne de la Table 1 (page 11), on obtient :

H(Ly) = 3.22 bits

Notons que
H(L) < H(Ll) + H(Ly)

c’est a dire que l'information moyenne donnée par L est moindre que la
somme des informations données par L1 et Ly. Il y a une certaine redon-
dance entre Ly et Ly : une partie de l'information contenue dans Ly est
déja contenue dans Ly ; par exemple, quand le premier chiffre Ly vaut 0 on
sait que le deuxiéme chiffre Ly ne peut valoir que 0,1 ou 2.

Exemple 1.6 (Deux Dés non Pipés, suite) S; est le résultat du tirage
d’un premier dé non pipé, Sy du deuxieme. On a Ps, s,(i,j) = 1/36, C’est a
dire que tous les symboles sont équiprobables donc

H(S1,52) = log,(36) = 2log,(6) = 5.170

Onaaussi H(S;) = H(Sy) = log,(6) = 2.585.Ici H(S1,S2) =
H(S1)+ H(Sy). Il n'y a pas de redondance entre Sy et Sy. Cela est naturel
puisque nous savons que Sy et Sy sont indépendantes (Exemple 0.9).

Dans les exemples précédents, nous avons vu que H(Sq,5;) <
H(S1) + H(S3), avec égalité quand S; et S, sont indépendantes.
C’est un fait général :

Théoréme 1.4 Soit S = (Sy, ..., Snu) une source composée.

1. H(S1,...,Sn) S H(Sl) + ..+ H(SH)
2. H(S1,..,Sn) = H(S1) + ... + H(Sy) si et seulement si les n sources
marginales Sq, ..., Sy sont indépendantes.

Preuve : Nous faisons la preuve seulement pour n = 2. Pour sim-
plifier la notation, supposons que les alphabets de S; et S, sont

A1 ={1,2,.., I} et A = {1,2,...,]}. Supposons aussi pour simpli-
fier que p(i,j) > 0 pour tous (i, j).

(1) Soit j € A; fixé; appliquons l'inégalité de Jensen (1.2) avec
N = P() t _psl(i).
P by () T)

1
——

1
Zpsl

Sy] pSz i=1

(D) 1

pSz (])

¥ LG

et on a bien Z{:l «; = 1 donc I'inégalité de Jensen donne :

I .
outo -t > 5 o (1)
1
2 p(i,j) [log, (ps, (1)) —log, (p(i,j))] (1.3
pSZ 1:1

donc, en multipliant par ps, (j) et en sommant sur tous les j :

H(Sz)

v
-
1~

-
Il

—_
Il

-

ZPSZ

) log, (1/ps, (i) p(i,) [log, (ps, (i)

|
™=
-

p(i,j)log, (ps, (i)

j=1li=1 j=1li=1
I] . . .

=) LZP(l,J)logz (ps,(i))| +H(S1,52)
i=1 |j=1

= Zlogz (ps, (i LZP i,j)| +H(S1,S2)
i=1

= glogz (ps, (1)) [ps, (i)] + H(S1,S2)
= —H(S1)+H(S1,52)

ce qui montre I'inégalité demandée.

(2)(a) Indépendance = Egalité.

Si Sq et S; sont indépendants, alors, pour j fixé tous les x; sont
égaux, donc on a égalité partout dans ce qui précede.

(2)(b) Egalité = indépendance.

Si on a égalité dans ce qui précede, comme 1'inégalité est obtenue
en sommant | inégalités (1.3), il faut qu'il y ait égalité (1.3) pour
tout j. Par la stricte concavité de la fonction log,, cela implique
que tous les x; sont égaux, car a; > 0. Or x; = 1/ps 5, (jli). Donc
Ps,|s, (j|i) est le méme pour tous les i. D’apres le Théoreme o.1, cela
implique que S; et S, sont indépendants. O

—log, (p(i,)]

J 1
=YY p(ij)log, (p

INFORMATION ET ENTROPIE 19

(i,7))

Ce sont l'associativité et la commutativité
de 'addition des nombres réels qui
permettent de permuter 1'ordre des
indices dans et d’écrire

Q. 9. On tire un dé n fois de suite et
on envoie un message S contenant la
suite des résultats obtenus. Quelle est
'entropie de S?

2
Codage de Source

APRES AVOIR MIS EN PLACE LES CONCEPTS THEORIQUES d’en-
tropie et de source, nous pouvons passer au théme principal de
ce module, le codage de source. On appelle ainsi I'opération qui tra-
duit les symboles d"une source en des symboles utilisables par une
machine, a des fins de transmission ou de stockage. Pourquoi tra-
duire les symboles de source ? Une premiere raison immédiate est
d’adapter l'alphabet de la source a celui de la machine : un ordina-
teur ne comprend pas les lettres de 'alphabet, mais des suites de 0
et 1. Une autre raison est 1’efficacité : nous voulons comprimer autant
que possible la source et prendre le moins de place possible sur le
disque ou en transmission, ceci sans aucune altération (compression
sans perte). Nous reviendrons en Section 3 sur ce que nous enten-
dons par efficacité. Pour l'instant, nous allons étudier ce qu’est un
code de source.

Notons qu’il y a différentes sortes de codage, en plus du codage
de source qui vise & comprimer les messages : le codage détecteur
et correcteur d’erreurs, au contraire du précédent, augmente la lon-
gueur et la redondance des messages pour permettre la détection et
éventuellement la correction a la réception des erreurs provoquées
par un canal perturbé par le bruit. Nous l'étudierons en détail dans
un autre module. Il y a aussi le codage d’émission ou de ligne qui
vise une adaptation technique des signaux a celles du canal (bande
passante, distorsion linéaire, etc.).

2.1 Définition d’un Code de Source

Nous avons, comme précédemment, une source S d’alphabet
A = {sq1,...,spm}. Nous avons un deuxiéme alphabet, 1’alphabet
du code D, qui est un ensemble de D symboles de code. Le plus
souvent D = 2 etalors D = {0,1}. Les éléments de D sont les
symboles de code. Un dictionnaire C (en Anglais codebook) est un
sous-ensemble fini de suites finies d’éléments construites avec 1'al-
phabet D. Un élément de C est appelé mot de code.

Définition 2.1 (Code de Source) Un code de source, ou encodage, T, est
une application bijective I : A — C.

Le Code ASCII est un code de source.
11 traduit les caracteres alphanumé-
riques des langues occidentales en
suites de 8 bits. Par exemple, le ca-
ractere A’ est représenté par la suite
01000001.

Une suite de n éléments de A est no-
tée le plus souvent sous la forme :
(s1,52,53,54) (par exemple pour

n = 4). On utilise aussi la notation
51525354 (qui ne veut alors pas dire
un produit), quand le contexte est
clair. Ainsi les notations 01000001 et
(0,1,0,0,0,0,0,1) sont synonymes.

Quand D = 2 on dit qu’on a un code
binaire.

Pour le code ASCII, I'alphabet du code
est {0,1}, le dictionnaire est constitué
des 256 suites de 8 chiffres binaires;
01000001 est un mot de code.

Le code I' permet donc de traduire tout symbole de la source
en un mot de code, de fagcon que pour chaque symbole il existe un
mot de code, et inversement, a chaque mot de code correspond un
symbole unique de la source (c’est la définition d"une application
bijective). Puisqu'une application bijective ne peut exister qu’entre
ensembles ayant mémes nombres d’éléments, le dictionnaire C com-
porte exactement S mots de code, comme 1’alphabet de la source.

La longueur d’'un mot ¢ € C est ¢(c) = le nombre de symboles
de code de ¢ (ainsi si ¢ = x1xp...x¢ alors £(c) = k). On dit qu'un
code est a longueur constante si tous les mots de code ont la méme
longueur, dans le cas contraire on dit que le code est & longueur
variable.

Exemple 2.1 (Quatre Petits Codes) La Table 2.1 donne quatre exemples
de codes binaires. L'alphabet de chacun des codes est {0,1}. Le diction-
naire du code O est {00,01,10,11}, celui du code A est {0,01,10,11}. Le
code O est a longueur fixe, les codes A, B et C sont a longueur variable.

Puisqu’un code est une application bijective, elle peut étre inver-
sée ; 'application inverse, T~! : C — A qui consiste a traduire un
mot de code en un symbole de la source, est appelé décodage.

2.2 Représentation d'un Code par son Arbre Complet

Pour raisonner sur les codes, il est utile d"utiliser la représenta-
tion par arbre complet, plutdt que par une table comme plus haut. La
Figure 2.1 donne les arbres complets des exemples que nous avons
vu précédemment.

L’arbre complet d'un code est construit de la fagcon suivante. Un
tel arbre débute par une racine, donnant naissance a D branches
(o1 D est le nombre de symboles de code). Chaque branche se ter-
mine en un noeud, et est étiquetée avec un des D symboles de 1'al-
phabet du code. Chaque noeud de cette premiére génération est a
son tour ramifié en D branches et ainsi de suite. On construit un tel
arbre jusqu’a une profondeur égale a Lmay, la longueur maximale
des mots du code.On obtient ainsi un arbre dont chaque noeud re-
présente une suite d’au plus Lynax symboles de code. Certains des
noeuds sont dans le dictionnaire du code, on les étiquette par le
mot de code correspondant. L’arbre ainsi étiqueté est appelé I'arbre
complet du code. L'arbre est dit complet parce qu’on y met tous les
Dlmax noeuds possibles, qu'ils soient utiliés par le code ou non.
Sur I'arbre complet d"un code, les mots de codes sont placés a une
profondeur égale a leur longueur.

On dit que l'arbre obtenu est un arbre D-aire, c’est a dire qu’a
chaque noeud de l'arbre il y a D branches. Sur la Figure 2.1, D = 2
et nous avons des arbres binaires.

CODAGE DE SOURCE 21

Si f est une application d"un ensemble
de départ E vers un ensemble d’arrivée
F, tout élément x de I’ensemble de
départ E a une image unique, notée
f(x). Pour y dans I'ensemble d’arrivée
F on dit que x € E est un antécédent
deysiy = f(x). En général, un

y € F peut avoir 0, 1 ou plusieurs
antécédents.

Sitout y € F possede exactement
un et un seul antécédent, on dit que
I'application f est bjjective, ou encore
que f est une bijection. Cela équivaut
a dire que pour tout y € F I'équation
y = f(x), oulinconnue est x € E, a
une solution unique.

Si E et F sont des ensembles finis
et s'il existe une bijection de E vers F
alors card(E) = card(F). Par exemple,
le dictionnaire du code C et 1’alphabet
de la source A ont le méme nombre
d’éléments.

Si f est une application bijective,
elle peut étre inversée, et 'application
inverse est notée f~!. Par exemple,

f:(0,40) — R
x — log,(x)

est bijective car I'équation en x :

y = log,(x) a une solution unique
égale a x = 2Y; I'application inverse est
définie par la formule y — 2Y, ce qu'on
peut aussi écrire :

LR = (0,400)
x = 2F
puisque x comme y est une variable
muette.

Q. 10. L'application R — R, x +— x?
est-elle bijective ?

Q. 11. Montrer que si le code I est a
longueur constante L, alors M < DL.

code (0] A B C
a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

TABLE 2.1: Quatre codes binaires.
L'alphabet de la source est {a,b,c,d}.

22 SCIENCES DE L'INFORMATION

Code B

2.3 Décodage Unique

Supposons que 1'on nous donne un mot de code, regu sans er-
reur (nous traiterons le cas des erreurs dans un autre module), par
exemple 01 alors que le code est le code A de 'exemple précédent.
Le décodage est toujours possible, par définition d'un code, et nous
pouvons conclure que le symbole émis est b. Supposons maintenant
que I’on vous donne une suite de mots de code, par exemple 0110,
recue sans erreur, et que vous souhaitiez décoder cette suite. Si 'on
vous donne un moyen de trouver les frontieres des mots de code,
par exemple comme dans 01 10 cela ne pose pas de difficulté, il
suffit d’appliquer I'opération de décodage I'~! a chacun des mots
recus pour obtenir que la suite de symboles de la source est bc.
Mais en faisant une telle hypothese, on a supposé qu'il existe un
symbole de code spécial, le délimiteur (ici I'espace). En pratique,
dans les ordinateurs, le délimiteur n’existe pas, il faut utiliser le
code lui-méme pour savoir ol1 s’arrétent les mots.

Nous considérons donc dans la suite que nous recevons une
suite de mots de code, mis bout a bout. Si nous recevons 0110 et
que le code est O, nous pouvons dire que le message de la source
est bc. Par contre si le code est A, il y a une ambiguité : les deux
messages bc et ada sont possibles. Cela montre que notre défini-
tion de code n’est pas suffisante, il nous faut introduire le concept
suivant.

Définition 2.2 Soit I un code de source. I est a décodage unique si pour
toute suite de symboles de code, qui résulte de I'encodage d'une suite de
symboles de la source, il existe un décodage unique.

Une autre fagon, plus formelle, de définir le décodage unique, est
la suivante. Soient A* [resp. D*] I'ensemble de toutes les suites fi-
nies d’au moins un élément de A [resp. D]. A* est I'ensemble des
“mots" que l'on peut écrire avec 1’alphabet de la source. Ainsi, avec
le code A de la Table 2.1, la suite de symboles bc est un élément de
A* et la suite 0110 de D*.
plication d’encodage I' définie sur A en une application d’encodage

On peut étendre par concaténation 1'ap-

I'* définie sur A*, c’est & dire que si s1...s, € A* est une suite de
symboles de la source, I'*(s;...s,,) est la suite des symboles de code

Code C

FIGURE 2.1: Les arbres complets des
codes O, A, B,C.

Une application f : E — F est injective
(on dit aussi que f est une injection;
Ang.one to one) si tout élément de
I'ensemble d’arrivée F possede 0 ou 1
antécédent. Cela équivaut a dire que
pour tout y € F I'équation y = f(x),
ol I'inconnue est x € E, a au plus une
solution.

Une application f : E — F est
surjective (on dit aussi que f est une
surjection; Ang.onto) si tout élément
de I'ensemble d’arrivée F possede au
moins 1 antécédent. Cela équivaut a
dire que pour tout y € F I'équation
y = f(x), out I'inconnue est x € E, a au
moins une solution.

Une application est bijective si
et seulement si elle est injective et

surjective.
surjection

injection

bijection

Q. 12. Les applications f : R — R,

x = x2;¢: R — [0,+00),x — x2 et
h:[0,400) — [0,400),x — x? sont-
elles injectives, surjectives, bijectives ?

de I'(s1),...,I'(sy) mis bout a bout. Ainsi I'(b) = 01, I'(c) = 10 et
I'*(bc) = 0110. On dit alors que le code T est a décodage unique si
I'application I'* est injective.

Par exemple, avec I' = A on a I'*(bc) = 0110 et I'*(ada) = 0110;
I'élément 0110 de D* possede deux antécédents distincts bc et ada,
donc I'* n’est pas injective et le code n’est pas a décodage unique.

Le code O est a décodage unique. En fait, tout code de longueur
constante, disons L, est a décodage unique : par hypothese I' est
bijectif donc toute suite de symboles de code regue sans erreur peut
étre décodée de maniere unique, en découpant les symboles de
code par paquets de L symboles. Par exemple, si on regoit la sé-
quence ASCII 0100100001100101011011000110110001101111, on peut
la décoder comme suit :

1. découper en quatre blocs de 8 bits : 01001000, 01100101, 01101100,
01101100 et 01101111

2. Chercher chaque mot de code dans la table du code et obtenir :
Hello

On pourrait se demander pourquoi ne pas se limiter aux codes
a longueur constante, puisque leur décodage est plus simple. Nous
verrons plus loin que, en général, le code optimal (qui assure la
compression maximale) est a longueur variable, ce qui est une
bonne raison pour considérer des codes a longueur variable.

Le code B est a décodage unique car le symbole 0 marque la fin
des mots de code, donc on peut analyser toute suite de symboles
recus en groupant les symboles jusqu’a trouver un 0. Par exemple,
la suite 0110 est décodable en ac et il n'y a pas d’autre possibilité.
De la méme fagon, le code C est a décodage unique car le symbole
0 marque le début des mots. La suite recue 0110 est décodable en ca
et il n'y a pas d’autre possibilité.

Nous nous intéressons a la compression sans perte, aussi seuls
les codes a décodage unique sont intéressants. En effet, pour pou-
voir obtenir exactement les symboles de la source a partir d"une
suite de symboles de code, il faut que le code soit a décodage
unique.

2.4 Code Instantané, Code Sans Préfixe

Parmi tous les codes possibles, il en est de plus faciles a manipu-
ler, ce sont les codes instantanés.

Définition 2.3 Nous disons qu’un code est instantané

1. s’il est a décodage unique,

2. et si, a mesure que les séquences de symboles de 'alphabet du code sont
regus, les mots du code peuvent étre déterminés sans s’inquiéter des
symboles de code suivants.

Par exemple, le code B défini ci-dessus est instantané, au contraire
du code C. En effet, supposons que la séquence recue soit 00110.
Avec le code B, dés la réception du premier symbole 0, le récepteur

CODAGE DE SOURCE 23

11 est facile de comprendre intuitive-
ment pourquoi les codes a longueur
constante peuvent étre inefficaces :
Imaginons que nous devons encoder
un texte francais avec un code binaire
de longueur constante ; méme en
ignorant les accents, les majuscules,
les espaces et les signes de ponctua-
tion (ce qui est tres laid), il faut 26
caracteres, donc un code de longueur
constante doit avoir au moins 5 sym-
boles binaires (aussi appelés bits). Or
le caractere ‘E’ est tres fréquent (plus
d’un caractere sur six) alors que ‘W’
est trés rare (moins d’un caractere sur
1600) ; il serait donc plus efficace de
coder ‘E” avec une séquence courte,
peut-étre 1 ou2 bits, et ‘W’ avec une
séquence plus longue, peut-étre 7 ou 8
bits.

“la suite 0110 est décodable en ac" peut
se dire aussi : "0110 a pour antécédent
ca" par l'application I'* qui & une suite
de symboles de la source associe la
suite des mots de code.

Q. 13. Un code a longueur constante
est-il instantané ?

24 SCIENCES DE L'INFORMATION

sait qu’il s’agit de a. Avec le code C par contre, aucune conclusion
ne peut étre tirée des la réception du premier symbole. Il faut at-
tendre le deuxieme 0 pour décider que le premier représentait a.

Définition 2.4 On dit qu'un mot de code c = x1x3...xy, est préfixe

d'un autre mot de code ¢’ si on peut écrire ¢’ = x1X2XXp41...Xy pOUr

un certain £ > k + 1. Sur I'arbre du code, cela veut dire que ¢’ est un
descendant de c. On dit que le code I est sans préfixe si aucun mot de code
n'est préfixe d'un autre mot de code. Sur I'arbre du code, cela veut dire que
aucun mot de code n'est descendant d'un autre mot de code.

Nous voyons sur la Figure 2.1 que les codes O et B sont sans pré-
fixe, mais que les codes A et C ne le sont pas. Par exemple, dans
le code A, le mot de code 0 est préfixe du mot de code 01, donc A
n’est pas sans préfixe.

Les codes sans préfixe sont toujours des “bons" codes :

Théoréme 2.1 Un code est sans préfixe si et seulement si il est instan-
tané.

Preuve : (1) © instantané = sans préfixe. Nous montrons cette im-

plication par contraposition : non (sans préfixe) = non instantané.
Soit donc I' un code qui n’est pas sans préfixe, c’est a dire qu'’il est
avec préfixe, ou encore, qu’il existe un mot de code ¢ = xyxy...x; qui
est préfixe d’un autre mot de code ¢’ = x1 XX} X y1...Xp. Supposons
que nous ayons recu les symboles de code x1x;...xx. Nous ne pou-
vons pas décoder a cet instant, car il se pourrait trés bien que le mot
de code recu soit ¢, ou le début de ¢’. Pour le savoir, il faut attendre
d’avoir recu les symboles de code xj1...xy. Donc le code n’est pas
instantané.®
(2) sans préfixe = instantané. Nous avons deux choses a montrer.
(2a) sans préfixe = a décodage unique. Par contraposition : non (a
décodage unique) = non (sans préfixe). Par hypotheése le code n’est
pas a décodage unique. Nous allons d’abord montrer que le code
vérifie la propriété (P) :

(P) 11 existe une suite de symboles de code que 1’on peut décoder de

deux fagons différentes au moins, et dont les décodages difféerent par
le premier symbole de source.

Pour cela, remarquons que, par hypothese, il existe une suite de
symboles de code X; = xyx3...x;, de longueur n > 0, que l'on
peut décoder de deux fagons au moins, soient S = sy5...5,, et

S' = s!sy...5,. Si sy # s7 alors P est vraie et cest fini. Sinon, soit
s1...5x le plus long préfixe commun a S et S’ et soient S et S’ les
deux suites de symboles obtenues en supprimant de S et S’ leurs
préfixes communs. Nécessairement S n’est pas vide, car sinon S est
préfixe de §', et I'encodage de S’ est plus long que celui de S, ce
qui contredit ’hypothese que S et S’ ont le méme encodage. Pour
la méme raison, S’ n’est pas vide. De plus, S et S’ different par leur
premier symbole.

Q. 14. Un code de longueur constante
est-il nécessairement sans préfixe ?

Les implications “A = B" et

“(non B) = (non A)" sont équiva-
lentes. On dit que la deuxiéme est la
contraposée de la premiere.

Par contre, “A = B"et
“(non A) = (non B)" ne sont pas
équivalentes.

L'implication “B = A" est appelée
implication réciproque de “A = B".
Donc “(non A) = (non B)" est équiva-
lente a la réciproque de “A = B".

11 se peut qu'une implication soit
vraie mais pas la réciproque, ou vice
versa. Par contre, si une implication est
vraie, la contraposée 1'est aussi.

Si”“A = B"et“B = A" sont vraies
toutes les deux en méme temps, on
dit que A et B sont équivalentes. On
écrit aussi A si et seulement si B, ou en
abrégé A ssi B.

Q. 15. Soit n un entier et soit I'im-
plication (P1) : (n est pair) = (1 est
divisible par 4). Quelles sont la contra-
posée, la réciproque, et la contraposée
de la réciproque ? Lesquelles sont
vraies pour tout entier n ?

Par exemple avec le code A la suite de
symboles de code X; = x1x3..x, =
0110 peut étre décodée de deux fagons
§182...8n, = bc et sisy..s;, = ada.

Les premiers symboles de source des
décodages sont respectivement b et a,
et sont différents.

CODAGE DE SOURCE 25

Soit x;...xy 'encodage du préfixe commun s;...s. Supprimons
de X les ¢ premiers symboles de code, et soit X5 la suite de sym-
boles résultante. X, est 'encodage de S et S', qui different par leur
premier symbole, donc nous avons montré (P).

Nous pouvons maintenant achever la preuve de (2a). Soit x1x5...xy
une suite de symboles de code que 'on peut décoder de deux fa-
gons en S = 515)...5y, et S’ = s{s)...5},, avec 51 # 7. Soit ¢ = x1...xy le
mot de code correspondant & s; et ¢ = x1...xy le mot de code cor-
respondant a s’l. Forcément, ¢ # ¢’ car un code est bijectif et donc
¢ # {'.Si ¢ < (' alors c est préfixe de ¢/, sinon ¢’ est préfixe de c.
Donc le code n’est pas sans préfixe.

(2b) sans préfixe = item 2 de la définition de code instantané.
Supposons que nous ayons regu une suite de symboles du code
X1X2...Xk, qui est un mot de code c. Quand nous avons regu le der-
nier symbole xj, nous savons que le mot de code regu est c, car il
n’y a aucun autre mot de code commencant par x1xz...x;, par hypo-
theése. Donc nous pouvons décider que le mot recu est c, et le code

est donc instantané. |
Q. 16. Les implications suivantes
sont-elles vraies ?
Exemple 2.2 (Quatre Petits Codes, suite) Les codes O et B sont ins- 1. & décodage unique = instantané
tantanés et td 1 décod . L de C nest nstantané 2. instantané = a décodage unique
antanés et sont donc a décodage unique. Le code C n’est pas instantané 3. non (a décodage unique) = non
mais est a décodage unique. Le code A n’est pas a décodage unique et n’est instantané
pas instantané. 4. non instantané = non (a décodage

unique)

2.5 Arbre de Décodage d’un Code Instantané

Pour un code est instantané, il est tres pratique d’utiliser 1’arbre
de décodage. 1l est construit a partir de 1’arbre complet du code
en supprimant toutes les branches qui ne menent pas a un mot
de code. Comme le nom l'indique, I'arbre de décodage permet de
décoder simplement, en utilisant par exemple I'algorithme décrit
dans 1’Algorithme de la Figure 2.3.

FIGURE 2.2: L'arbre de décodage du
code instantané B.

Notons que l’arbre de décodage est défini seulement si le code
est instantané. Pour un code a décodage unique non instantané tel
que le code C de la Figure 2.1, il n'y en a pas (le décodage d'un tel

code est plus complexe). Q. 17. Quel est 'arbre de décodage du
code O?
Q. 18. Quels sont les codes dont I’arbre
2.6 Théoreme de Kraft-McMillan je deffdfge est égal a 'arbre complet
u code?

Nous sommes intéressés a avoir des codes dont la longueur des
mots de code soit aussi petite que possible. Cependant, on ne peut

26 SCIENCES DE L'INFORMATION

1: aller a la racine de I'arbre de décodage FIGURE 2.3: Pseudo-code de l'al-

gorithme de décodage d’un code

erreurDeDécodage < false
instantané. Supposons que nous ayons

N

3 while X # @ and not erreurDeDécodage do recu une suite X de symboles de code.
4 x < entéte de X ; supprimer x de la téte de X L’algorithme imprime la suite des

5: descendre l’arbre en suivant la branche étiquetée par x symboles de source requs jusqu’a épui-

. . sement des symboles regus, ou jusqu’a

6: if cela produit une erreur then ce qu’une erreur ait lieu.

7 erreurDeDécodage «true

8: else

9 if le noeud courant posséde une étiquette s then
10: imprimer s; aller a la racine de l’arbre Q. 19. Pourquoi pourrait-il y avoir
11: end if une erreur dans I’Algorithme de

. la Figure 2.3?

12: end if

13: end while

Par exemple, sin = 2 et T est le code
B, qui est a décodage unique :

C =

pas prendre trop de mots de code ayant une tres faible longueur,
{00,010,0110,01110,

100, 1010, 10110, 101110,
1100,11010,110110, 1101110,
11100,111010,1110110,11101110}

comme 'exprime le théoréme suivant.

Théoréme 2.2 (Kraft-McMillan) Soit T un code D-aire dont les lon-
gueurs des M mots de code sont {1, ..., {p. Si T est a décodage unique

alors il satisfait I'inégalité de Kraft : Les 16 éléments de Cy peuvent

s’écrire de maniére unique comme

D h+.+DM<1 (2.1) concaténation de 2 éléments de C; :
G | 0 10 110 1110
Récipr ment, si nombr e atisfont l'inégalité de Kraft (2.1),
Réciproquement, s dfzs 0 bres 6{ EM\S : sfo cgalité de f.(.) 0 T 0110 01110
il existe un code D-aire instantané (donc a décodage unique) dont le dictio- 10 100 1010 10110 101110
naire possede M mots de code et dont les longueurs des mots de code sont 110 | 1100 11010 110110 1101110
1110 | 11100 11010 1110110 11101110
01, e s
Par contre, si I est le code A, qui
n’est pas a décodage unique, C;
Preuve : (1) décodage unique = inégalité de Kraft. Pour chaque comporte seulement 15 éléments

et on ne peut pas décomposer un
élément de Cp de maniére unique :

G| o 01 10 11

entier n > 1 soit C;; I’ensemble des concaténations de n mots de

code de I'' Comme I' est a décodage unique, tout élément ¢ de

Cy peut étre décodé de maniere unique, et on peut donc écrire

0 00 001 010 011
¢ = ¢1...c; de maniere unique, ot ¢y, ..c, sont des mots de code de I'. 01 | ozo 0101 0110 0111
Nous allons calculer de deux fagons la quantité 10} 100 1001 1010 1011
11 | 110 1101 1110 1111

E, def Z p—Le)

ceCy

ott /(c) est la longueur du mot de code ¢, comptée en symboles de
code; notons que si ¢ = cj...c, alors £(c) = £(c1) + ...+ £(cn). Remar-
quons que pour # = 1, F; est le membre de gauche de I'inégalité de
Kraft.

Premierement, puisque c s’écrit de maniére unique c;...c;, nous
pouvons écrire

(—
) (
F, = 2 p—ercn) Z D*f(q)meé(cn))] 10— {(110)9—£(0) 4 p—£(110)9—(10)
c1€C...cpeC c1€C...cpeC 42-£(110)9—£(110) 4 9—£(110)p—£(1110)
12-{(1110)3-£(0) 4 p—£(1110)p—((10)
_ Z D) 2 p—t(en)) 1~ ((1110)9—£(110) 4 »—¢(1110)p—¢(1110)
c1eC cneC

par la formule du produit du développement d’'une somme. Cha-
cun des crochets est le méme car la variable de sommation est

Par exemple si I est le code B :
Fy = 2-1(00) | 9—£(010) | —£(0110) 4 H—£(01110)
42-£(100) 4 »—£(1010) 4 p—€(10110) 4 »—£(101110)
42-£(1100) | »—£(11010) 4 »—£(110110) | —£(1101110)

40—£(11100) 4 »—£(111010) 4 »—£(1110110) 4 »—¢(11101110)

— 2—(0)p—¢(0) + 2—£(0)p—£(10)
+27[(0)27l/(110) _,'_27[(0)27[(1110)
_,’_274 10)p—£(0) +27é(10)2fl(10)
12-£(10)p—£(110) 4 5—£(10)p—(1110)

_ 274'(0)+27/(10)+274‘(110)++24‘(1110)]

,[24(0) 4 2—(10) 4 p—£(110) ++24(111o)]
=F-F =F}

CODAGE DE SOURCE 27

muette, et vaut F;. Donc :
Fn = Fl...Fl = (Fl)n (2.2)

Deuxiemement, comme 1’addition est associative, on peut re-
grouper les termes de la somme comme on veut. Mettons en-
semble les éléments de C;; qui ont la méme longueur, c’est a dire
soit CZ = {c € Cpy,l(c) =k}, pour k = 1 a nLmax (Lmaxest la lon-
gueur maximale d’un mot de code de I') :

F, = YD 'O+ + YD+ + Y D
ceCy ceck ceCtmax
_ 2 D1 4o+ Z Dk 4o+ 2 D~ "Lmax Par exemple si I est le code B :
cecl ceck ceClibmax Ci = & (ensemble vide)
2 _
= D 'cardC! + ...+ D FcardCk + ... + D™ "maxcard C/Hrmax G = {00}
¢3 = {010,100}
Notons que certains de ces ensembles Ck peuvent étre vides, au- ¢; = {0110,1010,1100}
. 5
quel cas la somme correspondante vaut 0. Maintenant, remarquons ¢ = {01110,10110,11010,11100}
. . 6 _
que chaque élément de Ck est une suite de k symboles de code; il y ¢; = {101110,110110, 111010}
: k : k k ¢j = {1101110,1110110}
a au maximum D" telles suites, donc card(C,;) < D*. Donc
8 = {11101110}

F, < D 'D'+..+D*DF4 . 4 D maxpitlmax
1 Lmax fois

En comparant avec Eq.(2.2), nous avons montré que :

Pour b > 1, limy_, 10 b* = +o0 et la
Vn>1: (F)"/n < Lmax (2.3) fonction x — b* croit “plus vite" que x.

Or, nous savons du cours d’analyse que pour tout nombre b > 1, on

a
X

Iim — =+
X—400 X

Appliquons cela a b = F ; si on avait F; > 1, on aurait
C’est un raisonnement par I'absurde :

pour montrer A = B, on suppose
que I'hypothese A est vraie et que la
conclusion B est fausse, et on arrive a

ce qui est impossible compte tenu de Eq.(2.3). Donc F; < 1, cest a une contradiction. Ici la contradiction
est entre Eq.(2.3) et Eq.(2.4).

Iim (F)"/n = 400 (2.4)

n——+oo

dire que l'inégalité de Kraft est satisfaite.
(2) inégalité de Kraft = il existe un code instantané D-aire de

longueurs ¢;, i = 1 a M. Classons les longueurs de mots par ordre

. def .
croissant : /1 < U < ... < Uy = Lmax. Nous allons construire un

arbre de décodage, de la fagon suivante (Figure 2.4).

Construisons d’abord un arbre D-aire complet de profondeur
Lmax. Puis choisissons le premier noeud de profondeur /1, étiquetons-
le c1, et supprimons tous ses descendants. Ce faisant, nous avons
supprimé DImax—f1 noeuds terminaux de profondeur Liax. Puis
recommencons : choisissons le premier noeud de profondeur ¢,
de l’arbre ainsi construit, étiquetons-le cy, et supprimons tous ses
descendants. Lesdits descendants sont distincts de ceux de ¢y, par
construction, et les descendants terminaux de profondeur Lpnax sont
au nombre de Dlma—{2, Ce faisant, nous avons supprimé DLmax—t2

28 SCIENCES DE L'INFORMATION

noeuds terminaux de profondeur Lmax, donc en tout nous en avons
supprimé DImax—f - DImax—t2,

Continuons cette procédure. A la me étape, nous avons supprimé
Dimax—t 4 4 DLmax—lm npeuds terminaux de profondeur Lpmax.
Mais I'inégalité de Kraft est vraie par hypothese, donc

DLmax*él + + DLmax*gm < DLmax

c’est & dire que ce nombre est inférieur au nombre total de noeuds
de profondeur Lmax. Donc, apres avoir placé les mots cy...c;; de
cette fagon, il reste au moins un noeud terminal de profondeur
Lmax. Choisissons le premier de ces noeuds, et remontons 1’arbre
vers la source jusqu’a la profondeur ¢, 1 ; choisissons ce noeud,
étiquetons-le c,,11, et supprimons tous ses descendants. Cette pro-
cédure peut continuer jusqu’a avoir placé cys. A la fin, nous avons
construit un arbre de décodage, donc un code sans préfixe, dont les
longueurs de mots sont ¢4, ..., £ .]

Exemple 2.3 (Interprétation Graphique) La preuve de la deuxiéme
partie du Théoreme de Kraft-McMillan nous donne aussi une interpreé-
tation simple et utile de I'inégalité de Kraft pour un code instantané.
Nous lillustrons sur le code B en Figure 2.4. Pour chaque mot de code
placé sur I'arbre de décodage, comptons le nombre de noeuds terminaux
de I'arbre complet qui descendent du noeud oit est placé le mot de code.
On trouve : 23,22, 21 ¢t 20 11 y a en tout 24 noeud terminaux donc

23 +22420 420 <24

En général, pour un mot de longueur ¢;, il y a DImax—¢

i noeuds termi-
naux. Il y a en tout DLmax noeuds terminaux, donc

DLmaxffl + ...+ DLmax*ZM S DLmaX
ce qui, aprés multiplication par D~tmax est I'inégalité de Kraft.

FIGURE 2.4: L'inégalité de Kraft expli-
quée sur I'exemple du codeB.

Exemple 2.4 (Quatre Petits Codes, suite) L'inégalité de Kraft donne :

O: 2242249224922 _-1<1
A: 2714272492492 125> 1
BouC: 21422423424 -09375<1

Elle est vérifiée sauf pour le code A. Les codes O, B et C sont a décodage
unique donc satisfont l'inégalité de Kraft, comme on le vérifie.

Par contraposition du théoréme, nous pouvons conclure que A n’est pas
a décodage unique, ce qu nous savions déja.

CODAGE DE SOURCE 29

Soit un code I' dont les longueurs de mots sont ¢y, ..., £5. Si I'in-
égalité de Kraft n’est pas satisfaite, le Théoreme de Kraft-McMillan
permet de conclure, par contraposition, que le code n’est pas a
décodage unique (comme dans l'exemple précédent).

Par contre, si 'inégalité de Kraft est satisfaite, nous ne pouvons
pas conclure que I' est a décodage unique. Le théoréme dit seule-
ment qu’il existe un code a décodage unique ayant les mémes lon-
gueurs de mots, mais rien n’assure que ce code soit précisément T,
comme l'illustre 1’exemple suivant.

Exemple 2.5 (Non décodage unique malgré Kraft) Soit le code A’, Notons que le code A’ est ternaire par
ternaire, (c’est a dire sur I'alphabet de code {0,1,2}) donné par la méme définition de I'alphabet, mais en fait

} o] K . il n'utilise pas le symbole 2. C’est un
table que le code A. . Il n’est pas a décodage unique pour la méme raison code d'intérét purement académique,
que A (bc et ada sont encodés de la méme facon). Par contre il satisfait que nous utilisons seulement comme

PRI — — _ _ tre- le.

U'inégalité de Kraft : 371 +372+3724+372=2/3< 1. contreexempie

Q. 20. Que donne 'inégalité de Kraft
pour les codes de longueur constante
L?

2.7 Construire un Code Instantané dont les Longueurs de Mots

sont Données.

Bien sfir, ceci n’est possible que si les longueurs de mot satis-
font I'inégalité de Kraft. La preuve de la deuxieme partie du Théo-
reme de Kraft-McMillan donne une telle construction : il suffit de
construire un arbre D-aire complet de profondeur égale a la plus
grande longueur des mots, de classer les longueurs de mots par
ordre croissant, et de placer les mots sur l’arbre, en prenant soin de
supprimer les branches descendant d’un mot placé.

Exemple 2.6 (Code équivalent 2 A’, mais a décodage unique)

Le code A’ de I'exemple précédent (qui n’est pas un bon code) peut-étre
remplacé par un code ternaire qui a les mémes longueurs de mots mais est
a décodage unique. Pour cela, on construit 'arbre de décodage ci-dessous :

On obtient le code :
symbole de source ‘ a b ¢ d

mot de code \0 10 11 12

qui a les mémes longueur de mots que A’, mais qui est instantané (par
construction) donc a décodage unique.

Enfin, une conséquence spectaculaire du théoreme de Kraft-
McMillan est qu’on peut toujours remplacer un code a décodage
unique par un code instantané :

Théoréme 2.3 Pour tout code a décodage unique, il existe un code ins-
tantané sur les mémes alphabets de source et de code qui a les mémes
longueurs de mot.

30 SCIENCES DE L'INFORMATION

©Preuve : Soit I un code a décodage unique. Les longueurs de
mots satisfont I'inégalité de Kraft (premiére partie du Théoreme

de Kraft-McMillan). Donc il existe un code instantané avec ces lon-
gueurs de mots (deuxiéme partie du Théoreme de Kraft-McMillan).
©O

Par exemple, le code C est a décodage unique et a les mémes lon-
gueurs de mot que le code B. On peut le remplacer par le code B et
obtenir un code qui est équivalent du point de vue des longueurs

de mots. Q. 21. Les implications suivantes
sont-elles vraies ?

1.

I est instantané = I vérifie I'inéga-
lité de Kraft

I' est a décodage unique = I'
vérifie I'inégalité de Kraft

I' vérifie I'inégalité de Kraft = T est
instantané

I' vérifie I'inégalité de Kraft = T est
a décodage unique

I' ne vérifie pas 'inégalité de Kraft
= I' n’est pas a décodage unique

I' n’est pas a décodage unique = T’
ne vérifie pas l'inégalité de Kraft

I' ne vérifie pas l'inégalité de Kraft
= I' nest pas instantané

I' n’est pas instantané = I' ne
vérifie pas l'inégalité de Kraft

3
Efficacité d'un Code de Source

MAINTENANT QUE NOUS AVONS FAIT CONNAISSANCE avec les
codes de longueur variable, nous pouvons commencer a nous in-
téresser a obtenir des codes efficaces. A cette occasion nous allons
retrouver notre vieille amie 'entropie.

3.1 Premiere Inégalité de I’Entropie

La quantité d’intérét pour l'efficacité d’un code est sa longueur
moyenne, définie comme le nombre moyen de symboles de code
par symbole de source :

Définition 3.1 Soit une source S d’alphabet A et de densité de proba-
bilité p, et soit T un code D-aire de la source S. La longueur moyenne du
code I est
L) < L po)LI()
scA
L’unité est le symbole de code par symbole de source (si D = 2 on dit bits
par symbole de source).

Exemple 3.1 (Codes O, B et B') Supposons que les probabilités pour la
source des codes O et B (voir Table 2.1 en page 21) soient comme dans la
Table 3.1. Le code O est de longueur constante égale a 2 symboles binaires
(bits) donc sa longueur moyenne est L(O) = 2 bits. Pour le code B les
longueurs des mots sont respectivement 1,2,3 et 4 donc

L(B) = 0.05-1+0.05-2+0.1-3+0.8-4 = 3.65 bits par symbole

Si on remplace le code B par le code B’ dont les mots sont pris en ordre
inverse de B (Table 3.1) on obtient

L(B') =0.05-440.05-3+0.1-2+0.81 = 1.35 bits par symbole

Le code B’ est plus efficace que les codes B et O, car il donne des longueurs
courtes aux symboles les plus fréquents.

Pour obtenir un code efficace (c’est a dire pour comprimer 1'in-
formation), nous sommes intéressés a avoir des codes de longueur
moyenne aussi petite que possible. L'entropie nous donne une li-
mite inférieure a ce qu'il est possible d’atteindre :

On utilise le méme mot “bit" pour
désigner deux concepts différents : un
symbole binaire, et I'unité d’informa-
tion.

symbole de source | proba code B’
s | p(s)
a 0.05 1110
b 0.05 110
c 0.1 10
d 0.8 0

TABLE 3.1: Densité de probabilité pour
la source des quatre petits codes de la
Table 2.1, et code B’.

Q. 22. Montrez que le code B’ est
plus efficace (c’est a dire : a une lon-
gueur moyenne plus faible) que n’im-
porte quel code binaire de longueur
constante pour cette source.

32 SCIENCES DE L'INFORMATION

Théoreme 3.1 (Premiére Inégalité de I’Entropie) Soit une source S
d’entropie H(S) et soit T un code D-aire de la source S. Si T est a déco-
dage unique, sa longueur moyenne satisfait

L(T) > H(S)

> Tog, (D) (3.1)

Pour un code I binaire on a donc
simplement L(I') > H(S).
©Preuve : Nous utilisons I'inégalité de Kraft et 'inégalité de
concavité du logarithme. Soient M = card(.A), ¢; la longueur du
ieme mot de code et p; la densité de probabilité du iéme symbole
de source, pour i = 1...M. Par le Théoreme de Kraft-McMillan :

Dh+. . +DM<

donc
log, (D*él + ..+ D*ZM) <0 (3.2)
Appliquons l'inégalité de concavité (1.2) a a; = p; et x; = D}; b ,il
vient :

= p1 log, (D*&) —p1log, p1+ ... + pmlog, (D*5M> — prilog, pu

= —Plgl IOgZ(D) — . ngM IOgZ(D) — Pl 10g2 Pl — e — PM 10g2 PM
= —L(T)log,(D) + H(S)

En comparant avec Eq.(3.2), il vient

0> —L(T)log,(D)+ H(S)
ce qui donne l'inégalité a démontrer. ©0
Exemple 3.2 (Codes B et B/, suite) Les trois codes sont a décodage

unique (nous le savons déja pour O et B, B’ l'est aussi, pour la méme
raison que B). L’entropie de la source est

H(S) = —2-0.05l0g, (0.05) — 0.110g,(0.1) — 0.8 log, (0.8) = 1.022 bits

et on a bien L(B) = 3.65 > H(S) et L(B") = 1.35 > H(S) Le code B’ est
sans doute assez efficace car sa longueur moyenne est proche de la borne
inférieure de I'entropie.

3.2 Code de Shannon-Fano et Deuxieme Inégalité de I’Entro-

Pour un nombre réel x, on note [x] la

pe partie entiere par exceés de x, définie
comme le plus petit nombre entier
Pour obtenir un code efficace, il faut donner des longueurs pe- > x. Par exemple [3.14] = 4, [3] =3

tites aux symboles les plus fréquents. L'idée du code de Shannon- et [-314] = -3.0na:

Fano est de choisir un code D-aire avec logp,(1/p(s)) comme lon- VxeR: x<[x]<x+1
gueur du mot de code pour le symbole s; plus exactement, comme

ce nombre n’est pas forcément entier, on choisit I'arrondi entier

par exceés [logy (1/p(s))]. Il reste a voir si de tels codes a décodage

unique existent, ce qui est le cas :

EFFICACITE D'UN CODE DE SOURCE 33

Théoréme 3.2 Soit une source S avec M symboles dont les densités de
probabilité sont p1, ..., pum. 1l existe des codes D-aires instantanés (donc a
décodage unique) dont les longueurs de mots sont £; = [log(1/p;)| pour
i = 1...M. De tels codes sont appelés codes D-aires de Shannon-Fano.

©Preuve : 1l suffit de montrer que l'inégalité de Kraft est vraie. Or

0 % Tog,, (1/p)] > logp (/)

donc D4 < pi et
D4 4D ™M<p+.4pu=1
donc I'inégalité de Kraft est vérifiée. ©0

Pour construire un code de Shannon-Fano, il suffit d’appliquer la
méthode de la Section 2.7, puisque les longueurs de mots de code

sont connues. symbole de source ‘ proba longueur
a 0.05 5
Exemple 3.3 (Code I'sp). Considérons la source des quatre petits codes b 005 5
. L c 0.1 4
et construisons un code binaire I'gp de Shannon-Fano. Les longueurs des i1 os 1
mots sont données dans la Figure 3.1. L'arbre de décodage est donné sur la
figure.
La longueur moyenne du code I'gp est
L(Tsp) =2-0.05-5+0.1-4+0.8 -1 = 1.7 bits par symbole
Le code T'gr est assez efficace, il n’est pas trop loin de la borne inférieure
de 'entropie (1.022), et est plus efficace que le code B (longueur moyenne FIGURE 3.1: Code de Shannon-Fano

3.65). Cependant, il n’est pas le plus efficace : le code B' a une longueur pour la source de la Table 3.1.
moyenne plus petite (longueur moyenne 1.35).

Comme l'illustre I'exemple ci-dessus, les codes de Shannon-Fano
sont assez efficaces, sans étre en général les plus efficaces. Cepen-
dant, et c’est leur principal attrait, ils sont garantis : ils ne peuvent
pas étre a plus d’une unité de la borne inférieure de 1’entropie.

Théoréme 3.3 (Deuxiéme Inégalité de 1'Entropie) La longueur
moyenne L(T'sp) d'un code D-aire de Shannon-Fano d'une source d’entro-
pie H(S) vérifie

H(S)
log, (D)

< L(Tsf) < 10122((51))) +1 (3:3)

©Preuve : Notons que la premiere inégalité de (3.3) est la premiere
inégalité de I’entropie, qui est vraie car un code de Shannon-Fano
est instantané, donc a décodage unique. Il nous reste a montrer la
deuxieéme inégalité. Soient ¢y, ..., £ les longueurs des mots du code
de Shannon-Fano et py, ..., pp les probabilités. On a :

l; def [logy (1/p;)] <logp (V/p;) +1

donc

def
L(Fsp) = flpl + ..+ gMPM

34 SCIENCES DE L'INFORMATION

1
—_——
< pilogp (V/p1) + ...+ pmlogp (Vpm) + p1+ -+ Pum
p1log, (Y/p1) + ... + pm log, (Ypm)

logz(D)

__H(S)
B logz(D)+1

G0

Exemple 3.4 (Code I'sp) La longueur moyenne du code T'sp est 1.7, on a
bien
1.022 = H(S) < L(Tgp) = 1.7 < 2.022

3.3 Code Optimal ou Code de Huffman

Nous avons obtenus jusqu’ici une borne inférieure sur la lon-
gueur de tout code, et nous avons vu que les codes de Shannon-
Fano sont a au plus unité de cette borne inférieure. Mais est-ce que
les meilleurs codes possibles atteignent la borne inférieure ? En
général, la réponse est non. Par contre, nous allons voir dans cette
section que 1’on peut toujours créer un code optimal, c’est a dire de
longueur minimale parmi tous les codes a décodage unique pos-
sibles : ce sont les codes de Huffman. Nous commengons par décrire
la procédure pour créer un code de Huffman.

Les codes de Huffman existent pour toutes les valeurs de D,
mais leur description est un peu compliquée quand D > 3, aussi
nous nous limitons aux codes de Huffman binaires. Etant donné une
source S, un code binaire de Huffman est un code instantané bi-
naire dont ’arbre de décodage est construit de la maniere suivante.

1. L’arbre est construit a I'envers, en partant des noeuds terminaux.
Chaque noeud est étiqueté avec deux attributs : un nombre dans
[0,1] (la probabilité du noeud), et une indication de statut “actif"
ou “inactif".

2. Créer M noeuds terminaux, un par symbole de source, la proba-
bilité d’un noeud est celle du symbole de source correspondant.
Tous les noeuds ont le statut “actif".

3. Choisir 2 noeuds de probabilités les plus petites, changer leur

N

statut a “inactif", et créer un nouveau noeud ancétre de ces deux
noeuds. Le nouveau noeud prend le status “actif" et sa probabi-
lité est la somme des probabilités des noeuds qu’il remplace.

4. Continuer I’étape précédente jusqu’a obtention d’un noeud
dont la probabilité est 1. On a alors obtenu un arbre binaire dont
les noeuds terminaux sont associés aux symboles de source.
Etiqueter les branches de I'arbre avec les symboles de code 0
et 1 selon un choix arbitraire. L'arbre obtenu est un arbre de

décodage qui définit un code instantané.

Exemple 3.5 La Figure 3.2 illustre la construction du code de Huffman
pour la source des 4 petits codes (Table 3.1). Le code obtenu est le code I'yy,
qui differe du code B par le codage du symbole a.

Pour un code binaire de Shannon-Fano

on a

H(S) < L(Tsp) < H(S) +1

005 005 01 0.8

0.2

& ®

0.05 0.05 0.1 0.8

0.05 0.05 0.1 0.8

symbole de source | proba code I'y

s | p(s)

a| 005 111
b | 005 110
c| o1 10
d| 08 0

F1GuRre 3.2: Construction d’un code de
Huffman. Les noeuds actifs a la fin de
chaque étape sont plus gros que les
noeuds inactifs. Le code obtenu, I'y,
est optimal.

EFFICACITE D'UN CODE DE SOURCE 35

Le théoreme suivant exprime que les codes de Huffman sont opti-

maux. La preuve est un peu longuette et nous I'omettons. Voir par exemple http://icwww.epfl.
ch/~chappeli/it/courseFR/Glossary.
Théoreéme 3.4 (Code de Huffman) La méthode décrite ci-dessus pro- php pour une preuve du Théoréme 3.4,

ainsi qu'une description des codes de

duit un code binaire instantané T gy optimal, c’est a dire que pour tout Huffman D-aires avec D > 2.

autre code binaire a décodage unique I' pour la méme source, on a

L(Ty) < L(T)

Notons que, puisque le binaire code de Huffman I'y est optimal, lettre fréquence _ bits

il domine le code binaire de Shannon-Fano I'sg, donc L(Ty) <

A 8,11 4
L(Tsp) < H(S) + 1. Donc finalement, pour des codes binaires B 0,81 -
C 3,38 5
H(S) < L(I'y) < L(Tsp) < H(S) +1 D 4,28 5
E 17,69 2

F ,
Exemple 3.6 (Source des 4 Petits Codes) Le code de Huffman I'y G 12 Z
obtenu sur la Figure 3.2 a pour longueur moyenne 1.30 bits. D’apres le H 0,74 7
Théoréme 3.4, on ne peut pas faire mieux que ce code et sa longueur est la } Z’ig ‘9‘
longueur minimale d’un code pour cette source. K 0:02 11
Notons que la longueur du code optimal I'yy est supérieure a la borne L 599 4
s p . . M 2,29 6
inférieure de l'entropie, qui vaut H(S) = 1.022. Pour cette source, la N 768 4
borne inférieure de 'entropie ne peut pas étre atteinte. o 5,20 4
P 2,092 5
Exemple 3.7 (Robot-page, suite) Nous avons calculé un code binaire (13 Z’fg Z
de Huffman I'y pour le robot-page de I'Exemple 1.4. Les longueurs, en S 8:87 4
bits, des mots de code assignés par le code a chaque lettre de I'alphabet sont [TJ 744 4
indiquées dans la Table 3.2. La lettre la plus fréquente, E, est codée sur 2 v fig 2
bits, alors que la lettre la moins fréquente, K, nécessite 11 bits. W 0,06 11
La longueur moyenne du code optimal est L(Ty) = 4.00, ce qui est); g’zg g
proche de la borne de l'entropie H(S) = 3.95. z o2 10

TABLE 3.2: Fréquences des lettres du
Frangais, exprimées en pourcentages,
et nombre de bits assignés par un code
binaire de Huffman.

Q. 23. La Table 3.2 donne les longueur
des mots du code de Huffman, mais
pas les mots de code. Est-il possible de
déduire les mots de code a partir des
longueurs de mots seulement ?

Q. 24. La longueur moyenne d'un code
de Huffman est-elle égale a la borne
inférieure donnée dans Eq.(3.1) ?

http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php
http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php
http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php

4
Entropie Conditionnelle

LA THEORIE DE L'ENTROPIE et du codage que nous avons vue jus-
qu’ici concerne le codage d'un seul message d’une source. Dans le
cas du robot-page de 'Exemple 3.7, le meilleur code de source uti-
lise 4 bits par lettre, ce qui est tres proche de 'entropie de la source
(3.95 bits). En comparaison avec un code naif qui consisterait a co-
der les 26 lettres sur 5 bits (2° = 32) le gain n’est pas nul, mais n’est
pas spectaculaire non plus. Des algorithmes de compression utilisés
sur des fichiers de texte peuvent faire beaucoup mieux, atteignant
environ 1 bit par lettre. N'est ce pas contradictoire avec la borne
inférieure de 1’entropie ? La réponse est non, bien stir, puisque les
inégalités de I'entropie sont mathématiquement prouvées. La raison
pour cette différence est que les textes frangais ne sont pas produits
par des robots-pages, mais par des auteurs. Cela nous amene a
considérer 'entropie conditionnelle, définie dans ce chapitre.

4.1 Entropie Conditionnelle

Définition 4.1 Soit S = (S1,Sy) une source composée. L’entropie
conditionnelle de Sy sachant que Sy = sq est 'entropie de la densité
conditionnelle de Sy sachant que S = s1 :

def
H(S:|S1=51) = = Y psys, (52]51) 10g, (P, s, (s251))
speAy

L’entropie conditionnelle de Sy sachant Sy en est la moyenne :

H(S:|51) € Y H(S|S1 = s1)ps, (s1)

s1€A;

L’entropie conditionnelle mesure la quantité d’information
moyenne que 1’on recoit quand on observe une source, apres avoir
observé 'autre, ce qu’on peut aussi appeler 1'information “supplé-
mentaire".

Exemple 4.1 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)

L est le premier chiffre de la somme de deux dés, Ly le deuxiéme. La den-
sité conditionnelle de Ly sachant que L1 = i pour i = 0,1 est donnée dans

Notons que I'ordre des sources dans
la définition n’a pas d’importance, on
définit de la méme fagon l'entropie
conditionnelle de S; sachant S, par

def

H(S]|Sz = 52) =

— Y4, Psy|s, (51152) logy (ps, is, (511s2))
et
H($1/52) & Y H(S1152 = 52)ps, (52)

SzGAz

la Table 2 en page 13. On obtient donc

H(Ly|Ly = 0) = 2.857426 bits
H(Ly|Ly = 1) = 1.459148 bits

La densité marginale de L1 est donnée dans la derniere ligne de la Table 1
(page 11), d’oir :

H(Ly|Ly) = 5/6 x 2.857426 4+ 1/6 x 1.459148 = 2.624379bits

Connaissant le premier chiffre, observer le deuxieme donne 2.62 bits d’in-
formation (alors qu’observer le deuxieme chiffre sans connaitre le premier
donne H(Ly) = 3.22 bits d'information).

4.2 Propriétés de I'Entropie Conditionnelle

Notons d’abord que, comme l’entropie, 1’entropie conditionnelle
est toujours > 0, puisque c’est une somme de nombres > 0.

Il est souvent plus facile de calculer I’entropie conditionnelle en
utilisant le théoréme suivant, qui exprime que l'information que
nous délivre la source composée est la somme de I'information
délivrée par une composante, plus l'information supplémentaire
délivrée par l'autre composante :

Théoreme 4.1 (Calcul de ’Entropie Conditionnelle) Soit S =
(S1,S2) une source composée.

H(S1,52)

H(S1) + H(S2/S1)
H(Sz) + H(511S2)

Comme I'entropie conditionnelle est > 0, il s’en suit en particulier que

H(S1) < H(S1,52) (4.1)

Preuve : Nous faisons la preuve seulement pour le cas ot la den-
sité de probabilité de S est positive (c’est a dire que pg, (s1) > 0
pour tout symbole s1). Appliquons la définition de I'entropie condi-
tionnelle :

H(SIS1) = = ¥ ps,(s1) ¥ psyis, (s2ls1)logy (psys, (s2ls1))

s1€A, sHeA,

= = L psi(s1)psys, (s2ls1) 108, (psyis, (s2ls1))
(s1,52)€A

ol nous avons appliqué l'associativité de la somme. Maintenant
remarquons que
log, (Psyfs, (s2151)) = logy(p(s1,52)) — logy (ps, (s1))
ol p est la densité de probabilité de S = (51, S7). Donc
(1)

H(S[S1) = —). ps,(s1)psys, (s2]s1) log,(p(s1,52))
(s1,52)€A

@)

+ Y s, (s1)Psys, (s2ls1) log, (ps, (1))
(Sl,Sz)GA

ENTROPIE CONDITIONNELLE 37

Q. 25. Nous avons trouvé que le robot-
page, qui met tous les caracteres en
majuscule, a une entropie de 3.95.
Comment cette entropie serait-elle
modifiée par un nouveau robot page
qui conserverait la casse des lettres
(minuscule ou majuscule) ?

38 SCIENCES DE L'INFORMATION

(1) = —(Z); AP(SLSz)lng(P(Sl/Sz)) = H(S1,52)

et

=1

2=)X

s1€A;

Y. Psys, (5251)] ps, (s1)1log,(ps, (1)) = —H(51)

sHeA)

Donc H(52|51) ZH(Sl,Sz)—H(Sl). O

Exemple 4.2 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
Nous avons déja calculé les entropies dans I'Exemple 1.5 : H(L) =

H(Ly, Ly) = 3.274402 bits, H(L1) = 0.650022 bit et H(L,) = 3.218846
bit. Donc

H(Ly|L1) = H(Ly,Ly) — H(Ly) = 3.274402 — 0.650022 = 2.624379 ~ 2.62 bits

ce qui est la méme valeur que celle déja calculée dans I"Exemple 4.1, mais
cette méthode de calcul est plus simple.

Notons que
Q. 26. Quelle est I’entropie condition-
. . nelle du premier chiffre L; sachant le
H(L2|L1) = 262bits < H(Lz) = 3.22 bits deuxiéme L, ?

i.e. 'entropie conditionnelle (= information supplémentaire) est moindre
que l'entropie.

Exemple 4.3 (Deux Dés non Pipés, suite) S; est le résultat du tirage
d’un premier dé non pipé, Sy du deuxiéme. Dans I’Exemple 1.6 nous
avons calculé que

H(S1,S:) = 2logy(6), HI(S1) = H(Sz) = logy(6)
donc

H(S2|S1) = H(S1,52) — H(S1) = log,(6)

H(S1]S2) = H(S2,51) — H(S2) = log,(6)
Ici H(S,|S1) = H(S2), ce qui est naturel puisque Sy et Sy sont indépen- De méme H(S1|S;) = H(S1).

dantes. Connaitre S1 n’apporte aucune information sur Sy quand on sait
que le dé n’est pas pipé.

Dans les exemples précédents, nous avons vu que H(S;|S1) <
H(S,), avec égalité quand S; et S, sont indépendantes. C’est un fait
tout a fait général, conséquence du Théoréme 1.4 :

Théoréme 4.2 (Conditionner Réduit I’Entropie) Soit S = (51, 5))

une source composée. On a bien str le méme résultat en
inversant I'ordre : H(S1|S2) < H(S1) et
1. H(52|Sl) < H(Sz) il y a égalité si et seulement si S; et Sp

2. H(S2|S1) = H(Sy) si et seulement si Sy et Sy sont indépendantes. sont indépendantes.

©®Preuve : (1) Par les Théoréemes (4.1) et (1.4) on a

H(S,|$1) = H(S1,52) —H(S1) < [H(S1) + H(S2)] — H(S1) = H(S2)

ce qui prouve l'item 1. (2) Supposons qu'il y ait égalité dans ce qui
précede. Alors H(S1,S2) = H(S1) + H(S2); d’apres le Théoreme 1.4,
51 et Sp sont indépendantes. ©lm

Une variante du Théoréme 4.2, qui nous sera utile plus tard, est
le théoreme suivant, que nous ne démontrons pas. Il exprime que
I'information supplémentaire apportée par Sz quand on connait 5;
et S; est moindre que celle obtenue quand on ne connait que S; :

Théoreme 4.3 (Conditionner Réduit I’Entropie, suite) Soit S =
(S1,S2, S3) une source composée.

H(S3|51,52) < H(S3/S2)

Enfin nous terminons cette section avec la régle suivante, appelée
parfois régle d’enchainement, qui généralise le calcul de I'entropie
conditionnelle quand on a # sources :

Théoreme 4.4 (Calcul Incrémental de I’Entropie Conditionnelle)
Soit S = (51, Sy, ..., Sn) une source composée a n composantes.

H(S1,S..,S1) = H(Su|S1,52 . Su_1) + H(Sp_1|S1,S2, - Su—2)
+.. 4 H(S3]51,52) + H(S2]$1) + H(S1)

Le théoréme est facile a retenir si on interprete 'entropie condi-
tionnelle comme information supplémentaire : I'information totale
délivrée par la source S est 'information délivrée par Sp, plus I'in-
formation supplémentaire délivrée par S, plus etc.... plus l'infor-
mation supplémentaire délivrée par S.

4.3 x Traitement de I'Information

Le traitement de I'information dans un ordinateur est en principe
déterministe. Quand une source S, est obtenue a partir d’un algo-
rithme appliqué a Sq, il n’y a aucune information supplémentaire
quand on observe Sy, pour un observateur qui connait 1’algorithme.
Cela nous amene au concept suivant :

Définition 4.2 Soit S = (53, S) une source composée. On dit que Sy se
déduit de maniéere déterministe de S1, ou encore que S, est fonction de Sy si
pour tout s; € Sy tel que ps, (s1) > 0 il existe un unique s, € S, tel que

Ps,|s, (s2[51) = 1.

Théoréme 4.5 S; est fonction de Sy si et seulement si H(S2|S1) = 0.

ENTROPIE CONDITIONNELLE 39

Q. 27. Soit S = (51, S2) une source
composée.

1. Si H(52]S1) = H(S2) que peut-on
conclure?

2. Meéme question avec H(5,|51) =
H(Sy).

Dans une notation telle que
H(S3/51,52), on considére qu’il y a
une source composée S = ((S1,52), S3)
dont la premiére composante est
elle-méme une source composée.

Q. 28. Prouvez le Théoreme 4.4.

Q. 29. Soit S = (S1,S2) une source
composée. Parmi les égalités ou
inégalités suivantes, dire celles qui
sont toujours vraies :

0

5O ®N oA h R

Py
%)
~
W |
N
N

< H(S2)
(52) < H(S1,52)
(S2181) < H(S2)
(52) > H(S1,52)
(51,52) < H(Sy)
(81,52) = H(S2)

H(S,)
H(S11S2)

++

Dire que S; se déduit de maniere
déterministe de S; est équivalent a
dire qu’il existe une application f :

A1 — A telle que ps,|s, (f(Sl)‘Sl) =1,
c’est a dire que S; se déduit de Sy par
une application.

40 SCIENCES DE L'INFORMATION

Preuve : (1) (Sp est fonction de S1)= (H(S2|S1) = 0) : H(S2|S1 =
s1) = 0 pour tout s; € A; (Théoreme 1.1) donc H(S|S1) = 0.
(2) (H(S2]S1) = 0) = (S; est fonction de S7) :

0=H(5|S1) = Y ps,(s1)H(S2|S1 =s1)
516./41

et chacun des termes de la somme est > 0, donc chaque terme est
nul. Soit 51 tel que ps, (s1) > 0; donc H(S,|S; = s1) = 0, et donc
(Théoréme 1.1) il existe un s; tel que pg, s, (s2]s1) = 1; cet sy est
unique car s’il y en avait un deuxiéme la somme des probabilités
conditionnelles serait au moins 2, ce qui est impossible. O

Comme corollaire du Théoreme 4.5 nous avons :

Théoreme 4.6 (Traitement de I'Information) Si Sy est fonction de Sy alors

H(Sq1,S2)
H(S;) <

Il
T
—~
wn

—
~—

(4.2)
H(S1) (4-3)

Intuitivement, 1'inégalité du traitement de I'information explique

ce qui se passe quand on applique un algorithme a un message 51
pour produire un message Sp. Sy n‘apporte aucune information

(si on connait l’algorithme), donc I'entropie de S = (57, S) est
égale a celle de Sq, Eq.(4.2). D’autre part, S ne peut contenir que de
I'information déja présente dans S; ; donc son entropie est au mieux
égale a celle de Sy, Eq.(4.2).

Preuve : Par les Théorémes 4.5 et 4.1, H(S1,S2) = H(S1) +
H(S;|S1) = H(S1), ce qui prouve Eq.(4.2). Eq.(4.3) est alors une
conséquence de Eq.(4.1). ad

Exemple 4.4 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
Soient S = (81, Sy) les résultats des deux tirages de dés et L = la somme
des deux tirages. Nous savons que H(S) = 5.17 bits et H(L) = 3.27 bits.

La somme L se déduit de maniere déterministe de S. Appliquons le
Théoreme 4.6 a la source composée (S, L) dont la premiére composante est
elle méme une source composée. Le théoreme dit qu’on doit avoir H(L) <
H(S), ce qui est vérifié.

Une conséquence immédiate est que si est Sy est fonction de 54
et réciproquement, alors Sq et S contiennent la méme information,
donc ont méme entropie :

Théoréme 4.7 Soit S = (S1,Sy) une source composée telle que S,
se déduit de maniere déterministe de Sy, et vice versa, S1 se déduit de
maniere déterministe de S,. Alors H(S1) = H(S2) = H(S1, S2).

Exemple 4.5 (Le Vélo d’Anne, suite) Bernard pose i Anne des ques-
tions dont la réponse ne peut étre que “oui” ou “non”. Le but de Bernard

On a bien stir le méme résultat en
inversant I'ordre : si S; est fonction
de Sy, alors H(S1,S2) = H(Sz) et
H(S1) < H(Sy).

On suppose ici qu’on peut distinguer
les deux dés, par exemple 1'un est
rouge et l'autre est vert.

Dire “S, est fonction de S; et récipro-
quement" équivaut a dire “S; se déduit
de S; par une application bijective".

Q. 30. Prouvez le Théoreme 4.7.

ENTROPIE CONDITIONNELLE

est de deviner le numéro du cadenas d’Anne, qui est un nombre de quatre
chiffres décimaux. Bernard a le droit de poser n questions au maximum.

Nous pouvons modéliser les réponses d’Anne comme une source S =
(S1,S2, ..., Sn), oit Sy est la réponse d"Anne a la k-ieme question. Il se
peut que Bernard pose moins de n questions, auquel cas nous donnons la
valeur “oui” pour les réponses aux questions non posées. Imaginons une
source S' qui délivre (X, Sy, ..., Sn) oit X représente le numéro de cadenas ;
bien silr cette source ne peut pas étre observée par Bernard, qui ne peut
observer que la source marginale S = (Sy, ..., Sy).

Par le Théoréme de Traitement de I'Information, S est une fonction
déterministe de X (nous supposons qu’Anne ne triche pas; les réponses
Sq, ..., Sy, sont entierement déterminées si le numéro de cadenas X est
connu). Donc

H(X,S) = H(X)

D’autre part, par les Théorémes 4.1, 1.3 et 1.4 :

H(X,S) = H(X|S)+ H(S)
H(S) < H(S1)+..+H(S;) <n

donc
H(X|S) > H(X) —n

L’information supplémentaire H(X|S) est celle qui manque a Bernard

pour trouver le numéro du cadenas. Si les questions sont bien congues,

cette information est petite, si elles sont mal congues, cette information

est grande. Les questions sont bien congues si I'entropie H(S) est aussi

grande que possible, ce qui a lieu quand les réponses aux question posées Q. 31. Existe-t-il un systeme de 14

sont équiprobables. Donc Bernard doit essayer de poser des questions dont questions qui permette a Bernard de
trouver le numéro d’Anne a coup str?

les probabilités de réponse soient proches de 0.5.

Supposons qu’Anne a choisi son numéro uniformément parmi les
10000 possibles, donc H(X) = log,(10'000) = 4log,(10) = 13.287.
Nous avons alors

Q. 32. S0it S = (53, S2) une source
composée.

H(X|S) > 13.287 — n

En particulier si n < 13 I'entropie conditionnelle est > 0 donc Bernard ne R ;)
conclure ? Méme question avec :
peut pas étre certain de trouver le numéro en 13 questions ou moins. 2. H(S:/%1) =0

41

1. Si H(S1,S2) = H(S1), que peut-on

5
Théoreme du Codage de Source

Nous ARRIVONS MAINTENANT AU BOUT de nos efforts et pouvons
comprendre comment mesurer l'information d'une source réelle
(plutdt que d’un robot-page). Nous allons considérer un modéle

de source plus complexe, celui de “source étendue", qui modélise
mieux la production d'un texte en frangais. Pour une source éten-

due, le concept-clé est celui d’“entropie par symbole", défini a partir

de l’entropie conditionnelle.

5.1 Sources Etendues

Jusqu'ici nous avons considéré des source étendues avec un
nombre fixé de composantes. Pour aller plus loin, en particulier
pour modéliser des textes écrits par des auteurs plutot que des
robots-pages, il nous faut pouvoir considérer des sources produi-
sant un nombre indéfini de symboles. Pour cela, nous introduisons
le concept de “source étendue"”, que nous pouvons imaginer comme
une machine a produire, sur demande, pour tout 7, une suite (ap-
pelée bloc) de n symboles définis sur le méme alphabet. Pour étre
cohérent, il faut que la densité de probabilité du bloc des n pre-
mieres observations soit la méme quel que soit le nombre total
d’observations.

En bref, nous pouvons dire qu’une source étendue modélise un
nombre illimité de symboles du méme alphabet.

Définition 5.1 (Source Etendue) Une source étendue S sur I'alphabet A
est la donnée d’une famille de sources S" définies pour tout n = 1,2,3, ...
telles que

1. S" est une source a n composantes, sur l'alphabet A x ... X A; notons
psn sa densité de probabilité ;

2. la densité de probabilité de la source constituée des n premiéres sources
marginales de Stk pgt égale a pgn, pour tousk > letn > 1.

On note § = (51, Sy, ..., Sk, -..) la source étendue, ou Sy est la k-ieme
marginale, et S = (53, ...,S,) la source & n composantes qui en
dérive. On dit aussi que S” est un “bloc" de n symboles de la source
étendue (rappelons que chaque symbole du bloc est élément du
méme alphabet A).

Une définition apparemment plus
simple serait de définir une source
étendue comme la donnée d'un alpha-
bet A et d'une densité de probabilité
définie sur I'ensemble des suites infi-
nies d’éléments de A. Mais cela nous
emmenerait un peu loin, car il faudrait
faire une théorie des probabilités sur
des ensembles infinis, ce qui est plus
complexe et n’est pas nécessaire pour
ce cours.

THEOREME DU CODAGE DE SOURCE 43

Exemple 5.1 (Pile ou Face) Spr modélise des tirages successifs d'une
piéce non biaisée ; Sy représente le résultat du k-ieme tirage. La densité de
probabilité de pgn est définie par

1

= V(s1,80) € (P OET

Pgn (Sl, ceey Sn>

c’est a dire que, pour n fixé, tous les blocs de n symboles sont équipro-
bables.

11 est intuitivement clair que Spr satisfait a la définition de source
étendue; U'item 1 est clair ; pour Uitem 2, il faut se demander si la densité
de probabilité des n premiéres observations est la méme quel que soit le
nombre total d’observations. La réponse semble évidemment oui.

Exemple 5.2 (Beau ou Mauvais) Le temps qu'il fait jour aprés jour
n'est pas indépendant d’un jour a l'autre, il a tendance a se répéter sou-
vent (mais pas toujours). Supposons que le temps qu’il fait un jour k est,
avec probabilité q = 6/7, le méme que le jour précédent. Supposons que le
temps au jour k = 1 est équiprobable. Nous modélisons cela par une source
étendue Sy, sur U'alphabet A = {b,m} (“beau”, “mauvais”). La densité
de probabilité de S*, par exemple, est telle que :

pgs(bbbm) =05 x g x g x (1 —¢q)
En général nous avons

P (51, s) = 05" 11 (1 —)i (5)

oit ¢(s1, ..., Sn) def le nombre de changements dans la suite (s1, ..., Sy) ;
ainsi c(bbbm) = 1, ¢(bbbb) = 0 et c(bmbm) = 3.

Notons aussi que, par construction de S, la densité conditionnelle du
temps d’aujourd’hui sachant les temps des jours passés ne dépend que du
temps d’hier. En termes mathématiques :

g Sisy =Sy_1
(1—q)sisy #5sp1

Comme dans I'exemple précédent, il est intuitivement clair que S,
satisfait, par construction, a la définition de source étendue. Quelle est la

psyist,...st_ (Snl$1, - 5n—1) =

probabilité uy qu'il fasse beau au jour k ? Montrons que uy, = 0.5 pour
toutk=1,2,3....

(Etape d'initialisation) Pour k = 1, u; = 0.5 par construction.

(Etape de récurrence) Supposons que uy = upy = ... = uy = 0.5. Soit
v = 1 — uy la probabilité qu’il fasse mauvais au jour k ; nous avons :

U1 = qug+(1—¢q)vy =059+05-059 =05
donc la propriété est vraie pour k 4 1.

Exemple 5.3 (Vert ou Bleu) Au pays des Schtroumpfs, il y a deux
partis : les bleus (nationalistes) et les verts (écologistes). Quand un
Schtroumpf atteint I'dge de voter, il tire a pile ou face et se prononce
une fois pour toutes pour 'un des deux partis. Pour le reste de sa vie, il
conservera ce choix.

* Voici une preuve formelle que Spr
satisfait a la définition de source
étendue; il faut montrer que l'item 2
est vrai. La densité des n premieres
marginales de S"*¥ est :

def

O C)

= Psn (S], ey Sn)

ce qui prouve que Spr satisfait I'item 2
de la définition.

De la méme facon, pour Sy, notons
que, d’apres Eq.(5.1) la densité de S"+k
satisfait :

Pgn+k (S], s Sn+k) =

psn(s1, .y S")pséﬂw-,sfﬂ |5k (Snt1, s SntklSn)

Donc

def

Ptk gk (51, 5n)

Lo tosnip Ptk (517 oo S St s Suyk)
= pgn(S1,..r5n) X
1 car c’est une proba

E Pgk+1 gkl |sk+1 (Sn+1, ---r5n+k|5n)
S 2 k+1171
Snt1r5n+k

= Ppgn (51, ..,,Sn)

ce qui prouve que Sy, satisfait l'item 2
de la définition.

Pour prouver un résultat du type
Vn € {ng,ng+1,..},P(n)

on peut utiliser un raisonnement par
récurrence. Cela consiste a prouver :
1. (étape initiale) : P(np) est vraie.
2. (étape de récurrence) : pour tout
n € {ng,ng+1,..}, si P(n) est vraie
alors P(n + 1) est vraie.
Par exemple, soit S(n) = 1+2+
... + n défini pour n > 1, et soit P(n) la
phrase
n(n+1)
S(n) = ———=
(m) = "
Nous pouvons montrer par récurrence
que P(n) est vraie pour tout n =
1,2,3,..:
1. (étape initiale) : P(1) est vraie car
S(1)=1= 1011
2. (étape de récurrence) : Suppo-
sons P(1), P(2),..., P(n) donc en

particulier 5(n) = w Alors

Sn+1)=1+..+n+(n+1)
=5(n)+(n+1)
=10 4 (n41)
_ (n+1)(n+2)
2
donc P(n + 1) est vraie.

Donc P(n) est vraie pour tout n €
{1,2,3,..}.

44 SCIENCES DE L'INFORMATION

Nous pouvons modéliser les votes d'un Schtroumpf par une source
étendue Syp sur l'alphabet A = {V,B}. La densité de probabilité de S"
est:

psn(VVVV) =
psn(BBBB) =

et toutes les autres suites de symboles ont une probabilité nulle. Ici aussi,
il est clair que Syp satisfait, par construction, a la définition de source
étendue.

La probabilité qu'un Schtroumpf vote B i la k-iéme votation est 0.5,

c’est a dire que les symboles de la k-iéme source marginale sont équipro-
bables.

Pour les trois sources étendues des exemples précédents, la proba-
bilité que le k-iéme symbole prenne une des deux valeurs possibles
vaut 0.5. Cependant, les trois sources sont tres différentes, comme
l'illustre la Figure 5.1 et nous verrons que nous pouvons les compri-
mer avec des rapports de compression différents.

5.2 Entropie par Symbole d"une Source Etendue Réquliere

Pour une source étendue, nous pouvons calculer 1'entropie du k-
ieme symbole, et appliquer un code efficace pour chaque symbole,
dont la longueur moyenne sera proche de cette entropie. Cepen-
dant, nous allons voir que cette méthode n’est pas la plus efficace :
il est plus malin de considérer des blocs de n symboles. Le concept
essentiel devient alors 1'entropie par symbole, qui est définie comme
la quantité d’information moyenne supplémentaire obtenue quand
on regoit un symbole. Pour éviter des complications inutiles, nous
avons besoin de poser une hypothese technique :

Définition 5.2 La source étendue S est dite réguliére si les deux limites

1. H(S) L im s 4 oo H(Sy) et
2. H*(S) © limy 400 H(Su|S1,S2, . Su_1)
existent et sont finies.
Pour une source étendue réguliere S, H(S) est appelée I'entropie d'un
symbole et H*(S) est appelée I’ entropie par symbole.

Toutes les sources étendues utilisées en pratique pour modéliser les
sources d’information sont régulieres. Une raison simple est que
toutes les sources stationnaires sont régulieres, et que la plupart des
modeles de source sont stationnaires.

Exemple 5.4 (Les Trois Sources) Examinons si les trois sources éten-
dues des exemples précédents sont régulieres, et si oui, calculons leurs
entropies d'un symbole et par symbole.

Pile ou Face. D’une part la densité de probabilité de S, est la méme
pour tout n donc H(S,) = H(Sy), i.e. la suite H(S,) est une suite
constante, donc elle a une limite. L'entropie d’un symbole existe donc et est
H(Spp) = H(S1) = 1 bit.

el e B -l = e B B B v B B B e e e = o o B B o B B e = e e s e B o B B B B = e = e Mo B - B R R B o
S 8Bocoocoooooogoocoocoo3BEB3oco838838o883o883888oo3
<< << << << << <<l <d<l<l<l<l<< Ll <ll<llgg<gg<e<x

FIGURE 5.1: Exemple de suites de 40
symboles produits par les trois sources
étendues “Pile ou Face", “Beau ou
Mauvais" et “Vert ou Bleu".

On dit que la source étendue S est sta-
tionnaire si, pour tout n fixé, la densité
de probabilité de (Sgy1, ..., Skin) estla
méme pour toutes les valeurs de k > 0.

En d’autres termes, la stationnarité
signifie que les blocs

(S, S2, .y Sn)
(S2, Ss, ey Sn+1)

(Sk+1r Sk+2/

ont toutes la méme densité de probabi-
lité, quel que soit k > 0. La source ne
change pas son comportement moyen
quand le temps passe, elle ne vieillit ni
ne rajeunit.

On peut montrer que les trois
sources “Pile ou Face", “Beau ou
Mauvais" et “Vert ou Bleu" sont sta-
tionnaires.

ceey

Sn+k)

THEOREME DU CODAGE DE SOURCE 45

Pour déterminer si 'entropie par symbole existe, il nous faut I'entropie
conditionnelle. Or

H(Sn|51,..., Sn—l) = H(Sn) =1 bit

car Sy, est indépendante de Sy, ..., S,,_1. Donc, évidemment, la limite existe
et vaut aussi 1 bit. Donc I'entropie par symbole est H*(Spg) = 1 bit.
Cette source est réguliere, et ses entropies d’un symbole et par symbole
sont égales. Q. 33. x Démontrez qu’une source
Beau ou Mauvais. Nous avons montré que la probabilité qu'il fasse stationnaire est régulire.
beau au jour n est 0.5, donc H(Sy,) = 1 bit. La suite H(S,) est une suite
constante, donc elle a une limite. L'entropie d’un symbole existe donc et est
H(Spy,) = H(S1) = 1 bit.
Sachant que (S1, ..., Sy—1 = S1,.-,Su—1), S vaut “beau” ou “mauvais”
avec probabilités q et 1 — q, ou 'inverse. Dans tous les cas :

q

H(Sn|51 = 51,y Sn—l = Sn—l) = h(q)

oit la fonction h est I'entropie d’une source binaire, Eq.(1.1). Cela ne dé-
pend pas de (s1, ..., s,—1), donc, en prenant la moyenne nous obtenons :

H(Su|S1, s Su—1) = h(q)

aussi. Donc 'entropie conditionnelle H(Sy,|S1, ..., Sy—1) est la méme pour
tout n, donc elle converge et 'entropie par symbole existe. Elle vaut :

H*(Spy) = h(q) = 0.592 bit

Cette source est réguliere, et son entropie d"un symbole est plus grande
que son entropie par symbole.

Vert ou Bleu. Ici S, = Sy pour tout n donc comme pour les deux H H
autres sources, la suite H(Sy,) est une suite constante égal a 1 bit, donc Pile ou Face 1bit 1 bit
, .1 . ; Beau ou Mauvais 1bit 0.592 bit
Uentropie d’un symbole existe et vaut H(Syp) = H(S1) = 1 bit. Vert ou Bleu 1 bit 0 bit
La densité de probab'zll/te condztzo?a?iflle, de S, sachant qtlte (81,.,Sp-1 = Tapte 5.1: Entropie d'un symbole (H)
S1,...,Sn—1) est la densité de probabilité d'une source certaine, et donc et par symbole (H*) de trois sources

binaires.
H(Sn|Sl = 51, ey Sn—l = Sn—l) =0
Donc H(S|S1, ..., Sp—1) = 0 et la limite existe, avec H*(Syp) = 0. Cette
source est réguliere, et son entropie d'un symbole est plus grande que son
entropie par symbole.

Exemple 5.5 (Source Non Réguliére) Tirons a pile ou face une fois
par jour, avec une piece biaisée qui dépend du jour de la semaine. La piece
des dimanches retourne “P” avec probabilité 1, celle des lundis avec pro-
babilité 1/2, des mardis avec probabilité 1/3, etc... celle des samedi avec
probabilité 1/7.
Soit S = (51,85, ...) une suite infinie de tirages commengant un
dimanche. Alors
H(S1) = 0, H(S2)
H(Sg) = 0, H(Sy)

1,..,H(S;) = 0.592
1,.., H(S14) = 0.592

de sorte que la suite H(S,,) ne converge pas. Cette source n'est pas régui-
liere.

46 SCIENCES DE L'INFORMATION

Dans les exemples précédents de sources réguliéres, I’entropie
par symbole est majorée par l'entropie d'un symbole, etiln'y a
égalité que dans le cas “Pile ou Face", ol les sources marginales
sont indépendantes. C’est une illustration du résultat suivant :

Théoréme 5.1 Pour une source étendue réquliere :

1. l'entropie par symbole est < l'entropie d"un symbole, i.e. H*(S) <
H(S);

2. si les sources marginales sont indépendantes alors il y a égalité.

©Preuve : (1) Soit S = (51, Sy, ...) la source étendue réguliere.

L'entropie d’un symbole est i = lim, . H(S,) et 'entropie par

symbole est H*(S) = limy 00 H(Sy|S1,...Sy—1) . Or conditionner

réduit 'entropie (Théoreme 4.2) donc

H(Sn |51, -~-Sn—1) < H(Sn)

donc par passage a la limite H*(S) < H(S).

(2) indépendance = égalité : Les sources sources marginales sont
indépendantes par hypothese, donc H(S,|S1,...5,-1) = H(Sx) et
par passage a la limite : H(S) = H*(S). Slu|

Exemple 5.6 (Robot-Page contre Flaubert) L’entropie du robot page
est I'entropie d’un symbole de la langue francaise et vaut environ 3.95
bits. L’entropie par symbole peut étre calculée en estimant directement
uy, = H(Sy|S1, ..., Sy—1). Pour cela, on commence par faire I’hypothese
que les textes écrits, par exemple un livre de Gustave Flaubert, peuvent
étre modélisés par une source réguliére (car stationnaire). Cela est valide si
on estime que la langue ne change pas au cours d’un livre, ce qui est vrai
en général.

Ensuite on calcule u, pour chaque n = 1,2, ... fixé en estimant

1. d’une part les densités de probabilités conditionnelles
PSu(S1Sn_1 (Sn|81, oy Su—1) pour chaque (sy, ..., $,—1) et chaque sy ;
cela permet de calculer H(S,|S1 = s1,...,Sp—1 = Sy—1) pour chaque
(51/ sy Sn—l) ;

2. d’autre part les densités de probabilités marginales ps, s, (S1,...,Sp—1)
pour chaque s, ..., 5,1 ; en combinant avec ce qui précede cela permet
de calculer

Uy = H(Sn|Sl,..., Snfl) =
Z(sl,...,sn,l) PSl,...,Sn,l (Sll s Snfl)H(SYI'Sl = 51y Sn,1 = Snfl)

On fait cela pour plusieurs n et on cherche la limite de u, quand n
croit, ce qui donne I'entropie par symbole. Shannon I'a fait pour la langue
anglaise* et obtenu I'entropie par caractére h* ~ 1.5. Cela a été fait par
d’autres pour la langue frangaise et on trouve l'entropie par caractere
h* ~ 1. La valeur dépend des textes et des auteurs choisis et des conven-
tions utilisées pour I'alphabet (par exemple, avec ou sans le caractere
espace, avec ou sans les minuscules, les caractéres accentués, etc.).

1. C.E. Shannon.

Q. 34. Si pour une source réguliere
I'entropie par symbole est strictement
inférieure a I'entropie d"un symbole
que peut-on conclure ?

Q. 35. x Démontrez que si pour une
source stationnaire 1’entropie par
symbole et I’entropie d"un symbole
sont égales, alors les marginales sont
indépendantes

Q. 36. Si pour une source réguliere
I'entropie par symbole est nulle, que
peut-on conclure ?

Voici un exemple pour comprendre
comment sont estimées les densités
de probabilités conditionnelles et mar-
ginales de 'Exemple 5.6. Supposons
que nous ayons un texte de N = 2173
caracteres, dans lequel nous avons
observé 53 fois le préfixe QU. Nous
avons trouvé les résultats suivants
pour le successeur de QU :

caractére occurrences
A 23
E 16
I 9
0 5
autres o
total 53

Nous obtenons alors

Psyisys, (AIQU) = 23/53 ~ 0.434
Psyisy,s, (EIQU) = 16/53 = 0.302
Psyisy,s, (IIQU) = 9/53~0.170
Psyis,,s, (O1QU) = 5/53 = 0.094
Psslsy,s, (52]QU) = 0 sinon

d’ot nous calculons que H(S3|51 =
Q,S, = U) = 1.800 bits. Notons
qu’ici nous utilisons implicitement
I'hypothese que la source qui modélise
le texte est réguliere.

11 faut ensuite faire cela pour tous
les préfixes (s1,s7) de n = 2 lettres.
Puis, nous calculons les probabilités
Ps,.s, (51,52) pour tous les préfixes
(s1,82) (il y en a 2%%, nous ignorons les
espaces dans cet exemple). Nous avons
un texte de N = 2173 caracteres, il y
a donc N — 2 = 2171 suites possibles
de 2 caractéres qui peuvent étre suivis
d’un caractere : nous avons observé
53 fois la suite QU donc nous prenons
Ps,,s,(QU) = 53/2171 ~ 0.00244. 11
faut faire ces deux étapes pour tous les
préfixes (s1,s,) de n = 2 lettres, ce qui
permet de calculer u,.

Prediction and en-
tropy of printed English. Bell System
Technical Journal, 30(1):50—64, 1951

2. Alexis Fabre-Ringborg and Sébas-

tien Saunier. Entropie du frangais.
http://cb.sogedis.fr/files/
entropie/Entropie_Francais_
FabreRingoborg_Saunier.pdf, 2003

http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf

THEOREME DU CODAGE DE SOURCE 47

5.3 Théoreme du Codage de Source

Le moment est venu d’introduire la botte secrete du codage de
source : le codage par bloc. L'idée est simple : au lieu de coder un
symbole de la source S1, on code un bloc de 1 symboles, c’est a dire
que nous codons la source S" = (Sq,...,Sy). Le premier résultat
remarquable concerne 'entropie de S", qui, pour n grand, est a peu
pres égale a n fois I'entropie par symbole :

Théoreme 5.2 (Entropie d"un Bloc) Soit S une source étendue régu-

liere. Alors H(S 5
(17 s 1’1) :H*(S)
n——+o00 n
oit H*(S) est 'entropie par symbole et H(Sy, ..., Sn) 'entropie d'un bloc

de n symboles.

Théoréme de Cesaro : si une suite u, de

©Preuve : Nous appliquons le théoreme de Cesaro (que nous ne nombres réels converge vers une limite
démontrons pas) a la formule de calcul incrémental de I'entropie f (finie ou mﬁmf) %ufnﬂf — oo, alors
a moyenne v, = r— converge
conditionnelle : aussi vers £.
H(Sn) = H(Sl, ey Sn) = H(Sn |Sl, ey Sn—l) + H(Sn_l |Sl, ey 5«,,72)
+...+ H(S3|51,52) + H(S2|S1) + H(S1)
Posons u, = H(S5,|51,...,5,—1) pour n > 2 et u; = Hy. Nous avons
donc
H(S") up+..+uy
no n
Or limy— 40 Uy = H*(S) dong, par le théoréeme de Cesaro,
H n
fim 28 sy
n—+oo 1
G0
Exemple 5.7 (Les Trois Sources, suite) Pour chacune des trois sources
étendues régqulieres des exemples précédents, nous pouvons calculer exacte-
ment 'entropie d’un bloc.
Pile ou Face. Puisque les marginales sont indépendantes, nous avons
H(Sl, ey Sn) = H(Sl) + .+ H(Sn) = n bits
_ _ H(S1,54) _ .
car H(S1) = ... = H(Sy) = 1. Nous avons —=12=212 = 1 donc a fortiori
limy, 4 oo L1 — | — FH*(Spy) et le Théoreme 5.2 est vérifié.
Beau ou Mauvais. Nous avons calculé que H(S,|S1 = s1,...,Sp-1 =
Su—1) = h(q) oit la fonction h est 'entropie d’une source binaire, Eq.(1.1).
Donc H H H
Pile ou Face 1 1 n
H(Sl,...,Sn) = H(Sn|51,..., Snfl) + H(Sn,1|51,...,5n_2) BeauouM. 1 0592 0.592n + 0.408
+... 4+ H(S3|S1,52) + H(S2/S1) + H(S1) VertouBlew 1 0 !
(n—1) fOiS TaBLE 5.2: Entropie (exprimée en bits)
—— d’un symbole (H), par symbole (H*) et
=h(q) + ...+ h(Q) +1=(n— 1)h(Q) +1=0.592n +0.408 d’un bloc de n symboles (H") de trois

sources binaires.
Nous avons limy,— 1 M = 0.592 = H*(Sy,,) et le Théoreme 5.2
est vérifié.

48 SCIENCES DE L'INFORMATION

Vert ou Bleu. La source (S, ..., Sy) prend deux valeurs (VV...V et
BB...B) avec probabilités 0.5 donc

H(S1,..,Sn) = H(Sy) = 1 bit

H(S1,.52) _ 1 .41 H(S1,..52) _ n _)
Nous avons % = cetlim, e % =0=H*(Syp);le
Théoréme 5.2 est vérifié.

Considérons maintenant un bloc de n symboles d'une source éten-
due réguliere. Nous pouvons l’encoder en utilisant un code binaire
efficace, par exemple un code de Shannon-Fano ou un code de
Huffman. Nous avons maintenant réuni tous les éléments pour
prouver que, pour de tels codes et pour n grand, le nombre moyen
de symboles de code par symbole de source approche l'entropie
par symbole d’aussi prés qu’on veut. Ce résultat est connu comme
le “premier théoreme de Shannon", ou le “théoreme du codage de
source".

Théoréme 5.3 (Codage de Source) Soit S une source étendue réguliere
et H*(S) son entropie par symbole. Soient L%, respectivement L}, les
longueurs moyennes des codes D-aires de Shannon-Fano, respectivement
Huffman, pour un bloc de n symboles de la source. Alors

n | *
lim -2 = lim —SE = HY(S) (S)
n—-+oo N n—-+oo M IOgZ(D)

©Preuve : Par les deux inégalités de l'entropie :
H(S1,...,5) H(S1,...,5)
log, (D) log, (D)

Nous nous intéressons au nombre moyen de symboles de code par

<L <Lé < +1

L . . .
symbole de source, -t et —F ; il s’en suit que :

H(S1,,S0) Ly _ L _ H(S1,50) 1 53)
nlog,(D) — n — n nlog,(D) n >
Appliquons maintenant le Théoréme 5.2, il vient :
H(S1,,Sn) _ H*(S)
n—teo nlog,(D) log, (D)
o H(S,wS0) 1 HY(S)
n—+oo nlogy,(D) ~n log,(D)

Les deux termes extrémes de Eq.(5.2) convergent vers la méme
limite quand n — +oc0, donc, par le “critere des deux gendarmes"3,
les termes du milieu aussi. ©0

Remarque. Pour tout autre méthode de codage a décodage unique,
sa longueur moyenne L" pour un texte de n symboles de la source

satisfait L, > L¥; (puisque un code de Huffman est optimal). D?;C
H*

log, (D)
symboles de code par symbole de source. Appliquons cela avec

toute autre méthode de codage ne peut pas faire mieux que

D =2: H*(S) est donc le nombre minimum de bits par symbole de
source que n'importe quelle méthode de codage a décodage unique
peut atteindre.

3. Y. Biollay, A. Chaabouni, and

J. Stubbe. Savoir-faire en maths:
bien commencer ses études scienti-

fiques. Presses polytechniques et
universitaires romandes, 2008. ISBN
2880747791

Le critere des deux gendarmes est

le suivant : siu, < v, < w, et

limy, 400 Uy, = limy 400 Wy, = ¢, alors
limy,—; 400 vy, = £ aussi.

THEOREME DU CODAGE DE SOURCE 49

Exemple 5.8 (Les Trois Sources, suite) Calculons la longueur moyenne
d’un code binaire de Huffman pour un bloc de n symboles pour chacune
des trois sources étendues régulieres.

Pile ou Face. Les symboles de la source S" sont tous équiprobables, il
est donc naturel d’essayer un code dont tous les mots de code ont la méme
longueur. Considérons par exemple le code T qui traduit “F” en 0 et “P”
en 1. La longueur moyenne de ce code est

1
L(F”):Z”xz—nxn:nbits

bbbbbb 2 bbbbbm 5
; , — o . mbbbbb 5 | mbbbbm 7
Or H(S™) = n bits donc le code T™ atteint la borne inférieure de I'en- bmbbbb 7 | bmbbbm 9
tropie, et donc il est optimal et un code de Huffman a forcément la méme mmbbbb 5 | mmbbbm 7
bbmbbb 7 bbmbbm 10
longueur moyenne. Nous avons mbmbbb 10 | mbmbbm 12
" bmmbbb 7 bmmbbm 10
L(FH) - 1= H* (S) mmmbbb 5 mmmbbm 7
n PF bbbmbb 7 | bbbmbm 10
mbbmbb 9 | mbbmbm 12
La limite prévue par le Théoréme 5.3 est en atteinte pour tout n > 1. bmbmbb 12 | bmbmbm 13
: , - - mmbmbb 9 | mmbmbm 12
Beau (.)u Z/VI\uuvms. La longueur moy?nm.e d’un code binaire de Huff bommbb 7 | bbmmbm 10
man appliqué a un bloc de n symboles satisfait mbmmbb 9 | mbmmbm 11
bmmmbb 7 bmmmbm 9
0.408 _ L(T}) 1.408 mmmmbb 5 | mmmmbm 7
0592+ —— < — == <0592+ —— bbbbmb 7 | bbbbmm 5
mbbbmb 10 | mbbbmm 7
Pour obtenir la valeur exacte de L(T",) il faut calculer le code de Huffman, bmbbmb 12| bmbbmm 10
. s s . . H mmbbmb 10 | mmbbmm 7
ce qui est facile a faire si n est petit. Pour n = 6 nous trouvons le code bbmbmb 12 | bbmbmm 10
illustré en Table 5.3 et mbmbmb 13 | mbmbmm 12
bmmbmb 12 | bmmbmm 10
L(F”) mmmbmb 10 | mmmbmm 7
0.660 < ——HZ = 0.6632 < 0.8267 bbbmmb 7 | bbbmmm 5
n mbbmmb 9 | mbbmmm 7
N g bmbmmb 12 | bmbmmm 9
Le code de Huﬁ‘man est treés proche de la borne inférieure, et plus n est mmbmmb 9 | mmbmmm 7
grand plus il en est proche. D’autre part, plus n est grand plus la borne bommmb 7 | bbmmmm 5
inférieure est proche de H*(Sy,,,) = 0.592. En codant par bloc, on gagne mbmmmb 9 | mbmmmm 7
bmmmmb 7 bmmmmm 5
donc sur deux tableaux. mmmmmb . 5 | mmmmmm 2
Vert ou Bleu. La source S" peut émettre deux suites de symboles : TABLE 5.3: Source “Beau ou Mauvais” :
BBBB...Bet VVVV..V, et chaque suite a la méme probabilité, égale i r;lombre de bits alloué par le nge de
uffman a chaque blocden = 6
0.5. Donc un code évident pour S est donné par I (BBBB...B) = 0, symboles. La longueur moyenne du
I"(VVVV..V) = 1. Sa longueur moyenne est 1, et aucun code ne peut code est 3.97929 bits.

faire mieux, donc c’est un code optimal. Donc L(I"™) = 1 bit et
Q. 37. Considérons les suites des
L(T%) 1 60 symboles produites par les trois
- = = sources de la Figure 5.1. Supposons
n n .
que nous les encodions avec le code
binaire de Huffman pour la source cor-
respondante par blocs de 6 symboles.
Quelle est la longueur en bits de la
suite encodée, pour chacun des trois
cas?

La limite prévue par le Théoreme 5.3 est 0, ce qui est bien le cas ici.

5.4 Compression et codage de source en pratique

Le code de Huffman est optimal, mais comme nous l’avons vu,
il faut pouvoir coder par bloc si ’on veut comprimer efficacement.
Si l'alphabet de la source est de grande taille, sa complexité peut
devenir grande. la construction de l’arbre binaire peut devenir ex-
trémement complexe en nombre d’opérations. L'algorithme de

50 SCIENCES DE L'INFORMATION

Huffman ne peut donc étre utilisé qu’avec des alphabets de source
de taille raisonnable (Par exemple, le codage des opérations sur le
processeur Intel 432 fait appel a des techniques du type Huffman
pour la compression des programmes). De tels alphabets sont ob-
tenus apres plusieurs étapes préliminaires de compression utilisant
d’autres algorithmes, dont certains sont mentionnés ci-dessous et
seront étudiés dans les cours de traitement du signal, des images,
de l’audio, ainsi naturellement que dans ceux de théorie de I'in-
formation et du codage. Le théoréme du codage de source permet
alors de vérifier, a posteriori, si une méthode de codage est proche
de l'optimum.

Ainsi pour des textes ASCII, on utilise souvent 1’algorithme de
Lempel-Ziv. Cet algorithme sera vu dans le cours de théorie de
I'information en 4éme année. Les commandes Unix compress et
zip (winzip sur Windows) utilisent cet algorithme. Vous pouvez
facilement observer en pratique la performance de ce code, on
trouve fréquemment un rapport de compression de 1'ordre de 1 : 8.
Or 'entropie par symbole d'un texte francais est, en gros, de 1’ordre
de 1 bit par caractere; un caractere encodé suivant le code ASCII
cotite 8 bits. Le théoreme de codage de source dit donc qu'un code
par bloc efficace permet d’atteindre environ 1 bit par caractere, ce
qui, pour un texte ASCII, donne un rapport de compression égal
al : 8. Cela montre que l'algorithme de Lempel-Ziv est quasi-
optimal.

Les fichiers audio utilisée en téléphonie sont des suites de sym-
boles de 8 bits; I'entropie par symbole en dehors des périodes de
silence est de l'ordre de 4 bits. Il est donc possible de comprimer les
périodes d’activité avec un rapport de compression proche de 1 : 2,
en utilisant un code de Huffman 4. Comme les silences occupent
environ la moitié du temps (pour une conversation équilibrée), il
est possible de comprimer avec un rapport d’environ 1 : 4, sans
perte. Les fichiers audio HiFi sont des suites de symboles de 16 bits,
la aussi il est possible d’atteindre un rapport de compression (sans
perte) proche de 1 : 2.

Exemple 5.9 (Codage par Longueur de Plage (“Run Length Encoding"))

Un algorithme de codage assez simple pouvant s’appliquer a des images
graphiques a deux niveaux (noir (N), blanc (B)), dont l'exemple typique
est le fax, est le codage par longueur de plage (“Run Length Encoding”).
L’image est découpée en carrés élémentaires, les pixels. Prenons une ligne
d’une telle image, qui est donc une succession de pixels blancs et noirs.
Par exemple, prenons la colonne de gauche dans la Figure 5.2.

Au lieu d’encoder chaque pixel blanc par un bit O et chaque pixel noir
par un bit 1, ce qui ne procure aucune compression, on compte le nombre
de pixels blancs et noirs successifs (qu’on appelle plages), et on code cette
longueur par un entier, en notation décimale. On obtient la colonne du
milieu dans la figure.

Ensuite on code ces symboles entiers par un code binaire approprié,
soit a longueur constante, soit plus efficacement par un code de Huffman

4. H. Gharavi and R. Steele. ~Conditio-
nal entropy encoding of LOG-PCM
speech. Electronics Letters, 21(11):
475—476, 2007. ISSN 0013-5194

B4
N3
B3
N2
B4
N3
B24
N4
B6
N1

2T NN W ZZ 2 P I TIIT T T T T TTOTTITT I TTI TR ZZZITORZZIIDZZZ DI E®

O 00O R R PR R OOOOROROOR R P ORRPRROOOROR R FLOR

FIGURE 5.2: Une suite de pixels noirs

et blancs, son encodage par longueur
de plage, et 'encodage final, obtenu en
encodant les longueurs de plages par
le code de Huffman dans la Table 5.4.

THEOREME DU CODAGE DE SOURCE

(les symboles de la source sont les entiers qui représentent les longueurs
des plages de pixels blancs et noirs). Une des normes recommandées par
le CCITT (Comité Consultatif International Téléphonique et Télégra-
phique, devenu ITU, International Telecommuncation Union) propose un
algorithme de Huffman modifié pour le codage des plages. Par exemple,
une plage de 100 pixels blancs est encodée par la suite 1101100010101,
soit 13 bits de code pour 100 bits de sources. Les probabilités d’apparition
des différentes longueurs de plages sont estimées a partir d'images tests.
Quelques valeurs du code de Huffman sont données dans la Figure 5.2, ce
qui permet de déduire I'encodage final de I"exemple.

Au-Dela de la Compression Sans Perte Tous les algorithmes de com-
pression décrits ci-dessus sont sans pertes (lossless compression), ce
qui veut dire qu’ils sont uniquement décodables. Pour des sources
audio ou vidéo, il est souvent possible d’augmenter fortement le
taux de compression en acceptant une modification des données
(compression avec perte, lossy compression). Ainsi, les standards
de compression audio/video JPEG, MPEG, MP3, etc se font avec
pertes. Ils seront étudiés dans les cours de traitement des signaux,
audio et images, lors des 3¢me et 4éme années.

longueur

de plage blanche noire
1 000111 010
2 0111 11
3 1000 10
4 1011 011
5 1100 0011
6 1110 0010

24 0101000

TaBLE 5.4: Code de Huffman utilisé

51

pour encoder les longueurs de plages
blanches et noires.

Q. 38. Pourrait-on supprimer les “B"
et “N" dans le codage par longueur
de plage illustré dans la Figure 5.2

(colonne du milieu) ?

11
Cryptographie

6
La Cryptographie

Le besoin de protection de l'information est aussi ancien que la
civilisation elle-méme. D’abord exclusivement utilisée par les mili-
taires et les diplomates, elle a acquis avec l'apparition des réseaux
informatiques quantité d’applications commerciales. On distingue
habituellement les propriétés suivantes :

— Ulintégrité : le message recu est identique a celui qui a été en-

voyé;

— la confidentialité : seul le destinataire autorisé est capable de lire

le message;

— la authentification : le destinataire peut étre certain que le mes-

sage a vraiment été écrit par la personne qui prétend en étre
l'auteur.

6.1 Eléments d'un Systeme Cryptographique

Lors de l'opération de chiffrement, le texte clair (“plaintext”) P
est transformé par une fonction E paramétrée par une clé K, pour
ainsi obtenir un texte chiffré, appelé aussi cryptogramme (“ciphertext”)
C = Eg(P). Ce cryptogramme est alors transmis au récepteur, qui
applique un algorithme de déchiffrement Dy muni d'une clé k, qui
recouvre le texte clair original : P = Dy(C) = Dy(Ek(P)). La clé
de déchiffrement k peut étre identique a la clé de chiffrement K
(auquel cas on parle de cryptographie symétrique), ou pas (on parle
alors de cryptographie asymétrique). Si le systéme est symétrique
il faut que la clé soit maintenue secréte. Nous étudierons au Cha-
pitre 10 un algorithme asymétrique, qui n’utilise pas la méme clé au
chiffrement et au déchiffrement.

On suppose que “l'intrus” écoute et peut reproduire fidelement
le cryptogramme complet. Il ne connait cependant pas les clés,
et ne peut retrouver aisément le message en clair bien que 'on
suppose qu’il connaisse l'algorithme utilisé. Cette hypotheése est
connue sous le nom de thése de Kerckhoffs. Parfois 'intrus ne se
contente pas d’écouter le canal de communication (intrus passif),
mais peut altérer les messages ou injecter ses propres messages
dans le canal de communication (intrus actif). L’art de composer
des cryptogrammes est la cryptographie, I'art de les briser est la
cryptanalyse.

chiffrement

€= EK(P)\g intrus

déchiffrement

i
P =D(C)

clé k

FIGURE 6.1: La cryptographie : un texte
clair P est chiffré a ’aide d"une clé
K, transmis, puis déchiffré a 1’aide
d’une clé k. Un intrus peut voir le texte
transmis C, mais, sans la connaissance
de la clé k, il ne peut le déchiffrer.

Pourquoi faire '’hypothese de Kerck-
hoffs ? L'histoire a montré qu'un
secret ne le reste pas longtemps une
fois qu'il est partagé par plusieurs
personnes, nous ne pouvons donc
pas supposer qu'un algorithme de
chiffrement restera inconnu. Alors
que changer d’algorithme chaque

fois que le systéme est compromis
serait long et couteux, il n'y a pas de
probléme a changer fréquemment la
clé. Le modele de base de chiffrement
comporte donc une méthode générale
de chiffrement constante et connue,
paramétrée par une clé secrete et
facilement modifiable.

54 SCIENCES DE L'INFORMATION

Le probleme du cryptanalyste peut étre divisé en plusieurs caté-
gories, en fonction de l'information dont il dispose. S’il ne dispose
que d’une certaine quantité de cryptogrammes, mais pas du texte
clair correspondant, il essaie de compromettre le systéeme cryp-
tographique par une attaque a texte chiffré seul (“ciphertext-only
attack”). Clairement, un chiffrement doit étre protégé contre une
telle attaque, puisque nous faisons ’hypothese qu'il a accés au ca-
nal de communication. Si le cryptanalyste peut analyser des paires
composées de texte clair et du cryptogramme correspondant, 1’at-
taque devient a texte clair connu (“known plaintext attack”). Une
telle attaque est possible lorsque l'intrus, a un moment donné, a
eu acces a une base de données contenant de telles paires. Comme
nous ne pouvons étre siirs que cela ne se produira jamais, notre
systeme doit aussi pouvoir résister a ce genre d’attaque. Enfin, si les
circonstances sont tellement favorables (du point de vue du crypta-
nalyste) que celui-ci peut obtenir le cryptogramme correspondant
au texte clair de son choix (si, par exemple, il parvient a accéder au
mécanisme d’encodage, mais ne peut pas voir la clé) on parle alors
d’attaque a fexte clair choisi (“chosen plaintext attack”).

Exemple 6.1 (Chiffre de Césan Jules César utilisait un procédé de
chiffrement symétrique qui consistait en une rotation de toutes les lettres

de 'alphabet de trois positions. Ainsi, a devenait d, b devenait e, . . .et z Q. 39. Dans le film Odyssée de I’Espace
2001, le nom de l'ordinateur est HAL,

devenait c. On peut ¢énéraliser le chiffrement de César pour permettre) . o
P & ﬁ(P P et c’est en fait un texte chiffré, utilisant

une rotation de K lettres, au lieu de prendre toujours 3 lettres. Dans ce un chiffre de César. Quel est le texte

cas la clé K est un nombre entre 0 et 25, interprété comme une rotation de Ci?i;o“espondant? Et quelle est la
Ccle ¢

I'alphabet.

Evidemment, le chiffrement de rotation n’est pas trés sécurisé. Puisque,
par hypothese (de Kerckhoffs), le cryptanalyste sait que nous utilisons un
chiffrement de rotation, il n’y a que 26 clés possibles et il est trivial de

texte texte texte texte
toutes les essayer. clair chiffré clair chiffré
. T . . F

Exemple 6.2 (Chiffrement par Substitution) Un chiffrement symé- Z 1(7)\/ Z G
trique plus sécurisée que le chiffre de César consiste a remplacer chaque ¢ E p H
lettre de I'alphabet du texte clair par une autre lettre, sans respecter une i ? z {(
relation de rotation entre les deux alphabets. Ce systéme général est appelé f z s L
substitution monoalphabétique, la clé étant le tableau de correspondance i ;1 t ;’(
entre les alphabets du texte en clair et du texte crypté. Par exemple, on i 0 Z c
pourrait prendre la clé de la Figure 6.2. j P w Vv

Pour un alphabet de D caracteres, il y a D! clés possibles. Puisque]; ? ; Zlf]
26! ~ 10%°, un trés grand nombre, ce qui semble indiquer que cet algo- m D z M
rithme soit relativement sécurisé. Malheureusement, ce n’est pas tout a fait F1GURE 6.2: Exemple de clé du chiffre-

ment par substitution monoalphabé-

le cas. tique.

En effet, le cryptanalyste peut utiliser la distribution des fréquences
des lettres dans le cryptogramme. Par exemple, en Anglais, les lettres
les plus fréquentes sont e et t, que le cryptanalyste peut alors essayer
d’assigner aux deux lettres les plus fréquentes dans le cryptogramme. I1
trouvera vraisemblalement alors beaucoup de triplets de la forme tXe,
suggérant fortement que X corresponde a h. En procédant de la sorte, il
peut retrouver, lettre par lettre, la clé de chiffrement assez rapidement (du

moins avec un ordinateur).

De plus, il peut parfois deviner certains mots selon le contexte. Par

exemple, s'il s’agit d'une transaction boursiére, le message risque de com-

porter les mots “action” ou “cours”. ..

Pour compliquer la tdche du cryptanalyste, il faut donc “cacher” la dis-

tribution de fréquences des lettres, de telle sorte que des lettres comme e, a,

t ne soient pas si faciles a repérer. Une maniére de procéder est d'introduire

plusieurs alphabets cycliques, pour obtenir un chiffrement de Vigenére, qui
est un exemple de chiffrement utilisant la substitution polyalphabétique. La
clé est d’habitude un mot court, facile a mémoriser, comme BONJOUR (au

lieu du tableau complet des 26 lettres dans le cas monoalphabétique). La clé

est répétée constamment sous le texte en clair, et indique quelle rangée de

la table précédente doit étre utilisée pour le chiffrement — voir Figure 6.3.

Sy

alphabet d’origine a

rangée A
rangée B
rangée C
rangée D
rangée E
rangée F
rangée G
rangée H
rangée |
rangée |
rangée K
rangée L
rangée M
rangée N
rangée O
rangée P
rangée Q
rangée R
rangée S
rangée T
rangée U
rangée V
rangée W
rangée X
rangée Y

NRXSEI<CSCHOLIODOZETr-R"R——=—IOmMmHmOO®™
DPNRXICTCSCHOLIODWOZINAR"R—=~IOmMMmUTUOW

rangée Z

texte clair :
clé:

WENSRXXIS<SCHLWIOITOZET-NR—=~TOmmTTNO

texte crypté :

NOWENRXXISSCHLOLIOTOZEoOR"R—~TITOmTmMUT

L=

x

~
oqQ

DOWENRXI<CHOIOIOZEZOR——~TO ™M™

OQOw
g Z o
> —

MUOWENRXIISCHOLROTOZICR"R—-—~T O™
HHOOWAENRXIS<SHOLIOOWOZT-NR—=~TQ
OMmHmOUOIENRXIISHLORIROIOZE R~ ~ T
TOMHUOILENRXI<S<SHOWIOTOZEZ =
~TOTMHUOOWENRXEI<SOAHALOWRIO N O Z

— = T O HTUOIENRXI<S<OHMRO WO
N —- —~ T O"MmMITIOWENRXIIOHOWIO SO

i

j kI m

I JTKLM
J KLMN
KLMN

£ 0O«
— C T

M

N

~ A -
g ™ O
C O
i Z =
— =

AR = —~TOTMHUIUOOIENRMXI<S<SHOWRO IO

SR = ~TITOMHITOIENRXI<<SCHw RO w02
ZZ AR = =TI O"MHOUOWAENRXIS<ISH®wmO SO
OZZT-A—=~TITOMMHUNOTENRXIS<SH® IO
FNOZEECAR - —~TOTMHITUOBIINRMXI<ISAH® RO
O UWOZETrR—=~TOMmHITINIENRXI<CSH®X

(e

=

LA CRYPTOGRAPHIE 55

Un exemple célebre de méthode de
chiffrement par substitution polyalpha-
bétique est la machine ENIGMA utili-
sée par les forces de I'axe (Allemagne,
Japon et leurs alliés) pendant la se-
conde guerre mondiale. La substitution
s’opérait grace a trois rotors ayant
chacun 26 positions. Les positions
initiales des rotors étaient encodées sur
I'en-téte du message, ce qui était une
faiblesse exploitée par les cryptana-
lystes britanniques, frangais et polonais
(http://www.bletchleypark.org.uk/).

=
~
©n
.
=
<
S
=

<
N

CHLOLRIOIOZTr"R——=IDOTMHITO®™NRKR
<CSCHOWROWOZTER—=~T O™ mHTO®S™N

SNCSHLWRIOWOZI-NAR—=~TIOMEHTO®m™EN < X
<
=

CHOWROIOZENA"R—=—~T OMHITOO®IENRNXSI<
=
>

HO WO Z2TER—-—~TOMmHITUOIENRXI<CSHO®
WROWOZIC- AR —~TOMHITIOEIE2ENRXIISH
HOIOTWOZIN AR ~TIOMmHTOIENSRNXI<CS
<N SCHOWROUOZENAR"R—=-~T OMmHITO®mENRNXS

=
<
=

OO
wC =
N & -
oW o

F1GUrE 6.3: Chiffrement de Vigenere.
La lettre [est chiffrée avec I'alphabet
de la rangée B et devient M, la lettre a
est chiffrée avec 1’alphabet de la rangée
O et devient O, etc.

http://www.bletchleypark.org.uk/

56 SCIENCES DE L'INFORMATION

Bien qu’il soit plus stir qu’un chiffrement de substitution monoalpha-
bétique, un chiffrement de substitution polyalphabétique peut encore étre
brisé par une attaque a texte crypté seul. L'astuce consiste a deviner la
longueur de la clé.

6.2 % Confidentialité Parfaite

Il est possible en théorie de fabriquer un systéme qui assure
une confidentialité parfaite (mais nous allons voir que cela pose
quelques problemes). Considérons un crypto-systéme symétrique,
dont la clé K = k est secrete et inconnue de l'intrus. L'intrus peut
observer le texte chiffré C, mais ne connait pas le texte clair P. In-
terprétons les messages P et C comme délivrés par des sources P
et C. Pour que le systéme soit parfait, il faut que l'information qu’il
obtient en observant C ou en ne 1’observant pas soit la méme, ce
qui correspond a dire que les sources sont indépendantes :

Définition 6.1 On dit que le cryptosysteme est a confidentialité parfaite si
les sources qui délivrent les messages P et C sont indépendantes.

Exemple 6.3 (Vernam) Le masque a usage unique (Ang. one time pad)
ou cryptosysteme de Vernam est un systéme utilisé dans les ambassades. 11
fonctionne de la fagon suivante.

Le texte clair P est encodé comme une suite de n bits (chiffres binaires).
La longueur n est constante et connue de tous. On s’arrange pour que
tous les textes aient pour longueur n (les messages plus long que n bits
sont fragmentés, les messages plus courts que n bits sont allongés en ajou-
tant des caracteres “espace”). La clé K est aussi une suite de n bits, tirée
au sort, indépendamment de P, et utilisée une seule fois. Nous suppo-
sons que tous les choix de clés ont la méme probabilité. Le texte chiffré est
C = P® K, oit @ est l'opération xor bit par bit. Le déchiffrement se fait
par

P=Co®K

ce qui suppose que le récepteur connait par avance la clé secréte.

Soit P la source qui émet le texte clair P, K celle qui émet la clé secreéte
K et C celle qui émet le texte chiffré C (un intrus ne peut observer que
C). La densité de probabilité de la source (P, KC) a une forme produit
car le message en clair P et la clé K sont indépendants : pp x(P,K) =
pp(P)pi(K).

Notons que K = C @ P donc la probabilité de I'événement E : “les
sources P et C émettent P et C” est pp¢(P,C) = ppx(P,C®P),
puisque I'événement E est aussi égal a “P émet P et K émet C & P”.
Donc

1
ppc(P,C) = pp(P)pr(C®P) = Sipp(P) (6.1)
oit la derniere égalité est parce que toutes les clés ont méme probabilité.
Nous pouvons en déduire la densité de probabilité conditionnelle du
texte chiffré sachant que le texte clair est P :

def ppc(P,C) _ 1
C P = = L =

L'opération xor sur 1 bit (aussi appelé
“ou exclusif')est définie par la table
xor | 0 1

0 0 1

1 1 0
L'opération xor bit par bit, que nous
notons @, porte sur des suites de n
bits, et est obtenue en appliquant la
table bit par bit :

a1ay...ay @ b1by...by, = c1cp...0p

avec ¢; = a; Xor b; pouri = 1..n. Par
exemple :
0100
@ 1101
= 1001

Notons que a = b @ c est équivalent a
b=adec.

Supposons que chaque lettre est
codée sur 5 bits par sa position dans
I'alphabet (A est codée par 1, B est
codée par 2, etc. et I'espace par 0).
Utilisons le cryptosytéme de Vernam
avec des suites de 8 lettres, ce qui
donne un masque K de longueur

n = 40 bits. Nous voulons transmettre
le mot BONJOUR; le texte clair P est
obtenu en ajoutant un espace et vaut,
en base 10 :

21514101521180

Converti en binaire, cela donne le texte
clair :

P=
00010 01111 01110 01010
01111 10101 10010 00000

Le masque a usage unique est aléa-
toire; supposons qu’on ait :

K=
01100 01000 11001 10111
00101 11010 01011 10001

Le texte chiffré est obtenu par I'opéra-
tion xor:C=P@K

C =
01110 00111 01111 11101
01010 01111 11001 10001

Le déchiffrement s’obtient de la méme
fagon en calculant C @ K.

Donc cette densité conditionnelle est indépendante de P ; par le Théo-

reme 0.1, les sources P et C sont indépendantes. Donc le cryptosysteme

de Vernam est a confidentialité parfaite. Dans un certain sens, il offre la
meilleure confidentialité possible (i condition de pouvoir se mettre d’accord
sur les clés par avance, et les conserver en lieu siir).

Notons que I"hypothese que les clés ont toute méme probabilité est
essentielle. En effet, si elle n’est pas vraie, le terme pyc(C @ P) dans
I'Eq.(6.1) dépend a la fois de P et C et nous ne pouvons pas factoriser.

Par contre, il n’y a aucune hypothese sur la densité de probabilité du texte
clair (qui, en général, n'est pas uniforme).

Dans I’'exemple précédent, nous voyons que la clé est aussi longue
que le texte clair. C’est un fait général, comme l’expriment les deux
théoremes suivants. Le premier s’applique a tout systeme crypto-
graphique symétrique, qu'il soit & confidentialité parfaite ou pas.

Il dit que I'entropie du texte chiffré est au moins aussi grande que
celle du texte clair.

Théoréme 6.1 (Cryptographie Symétrique) Comnsidérons un systéme
de cryptographie symétrique (donc a clé secréte) ; supposons de plus (ce
qui est raisonnable) que la clé soit choisie indépendamment du texte clair.
Alors

H(P) < H(C) (6.2

oit H(P) est I'entropie du texte clair, et H(C) I'entropie du texte chiffré.

©Preuve : Le texte chiffré dépend de maniére déterministe de la
combinaison du texte clair et de la clé, donc d’apres le théoreme de
traitement de l'information (Eq.(4.2) en Section 4.3) H(C,P,K) =
H(P,K). De méme, puisque le déchiffrage fonctionne, le texte clair
dépend de maniere déterministe de la combinaison du texte chiffré
et de la clé, donc H(C,P,K) = H(C, K). Donc, en combinant les
deux :

H(P,K)=H(C,K) (6.3)

Puisque P et K sont indépendantes, le membre de gauche de
Eq.(6.3) est égal a H(P) 4+ H(K) (Théoréme 1.4). Par la regle
d’enchainement (Théoréme 4.4), le membre de droite est H(K) +
H(C|K). Donc

H(P)=H(C|K)

Or conditionner réduit 'entropie (Théoréme 4.2), donc H(C|K) <
H(C). ©ln|

Le deuxiéme théoréme s’applique aux systémes a confidentialité
parfaite et exprime que l’entropie de la clé secrete doit étre au
moins aussi grande que celle du texte clair (et aussi du texte chif-
fré) :

Théoréme 6.2 (Confidentialité Parfaite) Comnsidérons un systeme de
cryptographie symétrique a confidentialité parfaite. Supposons que la clé
soit choisie indépendamment du texte clair. Alors

H(P) < H(C) < H(K) (6.4)

LA CRYPTOGRAPHIE 57

Q. go0. Calculer I'entropie de la clé et
du texte chiffré pour le cryptosysteme
de Vernam (Exemple 6.3) et vérifier
les inégalités du Théoreme 6.1 et du
Théoréme 6.2.

58 SCIENCES DE L'INFORMATION

oit H(P) est I'entropie du texte clair, H(KC) I'entropie de la clé et H(C)
I'entropie du texte chiffré.

Preuve : La premiere inégalité du théoreme est I'Eq.(6.2), donc il
nous reste seulement a démontrer la seconde.

Montrons d’abord 1'inégalité (6.5) ci-dessous, qui est vraie pour
les systémes cryptographiques symétriques, qu’ils soient a confi-
dentialité parfaite ou pas. Le texte chiffré dépend de maniére dé-
terministe de la combinaison du texte clair et de la clé, donc (Théo-
réme 4.5 en Section 4.3) H(C|P, K) = 0. Par la regle d’enchainement
(Théoreme 4.4), H(C,K|P) = H(K|P) + H(C|P,K) = H(K|P).
D’autre part, toujours par la regle d’enchainement, H(C|P) =
H(C,K|P)— H(K|C,P) < H(C,K|P). En combinant les deux, nous
obtenons :

H(C|P) < H(K|P) (6.5)

En termes simples, cette inégalité exprime que l'information sup-
plémentaire ajoutée par la clé quand on connait le texte clair est
au moins aussi grande que celle ajoutée par le texte encrypté — ce
qui est normal puisque si on connait la clé et le texte clair, on peut
trouver le texte encrypté.

Supposons maintenant que le systéme soit a confidentialité
parfaite, c’est a dire que P et C sont indépendantes. Alors (Théo-
reme 4.3) H(C|P) = H(C), donc en utilisant 'Eq.(6.5) : H(C) <
H(K
ner réduit I'entropie. |

P) < H(K), ou la derniere inégalité est parce que condition-

7
Arithmétique

La cryptographie moderne ne se base pas sur des substitutions
alphabétiques. Au lieu de cela, on considére un texte clair comme
une suite de bits, et, en regroupant les bits par blocs, comme une
suite de nombres entiers. On applique ensuite des opérations sur
les nombres entiers. Pour aller plus avant, il nous faut donc étudier
la théorie des nombres entiers, appelée arithmétique.

7.1 Les Entiers

On désigne par Z I'ensemble des entiers (positifs et négatifs). Si
on ajoute, soustrait ou multiplie des entiers, on obtient des nombres
entiers. Par contre, ce n’est pas vrai, en général, pour la division
(par exemple % n’est pas un nombre entier). On peut cependant
définir une division qui produit des nombres entiers, a condition de
conserver un reste.

Théoréme 7.1 (Division Euclidienne) Soient a et b des entiers avec
b # 0. Il existe un couple unique d’entiers (q,r) tel que

a=bg+r e 0<r<|b—1.

Définition 7.1 L'entier q est appelé le quotient et r le reste de a dans la
division par b. Le reste de a dans la division par b se note habituellement
a mod b.

Définition 7.2 Sia,b € Zetb # 0, on dit que b divise a, ou que b est
un diviseur de a, ou encore que a est un multiple de b, si % est un entier.
C’est équivalent a dire que le reste de a dans la division par b est 0.

Par exemple 6 divise 12 et ne divise pas 13; 12 est un multiple de 6
et 13 n’est pas un multiple de 6.

Définition 7.3 On dit que a € Z,a > 1 est un nombre premier s’il n’a
pas d’autre diviseur positif que a et 1.

Les nombres premiers jouent un rdle important en cryptographie.

La suite des nombres premiers commence par 2,3,5,7,11,13,17,19,23....

Q. 41. Quels sont le reste et le quotient
dans la division de 23 par 5? de —23
par5?

Q. 43. Combien vaut 24163584354 mod
10?

Q. 42. Combien valent 13 mod 10,
(—13) mod 10, 13 mod (—10),
(—13) mod (—10) et 13mod0?

*Q. 44. Prouvez le Théoreme 7.1.

Dans le langage Python, a%b est

le reste de a dans la division par b
pour b > 0, ainsi 23%>5 retourne 3 et
(—23)%5 retourne 2.

Dans les langages C++ et Java,
malheureusement, c’est un peu plus
compliqué;sia > Oetb > 0, a%b
vaut le reste de la division de a par b,
mais si a < 0 le résultat vaut (reste —
b). Ainsi, dans ces langages, 23%5
retourne 3 mais (—23)%>5 retourne —3.

Q. 45. Les nombres suivants sont-ils
premiers : 27,255,256 ?

60 SCIENCES DE L'INFORMATION

Un des théoremes de base de l'arithmétique, que nous ne démon-
trons pas, exprime que tout nombre entier décompose de maniere
unique en produit de nombres premiers :

Théoréme 7.2 (Factorisation) Pour tout entier a strictement positif il
existe une suite unique de nombres premiers p1 < pa... < pi et une suite
unique d’exposants oy > 0, ..., ax > 0 tels que

(5]

tl:pl

Xk

Py

Les nombres py, ...py sont appelés les facteurs premiers de a.

Théoreme 7.3 Soient a et b deux entiers positifs ; a divise b si et seule-
ment si tous les facteurs premiers de a apparaissent dans la décomposition
en facteurs premiers de b, avec un exposant supérieur ou égal.

Si p et g sont deux nombres donnés, il est tres facile de calculer
a = pq, méme si p et g sont grands. Par contre, si un nombre 4 est
donné, dont on soupconne qu’il se factorise sous la forme a = pg
avec p et g premiers, il est (jusqu'a aujourd’hui) tres difficile de
calculer p et g, si a est grand (par exemple si a est un nombre de
1000 bits). De maniere générale, on pense que la factorisation est
difficile a calculer pour un nombre a trés grand ; aucune méthode
connue existe qui soit de complexité raisonnable. Un des postulats
de la cryptographie moderne est que les intrus ne possédent pas de
méthode pour factoriser rapidement de tres grands nombres.

On dit que la fonction qui & deux nombres premiers p, g associe
leur produit pg est une fonction & sens unique, c’est a dire facile
a calculer mais difficile a inverser. De la méme fagon, un bottin
téléphonique est une fonction a sens unique : il est facile de trouver
le numéro de quelqu’un en connaissant son nom, mais beaucoup
moins évident de trouver le nom de la personne au numéro de
téléphone donné. La cryptographie utilise beaucoup les fonctions a
sens unique.

Soient a et b deux entiers non tous deux nuls. Les entiers positifs
qui divisent a la fois a et b forment un ensemble fini (ces nombres
sont < a et < b), non vide puisque 1 divise tous les entiers. Par
conséquent, cet ensemble possede un plus grand élément :

Définition 7.4 (PGCD) Soient a et b deux entiers non tous deux
nuls. On appelle plus grand commun diviseur (PGCD) de a et b, (noté
pgcd(a, b)), le plus grand nombre entier positif qui divise a la fois a et b.

Pour des nombres positifs pas trop grands, le PGCD peut étre cal-
culé simplement a partir des décompositions en facteurs premiers,
en utilisant le théoréeme suivant (que nous ne démontrons pas) :

Théoréme 7.4 Soient a et b deux entiers positifs et soient p1 < py <
... < pu la suite des nombres premiers qui divisent a ou b. On peut donc
écrire

o7 K

a = pil.p;
b = p'fl...pfk

Q. 46. Quelles sont les factorisations de
12, de 100 et de 256 ?

Par exemple, la décomposition en
facteurs premiers de de a = 12 est

12 = 223, etcellede b = 168 est

168 = 23.3.7. Les facteurs premiers
de a sont 2 et 3 avec exposants 2 et 1.
IlIs apparaissent tous les deux dans la
décomposition de b avec un exposant
égal a 3 et 1 donc a divise b. Par contre
a ne divise pas ¢ = 30 car ¢ = 2.3.5 et
le facteur 2 est présent dans a avec un
exposant trop grand.

Q. 47. Montrez que si un nombre a
n’est pas premier alors son plus petit
facteur premier est < \/E,

Q. 48. Le nombre 257 est-il premier ?

Notons que 0 est divisible par tous les
nombres donc les diviseurs communs
al0etb # 0sontles diviseurs de

b, dont le plus grand est |b|; donc
pged(0,b) = |b| sib # 0.

Sia = b = 0 'ensemble des diviseurs
de a et b est infini donc pged(0,0) n’est
en principe pas défini; on fait cepen-
dant la convention que pged(0,0) = 0;
la raison en est 'identité de Bézout
(Théoreme 8.4).

avec a; > 0 et B; > 0. Alors

Mk
Py

1

pged(a, b) = p]
avec y; = min(a;, B;)

En d’autres termes, nous obtenons le PGCD en prenant les facteurs
premiers en commun, avec le plus petit exposant. S'il n’y a aucun
facteur en commun, le PGCD vaut 1.

Nous utiliserons souvent la propriété suivante :

Définition 7.5 On dit que deux entiers a et b sont premiers entre eux ou
étrangers, ou encore que a est premier avec b si pged(a,b) = 1.

Pour des nombres pas trop grand, un critere facile (que nous ne
démontrons pas) est le suivant.

Théoreme 7.5 Soient a et b deux entiers positifs. Ils sont premiers entre
eux si et seulement si ils n’ont aucun facteur premier commun.

Trois conséquences immédiates, et importantes, sont les sui-
vantes.

Théoréme 7.6 1. Deux nombres premiers distincts sont premiers entre
eux.

2. Soit p un nombre premier et a un entier tel que 1 < a < p —1. Alorsa
et p sont premiers entre eux.

3. Soient a et b deux nombres premiers entre eux, et ¢ un entier. Si a et b
divisent ¢ alors ab divise c.

Notons que contrairement a la factorisation, savoir si deux nombres
sont premiers entre eux est un probleme facile, que 1’on peut ré-
soudre avec l'algorithme d’Euclide, que nous verrons plus loin.

7.2 Congruences

Définition 7.6 (Congruence modulo m) Soient a et b deux entiers et
m un entier non nul. On dit que a est congru & b modulo m, et on écrit

a=b (mod m) (7.1)

si a et b ont le méme reste dans la division par m. L'expression (7.1) s’ap-
pelle congruence et m est son module.

Théoreme 7.7 Soient a et b deux entiers et m un entier non nul. a = b
(mod m) si et seulement si m divise b — a.

©@Preuve: 1.a=b (mod m) = m divise b — a. Faisons la division
euclidienne de a et b par m; les restes sont les mémes, donc nous
pouvons écrire a = mq+retb = mg' +r.Doncb —a = m(q' —q)
est un multiple de m.

2.mdiviseb—a=4a =0b (mod m). Faisons la division eu-
clidienne de a par m : nous pouvons écrire a = mq + r avec

ARITHMETIQUE 61

Q. 49. Quel est le PGCD de 12 et 1007?

Q. 50. Les nombres 12 et 20 sont ils
premiers entre eux? 12 et 35? 234 et

2577?

Q. 51. Prouvez le Théoreme 7.6.

Q. 52. Combien y a-t-il de nombres
positifs < 257 qui soient premiers avec
2577

Q. 53. Est-il vrai qu'un nombre est
divisible par 12 si et seulement si il est
divisible par 3 et par 4?

Q. 54. Est-il vrai qu'un nombre est
divisible par 12 si et seulement si il est
divisible par 2 et par 6?

Q. 55. Les congruences suivantes
sont-elles vraies ?

2394860 = 32474364 (mod 2)
-1=1 (mod2)

2394860 = 0 (mod 2)

23 =3 (mod 5)

—23=3 (mod5)
—23=-3 (mod 5)
—23=2 (mod5)

62 SCIENCES DE L'INFORMATION

0 < r < |m|—1De plus b — a est un multiple de m, donc nous
pouvons écrire b —a = Am avec A entier. Donc

b=0b—-a)+a=Am+qm+r=A+q)m+r

comme 0 < r < |m| — 1, par le Théoreéme 7.1, cette équation donne
le quotient (A + m) et le reste (r) de la division euclidienne de b par
m. En particulier, le reste de la division de b par m est r, le méme

que a. ©0

Les congruences sont utilisées abondamment en cryptographie
et codage correcteur. Leur intérét principal est qu’on peut calcu-
ler avec elles, comme avec des égalités. Pour commencer, notons
que la congruence modulo m posséde les propriétés suivantes, qui
en rendent la manipulation aisée, et dont la preuve est une consé-
quence immédiate du Théoreme 7.7 :

Théoreme 7.8 Soient a,b, ¢ des entiers et m un entier non nul.
— réflexivité :a = a
— symétrie:sia =D
— transitivité :sia = b
(mod m).

(mod m),
(mod m) alors b = a
(mod m)etb =c

(mod m),
(mod m) alors a = ¢

L’ensemble de ces trois propriétés font que I'on dit que la congruence
est une “relation d’équivalence".

Elles ont pour conséquence que 1’on peut enchainer des congruences
et oublier I'ordre dans lequel on les écrit, comme par exemple dans
—2=0=2=4 (mod 2). D'autre part, la congruence modulo
m se combine naturellement avec les opérations de base, sauf la
division :

Théoréme 7.9 (Arithmétique Modulaire) Soient a,a’,b,b’', m et n des
entiers. Si

a = da (modm)
b = b (modm)
alors
a+b = dad+b (modm)
ab = a'b' (mod m)
a* = 4" (mod m)
Ainsi2 = (—1) (mod 3) donc 2" = (—1)" (mod 3), par exemple
2100 =1 (mod 3) etdonc 2% 42 =2+4+1=0 (mod 3) donc

21000 4 3 est divisible par 3.
©Preuve : Nous prouvons la premiere égalité, les autres sont lais-
sées au soin du lecteur alerte. Supposons que 2 = 4’ (mod m) et

b=V (mod m).Par le Théoreme 7.7, il existe x, x’ entiers tels que
a—a =xmetb—b =x'm. Donc (a+0b)— (a'+V') = (x—x')met
donca+b=da+b (modm). Slu|

Q. 56. Vrai ou faux :

1. a=0 (mod m) < adivise m
2. a=0 (mod m) < m divise a
3. a =0 (modm) < metasont

premiers entre eux.

Intuitivement, une relation R définie
sur un ensemble A fait correspondre a
tout élément a de A 0, 1 ou plusieurs
éléments de A. On écrit aRD si 1'é1é-
ment b correspond a a. Formellement,
R est un sous-ensemble du produit
cartésien A x A.

Si pour chaque a il existe 0 ou 1
élément b tel que aRb alors R est une
fonction. S'il existe pour chaque a
exactement 1 élément b, alors R est
une application.

On dit que la relation est

— réflexive siVa € A,aRa

— symétrique si Va,b € A,aRb =

bRa

— transitive si Va,b,c € A,

(aRb et bRc) = aRc
Une relation qui posseéde ces trois
propriétés est dite relation d’équivalence.
Une relation d’équivalence exprime
une propriété du type “a et b ont le
méme quelque chose" (par exemple “a
et b ont le méme reste dans la division
par m").

Q. 57. Les relations suivantes R et
R, définies sur I’ensemble IN des
entiers positifs ou nuls, sont-elles des
relations d’équivalence ?

1. aRb si et seulement siaetb
s’écrivent avec le méme nombre de
chiffres en base 10.

2. aRyb si et seulementsi [a —b| < 1.

ARITHMETIQUE 63

Attention aux Divisions La congruence est compatible avec les
opérations d’addition, soustraction et multiplication, mais pas la
division. Cela implique que 1’on ne peut pas toujours simplifier. Par
exemple

2x9=2x3 (mod 12)

mais on ne peut pas simplifier par 2 (car on conclurait que 9 = 3
(mod 12), ce qui est faux). Nous verrons plus tard dans quels cas la
simplification est possible.

Exemple 7.1 (Reste dans la division par 9) D’apreés le théoreme
d’arithmétique modulaire

Q. 58. Trouvez une régle semblable

10=1 (mOd 9) pour le reste dans la division par
10, par 3, par 4? Appliquer ces
donc pour tout entier k > 0 : regles pour trouver les restes dans
la division par 10 [resp. 3 et 4] de
10 =1"=1 (mod 9) a = 123456789012345678901234567890.

Soit maintenant a un nombre entier positif; son écriture en base 10 est
didy_1...d1do, ce qui signifie que

a=d x10F+dp_q x 10571+ .+ dy x 10! +dg x 10°
De nouveau d’apres le théoréme d’arithmétique modulaire :

a = dix1+de 1 x14+..+dx1+dyx1 (mod9)
a = di+di_1+...+di+dy (mod9)

En d’autres termes, tout nombre entier est congru modulo 9 a la somme
de ses chiffres décimaux. On peut donc calculer le reste d'un nombre dans
la division par 9 en le remplacant par la somme de ses chiffres, puis en
remplagant le nombre obtenu par la somme de ses chiffres, etc, jusqu’a
obtention d'un nombre a un seul chiffre. Par exemple

298242 =2+9+8+2+44+2=27=2+7=9=0 (mod?9)

donc 298242 est divisible par 9.
Dans MOD g7-10, le nombre 97 fait ré-

Exemple 7.2 (MOD 97-10 et IBAN) Supposons que nous voulions férence au module de la congruence, et
10 au fait que le numéro est interprété

transmettre un numéro de n chiffres décimaux (numéro de téléphone, ou o
comme un nombre écrit en base 10.

de compte en banque, ou adresse IP) en I'écrivant sur un bout de papier.
Pour détecter des erreurs simples, telles que I"omission d’un chiffre ou une
interversion, nous pouvons y ajouter les deux chiffres de contréle modulo
97, définis comme le reste dans la division par 97 du nombre original de n
chiffres. Par exemple, les deux chiffres de controle pour le numéro 021 235
1234 sont 95 car 212351234 = 95 (mod 97). Nous écrivons sur le bout
de papier : 021 235 1234 - 95.

Supposons que nous écrivions par erreur 021 253 1234 - 95 (nous
avons interverti deux chiffres). Le destinataire peut détecter 'erreur en
recalculant les chiffres de controle; en effet, 212531234 = 63 (mod 97)
donc les deux chiffres de controle devraient étre 63, et non pas 95. La pro-
cédure appelée MOD 97-10 est basée sur ce principe, avec les modifications
suivantes.

64 SCIENCES DE L'INFORMATION

1. Ajouter 00 a la fin du numéro.

2. Calculer le reste r dans la division par 97 du numéro ainsi obtenu.

3. Les deux chiffres de controle MOD 97-10 sont les deux chiffres du
complément a 98 de r. Remplacer le 00 final par ces deux chiffres.

4. Pour vérifier la validité d'un numéro, vérifier que le reste dans la divi-
sion par 97 est égal a 1.

Appliquons la procédure au numéro 621 235 1234 :

. x = 21235123400

2. 21235123400 = 91 (mod 97)

3. Le complément 4 98 de 91 est 7 = 98 — 91. Les deux chiffres de
controle sont donc 07. Le numéro avec chiffres de contréle MOD 97-10
est 021 235 1234 - 07

4. Vérification : 21235123407 = 1 (mod 97) donc le numéro est
valable. Si nous recevons le numéro 621 253 1234 - 07, nous obtenons
21253123407 =2 (mod 97), donc ce numéro n’est pas valable.

Pourquoi la vérification fonctionne-t-elle de la facon décrite dans I'étape 4 ?

Le théoréeme d’arithmétique modulaire nous donne la réponse. En effet, soit

x le nombre obtenu en interprétant le numéro de départ en base 10 et en

ajoutant deux zéros (dans 'exemple, x = 21235123400). Le reste r de

I'étape 2 vérifie

x=r (mod 97)

Soit x' le nombre avec les chiffres de controle (c’est a dire, le nombre ob-

tenu en remplagant les deux zéros finaux par les chiffres de controle; dans

I'exemple, x' = 21235123407). Nous avons x' = x + (98 — r), donc par

Uarithmétique modulaire :

X = x+98—r (mod 97)
= x+1—-r (mod?97)
= r+1—r (mod?97)
= 1 (mod97)

car98 =1 (mod 97)

carx =r (mod 97)

Le calcul du reste d'une division d'un trés grand nombre entier peut
poser des problemes pratiques (overflow). Cela peut arriver par exemple
si nous appliquons MOD 97-10 aux numéros IBAN, méme avec des
entiers longs. Le théoréeme d’arithmétique modulaire apporte une so-
lution. Par exemple, supposons que x = 1234567890123456789 et
que nous voulions calculer le reste v de x dans la division par 97. Soit
x" = 123456789012345678 le nombre obtenu en supprimant le dernier
chiffre et v’ son reste dans la division par 97. Alors x = 10x" + 9 et donc

r=10r"+9 (mod 97)

et le calcul de v' est un peu plus simple puisque x' comporte un chiffre de
moins.

Nous pouvons donc utiliser une procédure récursive, en traitant un
numéro comme une chaine de n symboles décimaux plutot que comme un
entier — voir ci-contre.

Exemple 7.3 (x Preuve par 9) Vous étes naufragé(e) sur une ile déserte,
sans aucun instrument de calcul, et devez calculer votre position d’apreés

L'IBAN (International Bank Account
Number) est un format internatio-
nal pour les numéros de comptes
bancaires. Le numéro commence

par le code du pays, suivi des deux
chiffres de contrdle MOD 97-10, puis
du numéro de compte proprement
dit. Les symboles sont des chiffres
décimaux ou des lettres de 'alphabet
latin majuscule. Tous les numéros d'un
méme pays ont le méme nombre de
symboles.

Ainsi tous les numéros suisses
commencent par CH, suivis de deux
chiffres de contrdle, et comportent 21
symboles en tout. Un numéro suisse
pourrait étre par exemple CH54 0024
3000 1234 5678 9.

Les deux chiffres de contréle (ici 54)
sont obtenus comme suit :

(a) Déplacer les 2 premiers symboles
(code de pays) a la fin et supprimer
les deux chiffres de controle. Nous
obtenons 0024 3000 1234 5678
9CH.

(b) Remplacer les symboles non
décimaux (c’est a dire les lettres)
par deux chiffres, selon A =
10,B = 11,..,Z = 35. Nous
obtenons 0024 3000 1234 5678
91217.

(c) Calculer les deux chiffres de
contrdle par la procédure MOD
97-10 appliquée au numéro ainsi
obtenu. Nous obtenons 54.

Pour vérifier la validité d’un numéro
IBAN, il suffit d’applique 1’étape 4 de
MOD g7-10, c’est a dire :

(a) Déplacer les 4 premiers sym-
boles (code de pays et chiffres de
contrdle) a la fin. Nous obtenons
0024 3000 1234 5678 9CH54.

(b) Remplacer les symboles non
décimaux (c’est a dire les lettres)
par deux chiffres, selon A =
10,B = 11,...,Z = 35. Nous
obtenons 0024 3000 1234 5678
9121754.

(c) Le reste dans la division par 97 du
nombre ainsi obtenu doit étre égal
al.

1: function REsTEGROS(x, m, b)

2: > x : suite d’entiers entre 0 et
b—1
3: > m : entier > 2
4: > b : entier > 2
5: n <— longueur de la suite x
6: xg < dernier chiffre de x
7: if n = 1 then
8: r < xo mod m
9: else
10: x' < enlever dernier
élément de x
11: " + ResTEGROS (x',m)
12: r < (br' +xp) mod m
13: end if
14: return (7)

15: end function

Fonction qui calcule le reste de x

dans la division par m, ol x est traité
comme une chaine de chiffres en base
b plutot que comme un entier, pour
éviter les problemes d’overflow. Pour
MOD g97-10, prendre m = 97 et b = 10.

le soleil et votre montre. Pour cela vous devez effectuer a la main (dans
le sable) une monstrueuse multiplication de deux grands nombres, par
exemple ¢ = ab avec a = 23765 et b = 79087. Pour la plupart des gens,
les chances de se tromper dans une telle opération sont grandes. Vous avez
fort heureusement appris la preuve par 9, qui vous permet de vérifier au
moins partiellement vos calculs.

Pour cela vous calculez les restes dans la division par 9 de a et b, disons
a’ et V', puis le reste ¢’ du produit a’t’. Par le théoreme d’arithmétique
modulaire, le reste de c dans la division par 9 doit aussi étre égal a c’, ce
qui donne un moyen de vérifier si ¢ est correct. Ainsi :

a=23765 = 2+43+7+6+5=5 (mod9)
b=79087 = 7+9+0+8+7=4 (mod?9)
d=5x4 = 2+0=2 (mod?9)

donc on sait, avant de faire la multiplication, que I'on doit avoir ¢ = 2
(mod 9). On dit que 2 est un “checksum” ou “chiffre de controle” de la
multiplication.

Nous trouvons ¢ = 1879502555, donc ¢ =2 (mod 9) et le chiffre de
controle est correct.

Exemple 7.4 (x Checksum IP ou UDP) Les paquets de données utili-
sés dans l'internet utilisent un code détecteur d’erreur, appelé checksum
IP, qui protege certaines informations importantes (notamment I'adresse
de destination). 1l est calculé de la facon suivante. Supposons que nous
ayons un champ C de 16n bits a protéger, c’est a dire une suite de 2n
octets. Nous considérons cette suite de bits comme la représentation en
base 2 d'un nombre x. Puis nous calculons le reste r de x dans la di-
vision par m = 21¢ — 1. Notons que ce nombre m s'écrit en binaire
m = 1111 1111 1111 1111, (I'indice ;, indique que le nombre est écrit en
représentation binaire).

Le checksum est le "complément a 1” de r. Par exemple, si on nous
donne le nombre suivant de 32 bits (écrit en binaire) :

x = 1000 0001 0000 0011 1000 0000 0001 0010,
le reste dans la division par 216 — 1 est
r = 0000 0001 0001 0110,
donc le checksum est
c=1111 1110 1110 1001,

Le checksum c est transmis en méme temps que le champ a protéger
C; le destinataire refait les mémes calculs sur le champ C recu et vérifie
s’il trouve un checksum égal a c. Si la réponse est négative, le paquet est
certainement en erreur et est détruit.

Calcul du checksum par la somme en complément a 1. Comment
peut-on calculer efficacement ce checksum ? En fait, c’est la méme idée que

ARITHMETIQUE

65

Q. 59. La preuve par 9 permet-elle de
détecter les erreurs simples, c’est a dire

portant sur un seul chiffre ?

Le complément 41 d’une suite de
chiffres binaires est la suite obtenue en
remplacant les 0 par des 1 et inverse-

ment. Par exemple, le complément a 1

de 001101, est 110010y

Soit une suite de 16 bits et soit x le

nombre dont elle est la représentation
en base 2. Soit x’ le nombre dont

la représentation en base 2 est son

complément a 1. Alors x + x’
1111 1111 1111 1111, donc x’
216 1 —x

66 SCIENCES DE L'INFORMATION

pour la preuve par 9. Pour voir pourquoi, regroupons les bits par blocs de
16 bits et soient W,,_1...W1, Wy les nombres qu’ils représentent en base 2.
Nous avons donc :

x =2100-Dw 2w W, (7.2)

Avec 'exemple précédent, cela donne

44 Wo
x = 1000 0001 0000 0011 1000 0000 0001 0010
= 2w+ W

Maintenant 21 = 1 mod m puisque 2'® = m + 1. Donc
x=Wy_1+ ..+ W; + Wy mod m

c’est a dire que I'on peut remplacer x par la somme de ses blocs de 16 bits
(interprétés comme des nombres écris en base 2). Comme avec la preuve
par 9, il suffit de répéter I'opération jusqu’a obtenir un résultat v’ qui
tienne sur un seul bloc de 16 bits. Ainsi pour notre exemple :

W; = 1000 0001 0000 0011
W, = 1000 0000 0001 0010
Wi Wo
W1+ W, = 0000 0000 0000 0001 0000 0001 0001 0101
WY
W] +W; = 0000 0001 0001 0110 =+

A chaque étape le nombre obtenu est congru au précédent modulo m,
donc finalement

' =x (mod m)

Le nombre v’ est entre O et m et est appelé la somme en complément a 1
de x (voir ci-contre). Il est presque toujours égal a r, le reste de x dans la
division par m. Plus précisément, r est obtenu par :

siv/ = 1111 1111 1111 1111 alors r = 0 sinon r = v/

puis le checksum c est le complément a 1 de r. En résumé le calcul du
checksum c se fait de la facon suivante :

calculer v/, la somme en complément a 1 de x
¢/ =216 —¢'(ie. prendre le complément a 1
si (¢ =0) ¢=1111 1111 1111 1111} sinon ¢ = ¢

Notons que le checksum ainsi calculé ne peut jamais étre égal a 0.

Pour rendre plus lisibles les calculs

en base 2 on utilise souvent la repré-
sentation hexadécimale, c’est a dire

en base 16. Les chiffres hexadécimaux
sont0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, f et
représentent les nombres entiers de 0 a
15. Ainsi par exemple 7 + 8 = f.

Un chiffre hexadécimal représente un
bloc de 4 bits. Ainsi 216 — 1, qui est en
binaire 1111 1111 1111 1111, se note
en hexadécimal ffff. Avec I'exemple
ci-contre :

x = 8103 8012

et le calcul du checksum IP peut alors
s’écrire :

W; = 8103

Wo = 8012

Wy + Wy = 0001 0115

W]+ Wy =0116 =r

c = fee9

Notons que ¢ est obtenu par 1'opéra-

tionc= ffff—r.

La somme en complément a1 sur 16 bits,
sc1-16(x), est définie formellement de
la fagon suivante. x est une suite de
167 bits, interprétée comme un entier
positif ou nul écrit en base 2. Soient
Wi —1, ... Wy les n entiers positifs ou
nuls correspondant aux blocs de 16
bits, comme en Eq.(7.2).

sin=1
alors sc1-16(x) = Wy
sinon sc1-16(x) =
sc1-16(Wy,—1 + ... + Wp)

ott la derniére addition est ’addition
usuelle des entiers positifs ou nuls.

Notons que x = sc1(x) (mod m).
De plus, sc1(x) est égal au reste de x
dans la division par m = 21¢ — 1 sauf
six>0etx=0 (mod m) auquel cas
sc1(x) = m.

8
Arithmétique Modulaire

L’étude systématiques des congruences nous amene dans des
nouveaux ensembles de “nombres”, les ensembles Z /mZ. ; ils
sont utilisés en cryptographie et en codage d’erreurs, comme
nous le verrons. L'étude des calculs dans ces ensembles s’appelle
1" arithmétique modulaire.

8.1 Les Ensembles 7./ mZ.

Définition 8.1 (Classe de Congruence) Soit m > 2 un entier fixé
(Ie “module”). Pour tout entier a, on appelle classe de congruence de
a modulo m, et on note [a),, I'ensemble des entiers a’ tels que a = a'

(mod m).

Par exemple, avec m = 2, [24], est 'ensemble des entiers pairs, alors
que [23], est I'ensemble des entiers impairs. Notons que [24], =
[0]> = [-100]; et [-1], = [1]> = [3]>.

Notons que

(a=d (mod m)) & ([a]lm = [a'lm) (8.1)

Si ¢ est une classe de congruence modulo m et ¢ = [a],, on dit que a
est un représentant de c. Ainsi, 24, 0 et —100 sont trois représentants
de [0}2

Il y a exactement 2 classes de congruence modulo 2, 'ensemble
des entiers pairs et 'ensemble des entiers impairs ; ces deux classes
peuvent étre notées de différentes fagons, mais le plus simple est de
les noter [0] et [1]5. Plus généralement :

Théoréme 8.1 Il y a exactement m classes de congruence modulo m, ce
sont [0]m, [1]m, ..., [M — 1]m.

©®Preuve : Nous avons a montrer que (i) les m classes dans le théo-
réme sont toutes distinctes et (ii) toute classe dans Z/mZ est égale
a l'une de ces m classes.

(i) Nous raisonnons par 'absurde et supposons donc que i et j
sont dans {0,1,..m — 1} avec i # j et [i]m = [j]m-

Notons d’abord que le reste de i dans la division par m est i car
i=0xi+iet0 <i < m-—1,etlaméme chose vaut pour j. Par

Soit R une relation d’équivalence
définie sur un ensemble A. La classe
d’équivalence cl(a) de a € A, est I'en-
semble des 4’ € A tels que aRa’. Le
fait que R soit une relation d’équiva-
lence entraine que
(i) les classes d’équivalence forment
une partition de A, c’est a dire que
tout 2 € A appartient a une classe
d’équivalence et une seule.
(i) (aRa’") & (cl(a) =cl(a"))
Q. 60. Soit R la relation d’équivalence
définie en Q.57. Quelles sont les
classes d’équivalence ?

Soit A un ensemble et .4 un ensemble
de sous-ensembles de A. On dit que A
est une partition de A si tout élément de
A appartient a un sous-ensemble de A
et un seul.

Par exemple, soit A = Z,
Ap = {..—2,0,2,4,..}, A =
{..=3,-1,1,3,...} (ensembles des
entiers resp. pairs et impairs) et
A = {Ap, A1}. A est une partition
de A.

68 SCIENCES DE L'INFORMATION

Eq.(8.1),i =j (mod m) donc i et j ont méme reste dans la division
par m. Donc i = j, ce qui est une contradiction.

(i) Soit [a],; une classe de congruence modulo m. Soit r le reste
de a dans la division par m. Nous avons [a|,;, = [r]met0 < r <
m — 1. ©0O

Définition 8.2 On note Z./mZ I'ensemble des classes de congruence
modulo m.

Notons qu'un élément a de Z/mZ peut s’écrire de différentes fa-
cons, par exemple a = [18]1, = [6]1, mais le Théoréme 8.1 exprime
qu’il existe une seule fagon d’écrire a = [r],, avec 0 < r < m —1;
on l'appelle forme réduite. Ainsi la forme réduite de [18]q, est [6]12
A partir de maintenant nous pouvons voir Z/mZ. tout simplement
comme un ensemble & m éléments :

Z/mZ = {[0|m, [1]m, -, [m — 1m} (8.2)

8.2 Opérations dans Z./ mZ

Nous allons définir une addition et une multiplication dans
Z/mZ. Notons que d’apres le Théoreme 7.9, si [a],, = [a'], et
[b]m = [V/]m alors [a + bly, = [@’ + V) et [ab]y, = [a'D]m. On
peut donc définir la somme de deux classes de congruence [a], et
[b];n comme la classe de congruence de [a + b}, sans se soucier des
représentants choisis, et la méme chose vaut pour la multiplication :

Définition 8.3 On définit la somme et le produit dans Z./ mZ par :

[a + b]m (8.3)
la],, [b],, = lab], (8.4)

Comme d’habitude, la multiplication est notée de différentes fa-
cons, a savoir [a],, [b],,, [a],, - [b],, ou [a],, % [b],,, qui sont toutes
synonymes.

L’addition a les propriétés suivantes :

(@] + ([b]m + [e]m) = ([alm + [b]m) + [c]m
Elément neutre : [0],, est 1'élément neutre : [a],, + [0],; = [a]m

Associativité :

Elément symétrique :

=
s

[—a]y est 'opposé de [a] : [a]m + [—
[@]m + [b]m = [b]m + [a]m
La multiplication a les propriétés suivantes :

(@] ([b]m[c]im) = ([am[b]m)[c]m

Elément neutre : [1],, est 1'élément neutre : [ay (1] = [a]n
[@]m[b]m = [b]m [a]m

Les deux opérations ont la propriété suivante :

[([b]i + [c]m) = ([aln[b]m) + ([a]m[c]m)

Commutativité :

Associativité :

Commutativité :

Distributivité :

Z/32. + |0 1 2
o010 1 2
1 (1 2 0
212 0 1
Z/3Z x |0 1 2
010 0 O
1]0 1 2
210 2 1
z/4z + |0 1 2 3
ojo0o 1 2 3
111 2 3 0
212 3 0 1
313 0 1 2
z/A4Z x |0 1 2 3
0j]0 0 0 O
110 1 2 3
210 2 0 2
310 3 2 1

TaBLE 8.1: Addition et Multiplication
dans Z /37 et Z /47Z. Par souci de
légereté, nous notons dans ces tables
0,1,2 au lieu de [0]3, [1]3,[2]3 €t 0,1,2,3
au lieu de [0]4, [1]4, [2]4, [3]4-

Q. 61. Résoudre pour m = 3 puis pour
m = 4 les équations suivantes :

(] = [Lm
-2],,,[x]m = [0]m
3. [x]m + [*]m = [0]m

No=

Un ensemble A muni de deux opéra-
tions, 4 et x qui satisfont les huit pro-
priétés ci-contre (depuis Associativité
jusqu’a Distributivité) est appelé anneau
commutatif. (Z,+, X) et (Z/mZ,+, x)
sont des anneaux commutatifs.

ARITHMETIQUE MODULAIRE 69

Comme pour les nombres entiers, on adopte la convention que la
multiplication a priorité sur ’addition, ce qui permet d’économiser
des parentheses :

De méme, on peut définir la multiplication par un entier ordi- Q. 62. Mettre sous forme réduite les
expressions suivantes :

1. ([-5)7)* + [-4],[-3],
k fois k fois 2. 2([3], + [5],) —5([3],)°

—_— - 1000
Kl < [+ o+ [l et (—K)[aln S Talm + o+ [l 3 ([298242]o)

naire, de la facon suivante. Pour k entier positif :

Q. 63. Que représente l'expression

def (3]s +[4]52

etpour k =0:0[a], = [0]y. Ainsi 3[11]15 = [11]15 + [11]15 + [11]18
et (—=3)[11}15 = [~11]15 + [~11]1g + [11}ss.
Les propriétés plus haut entrainent alors que, pour k € Z et
ac”Z:
klalm = [ka]m

Par exemple,

3[11]1g = [11]1g + [11]1g + [11]15 = [33]18 = [3 - 11]15 = [15]15
(=3)[11)1s = [-11]1s + [-11]18 + [~11]15 = [-33]15 = [3- (—11)]1s = [3]18

En résumé, 1’addition et la multiplication dans Z/mZ ont les
mémes propriétés que 1’addition et la multiplication ordinaires,

a 'exception de tout ce qui concerne la division et, par conséquent,
les simplifications. Ainsi ab = 0 n’implique pas, en général, a = 0
ou b = 0. Par exemple

[2]6[3]6 = [0]¢ alors que [2]¢ # [0]6 et [3]s # [0]6

Siab = 0 alors que ni a ni b ne sont nuls on dit qu’ils sont des
diviseurs de zéro. Ainsi [2]4 et [3]g sont des diviseurs de zéro. De Q. 64. Y a-t-il des diviseurs de zéro
méme, ab = ac avec a # 0 n'implique pas forcément b = c. Par dans 7./32.2 dans Z/4Z.7

exemple

2]12[9]12 = [2]12[3]12 alors que [2]15 # [0]12 et [9)12 # [3]12
Pour k > 0 entier on définit la kiéme puissance par
k fois

(@) % Tl - [a]m

et ([a]m)° = [1]m. Nous pouvons facilement vérifier que ([a]m)k =
[a%]m, i.e. les régles usuelles s’appliquent (tant qu’il n’y a pas de
division, donc pour des exposants k > 0).

Exemple 8.1 (Calcul d'une Puissance) Le calcul d’une puissance en
arithmétique modulaire est particulierement simple, il suffit de décomposer

70 SCIENCES DE L'INFORMATION

I'exposant. Calculons par exemple ([3]7)12 (nous laissons tomber I'in-
dice 7, ce qui est toujours possible si nous nous rappelons que toutes les
opérations sont dans Z./77) :

Par contre, I'opération inverse, c’est a dire trouver un entier x s'il
existe tel que [a]}, = [b]m est nettement plus difficile et aucun algorithme
efficace n’est connu, si m est tres grand (cette opération inverse s’appelle le
logarithme discret). L'application x — [al, est un exemple d’application a
“sens unique”.

8.3 Eléments Inversibles de Z./ mZ.

Nous avons vu que la division pouvait poser probleme dans
Z./mZ, mais il est quand méme possible de clarifier les choses.

Théoréme et Définition 8.4 Soit m > 2; on dit que a € Z/mZ est
inversible sil existe a’ € Z/mZ tel que aa’ = [1],. Un tel élément a’, s'il

existe, est unique. Il est appelé I'inverse de a et est noté a™1.

Par exemple 2 x 7 =1 (mod 13) donc [2]13[7]13 = [1]13. Donc [2]13
est inversible, et [2] 1—31 = [7]13. Nous pouvons aussi conclure que
[7]15 est inversible, et [7] 3} = [2]13.

Par contre [2]1, n’est pas inversible. En effet, en calculant 2] -
a pour tous les a' € Z/12Z nous trouvons successivement :
[0]12, [2]12, [4]12, [6]12, [8]12, [10]12, [0]12, [2]12, [4]12, [6]12, [8]12, [10]12.
Nous n’obtenons jamais [1]15.

©Preuve : Soient a’ et a”’ tels que aa’ = [1],, et aa” = [1],4. En
multipliant la premiére égalité par a”, et comme [1],, est élément
neutre et la multiplication est commutative et associative , nous
obtenons

donc a’ =4". ®O

Théoréeme 8.2 Sia € Z/mZ. est inversible alors a1 'est aussi et

()=

1

©Preuve : Par définition, on a -a~'a = [1],, donc a~! satisfait la

définition d’inversibilité et son inverse est a. ©ln]

L'existence d’un inverse, et éventuellement son calcul sont des
problémes numériquement “faciles", résolus par les théorémes
suivants. Nous commengons par une méthode pour calculer le
PGCD sans devoir factoriser en nombres premiers :

Théoréme 8.3 (Algorithme d’Euclide) Soient a et b deux entiers avec
b # 0, et soit a = bq + r la division euclidienne de a par b. Alors

pged(a, b) = pged(b,r) (8.5)

Q. 65. Trouver un entier x > 0 tel que
(12]13)" = 3.

Q. 66. Montrer que [0],; n’est jamais
inversible pour tout m > 2.

Est-il vrai que [1],, est inversible
pour tout m > 27

En particulier, siv = 0, pged(a, b) = b.

Preuve : Nous allons montrer que, pour tout entier positif d :

(d divise a et b) < (d divise b et r) (8.6)

(1) (=) Soit d qui divisea et b; or 5 = 5 — q% est un entier donc
d divise r, donc il divise b et r.

(2) (<) se montre de la méme fagon que (1)

Donc Eq.(8.6) est vraie, donc les diviseurs communs a a et b sont
les mémes que les diviseurs communs a b et ¥ donc les PGCD sont
les mémes. |

Le Théoreme 8.3 donne un algorithme récursif (c’est a dire qui fait
appel a lui méme) pour calculer le PGCD. En effet, il suffit d’ap-
peler b le plus petit des deux nombres; Eq.(8.5) permet alors de
remplacer (a,b) par (b,r) avec 0 < r < b, puis de recommencer
jusqu’a obtenir un reste nul. A chaque étape le reste diminue d’au
moins 1, donc 'algorithme s’arréte forcément, en au plus b étapes.

Théoreme 8.4 (Identité de Bézout) Soient a et b deux entiers; il existe
deux nombres entiers u et v tels que

au + bv = pged(a, b) 8.7)

Preuve : (1) Nous montrons par récurrence sur n > 1 quesil <
a<noul <b<nalors I'identité de Bézout est vraie.

(étape d’initialisation :) Supposons n = 1, donc soit a = 1 soit
b =1; supposons que a = 1 (sinon c’est pareil), donc pged(a,b) =1
et Eq.(8.7) est vraie avecu =1, v = 0.

(étape de récurrence :) Supposons que I'hypothése de récurrence
soit vraie jusqu’a n et montrons qu’elle est vraie pour n + 1. Sup-
posons que a > b (sinon nous échangeons les rdles de a et b) donc
nous pouvons supposer que b < n + 1. Effectuons la division eucli-
dienne de a par b : a = bg +r. Sir = 0 alors pged(a,b) = b; il suffit
de prendre u = 0, v = 1 et Eq.(8.7) est satisfaite. Si au contraire
r > 0, notons que r < b —1 < n donc nous pouvons appliquons
I'hypothese de récurrence a (b, r); il existe des entiers u; et v; tels
que pged(b,r) = u1b + v1r. Or pged(b,) = pged(a,b) d’apres le
Théoreme 8.3. En combinant avec a = bq + r nous obtenons

avy + b(uy — qo1) = pged(a,b) (8.8)

ce qui montre que Eq.(8.7) est satisfaite.
(2) Nous avons donc montré que Eq.(8.7) est satisfaite pour
a et b positifs. Etudions maintenant le cas ot a ou b est néga-
tif. Supposons par exemple quea < Oetb > 0, notons que
pged(a,b) = pged(|a],b) donc d’apres (1) on peut trouver u; et
v1 tels que uq |a| + vb = pged(a, b). Donc Eq.(8.7) est satisfaite avec

ARITHMETIQUE MODULAIRE 71

Appliquons le Théoreme 8.3 au
calcul du PGCD de 120 et 22 :

a b r pged(122,22)
120 22 10 = pged(22,10)
22 10 2 =pgecd(10,2)
10 2 0 =2

Au lieu d’utiliser le Théoreme 8.3,
nous pouvons employer la méthode de
décomposition en facteurs premiers :

120 = 22 - 3 . 5
2 = 2 . 11

ce qui donne le méme résultat
pged(122,22) = 2.

Si nous voulons que l'identité de
Bézout soit vraie pour a = b = 0 il faut
convenir que pged(0,0) = 0.

72 SCIENCES DE L'INFORMATION

u = —1uj etv =0vy. La méme chose vautsia >0etb <Qousiaeth
sont négatifs.

Il reste le cas ot 'un des deux nombres est nul; supposons par
exemple quea = Oetb # 0; alors pged(a,b) = b et Eq.(8.7) est
satisfaite avec u = 0, v = 1. Si les deux entiers sont nuls, nous avons
convenu que pged(a,b) = 0 et Eq.(8.7) est satisfaite. O

Théoreme 8.5 (Eléments Inversibles de Z/mZ) Soient a et m deux
entiers avec m > 2; [a]y, est inversible si et seulement si a et m sont
premiers entre eux.

Preuve : ([a],, inversible) = (a et m premiers entre eux) : Soit ’ un
représentant de ([a}m)_l. Nous avons aa’ = 1 (mod m), donc le
reste de aa’ dans la division par m est 1 et il existe un entier v (le
quotient) tel que

aad' = mo+1

Soit d un entier positif qui divise a la fois a et m, nous avons donc
a = ad et m = pd avec « et y entiers. En combinant avec I'équation
précédente :

(o —p)yd=1

donc d est un diviseur de 1 donc d = 1. Donc tout diviseur positif
de a et m est égal a 1, donc pged(a,m) = 1, c’est a dire que a et m
sont premiers entre eux.

(a et m premiers entre eux) = ([al,, inversible) : d’apres l'identité
de Bézout il existe des entiers u et v tels que au + mv = 1 donc

or [my, = [0]y donc [a]m[u]m = [1]m, c’est-a-dire que [a],, est
inversible et son inverse est [u];. O
Simplifications en Arithmétique Modulaire Supposons que

ax =ay (mod m) (8.9)

Nous avons envie de simplifier par 4, mais nous avons vu en

page 63 que ce n’est pas toujours légitime. Le Théoréme 8.5 nous
permet d’en dire plus, dans le cas ol a est premier avec m. Notons
tout d’abord que 1" Eq.(8.9) est équivalente &

[[x]m = [a]m[y]m
Si a est premier avec m, alors [a],, est inversible, donc nous pouvons
“diviser" par [a],, (c’est & dire multiplier par l'inverse de [a],;), ce
qui donne

que nous pouvons ré-écrire sous la forme

x=y (mod m)

Q. 67. Soient a et m deux entiers > 2.
Montrer que [a],, est inversible si et
seulement si [m], est inversible.

Les éléments inversibles se trouvent
facilement sur la table de multipli-
cation. Par exemple (Table 8.1), dans
Z./37Z les éléments [1]3 et [2]3 sont
inversibles (1 et 2 sont premiers avec
3), par contre [0]3 ne I'est pas (0 n’est
pas premier avec 3). Dans Z/47Z, les
éléments inversibles sont [1]4 et [3]4 (1
et 3 sont premiers avec 4) ; les éléments
non inversibles sont [0]4 et [2]4 (0 et 2
ne sont pas premiers avec 4).

ARITHMETIQUE MODULAIRE 73

En d’autres termes, nous pouvons simplifier a2 dans 1'Eq.(8.9)
pourvu que 4 soit premier avec .
Une conséquence du Théoréme 8.5, que nous allons souvent Q. 68. Vrai/Faux (a et m sont des
utiliser dans la suite, est : entiers avec 1 > 2) :
1. a est premier avec m = [a], n’est

Théoréeme 8.6 (Cas de Z/pZ avec p premier) Si p est un nombre pas un diviseur de 0
2. [a]y est un diviseur de 0 = a et m

premier, tous les éléments de Z./ pZ. sauf [0], sont inversibles. ont un diviseur commun > 2

©Preuve : Un élément x non nul de Z/pZ peut s’écrire x = [a],
avec 1 < a < p — 1. Par le Théoreme 7.6, a et p sont premiers entre
eux. Donc [a], est inversible Slu|

Exemple 8.2 (MOD 97-10) Les chiffres de contréle MOD 97-10 peuvent
détecter toutes les interversions de deux chiffres contigués, par exemple
021 235 1234 remplacé par 021 253 1234. En effet, soit x le numéro origi-
nal, y compris les chiffres de controle, et x' le numéro erroné, dans lequel
les chiffres contigus cy et cxq sont intervertis. Alors

x = cn,110”_1 + ...+ Ck+110k+1 + Cklok + ...+
X = 10" L4 10M 410K 4+ g
x—x" = 10" (cry —) (10—1) = 910" (cep1 — &)
Donc (la notation [x]oy est remplacée par [x] car il n’y a pas d’ambiguité Q. 69. Montrer que toutes les erreurs

consistant a modifier un seul chiffre

sur le module) :
sont détectées.

] = [x'] = 191 [10]" ([exet] — [ex])

Supposons que I'erreur ne soit pas détectée ; alors par définition des chiffres
de controle MOD g97-10, les restes de x et de x' dans la division par 97
chiffres valent 1, donc [x] = [x'] et

0] = 97 [10]* ([egs1] — [ex])

Or 97 est un nombre premier et donc [9] et [10] sont inversibles dans
Z./97Z. Cette dernieére équation implique donc que

[ck+1] = [ek]

et donc cx = cxy1. Donc la seule facon pour que l'interversion ne soit pas
détectée est que les chiffres intervertis soient égaux au départ. Dans un tel
cas il n’y pas vraiment d’interversion. Donc l'interversion est détectée.

Définition 8.5 Pour tout entier m > 1 on appelle Indicatrice d’Euler
@(m) le nombre d’éléments inversibles de (Z/mZ,-); ¢(m) est donc
égal au nombre de nombres entiers n positifs qui sont inférieurs a m et
premiers avec m.

D’apres le Théoréme 8.6, si p est un nombre premier, ¢(p) = p — 1.

Par exemple
— @(8) = 4 car les entiers n positifs inférieurs a 8 et premiers
avec 8sont1,3,5et7;
— ¢(5) = 4 car 5 est un nombre premier. Q. 70. Combien vaut ¢(257) ?

74 SCIENCES DE L'INFORMATION

8.4 Calcul de I'Inverse

La preuve du Théoreme 8.5 montre que, pour calculer I'inverse
d’un élément inversible [a],, de Z/mZ, il suffit de connaitre les co-
efficients de l'inégalité de Bézout appliquée a a et m. La preuve du
Théoreme 8.4 nous donne une méthode récursive pour calculer ces
coefficients (et en méme temps pour déterminer si [a],, est inver-
sible). Nous avons donc obtenu un algorithme du calcul de l'inverse
- voir la fonction BEzouT dans 1’ Algorithme 1.

Algorithm 1 La fonction BEzoUT détermine si [a],, est inversible, et
si oui, donne la forme réduite de 'inverse ([a]m)_l.

1. function BEzouT(a, m) > a et m entiers avec m > 2

N

(u,v,d) < EUCLIDE(a, m)

3 if d # 1 then

4 [a] nest pas inversible

5 else

6: calculer le reste r de u dans la division euclidienne par m
7 ([a)m) ™" = [r]m

8 end if

o: end function

Algorithm 2 La fonction EUCLIDE calcule les coefficients de 'iden-
tité de Bézout. C’est une version récursive de l'algorithme connu
sous le nom d’Algorithme d’Euclide.

1. function EUCLIDE(4, b) > a et b entiers > 0
2: > Retourne les coefficients u, v de I'identité de Bézout

> etle PGCD d de a et b.

3:

4 if a < b then > Echanger a et b
5: (u1,v1,d1) < Eucripe(b,a)

6: U4 01,0 ¢ Uy, d <+ dy

7: else

8: if b = 0 then > PGCD est a
o: u+—1v<+0,d<«a

10: else

1L Effectuer division euclidienne de a par b

12: (q,7) < quotient et reste

13: (uy,v1,d1) < EucLipe(b,r)

14: U4 01,04 U —quy, d < dq > Eq.(8.6)
15: end if

16: end if

17: end function

Appliquons la fonction BEzouT au
calcul de l'inverse de [21]12,, s'il existe.

Bezout(21,122) 215 = [93]122
1 T
EucLipg(21,122) wu=-29,v=>5
1 T
EucLipg(122,21)
qg=>5r=17 u=>5u0v=-29
4 T
EucLipe(21,17)
g=1r=4 u=-4v=>5
1 T
EucLipg(17,4)
g=4r=1 u=10v=-4
4 T
EucLipe(4,1)
g=4,r=0 u=0,0v=1
1 T

EucLipg(1,0)
d=1—=u=10v=0

La fonction BEzouUT calcule le PGCD
et les coefficients u, v de "identité de
Bézout appliquée a a = 21,b = 122,
en appelant EUuCLIDE(21,122), ce qui
déclenche une successions d’appels
récursifs a la fonction EucrLipe. Nous
trouvons que le PGCD est d = 1, donc
l'inverse existe, et 'identité de Bézout
obtenue est

—29x21+5x122=1

donc [21]35 = [~29]122. Sous forme

réduite, nous trouvons [21];212 =
[—29]122 = [93]122-

Q. 71. [93]12; est-il inversible, et si oui
quel est son inverse ?

Q. 72. [143]12; est-il inversible, et si oui
quel est son inverse ?

Q. 73. Résoudre dans Z /1227 1'équa-
tion x - [93}122 = [40]122.

9
Eléments d"Algebre Abstraite

L'algebre dite abstraite s’intéresse aux structures d’anneau,
groupe etc, c’est a dire aux propriétés d’opérations qui restent
vraies dans des contextes différents. Nous allons dans ce chapitre
étudier des éléments de la théorie des groupes commutatifs finis,
qui nous seront utiles pour comprendre la cryptographie et, en
Partie III, les codes correcteurs d’erreur.

9.1 Groupes Commutatifs

Définition 9.1 Soit (G, *) un ensemble G muni d’une opération bi-
naire %, c’est a dire d’un mécanisme qui associe a deux éléments a et b de
G, distincts ou non, un élément de G noté a % b.

(G, %) est appelé groupe commutatif, ou groupe abélien s’il posseéde les
propriétés suivantes :

(Associativité) ax (bxc) = (axb)c) pour tous a,b,c € G;

(Neutre) Il existe un élément e € G tel que axe = exa = a pour tout

aeG;
(Symétrique) Pour tout élément a € G il existe un élément a' € G tel
que axa' = e; a’ est appelé élément symétrique de a.
(Commutativité) a*b = bxa pour tous a,b € G;

Si l'opération binaire est notée +-, on note habituellement 1’élé-
ment neutre 0; I'élément symétrique de a est appelé opposé de a et
est noté —a.

Si 'opération binaire est notée -, on note habituellement 1'é1é-
ment neutre 1; I'élément symétrique de a est appelé inverse de a et

est noté a— 1.

Exemple 9.1 (Le groupe (Z/mZ,+)) Nous avons vu en Section 8.2
que Z./ mZ muni de I'addition modulaire possede les 4 propriétés qui en
font un groupe commutatif. L'élément neutre est [0],, et le symétrique de
[a]m est —[a)m = [—a]m-

Exemple 9.2 (Un non-groupe) Par contre (Z/mZ,-) pour m entier
> 2 n’est pas un groupe commutatif; les propriétés d’associativité, exis-
tence d’un élément neutre et commutativité sont vraies (avec e = [1]).
Cependant, la propriété d’existence d'un élément symétrique (i.e. inverse)
n’est pas vrai : il existe au moins un élément, [0],,, qui ne posseéde pas
d’inverse, car on ne peut jamais avoir [0],,a" = [1].

Je préfere la nommer ainsi [algebre abs-

traite] plutot qu’algebre moderne, parce

qu’elle vivra sans doute longtemps et finira

donc par devenir I'algebre ancienne.
Francesco Severi, Liege 1949, cité

par Serge Lang dans son livre Algebra,

Addison-Wesley, 1965.

Une opération binaire définie dans G
est donc une application de G x G vers
G.

Notons que I'élément neutre e est
forcément unique ; de méme, le symé-
trique 4’ de a est unique, pour chaque
a.

Si (G,) possede les trois premiéres
propriétés, mais pas la commutativité,
on dit que G est un groupe non commu-
tatif. Dans ce chapitre nous n’étudions
que les groupes commutatifs.

76 SCIENCES DE L'INFORMATION

Théoréme 9.1 Soit Z/mZ" I'ensemble des éléments inversibles de
Z/mZ, pour m > 2. (Z/mZ",-) est un groupe commutatif.

©Preuve : 1l faut d’abord démontrer que la multiplication est

bien une opération binaire dans Z/mZ", c’est a dire que sia €
Z/mZ" etb € Z/mZ" alors ab € Z/mZ". Si a et b sont inversibles,
alors (ab)(a='b~1) = [1],, donc ab est inversible (et son inverse est
a 1p~ 1.

D’autre part, [1], est inversible donc [1],, € Z/mZ* et donc la
multiplication dans Z/mZ" posséde un élément neutre. L'existence
d’un élément symétrique est évidente par définition Z/mZ*. Les
autres propriétés (associativité, commutativité) ont déja été démon-
trées en Section 8.2. ©lm

Théoréme et Définition 9.2 Soient (G, *) et (H, %) deux ensembles
munis chacun d’'une opération binaire. L' opération produit est I'opération
binaire x définie sur 'ensemble G x H par

(a,b)x (a',b') = (axa,bxb")

Si e est élément neutre dans G et f dans H alors (e, f) est élément neutre
pour l'opération produit.

Si a admet a’ comme élément symétrique dans G et si b admet b’
comme élément symétrique dans H alors (a,b) admet (a’,b") comme
élément symétrique dans G x H.

Si (G, «) et (H,«) sont des groupes alors (G x H,) aussi. On l'ap-
pelle le groupe produit.

Exemple 9.3 Le groupe produit de (Z/m1Z,+) et (Z/myZ,+) pos-
sede mymy éléments. L'élément neutre est ([0],, [0]m,). L'élément symé-
trique de ([alny, [Blns) est ([, [~Blng):

L’opération produit est appelée I” addition dans Z./mZ x Z./ myZ,
c’est a dire que nous écrivons :

(s (Klmy) + (Vg € mn) = (g + 0D (K my + (KT)
= ([j+j/]m1/[k+k/]m2> (9-1)

Exemple 9.4 L'opération produit de (Z./m1Z,-) et (Z/myZ,) posseéde
un élément neutre ([1),, [1]m,) mais cela n’en fait pas un groupe car
certains éléments n’ont pas d’élément symétrique (ici appelé inverse). Par
exemple ([0]m,, [b]m,) n'a pas d'inverse, quel que soit b.

L’élément ([a]m,, [b]m,) est inversible si et seulement si [a]p, et [b]m,
sont inversibles, c’est a dire si et seulement si a est premier avec mq et b
est premier avec my. L'ensemble des éléments inversibles de (Z./m1Z x
Z/myZ,-) est donc Z./mZ* x Z/myZ", il constitue un groupe, qui est
le groupe produit de (Z/mZ",) et (Z/myZ*,).

L’opération produit est appelée la multiplication dans Z./mZ X
Z./myZ et est aussi notée -, c’est a dire que nous écrivons :

(Ulmer Kl - (s W) % Ul - [s Kl - ()
= ([j'j/]m1/[k'k/]m2) (9~2)

Q. 74. Voici deux groupes commutatifs
avec leurs tables (nous omettons les
crochets) :

+]0
(Z/ZZ,"F) 0 0
1 ‘ 1

,_\
W Wl |~

|
(z/4Z°,)
;|

Dans chaque cas, quel est I’élément
neutre ?

G X H est le produit cartésien de G et
H, c’est a dire 'ensemble des couples
(x,y) avecx € Gety € H.

Le signe x, utilisé entre deux en-
sembles, signifie le produit cartésien ;
utilisé entre deux nombres, il signifie
la multiplication.

Il'y aici trois opérations binaires (une
dans G, une dans H et une dans le
produit cartésien G x H); elles sont
toutes les trois notées de la méme
facon (%), mais elles sont différentes.
C’est un abus de notation qui permet
d’éviter une certaine lourdeur.

+ 00 01 10 11

00|00 01 10 1
01 {01 00 11 10
10 | 10 11 00 01
11 |11 10 01 00

TABLE 9.1: Table du groupe produit
((Z/2Z)%, +) qui posseéde 4 éléments.
L’élément neutre est 00. Nous recon-
naissons 1’opération xor bit par bit sur
les suites de 2 bits.

Q. 75. Quel est I'élément symétrique
de chaque élément du groupe produit
(/22 xZ2/2Z,+)?

Q. 76. Combien y a-t-il d’éléments
dans les groupes produits (Z/5Z x
Z/7Z,+) et (Z/5Z* X Z]/7Z",-)?

ELEMENTS D’ALGEBRE ABSTRAITE 77

9.2 Isomorphisme

Des groupes apparemment différents peuvent étre les mémes,
si nous acceptons de changer les noms des éléments ou de 1’opé-
ration. Par exemple, les groupes (Z/2Z,+) et (Z/4Z",-) ont des
tables identiques, si nous faisons la correspondance 0 +— 1 et 1 — 3.
Bien que dans le premier cas 1’opération binaire soit appelée addi-
tion et dans le deuxieme multiplication, ce sont en fait les mémes,

apres renommage. Cette idée, appelée isomorphisme, est utilisée en Ainsi, I'application

cryptographie et dans bien d’autres domaines. Z/2Z - Z/AZ*
. 0 - 1

Définition 9.3 (Isomorphisme) Soient (G,) et (H, ®) deux en- L 3

sembles munis chacun d’une opération binaire. Un isomorphisme de

(G, x) vers (H, ®) est une application ¢ : G — H telle que est un isomorphisme de (Z,/2Z, 1)
— ¢ est bijective; vers (Z/4Z",).
- ¢P(axb) =p(a) @ P(b) pour tous a,b € G.

On dit que (G, *) et (H, ®) sont isomorphes s’il existe un isomorphisme

de (G,x) vers (H, ®).

Supposons que ¢ est un isomorphisme de (G,) vers (H, ®) alors

les opérations * et ® sont les mémes pour quiconque connait la

correspondance ¢ : donc les propriétés de ces deux opérations

doivent se correspondre une par une. En particulier :

1. Si G et H sont finis, ils ont le méme cardinal ; Soient G, H, K des sous-ensembles de

Z, et x,®, ® trois opérations binaires
définies sur G, H et K.

(@) (G,*) estisomorphe a (G, x)

2. Si (G, %) est un groupe alors (H, ®) aussi, et réciproquement ;
dans un tel cas, P transforme I’élément neutre de (G,) en I'élé-

ment neutre de (H, ®), et I'élément symétrique de a dans (G, *) puisque lidentité est évidemment
en 'élément symétrique de ¢(a) dans (H,®); un isomorphisme.
, .. y, . d 71,10() () . (b) Si (G, *) et (H,®) sont iso-
3. L'application réciproque ¢~ : (H,®) — (G,) est aussi un morphes alors (H, ®) et (G,).
isomorphisme. (c) Si(G,*) et (H,®) sont iso-

morphes, et si (H,®) et (K, ®)
sont isomorphes, alors (G, x) et

Exemple 9.5 Les groupes (Z./4Z,+) et (Z/5Z,-) sont-ils iso-

(K, ®) aussi.
?
morphes ’ La relation “étre isomorphe" est
Voyons d’abord s’ils ont le méme cardinal. Les éléments inversibles donc une relation d’équivalence sur
de Z./5Z sont 15, [2]s, [3]5 et [4]5 donc Z/5Z" a 4 éléments, comme Vensemble des sous-ensembles de Z2

) munis d'une opération binaire.
Z./4Z. Comparons maintenant les tables de ces deux groupes : (en omet-

tant les crochets) :

(z/4z,+) |0 1 2 3 (z/52%,)|1 2 3 4
olo 1 2 3 11 2 3 4
111 2 3 0 202 4 1 3
212 3 0 1 33 1 4 2
3(3 0 1 2 404 3 2 1

Ré-écrivons la table de (Z./5Z7, -) en changeant 'ordre de 3 et 4 :

(z/4z,+) |0 1 2 3 (z/52%,)|1 2 4 3
olo 1 2 3 101 2 4 3
111 2 3 0 212 4 3 1
202 3 0 1 414 3 1 2
3(3 0 1 2 313 1 2 4

78 SCIENCES DE L'INFORMATION

puis ré-écrivons encore une fois la table de (Z/5Z%, -) en changeant les
symboles : 1+—0, 2 —1, 4 — 1l et 3 — III.

(z/4z,+) |0 1 2 3 (z/52°,)|0 1 I 1
0lo 1 2 3 olo 1 1n m
111 2 3 0 1|1 0o m o
212 3 0 1 njm m o I
313 01 2 nrluor o 1 I

Les deux sont maintenant les mémes, I'une en chiffres arabes, I'autre en
chiffres romains. Donc les deux groupes sont isomorphes, avec comime
isomorphisme celui qui fait correspondre 0 —O, 1 +—1, 2 —Il et 3 —1II.
Rétablissons les symboles d’origine de Z./5Z.", nous avons donc obtenu
comme isomorphisme :

v (Z/4Z,+) — (2/5Z".)
[0]4 = [1]5, 1]y — [2]5, [2]4 = [4]5, 3]s — [3]5

 est bien bijectif et (a +b) = ¢(a) - p(b) L'élément neutre de
(Z/AZ,+) correspond a I'élément neutre de (Z./52Z7,) :

et i transforme I'opposé en inverse, par exemple p(— [3],) = ([3] 4)71
comme nous pouvons le vérifier :

Exemple 9.6 Les éléments inversibles de Z./8Z. sont [1]s, [3]s, [5]s et
[7]s donc (Z/8Z",-) est un groupe a 4 éléments. Est-il isomorphe a
(z/4Z,+)?

La table de multiplication de Z./8Z" est donnée ci-contre. Nous voyons
que chaque élément b de Z./8Z" vérifie b - b = [1|g; donc s'il existait
un isomorphisme entre (Z./4Z,+) et (Z./8Z",-) on devrait avoir la
propriété correspondante dans (Z./4Z,+), c’est a dire qu’on devrait avoir
a+a = [0]g pour tout a € Z/4Z, ce qui n’est pas vrai (prendre par
exemple a = [1]4. Donc les deux groupes ne sont pas isomorphes, bien
qu’ils aient le méme nombre d’éléments.

Exemple 9.7 Le groupe produit de (Z./2Z,+) et (Z/2Z,+) est-il iso-
morphe a (Z./8Z",-) ? En comparant les tables 9.1 et 9.2, nous voyons
que Uapplication

V:Z/2Z X Z/2Z — Z./8Z"
00 5 1,01 3,10~ 5,11+ 7

est un isomorphisme.

9.3 Période d'un Elément

Théoréme et Définition 9.4 (Période) Soit (G,) un groupe commu-
tatif fini dont I'élément neutre est noté e.

Q. 77. Soit f I'application

fi(Z/52") — (Z/4Z, +)
(1]5 — [0]4, [2]5 = [Ll4,
[B]5 — (3]s, [4]5 — [2],

Montrer que f(a-b) = f(a)+ f(b).

On dit parfois qu'une application telle
que 1 est une “exponentielle discrete"
a cause de la relation ¢(a + b) =

¥(a) - (D).

(z/8z*,) |1 3 5 7
111 3 5 7
3|3 1 7 5
55 7 1 3
717 5 3 1

TABLE 9.2: Table du groupe des élé-
ments inversibles de Z /8Z.

Q. 78. Parmi les groupes suivants, dire
lesquels sont isomorphes :

(2/47,+)
(Z/5Z,+)
(z/5z7,-)
(z/827,)
le groupe produit de (Z/2Z,+) et
(Z/2Z,+)

G w N R

ELEMENTS D'ALGEBRE ABSTRAITE 79

k fois
1. Pour tout élément a € G il existe un entier k > 1 tel que Txaroxi=
e. Le plus petit de ces entiers est appelé la période de a.
¢ fois
2. Pour tout entier positif ¢, Txax .. x0= esi et seulement si la période
de a divise (.

Notons que la période de I'élément neutre est 1.

Preuve :
¢ fois

1. Soit a’ la suite définie pour { = 1,2,... par a’ :Zl*_am.
Comme G est un ensemble fini, cette suite ne peut prendre qu'un
nombre fini de valeurs distinctes, c’est a dire qu’il existe ¢; > 1 et
{r > {1 tels que a2 = 2", donc

t,—1, fois ¢, fois 0, fois
———
AxkAK .. kA K AKkAdK..kd = AkA%..*d

Soit a’ I'élément symmétrique de a; nous avons donc :

6~ fois ¢, fois 4, fois . fois ¢ fois

— : s a / ’_'1 L 7

AxaA% . .xA*xAxA% .. xA*x A x4 *..kd = AkAk..kA*0 %0 *...%a
t,—1, fois

donc 7xa .. xa= e donc il existe un entier k = by — €1 > 1tel
que a* = e. Comme tout ensemble d’entiers positifs posséde un
plus petit élément, la période est bien définie.

2. (<) Notons tout d’abord que si £ et ¢’ sont des entiers positifs

¢ fois ¢ fois ¢+¢' fois

AxA*k ... xkA kA AK*k...*xA=A* A * ... %

N . 2 . . !
c’est a dire que nous pouvons écrire comme d’habitude a’** =

14

! A
a’ xa’ . De la méme facon,

¢ fois
¢ 0 ¢
a"t =a" xa" x...xa"= (a")"
Soit maintenant ¢ tel que a’ = e et soit k la période de a. Nous
faisons un raisonnement par 1’absurde. Supposons que k ne
divise pas £. Soit £ = kq + r la division euclidienne de ¢ par k;
nous avons 1 < r < k — 1. Donc

a période
e=a'=(@)xa =elxa =d 0 1
1 12
Donc r satisfait a” = e, ce qui est impossible car r < k. 2 6
u
(=) Soit £ = uk avec u entier. Donc a = (ak) =e' =e. i ‘;
O 5 12
6 2
. 7 12
Exemple 9.8 ((Z/12Z,+)) Dans le groupe (Z/mZ,+) la période de s 3
[a]m est le plus petit entier k > 1 tel que k[a],, = [0y, c’est a dire que 9 4
, . . 10 6
c’est le plus petit entier k > 1 tel que 1 12

_ TABLE 9.3: Périodes des éléments de
ka=0 (mOd m) (Z/12Z, +) (les crochets sont omis,
ainsi a = 11 signifie a = [11]1y).

80 SCIENCES DE L'INFORMATION

Prenonsm =12eta=2oub:

k‘23456789101112

k5l |10 3 8 1 6 11 4 9 2 7 0

Donc la période de (2], est 6, et la période de [5]15 est 12. En répétant ces
calculs pour les 12 éléments de Z./12Z. nous obtenons la Table 9.4

Les entiers £ > 1 tels que £[2]1o = [0]q, c’est a dire tels que 20 = 0
(mod 12) sont les multiples de la période k = 6.

Exemple 9.9 (Z/mZ*,-)) Dans le groupe (Z/mZ",-) la période de
[a]m est le plus petit entier k > 1 tel que ([a])" = [1]m, cest a dire que
c’est le plus petit entier k > 1 tel que

" =1 (mod m)

a période
Il est défini si [a)y, € Z/mZ", c’est a dire si a et m sont premiers entre ; ;
eux. 5 2

Prenons m = 8, le groupe (Z./8Z*,) comporte 4 éléments, [1]s,[3]s,[5]ls .7 2 _ | o

. TABLE 9.4: Périodes des éléments de
et [7]g. La période de [1]g est 1 (c’est I'élément neutre). Calculons les pé- (Z/8Z",) (les crochets sont omis).
riodes des autres éléments : nous avons [3]3 = [5]3 = [7]2 = [1]s donc
tous les éléments sauf [1]g ont pour période 2.

Q. 79. Quelle est la période de [1],,

Si deux groupes sont isomorphes, ils ont les mémes tables apres dans (Z/mZ,+)? dans (Z/mZ",-)?
renommage, donc les périodes des éléments sont les mémes. Nous
avons donc le théoréme suivant, que nous citons sans démonstra-

tion :

Théoreme 9.2 Soient(G,) et (H,®) deux groupes isomorphes et { un
isomorphisme G — H. Pour tout x € G, la période de x est égale i la
période de P(x).

Exemple 9.10 (Suite de 1’'Exemple 9.6) Les périodes des 4 éléments
de (Z/8Z,-) sont 1,2,2 et 2 alors que les périodes des 4 éléments de
(Z/4Z,+) sont 1,2,4 et 4 donc ces deux groupes ne peuvent pas étre
isomorphes.

Dans chacun des exemples précédents, la période d'un élément
est un diviseur du nombre d’éléments du groupe. Ceci est vrai en
général, comme 'exprime le théoreme le théoreme suivant, qui est
une version particuliere du théoreme de Lagrange :

Théoreme 9.3 (Lagrange) Soit (G,) un groupe commutatif fini, de
cardinal n. La période de tout élément de G divise n.
En particulier, notons e I'élément neutre de G. Pour tout a € G :

n fois

———
a*ax..xa=e

ELEMENTS D’ALGEBRE ABSTRAITE

Preuve : Soit a € G fixé, de période k.
(1) Introduisons la relation R sur G définie par

YRy < 3 € {0,1,2,...,k—1}:y:ag*x

¢ fois

—_———
‘=G xax..xdeta’ = e. Montrons que R est

avec la convention a
une relation d’équivalence.

— (Réflexive) Pour tout x € G : xRx (prendre ¢ = 0);

— (Symmétrique) Supposons que xRy ; alors il existe £ € {0,1,2,.k — 1}
tel quey = a’*x.Si ¢ = Oalors x = y donc yRx. Sinon,

k € {1,2,.k — 1}. Nous avons

ak_é*y =dtualsx=d'xx=exx=x

avec (k—/) € {1,2,..,k —1} donc yRx;
— (Transitive) Supposons que xRy et yRz, et soient £, ¢/ €

{0,1,2,..,.k—1} telquey = a’ xxetz = a’
z = a" % x.Soit £ + ¢ = gk + r la division euclidienne
de ¢ + ¢’ par k. Donc z = a¥*" = (ak>q *a" = a" avec
re{1,2,.k—1}, et donc xRz.

(2) Soit x € G la classe d’équivalence de x est (par définition de

R):

"% y. Donc

{x,a*x, a? * X, .., ak-1 *x}

Tous ces éléments sont distincts ; en effet, sinon on aurait a’t x x =
a2 % x avec 0 < ¢; < ¢ donc a®t = a2 et donc, comme dans

la preuve du Théoreme 9.4 : a2=“1 = ¢ ce qui est impossible car

1 < 4, —¥¢; < k. Donc la classe d’équivalence de x comporte k
éléments.

(3) Toutes les classes d’équivalence comportent k éléments chacune.
Or, I'ensemble des classes d’équivalences constitue une partition de
G (c’est la propriété des relations d’équivalence). Soit u le nombre
de classes d’équivalence. Nous avons donc n = uk, c’est a dire que k
divise n. O

Si G = (Z/mZ,+), le Théoreme 9.3 ne nous apprend rien de
nouveau. En effet, le cardinal du groupe est m et le théoreme dit
que pour tout a € Z, nous avons m|a], = [0],, ce qui est évident
car nous savons que maly, = [m]m(alm = [O]m[a]m = [0]m-

Par contre, pour G = (Z/mZ",-), le résultat est non évident
(et forme un élément important de la méthode de chiffrage asymé-
trique du Chapitre 10). Le cardinal de Z/mZ" est ¢(m) (indicatrice
d’Euler) ; nous avons donc le résultat suivant :

Corollaire 9.4 (Théoréme d’Euler) Pour tout entier positif m et tout
entier a premier avec m :

([a]) ™ = [

~—

ou encore Q. 80. Vérifiez le théoréme d’Euler

a"’(m) =1 (mod m) aveca =7 et m = 10.

81

82 SCIENCES DE L'INFORMATION

Dans le cas particulier ot1 le module est un nombre premier,
nous obtenons le résultat suivant :

Corollaire 9.5 (Théoreme de Fermat) Si p est un nombre premier,
pour tout entier a :

ou encore
aF =a (mod p)

©Preuve : Nous avons vu que ¢(p) = p — 1 et tous les éléments de
Z/pZ sauf [0], sont inversibles.

(1)Six € Z/pZ et x # [0],, d’apres le Théoreme d’Euler :
xP~1 = [1],. En multipliant les deux cOtés par x :

X = x 93)

(2) Si x = [0]p, I'égalité 9.3 est aussi vraie, donc elle est vraie
pour tout a € Z/pZ. ©ln|

Q. 81. Vérifiez le théoreme de Fermat
aveca=10etp =7.

10
Cryptographie Asymétrique

Nous sommes maintenant presque arrivés au bout des théories
qui nous permettent de comprendre comment fonctionne la cryp-
tographie asymétrique. Il nous reste a découvrir le théoreme des
restes chinois, que nous utiliserons pour développer un systeme
cryptographique.

10.1 Le Théoréme des Restes Chinois

Commencons par un petit jeu. Nous voulons remplir une boite
my X mp, comme suit. Nous commengons a la position (0,0), et
nous y inscrivons 0. Puis nous continuons en suivant la diagonale
et inscrivons 1 dans la case (1,1). Si nous sortons de la boite, nous
y revenons par le bord opposé et continuons parallelement a la
diagonale (voir Figure 10.1). La question du jeu est : pourrons nous
remplir la boite ?

Le théoreme des restes chinois donne la solution : si mq et myp
sont premiers entre eux, alors la réponse est oui, et nous pouvons
remplir la boite en exactement mm; étapes, c’est a dire en utilisant
les nombres de 0 a (mymy — 1). Par contre, si m; et my ne sont
pas premiers entre eux, il restera des cases vides, quel que soit le
nombre d’étapes.

Pour comprendre le lien avec l’arithmétique modulaire, imagi-
nons que les coordonnées des cases sont numérotées en utilisant
Z/mZ et Z./myZ, comme dans la Figure 10.1. Le jeu consiste en
fait a placer le nombre entier k dans la case dont les coordonnées
sont [k}, et [k];,. La question du jeu est donc : I'application
N — Z/mZ X Z.] myZ
(10.1)
{ k— ([k]ml’ [k]mz)

est-elle surjective ?

Observons que si k' = k+nmymy avec n entier, alors ([K'|;,, [k'lm,) =

([k]my, [k]m,). En d’autres termes, deux entiers k et kK’ qui sont
congrus modulo mm; sont placés dans la méme case de la boite.
Nous pouvons donc arréter le jeu quand k = mymy — 1. D’autre
part, au lieu de I'application définie en (10.1), nous pouvons tout

0 1 2
0(0| 4 8
119]1 5
216 |10] 2
3137 |11

my = 3, my = 4
0 1

0104

1 1,5

2126

3 3,7

mq =2,m2:4

FIGURE 10.1: Le jeu des restes chinois.

84 SCIENCES DE L'INFORMATION

aussi bien considérer que le jeu est une réalisation de 1’application :

{ Z/mymaZ — Z)mZ x Z.) mrZ.
P (10.2)

[k]mlmz = ([k]ml’ [k]mz)

puisque la case dans laquelle est placé k ne dépend que de [k, m, -
La question du jeu devient donc : 'application 1 est-elle surjective ?

Théoréme 10.1 (Restes Chinois) Soient my et my deux entiers > 2.

(1) Si my et my sont premiers entre eux, I'application définie par
I'Eq.(10.2) est bijective.

(2) De plus c’est un isomorphisme a la fois pour I'addition et la multi-
plication.

(3) Si my et my ne sont pas premiers entre eux, I'application n’est ni
surjective ni injective.

©Preuve : (1) Supposons que m; et m, sont premiers entre eux
et montrons que ¥ est injective. Soient k et k' des entiers tels que

Y([K]mymy) = (K mym,). Alors
lp([k_k/]mlmZ) = ([k_k/]mv [k_k/]mz) = ([O]my [O]mz)

donc (k—k')=0 (mod mj)et(k—k')=0 (mod my).

Donc my et my divisent (k — k') et sont premiers entre eux.
D’apres le Théoreme 7.6, item 3, mym; divise (k — k') donc [k —
Kmymy = [0mymy, donc [klmymy, = [K']mym,. Par contraposition,
nous avons montré que si [k]yym, # [K'|mym, alors Y([k]mm,) #
Y([k'Imymy,), c’est a dire que ¥ est injective.

Or les ensembles Z/mimyZ. et Z./mZ x Z./m>Z sont des en-
sembles finis de méme cardinal (m;m;). Comme 1 est injective, elle
est aussi bijective.

(2) Montrons que ¢ est un isomorphisme pour 1’addition; il faut
montrer

¢([k]m1mz + [kl]mmlz) = lz"’([k]mlmz) + lzb([k/]mﬂﬂz) (10-3)

pour tous entiers k, k’. Le membre de gauche est ([k + k'], [k +

K'|m,). Par définition de la loi produit (Eq.(9.1)), le membre de

droite est ([k]m, + [K']my, [klm, + [K']m,) ; les deux sont donc égaux.
La méme chose est vraie pour la multiplication, c’est a dire :

Y(Klmmy - (K mmy) = (Klymy) - (K gy (10.4)

(3) Supposons que m; et my ne sont pas premiers entre eux.

Soitd > 2 un diviseur commun et m = "2 ; m est un mul-

tiple de m; car "2 est entier, et la méme chose vaut pour 1, ;

donc ¢([m]mmy) = ([0]my, [0]m,). Or1 < m < mymy, donc

M) mymy 7 [0]mym,. Donc ¢ n’est pas injective. Comme Z/mymyZ

et Z/mZ x Z/myZ sont des ensembles finis de méme cardinal, ¢
n’est pas surjective non plus. 60

Une conséquence immédiate concerne la fonction indicatrice
d’Euler.

[0 [ls 2]s
(04 [[0]12 [42 812
1z | P 1]12 512
(2]s | [6l12 | [1012 | [2]12
Bla | Bliz [[7ha | [11]12

mq 23,7112:4

[0]> [1]>
(04 [[0]s, 4]
[1]a [1]s, [5]s
[2]s | [2]s,[6]s
(3]s 3]s, [7]s

my =2,my =4

FIGURE 10.2: Le jeu des restes chi-
nois, vu comme une application de
Z/mimyZ vers Z/mZ X Z.]myZ. :
(K]mym, est placé dans la case

(K Ky)-

Le principe des tiroirs, ou principe des
boitiers, (Ang. pigeon holes), dans une
de ses nombreuses variantes, établit
des liens entre nombres d’éléments
des ensembles et les propriétés d'in-
jection / surjection. Soient E et F des
ensembles finis de méme cardinal et f
une application E — F. Ce principe dit
que :
1. Si f est injective alors f est surjec-
tive (donc bijective).
2. Si f est surjective alors f est injec-
tive (donc bijective).

Ni injective ni surjective

- & & =
Bijective

Par exemple, supposons que nous
ayons des CDs a ranger dans des
boitiers (ou tiroirs). E est I’ensemble
des CDs et F ’ensemble des boitiers.
Un rangement des CDs dans les
boitiers définit une application f : E —
F car il associe a chaque CD un boitier.
Un rangement est injectif s'il n'y a
jamais deux CDs dans le méme boitier.
Un rangement est surjectif si tous les
boitiers sont occupés.

Le principe des boitiers dit que si le
nombres de CDs est égal au nombre
de boitiers, et s'il n'y a jamais deux
CDs dans le méme boitier, alors tous
les boitiers sont occupés (et vice-versa).

Corollaire 10.2 Si m et my sont premiers entre eux, alors ¢(mimy) =
@(my)p(my).

Preuve : (Z/mymyZ,-) est isomorphe (par ¢) a (Z/mZ x Z/myZ, -).

Il y a donc autant d’éléments inversibles dans Z./mymyZ que dans
Z./mZ x Z./myZ. Or un élément de ce dernier est inversible ssi
chacune de ses deux composantes 'est, donc il y a ¢(m1)@(my)

éléments inversibles. O

10.2 Cryptographie a Clé Publique

Reprenons le schéma général de la Figure 6.1; rappelons qu'un
algorithme de chiffrement E, paramétré par une clé K, transforme
le texte clair P en cryptogramme C = Eg(P). L'algorithme de dé-
chiffrement D, paramétré par une clé k, effectue la transformation
inverse P = Dy (C). Dans ce chapitre nous étudions un systeme
de chiffrement o1 la clé de chiffrement K est publique, alors que la
clé de déchiffrement k est secrete, connue seulement par le destina-
taire. Avec un tel systéme, un usager qui désire envoyer et recevoir
des cryptogrammes se munit donc deux clés, 'une (k) qu'il garde
secrete et 'autre (K) qu'il publie dans un annuaire que tous les
autres usagers peuvent consulter. La distribution des clés est donc
extrémement facile.

Pour qu'un tel systéeme fonctionne, il faut que certaines condi-
tions soient remplies :

(1) (Exactitude) L'algorithme de déchiffrement doit rétablir le

texte clair : Di(Eg(P)) = P.

(2) Le chiffrement Eg(P) d’un message clair P est une opération
aisée et rapide.

(3) Le déchiffrement Dy (C) d’un cryptogramme C est une opé-
ration aisée pour quiconque connait la clé k.

(4) Par contre, le déchiffrement sans la connaissance de k est
extrémement difficile, et impossible a effectuer en pratique, en
un temps raisonnable.

(5) Enfin, il doit étre extrémement difficile de deviner la clé
privée k.

Dans la section suivante, nous allons étudier le systeme RSA et

montrer qu’il satisfait a ces conditions.

10.3 L’Algorithme de Rivest-Shamir-Adleman (RSA)

Le cryptosysteme RSA encode tous les messages (clairs ou chif-
frés) comme des entiers modulo K (c’est a dire des éléments de
Z./KZ). Les longs messages sont subdivisés en blocs, si bien que
tous les messages sont compris entre 0 et K — 1.

1. Le module K est toujours de la forme K = pq ol p et 4 sont des
nombres premiers. Le module K est la clé publique.

CRYPTOGRAPHIE ASYMETRIQUE 85

Q. 82.50it f : E — E ol E estun
ensemble infini. Est-il vrai que si f
est injective alors f est surjective ? Et
réciproquement ?

Q. 83. Combien vaut ¢(35) ?

Comment envoyer du chocolat a un
ami dans un pays ot les postiers
aiment beaucoup le chocolat et ont
tendance a le voler ? Si mon ami
possede une clé de mon cadenas, c’est
facile. Sinon, nous pouvons utiliser un
double échange. Chacun garde alors
les clés de son cadenas par devers soi.

]

!
/\/

C’est un probleme semblable que
résout la cryptographie a clé publique,
mais avec un seul échange au lieu de
deux.

86 SCIENCES DE L'INFORMATION

La clé privée k est le plus petit multiple communa p —1etg—1.

Les facteurs p et g sont secrets et utilisés seulement pour
construire la clé privée k. Ils peuvent étre détruits une fois k
calculée.

2. Le chiffrement est défini par C . Ex(P) tel que [C]x = ([P]k)",
ol l'exposant e est connu et public.
3. La clé publique K doit étre telle que e est premier avec k.

En pratique, on prend souvent e = 65537, qui est un nombre
premier; dans un tel cas, la condition que e soit premier avec k
est équivalente a : e ne divise ni (p — 1) ni (g — 1).

4. Le déchiffrement est obtenu a 1’aide d’un nombre f tel que
[flc = [e];". Notons que cet inverse existe précisément grace
a la condition précédente. Il peut étre calculé simplement en
utilisant I'identité de Bézout, si on connait la clé privée k.
Le déchiffrement est alors défini par P’ = Dy (C) avec [P'|x =

(IClk).

Exemple 10.1 Chaque lettre du message clair est codée par sa position
dans 'alphabet, et nous prenons comme clé publique K = 33. Les facteurs
premiers sont p = 3 et q = 11. La clé privée k est le plus petit multiple
commun d 2 et 10, d’or k = 10.

Prenons comme exposant e = 7, qui est premier avec k. L’exposant de
déchiffrement est f = 3car7-3 =1 (mod 10). Le chiffrement et le
déchiffrement du mot “BONJOUR” sont montrés dans la Figure 10.3

Vérifions maintenant que cet algorithme satisfait aux conditions
posées en 10.2. Commencons par une conséquence immédiate du
théoréme des restes chinois :

Théoréme 10.3 (Exactitude de RSA) Soient p et q deux nombres
premiers distincts. Soit m un multiple commun a p — 1 et g — 1. Pour
tout entier n :

([n]pq) b [1]pq (10.5)

©Preuve : Puisque (Z/pqZ,) est isomorphe (par 'application

des restes chinois) a (Z/pZ x Z./qZ,), 'Eq.(10.5) est équivalente &

()™ = [nl

et ([n]y)™" = [n], (10.7)

(10.6)

Montrons 'Eq.(10.6). Distinguons deux cas :

1. Si [n], = 0 alors 'Eq.(10.6) est trivialement vraie.

2. Sinon, [n], est inversible car p est premier (Théoreme 8.6) et
dong, par le Théoreme d’Euler, ([n]p)pfl = [1],. Par ailleurs
m est multiple de p — 1, donc il existe un entier £ > 0 tel que

m = {(p—1). Donc

(In]p)" = (Inl,) """ = (11]p)" = 1],

En multipliant par [r], nous obtenons 1’Eq.(10.6).

On peut aussi prendre comme clé
privée n’importe quel multiple com-
muna (p—1) et (g — 1), par exemple
k=¢(pg) = (p-1)(qg 1)

Notons que les congruences utilisées
pour le chiffrement et le déchiffre-
ment sont modulo K, alors que la
congruence qui définit ’exposant de
déchiffrement f est modulo k.

Texte Texte Texte

clair codé chiffré déchiffré

p C=([Pls) ([Cls)’
B 02 29 02
(@) 15 27 15
N 14 20 14
J 10 10 10
(0] 15 27 15
u 21 21 21
R 18 06 18

F1GURE 10.3: L'algorithme RSA avec le
module K = 33 et clé exposant e = 7.
La clé publique est K et la clé privée
est (3,11).

TS O0—=Z0w

L’Eq.(10.7) se montre de la méme fagon. ©O

Nous pouvons maintenant vérifier les conditions de la section 10.2.

(1) (Exactitude) Le message déchiffré est P’ tel que [P'|x =
([Clx)f = ([P]x)¥. Oril existe £ € Z tel queef = 1+ (k,
d’apres la condition 4 de I’algorithme RSA. Comme k (et donc
aussi (k) est un multiple commun a (p — 1) et (¢ — 1), par
le Théoreme 10.3, [P'][x = [P]k. Donc P’ = P puisque les
messages sont des entiers compris entre 0 et K — 1.

(2) Le chiffrement est un calcul de puissance, qui est facile
comme nous l’avons vu sur I'Exemple 8.1. L'exposant e =
65537 est particulierement intéressant, voir ci-contre.

(3) Sion connait la clé privée k, le calcul de I'exposant de dé-
chiffrement f est simple comme nous l’avons déja vu. Le dé-
chiffrement est également un calcul de puissance, qui est donc
aussi un probléme facile.

(4) Le déchiffrement sans connaitre la clé privée k revient a
résoudre I'équation x¢ = [C]g ol tout est connu sauf x, c’est a
dire calculer la racine e-ieme de [C]k. La méthode exhaustive
consiste a essayer toutes les valeurs de x (et il faut le faire pour
tous les blocs du message chiffré). Il faut donc que soit un
nombre trés grand pour que cette méthode soit chere en temps
de calcul. Une autre méthode utilise le logarithme discret
(Exemple 8.1), dont le calcul est aussi un probleme difficile
pour K grand. On pense donc aujourd’hui qu’il n’y a pas de
moyen simple pour calculer la racine e-ieme dans Z/KZ.

(5) Pour que la derniére condition soit satisfaite, il doit étre
extrémement compliqué de déchiffrer sans connaitre (p, q),
ce qui revient a ce que la la factorisation de K en nombres
premiers soit difficile a calculer. Une méthode de factorisation
consisterait par exemple a essayer tous les entiers jusqu’a
VK pour retrouver p et . D’autres algorithmes sont plus
rapides, mais restent totalement inefficaces si K est trés grand.
Rivest, Shamir et Adleman ont calculé qu’il faudrait 4 millions
d’années pour factoriser un nombre m de 200 chiffres avec un
processeur de 1Ghz. On pense aujourd’hui que la factorisation
de nombres entiers tres grands est un probleme difficile.

C’est donc sur les hypotheses de quasi-impossibilité de calcul de la
racine dans Z/KZ et de la factorisation en nombres premiers que
repose la sécurité de RSA.

10.4 Choix des Parameétres du Cryptosysteme RSA : Nombres

Premiers Stirs

Bien que le systéme RSA satisfasse a toutes les conditions de la
Section 10.3, il est nécessaire de bien choisir les nombres entiers p et
g, sans quoi certains problémes peuvent survenir, en particulier ce-
lui des messages non cachés. Lors du chiffrement de 'Exemple 10.3,
les nombres 10 et 21 du texte clair sont cryptés respectivement en

CRYPTOGRAPHIE ASYM]:ZTRIQUE

87

Pour e = 65537 = 216 4 1, le calcul de
y = x° peut se faire en élevant 16 fois
au carré puis en multipliant par x :

1Y <X

2: fori =1to 16 do

3 Yy

4: end for

5y y-x
Pour le chiffrement, il suffit d’appli-
quer cet algorithme avec x = [Pk,
nous obtenons alors y = [Ck.

L’élévation a la puissance e est donc
une fonction a sens unique (pour qui-
conque ne connait pas la clé privée).

88 SCIENCES DE L'INFORMATION

10 et 21! En effet, 10 = 107 (mod 33) et 21 = 217 (mod 33),

et donc le cryptogramme et le texte clair sont identiques pour ces
valeurs, ce qui est évidemment tout bénéfice pour le cryptanalyste.
Le texte clair [P]x = [0]x n’est jamais caché. En général, les textes
clairs P qui ne sont pas cachés sont ceux qui satisfont

([P}K)e = [Plx (10.8)

Il peut y avoir beaucoup de solutions a cette équation en P, sauf
si on choisit pour p et g des nombres premiers “stirs".

Définition 10.1 Un nombre premier p est dit sir s’il est de la forme
p =2p" +1ou p' est aussi un nombre premier.

Le théoréme suivant dit que dans un tel cas, et avec un exposant de
chiffrement aussi bien choisi, le nombre de messages P qui ne sont
pas cachés est 9 (cela inclus le message P = 0). Comme K = pgq
est trés grand, leur nombre est infime et il doit donc étre possible
d’éviter de tels message avec grand probabilité.

Théoréme 10.4 Soient p et q des nombres premiers silrs distincts supé-
rieurs a 5 et supposons que l'exposant de chiffrement e est tel que e — 1 est
une puissance de 2. Le nombre de solutions [P, € Z/KZ de Eq.(10.8)

est égal a 9.

Preuve : Soient p = 2p’ +1etq = 29’ + 1 avec p et q premiers
distincts (donc p’ > 2 et ¢’ > 2). Nous avons a résoudre 1'équation
z° = z ot l'inconnue est z € Z/pqZ. Faisons le changement de
variable ¢(z) = (x,y) ot x € Z/pZ,y € Z/qZ. Par le théoreme des
restes chinois :

x*=x, x € Z/pZ
2°=2z,2€Z/pqZ & | et
V=Y yEZ/9Z

Etudions ’équation en x. Elle équivaut a
(x* 1 =[1]p)x=[0],, x € Z/pZ

De deux choses 1'une : soit x = [0],, soit x # [0],. Dans le premier
cas x = [0] est solution ; dans le deuxiéme cas, x est inversible (car
p est premier) donc nous pouvons simplifier par x (en multipliant
;1) et donc x*~1 = [1],.

Dans ce dernier cas, la période d de x dans Z/pZ* divise e — 1,

les deux membres par [x]

qui est une puissance de 2, donc d est une puissance de 2; elle
divise aussi le cardinal de Z/pZ*, quiest p —1 = 2p’; comme p’
est premier et # 2, d divise 2, doncd = 1 ou 2. Donc x = [1], ou
sinon x> = [1],. Dans ce dernier cas, (x — [1],)(x + [1]p) = [0], et
donc comme x — [1], # [0], nous pouvons simplifier par (x — [1],)
et x = [—1],. Notons que [~1], # [1], car p > 2.

En résumé, 1'équation x* = x, x € Z/pZ a trois solutions : x €
{[0],,[1]p, 1] }. De méme y* =y, y € Z/qZ a trois solutions :
v € {[0]y,[1]4,[—1]4}- A chaque solution en x et en y correspond

11 existe beaucoup de nombres pre-
miers stirs, on pense que leur nombre
est infini.

Q. 84. Les nombres suivants sont-ils
des nombres premiers strs : 17, 83,
1077

Par exemple e = 65537 = 216 +1
satisfait cette propriété.

Q. 85. Montrez que si e — 1 est impair
et p,q sont des entiers premiers stirs >
2e + 1 alors e satisfait les conditions de
RSA, i.e. e est premier avec ppem(p —
1,q-1).

CRYPTOGRAPHIE ASYMETRIQUE 89

une solution z = ¥~!(x,y) etily a3 x 3 = 9 facons de choisir le
couple de solutions (x,y). Donc I'équation z° = z,z € Z/pgZ a 9
solutions. O

I

Codes Correcteurs

11
Les Codes Correcteurs ou Détecteurs

MAINTENANT QUE NOUS SAVONS COMMENT COMPRIMER l'in-
formation et la sécuriser contre des attaques, il nous reste a com-
prendre comment la protéger contre les erreurs. De telles erreurs
arrivent quotidiennement : sur un CD a cause des rayures ou de la
poussiére ; dans un ordinateur lorsque les données sont lues et per-
turbées par le bruit thermique introduit par un systeme électrique;
ou encore dans la mémoire d"un lecteur MP3 quand les circuits ont
vieilli et que certains transistors sont morts.

Pour protéger l'information, 1'idée est toujours d’ajouter des
bits (appelés bits de redondance), en utilisant ce qu’on appelle un
code correcteur ou détecteur (aussi appelé code tout court). Ces bits
de redondance sont utilisés lors du décodage pour reconstruire
I'information initiale méme s’il y a des bits perdus ou erronés.

Les chiffres de controle MOD g7-10 de I'IBAN que nous avons
rencontrés au Chapitre 7 sont un tel code. Il est peu efficace, et
nous allons voir dans cette partie comment fabriquer des codes bien
meilleurs. En particulier, nous allons construire les codes de Reed-
Solomon, qui sont utilisés dans un trés grand nombre de systemes,
par exemple pour lire un code-barre ou pour obtenir des données
depuis un CD ou un disque dur.

Dans la Partie I, nous avons utilisé des codes de sources. Les
codes dont nous parlons ici sont différents. Les codes de source
compriment l'information ; au contraire, les code correcteurs ou
détecteurs augmentent la taille de I'information. Typiquement, les
données sont d’abord comprimées a 1’aide d’un code de source,
puis on utilise un code correcteur ou détecteur avant de les stocker

ou de les transmettre. k=3 —
000 — 0000000
001 — 0011100

11.1 Codes Correcteurs ou Détecteurs 010 +~ 0111011
100 — 1110100

. 011 — 0100111
Commencons par un exemple simple. 101 1101000
110 — 1001111

Exemple 11.1 Nous voulons stocker un fichier sur un disque. 111 — 1010011

Nous supposons que le fichier comporte k = 3 bits; la valeur de k FIGURE 11.1: Un code de longueur

pour n’importe quel vrai fichier sera bien stir beaucoup plus grande que 3, n =7 et sa table d’encodage.
mais en considérant une si petite valeur nous pouvons comprendre plus

92 SCIENCES DE L'INFORMATION

facilement le concept.

Nous ne pouvons pas savoir par avance la valeur des 3 bits. 1l nous
faut donc prévoir tous les cas. Il y a 23 = 8 fichiers possibles (000, 001,
010, 011, 100, 101, 110 et 111). A chaque cas possible nous faisons corres-
pondre une suite de n = 7 bits; toutes ces suites, appelées mots de code,
doivent étre toutes distinctes. Nous espérons pouvoir utiliser I'information
redondante qui se trouve dans le mot de code ensuite, quand nous vou-
drons reconstruire le fichier original d’une observation peut-étre altérée. La
table d’encodage est fixée une fois pour toutes, et est connue aussi bien par
la personne qui écrit les données sur le disque (lors de I'encodage) que la
personne qui lit les données (lors du décodage).

Le code C est I'ensemble de tous les mots de code. Nous disons que
c’est un code en bloc, de longueur n = 7.

Le code utilise 7 bits par mot de code, alors qu’il suffit de k = 3 bits
pour décrire les 8 mots originaux. Nous pouvons donc dire que le code est

k 3

de rendement r = 3 = 5.

Définition 11.1 (Code en Bloc) Un code en bloc de longueur n, défini
sur un alphabet A, est un sous-ensemble C de A", c’est a dire un ensemble
de suites de n éléments de A. Les éléments du code sont appelés les mots
de code.

Le rendement du code est défini par r = %logcard(A) card(C).

Le rendement du code mesure son cofit en nombre de symboles.
Notons que pour 'exemple précédent nous avions r = %logz(S) =
%, ce qui est compatible avec la définition.

11.2 Distance de Hamming

Jusqu'ici nous avons vu qu'un code en bloc a une longueur n
et un rendement r. Mais comment pouvons nous choisir un code?
Qu’est-ce que c’est un bon code ? Pour cela il nous faut évaluer son
efficacité, ce qui se fait a 'aide des concepts de distance de Hamming
et distance minimale.

Définition 11.2 (Distance de Hamming) Soit A un ensemble fini
(I'alphabet) et n > 1 un entier. Soient x = (x1,..,x,) € A" et

Yy = (Y1, ., yn) € A" deux suites de n éléments de A. La distance de
Hamming d(x,y) est le nombre de positions oit x et y different :

d(x,y) Lf card {i e {1,..,n} tels que x; # y;}

Par exemple,
x=1(1,0,1,1,1,0) et
y=(1,0,0,1,1,1)
ne different qu’en leur troisieme et derniere positions, donc leur

distance de Hamming est d(x,y) = 2. Notons que le cardinal de
I’ensemble vide est 0 donc d(x,x) = 0.

Théoréme 11.1 (Distance de Hamming) La distance de Hamming
possede les trois propriétés suivantes. Pour tous x,y,z € A" :

A" est le produit cartésien A x ... x A.
Un élément de A" (appelé “mot" dans
le contexte des codes) est une suite
(a1,az, ...,a,) de n éléments de A.
L'ordre compte et il peut y avoir des
répétitions.

L'expression “en bloc" signifie que
tous les mots de code ont la méme
longueur 7, ce qui est le seul cas
auquel nous nous intéressons dans
cette partie.

Notons que contrairement aux codes
de sources, ici la table de correspon-
dance ne joue pas de grand role,
seul I’ensemble des mots de code est
important.

Le rendement r est aussi appelé débit
(Ang. rate) du code.

Q. 86. Considérons le code obtenu en
rajoutant a une suite de k chiffres déci-
maux les deux chiffres de contrdle de
la procédure MOD g7-10 (Exemple 7.2,
page 63). Quel est le rendement de ce
code?

n=2, dmin(C) =2
(0,1) (1,1)

(0,0) (1,0)

n = 3, dmin(C) =3
(0,1,1) (1,1,1)

(0,0,2) (1,0,2)

(0,1,0) (1,1,0)

(0,0,0) (1,0,0)

F1Gure 11.2: Un code en bloc avec 2
mots de code. La longueur du code est
n = 2 (en haut) ou n = 3 (en bas).

Un ensemble E sur lequel est défini
une distance vérifiant les trois pro-
priétés du Théoréme 11.1 est appelé
espace métrique. L'ensemble A" des
mots de n symboles, muni de la dis-
tance de Hamming, est donc un espace
métrique.

LES CODES CORRECTEURS OU DETECTEURS 93

1. d(x,y) > 0et d(x,y) = 0 si et seulement six =y;
2. (symétrie) d(x,y) = d(y, x);
3. (inégalité triangulaire) d(x,z) < d(x,y) +d(y, z).

©®Preuve : Nous montrons seulement l'inégalité triangulaire, les
deux premiers items sont laissés aux bons soins du lecteur ou de
la lectrice. Soit A 1’ensemble des positions ot x et y different, B
I’ensemble des positions ou1 y et z différent et C 'ensemble des
positions ou x et z different. Nous avons donc d(x,y) = card(A),
d(y,z) = card(B) et d(x,z) = card(C). Or :

(xi =yiety; =z) = (x; = z)
donc par contraposition
(xi 7# zi) = (xi # yi ou yi # zi)

c’est a dire que
(ieC)= (i€ A)ou (i € B)

ou encore
Cc (AUB)

donc card(C) < card(AUB) < card(A) + card(B). ©ln

La distance de Hamming posséde les propriétés habituelles d'une
distance, de la méme facon que la distance euclidienne d(x,y) =

V(x1 —y1)2 + (x2 — y2)? définie sur R? : c’est pourquoi nous pou-
vons ré-utiliser une grande partie de notre intuition géométrique.

Définition 11.3 (Distance minimale) La distance minimale d'un code en
bloc C, notée dmin(C), est

def

dnin(C) = min d(x,y)

xyeCx#y
Autrement dit, la distance minimale d’un code est la plus petite
distance de Hamming entre deux mots de code distincts. Comme
nous allons voir par la suite, la distance minimale reflete bien la
capacité d'un code a détecter ou corriger des erreurs, et un bon
code est un code qui a une grande distance minimale.

Exemple 11.2 (Distance Minimale du code de la Figure 11.1) Pour
déterminer la distance minimale d"un code donné avec M mots de code,
nous devons prendre le minimum sur toutes les paires distinctes de mots
de code. Nous devons donc vérifier le nombre de combinaisons de 2 pris
_ MM-1)
) - 2
M = 8, et donc nous devons vérifier 28 paires. Ceci est encore faisable, et
nous obtenons dmin(C) = 3.

parmi M, a savoir, paires. Pour notre exemple,

Pour les codes utilisés en pratique, la vérification directe peut ne
plus étre possible. Par exemple, nous allons bient6t étudier des
codes de Reed-Solomon o1 le nombre de mots de code est de
lordre M = 256'2. Il nous faudra trouver d’autres méthodes
pour déterminer la distance minimale.

La négation de la phrase”A et B" est
“non A ou non B".

Si les deux ensembles E et F sont finis,
et si E est inclus dans F (c’est a dire

E C F) alors le nombre d’éléments

de E est < celui de F (c’est a dire
card(E) < card(F)).

Le nombre d’éléments de la réunion
de E et F est la somme des cardi-
naux de chacun, moins le nombre de
doublons :

card(EUF) =
card(E) + card(F) — card(ENF)

En particulier :

card(E UF) < card(E) + card(F)

Q. 87. Quelle est la distance minimale
du code obtenu en rajoutant a une
suite de k chiffres décimaux les deux
chiffres de controle de la procédure
MOD g7-10 (Exemple 7.2, page 63)?

Une paire est un ensemble a 2 élé-
ments, et est noté {i,j}. L'ordre n'a
pas d'importance ({i,j} = {j,i}), etil
faut que i # j (pas de répétition). Si E
est un ensemble a M éléments, il y a
w paires d’éléments de E.

Ne confondez pas avec le couple,
noté (i,) ou encore ij, qui est une
suite de 2 éléments; 'ordre compte et
il est possible que i = j (les répétitions
sont possibles). Il y a M? couples
d’éléments de E.

94 SCIENCES DE L'INFORMATION

11.3 Modeéles de canal

La nature des phénomenes qui provoquent des erreurs dans les
fichiers peut étre arbitrairement compliquée, et nous voulons éviter
de considérer chaque cas séparément. C’est pourquoi nous allons
introduire des modéles de canal, qui sont des abstractions mathé-
matiques qui ne retiennent que certaines propriétés importantes
du canal physique. Nous allons utiliser deux modeles : le canal 4
effacements et le canal a erreurs.

Définition 11.4 (Canal a Effacements) Pour le canal i effacements,
nous supposons que chaque composante du mot de code est soit connue
parfaitement, soit effacée. L'effacement signifie que le symbole transmis
a une position effacée a été remplacé par un symbole spécial, disons le
symbole " ?". Le destinataire sait quelles positions ont été effacées, mais ne
sait pas quelles symboles étaient présents avant I'effacement.

Le poids d'un effacement est le nombre de positions qui sont modifiées.

Par exemple, avec le code de la Figure 11.1, supposons que le mot
transmis soit x = (0100111). Une sortie d’un canal a effacement
est par exemple y = (0?001?1) : les bits effacés du canal sont les
composantes 2 et 6. Le poids de I’effacement est 2.

Définition 11.5 (Canal a Erreurs) Pour le canal a erreurs, chaque com-
posante du mot de code est soit regue parfaitement, soit échangée pour un
autre symbole de I'alphabet. Le destinataire ne sait pas quelles positions
sont victimes d’erreurs.

Le poids d'une erreur est le nombre de positions qui sont modifiées.

Toujours avec le code de la Figure 11.1, supposons que le mot de
code transmis soit x = (0100111). Une sortie possible d'un canal a
erreurs est y = (0000101). Le canal a introduit deux erreurs, sur les
positions 2 et 6. Le poids de cette erreur est 2.

11.4 Les Théoremes de la Distance Minimale

Dans cette section nous allons voir pourquoi la distance mini-
male permet de quantifier la puissance d"un code.

Supposons que l'opérateur d’une station nucléaire veuille en-
voyer un signal d’alarme au réacteur nucléaire pour réduire sa
puissance ; ou, moins dramatiquement, que vous vouliez sauvegar-
der les données de votre compte bancaire sur un disque. Dans les
deux cas, nous voulons assurer que le signal émis (l'information
sauvegardée) est recue (est lisible) correctement. Autrement dit,
nous voulons assurer que les erreurs de transmission sont détectées.

Soit C le code utilisé. Supposons que nous choisissions un mot
de code x € C, qui est envoyé sur un canal a erreurs. Le destinataire
observe la sortie du canal, que nous notons y. Bien stir, le desti-
nataire ne connait pas le mot de code émis x. Il connait seulement
le mot recu y. Si le mot regu y n’est pas un mot de code, alors le
destinataire sait que le canal a introduit des erreurs. Dans ce cas,

LES CODES CORRECTEURS OU DETECTEURS 95

le destinataire peut donner l'alerte pour prévenir 1'utilisateur que
la transmission a été erronée. Nous disons que le destinataire peut
détecter 'erreur.

Théoréme 11.2 (Détection d’Erreurs) (1) Un code C est capable de
détecter toutes les erreurs de poids p < dmin(C).

(2) Inversement, si un code C peut détecter toutes les erreurs de poids
< p,alors p < dmin(C).

©Preuve : (1) Soit x un mot de code transmis et y le mot regu, avec
erreur de poids p. Il nous faut montrer que

p < dmin(C) = l'erreur est détectable

Or l'erreur est détectable si et seulement si y & C. Il nous faut donc
montrer :

p<dmin(c) =>y§ZC

Nous allons montrer la contraposée :
y€C=p>dmin(C)

Nous supposons donc maintenant que y € C. Comme il y a une
erreur d(x,y) # 0;de plus x € C. Dong, par définition de la
distance minimale, p = d(x,y) > dmin(C).

(2) Montrons la contraposée :

Sip > dmin(C) alors il existe des erreurs de poids < p non
détectables.

Par définition de la distance minimale, il existe au moins deux
mots de code x, y tels que d(x,y) = dmin(C). Transmettons le mot x
de sorte que le mot y soit regu. L'erreur est non détectable car y est
un mot de code. Le poids de l'erreur est dpin(C) < p. Donc il existe
au moins une erreur de poids < p non détectable. ©lu|

Par exemple, avec le code de la Figure 11.1, supposons que le mot
de code transmis soit x = (0100111) et le mot re¢u y = (0000101).
Le poids de l'erreur est 2, et nous savons que la distance minimale
du code est 3, donc cette erreur peut étre détectée. Effectivement, en
inspectant la liste de tous les mots du code, nous voyons que y n'y
figure pas.

Détecter c’est bien, corriger c’est mieux. Dans le cas d'un canal a
effacements, la correction consiste a trouver un mot de code x qui
soit compatible avec le mot recu y. Si le nombre d’effacements n’est
pas trop grand, cela est possible :

Théoréme 11.3 (Correction d’Effacements) (1) Un code C est capable
de corriger tous les effacements de poids p < dmin(C).

(2) Inversement, si un code C peut corriger tous les effacements de
poids < p, alors p < dmin(C).

©Preuve : (1) Soit x le mot transmis et y le mot requ a travers un
canal a effacement. Le mot y n’est pas un mot du code C mais est

Q. 88. Y-a-t'il un résultat analogue
au Théoréme 11.2 pour la détection
d’effacements ?

Q. 89. Quels effacements peut-on cor-
riger avec le code obtenu en rajoutant
a une suite de k chiffres décimaux

les deux chiffres de controle de la
procédure MOD 97-10 (Exemple 7.2,
page 63)?

96 SCIENCES DE L'INFORMATION

un mot de n symboles construit sur 'alphabet étendu A" = AU{?}.
Soit p le poids de 'erreur, donc d(x,y) = p.

Nous connaissons ¥ mais pas x ; nous ne connaissons pas p non
plus, mais nous savons que p < dmin(C). Pour corriger 1'effacement,
nous cherchons un mot x qui ne differe de y que sur les positions
ot il y a un effacement. Il en existe au moins un, par hypothese.
Nous allons montrer par I'absurde qu’il n’en existe pas d’autre.

En effet, soit x’ un deuxiéme mot possible. Les mots x et x’ ne
different que dans les positions ot il y a eu effacement. Donc,
d(x,x") < p < dmin(C). Comme x et x’ sont deux mots de code
distincts, dmin(C) < d(x,x’), ce qui est une contradiction avec 1'in-
égalité précédente.

(2) Montrons la contraposée :

Sip > dmin(C) alors il existe des effacements incorrigibles de
poids < p.

Par définition de la distance minimale, il existe au moins deux
mots de code distincts x, x’ tels que d(x, x") = dmin(C). Il y a donc
dmin(C) positions ot les symboles de x et x" sont identiques. Trans-
mettons x, respectivement x/, dans un canal a effacement et effagons
précisément ces positions. Dans les deux cas le mot regu y est le
méme. En recevant y, il est impossible de savoir si c’est x ou x” qui
a été transmis. Donc ces deux effacements sont incorrigibles. Le
poids de l'effacement est dpin(C) < p. Donc il existe au moins un
effacement de poids < p non corrigible. ©0

Par exemple, toujours avec le code de la Figure 11.1, supposons
que le mot de code transmis soit x = (0100111) et le mot requ

y = (0?001?1). Le poids de l'effacement est 2, et nous savons que
la distance minimale du code est 3, donc cet effacement peut étre
corrigé. Effectivement, en inspectant la liste de tous les mots du
code, nous voyons que x = (0100111) est le seul mot de code
compatible avec y.

Dans le cas d’un canal a erreurs, la correction est plus difficile,
car on ne sait pas a quelles positions il y a des erreurs. Une mé-
thode simple consiste a chercher le mot x le plus proche du mot y
recu. Si le nombre d’erreurs n’est pas trop grand, cela marche :

Théoréme 11.4 (Correction d’erreurs) (1) Un code C est capable de

corriger toutes les erreurs de poids p < d““%(c).

Plus précisément, si l’erreur est de poids p < dmi%(c), le mot transmis x

est le mot le plus proche (pour la distance de Hamming) du mot regu y.

(2) Inversement, si un code C peut corriger toutes les erreurs de poids

< palors p < d““%(@.

Preuve : (1) Soit x le mot transmis et y le mot recgu a travers un

canal a erreurs. Soit p le poids de 'erreur, donc d(x,y) = p et, par

hypotheése, p < dmi%(c). Nous connaissons y mais pas x ; nous ne

. . Amin (C
connaissons pas p non plus, mais nous savons que p < %() Pour

corriger l’erreur, nous cherchons un mot qui soit a distance de y

inférieure a dm#((l) Il en existe au moins un, par hypothese, le mot

Q. 90. Quelles erreurs peut-on détecter
ou corriger avec le code obtenu en
rajoutant a une suite de k chiffres déci-
maux les deux chiffres de contrdle de
la procédure MOD g7-10 (Exemple 7.2,

page 63)?

LES CODES CORRECTEURS OU DETECTEURS Q7

x transmis. Nous allons montrer par I'absurde qu’il n’en existe pas
d’autre.
En effet, soit ¥’ un deuxiéme mot possible. Nous avons, par
construction :
d(x,y) < “glc)

dmin ¢
d(y,x') < ‘=)

donc par l'inégalité triangulaire :
d(x,x") <d(x,y) +d(y,x") < dmin(C)

Or x et x" sont deux mots de code distincts, donc dpin (C) < d(x,x'),
ce qui est une contradiction.

Donc nous avons montré que pour tout autre mot de code x’/,
d(x',y) > dm%(c). Donc d(x,y) < d(x/,y) et x est le mot de code le
plus proche de y.

(2) Nous raisonnons par 1'absurde. Nous supposons donc que
I'hypothese est vraie et que la conclusion est fausse. Posons § =
dmin(C). Nous supposons donc que les entiers positifs p et 6 sont
tels que le code C peut corriger toutes les erreurs de poids < p et
§<p.

Montrons tout d’abord des relations intéressantes. Posons p; =
16/2], p2 = | (6 +1)/2] et montrons que

pr+p2=29 (11.1)
pr<petpy<p (11.2)

Pour cela considérons séparément les cas pair et impair :

— SiJ est pair alors § = 2A avec A entier positif. Nous avons
p1 = p2 = A ce qui prouve I'Eq.(11.1). De plus si 'entier p
vérifie % < palors A < p, ce qui prouve I'Eq.(11.2).

— Si ¢ est impair alors § = 2A + 1 avec A entier positif ou nul.
p1 = Aetpy = A+ 1, ce qui prouve I'Eq.(11.1). De plus si
I'entier p vérifie % < palors A + 0.5 < p, donc (car A et p sont
entiers) A +1 < p ce qui prouve 'Eq.(11.2).

Revenons maintenant a notre preuve par I'absurde. Par définition
de la distance minimale, il existe au moins deux mots de code x, x’
tels que d(x,x’) = 4. Soit Z I'ensemble des positions oii les mots x
et x' different; le cardinal de 7 est 6. Soit Z; le sous-ensemble des
p1 premiers éléments de 7 et 7, le sous-ensemble des p; éléments
suivants de Z. Rappelons que p; + p» = é donc nous avons réalisé
une partition de Z. Définissons le mot y de la fagon suivante :

yi=x;sii €1
yi=xisii €l
yi=xi=xisii¢T

Le mot y résulte de I'injection de p; erreurs dans x, ou de 'injection
de p; erreurs dans x’. Considérons un canal a erreur dans lequel
nous transmettons le mot x, et qui délivre y. Comme p; < p, il

est possible de corriger ces erreurs et décider que c’est x qui a été
transmis. Supposons maintenant que nous transmettions le mot x’

Par exemple, pour § = 5, p; = 2 et

p2> = 3 et nous avons bien p; + p = 4.
Si 'entier p vérifie % < p alors

2.5 < p etdonc 3 < p. Nous avons bien

pr<petpy <p.

Par exemple, avec § = 5 nous pour-
rions avoir

x = 10100000
x’ =10111111

Ici Z est ’ensemble des positions 3 a 8,
ie.Z = {4,5,6,7,8}. Nous avons alors
Ty =1{4,5}, 7, = {6,7,8} et

y = 10100111

Le mot y résulte de la transmission
de x avec p; = 2 erreurs ou de la
transmission de x’ avec p» = 3 erreurs.

98 SCIENCES DE L'INFORMATION

et que le canal délivre aussi y. Comme p; < p, nous pouvons aussi
décoder et décider que c’est x’ qui a été transmis. Dans les deux
cas nous avons re¢u le méme mot y donc il est impossible de savoir
si c’est x ou ¥’ qui a été transmis; il y a une contradiction et notre

preuve par 1’absurde est achevée. ad

Par exemple, continuons avec le code de la Figure 11.1, et suppo-
sons que le mot de code transmis soit x = (0100111). Supposons
que nous ayons regu y = (0000111). En inspectant la liste des
mots de code, nous voyons que le seul élément de C a la distance
Imip=l — 1 de y est le mot x = (0100111). Donc, nous déclarons
que le mot transmis était x = (0100111), ce qui est correct. Ce code
a une distance minimale de 3, donc il est capable de corriger toutes
les erreurs portant sur 1 seul bit.

Enfin nous terminons par une inégalité qui montre que la dis-
tance minimale ne peut pas étre arbitrairement grande.

Théoréme 11.5 (Borne de Singleton) *Pour un code en bloc C de lon-
gqueur n et de rendement v la distance minimale satisfait :

din(C) <n(1—71)+1

©Preuve : Posons 6 = dmin(C). Soit f I'application qui, a un mot
de code x, associe le mot obtenu en supprimant les § — 1 derniers
symboles. C’est donc une application C — A" %*1.

Montrons que f est injective. Soient deux mots de code x # x';
montrons par 1'absurde que f(x) # f(x'). Supposons que f(x) =
f(x'), alors x et x’ ne peuvent différer que dans leur § — 1 derniers
symboles, donc d(x,x’) < § — 1, ce qui contredit la définition de la
distance minimale. Donc, par le principe des tiroirs,

card(C) < card(A" ") = [card (A)]" "
En prenant le logarithme a base card(.4) nous obtenons
108 ard(4) card(C) <n—45+1

or le terme de gauche vaut rn (par définition du rendement r), d’ot1
le résultat voulu. ©0

Pour le code de la Figure 11.1, la borne de Singleton donne
dmin(C) < 5, alors que nous savons que dmin(C) = 3, c’est a dire
que la borne n’est pas atteinte. Nous verrons dans la suite de ce
module des codes qui atteignent la borne.

Exemple 11.3 (Le Robot-Code) Le but de cet exemple est d'illustrer ce
que signifie la borne de Singleton. Nous avons un code C de longueur n

kot k est

sur un alphabet A, et le nombre de mots de code est [card(.A)]
un entier < n. Le code est utilisé pour encoder des messages de longueur
k, et les mots de code ont une longueur n.

Un message de k symboles est choisi et encodé. Un robot-code envoie
a Anne un des symboles du mot de code pris au hasard parmi n, puis un

deuxieme, pris au hasard parmi les n — 1 restant, etc, jusqu’a ce qu’Anne

Q. 91. Quelles erreurs peut corriger un
code de distance minimale égale a 4?

1. R. Singleton. Maximum distance
g-nary codes. Information Theory, IEEE
Transactions on, 10(2):116-118, 1964

Nous utilisons la variante suivante du

principe des tiroirs ou principe des boitiers,

(Ang. pigeon holes). Soient E et F des

ensembles finis et f une application

E — F. Cette variante du principe dit

que :

1. Si f est injective alors card(E) <
card(F).

2. Si f est surjective alors card(E) >
card(F).

3. Si f est bijective alors card(E) =
card(F).

Par contraposition, les items 1 et 2

donnent :

1 bis. Sicard(E) > card(F), f n’est
pas injective.

2bis. Sicard(E) < card(F), f n’est
pas surjective.

card(E) > card(F), f ne peut pas étre
injective

card(E) < card(F), f ne peut pas étre
surjective

Reprenons 'exemple des CDs a
ranger dans des boitiers (page 84), et
rappelons qu'un rangement est injectif
s’il n’y a jamais deux CDs dans le
méme boitier et surjectif si tous les
boitiers sont occupés. S'il y a moins de
boitiers que de CDs, il existe un boitier
avec au moins 2 CDs (item 1bis). S'il y
a plus de boitiers que de CDs, il y a au
moins un boitier vide (item 2bis).

LES CODES CORRECTEURS OU DETECTEURS 99

dise “STOP"”. Anne connait la position dans le mot de code du symbole
recu, et la valeur du symbole recu. Le but du jeu est de décoder le message
en recevant un nombre minimum de symboles. Quand Anne est siire qu’il
n’existe qu’un mot de code correspondant, elle dit STOP. Dans le pire des
cas, de combien de symboles Anne a-t-elle besoin ?

Par exemple, supposons que le code soit celui de la Figure 11.1; card(A) =
2, les symboles sont des bits. Supposons que les positions des symboles
choisis par le robot soient 1,2,6,7,3,4 et 5. Supposons que le message soit
001, donc le mot de code est 0011100. La Figure 11.3 montre la suite en-
voyée par le robot-code. Apres avoir regu 4 symboles, Anne ne sait pas si le
mot de code est 0000000 ou 0011100. Par contre apres avoir recu le 5ieme
symbole, Anne sait que le seul mot de code possible est 0011100 elle peut

position symbole

donc dire STOP et décider que le message est 001. ; g
En général, puisque la distance minimale de ce code est 3, il est possible 6 8
de corriger 2 effacements, donc Anne peut étre siire de pouvoir décoder Z 1
apres avoir recu 5 symboles. En d’autres termes, pour pouvoir décoder 4 1
le message original (qui comporte 3 symboles), il faut recevoir jusqu’a 5 FIGURE 1 53: Lla suite des symboles
symboles. recus par Anne quand le robot-code

envoie les symboles du mot de code

. . . . dans un ordre aléatoire. Le message
borne de Singleton, et pour fixer les idées, supposons toujours que k = 3 et est 001 et le code utilisé est celui de la

n = 7. Le rendement du code est r = k/n et la distance minimale du code Figure 11.1
est donc dmin(C) = n —k+1 = 5. Le code est donc capable de corriger

Supposons maintenant que nous utilisions un code qui atteigne la

4 effacements, et il suffit de recevoir 3 symboles pour décoder. Anne pourra
toujours dira STOP apreés avoir recu 3 symboles, quels qu’ils soient.

En d’autre termes, pour un code C sur un alphabet A qui atteint la
borne de Singleton, et sik = 1084, 4) card(C) est entier, il suffit de
recevoir k symboles quelconques pour reconstruire le message original (qui

est de longueur k symboles).
Q. 92. Que donne la borne de Sin-
gleton pour le code code obtenu en
rajoutant a une suite de k chiffres déci-
maux les deux chiffres de controle de
la procédure MOD g7-107?

12
Corps Finis et Espaces Vectoriels

Nous avons vu dans le chapitre précédent qu’il est important
pour un code d’avoir une distance minimale aussi grande que pos-
sible, mais qu’en méme temps, il peut étre difficile de concevoir de
tels codes, et méme plus simplement de calculer la distance mini-
male d’un code. Pour résoudre ce probléme, nous allons utiliser
des codes linéaires sur des corps finis. Mais avant cela, il nous faut
apprendre ce que ces termes recouvrent.

12.1 Corps Finis

Un corps commutatif est un ensemble dans lequel les 4 opé-
rations d’addition, multiplication, soustraction et division fonc-
tionnent comme nous en avons 'habitude quand nous utilisons les
nombres réels (R) ou complexes (C). Plus précisément :

Définition 12.1 Soit (IC, +, -) un ensemble muni de deux opérations
binaires notées + et -. Nous disons que c’est un corps commutatif (Ang.
field) si

1. L'addition fait de IKC un groupe commutatif. Son élément neutre est noté

0.

2. La multiplication fait de I'ensemble K privé de 0 un groupe commuta-
tif. En particulier, tous les éléments sauf O sont inversibles. L'élément
neutre de la multiplication est noté 1.

3. La multiplication est distributive par rapport a l'addition : a - (x +
y)=a-x+a-ypour tous a,x,y € K.

Les ensembles R et C sont des corps commutatifs infinis. Nous
nous intéressons aux corps commutatifs finis, qui peuvent étre
utilisés comme alphabet par un code correcteur ou détecteur.

Exemple 12.1 (Z/pZ) Nous savons (Théoréme 8.6) que si p est un
nombre premier, tous les éléments de Z./ pZ sauf [0], sont inversibles. II
est facile de voir que cela entraine que (Z/pZ,+, -) est un corps commu-
tatif. C’est notre premier exemple de corps fini.

Exemple 12.2 (Des Non-Corps) (Z/mZ,+,-) n'est pas un corps si m
n'est pas un nombre premier. En effet, il existe alors des éléments non nuls
qui n’ont pas d'inverse (les diviseurs de m). Par exemple dans Z./6Z, (36

(IC, =+,) est un corps non commututif
sil vérifie toutes les propriétés de
corps commutatif sauf une : la mul-
tiplication n’est pas commutative.
Tous les corps finis sont commutatifs,
donc il n’est pas nécessaire de préciser
“commutatif" quand nous parlons
d’un corps fini.

Par contre il existe des corps infinis
non commutatifs, par exemple le corps
des quaternions utilisé en infographie.

Les corps finis sont aussi appelés
corps de Galois, en 'honneur d’Eva-
riste Galois, qui a lancé les bases de la
théorie des corps finis (et bien plus)
durant les deux semaines avant le duel
qui a mis fin a sa vie a I'age de 21 ans
(elle s’appelait Stéphanie).

CORPS FINIS ET ESPACES VECTORIELS 101

n’a pas d’inverse alors que [3]¢ # [0]¢. (Z,+,-) n’est pas un corps car
les entiers non nuls autres que 1 et —1 n’ont pas d'inverse dans Z.

Tout ce que vous avez étudié en algebre linéaire sur la résolution
de systémes d’équations linéaire reste valable si on utilise un corps
fini au lieu de R ou C. Illustrons ceci sur un exemple :

Exemple 12.3 (Systeme d’équations dans Z/72Z) Considérons le
systeme d’équations

[5]7x1 + [4]7x2 = [2]7
X1+ [2]79(2 = [0]7

ol les inconnues xq et xp sont dans Z./77Z. 1l est fastidieux de trainer
une notation telle que [3]7, aussi nous supprimons les crochets (il faudra
simplement se rappeler dans quel corps nous sommes en train de faire des
calculs). Nous écrivons donc le systéme ainsi :

5x1+4xy =2
X1 +2x, =0

Pour le résoudre, nous procédons comme d’habitude. Par exemple, nous
pouvons éliminer x, par combinaisons :

5v¢ + 4x, = 2 |1
x1 + 2xn = 0 [-(=2)
3X1 2

D’oir

x1=2-31=2.5=10=3
oil nous avons utilisé le fait que 3=1 = 5 (c’est a dire que I'inverse de [3]7
est [5]7). Nous obtenons x, a partir de la deuxieme équation :

2x2 = —X1:—3=
xp = 4-271=4.4=16=

Vérification :

5x1 +4x, =15+8=14+1=2-0K
X14+2x=3+4=7=0-0K

Nous avons vu que les calculs algébriques dans un corps fini sont
semblables aux calculs usuels. Il y a quand méme une différence,
c’est le fait que, par exemple, 7 =1+4+1+1+1+1+4+1+1=0dans
Z/7Z. En général, cela est lié au concept de caractéristique :

Théoréeme et Définition 12.2 Dans un corps fini, il existe un plus petit
entier p > 0 tel que p -1 = 0, c’est a dire tel que
p fois
— ~
1+1+..+1=0

Ce nombre est un nombre premier. Il est appelé la caractéristique du corps.

Q. 93. (Q, +, -) est-il un corps com-
mutatif ? (Q, ensemble des nombres
rationels, est I’ensemble des nombres
réels qui peuvent s’écrire comme frac-
tion de deux nombres entiers, positifs
ou négatifs.

102 SCIENCES DE L'INFORMATION

©Preuve : Ce nombre existe car il est la période de 1 dans le
groupe (K, +) (Théoreme 9.4). Montrons par I'absurde qu'il est pre-
mier. En effet, sinon, nous pouvons factoriser p = p1ps avec p1, p2

py fois
—

entierset 1 < p; <petl < py < p.Soitx; = p;-1 =T+1+..+1
et idem pour x;. Alors x; # 0 car p est la période et p; < p; donc
lI'inverse x; 1 de x; existe; de méme x, # 0.0r x1xp = pl =0,
donc en multipliant x;° ! nous obtenons : x, = 0, ce qui est une
contradiction. o0

Enfin, citons sans démonstration le théoréme suivant :

Théoréme 12.1 (1) Le cardinal d'un corps fini est une puissance de sa
caractéristique.

(2) Tous les corps finis de méme cardinal sont isomorphes.

(3) Pour tout nombre premier p et tout entier m > 1 il existe un corps
fini de cardinal p™.

Q. 94. Tous les groupes finis com-
Ce théoreme implique que le cardinal d’un corps fini est de la mutatifs de méme cardinal sont-ils
forme p™ ot p est un nombre premier et m un entier. Par ailleurs, isomorphes?
pour p premier et m entier donnés, il n'y a essentiellement qu'un
seul corps fini, tous les autres s’en déduisent par re-nommage des
éléments. Nous notons IFjn le corps fini a p™ éléments. En particu-

lier, pour m =1,]Fp =7Z/pZ. Q. 95. Le corps (Fy, +,) est-il iso-
morphe a (Z/4Z,+,-)?

Q. 96. Existe-t-il un corps fini a 15
éléments ?

Exemple 12.4 (IFy) Le corps binaire, IFy, est égal a Z./27, qui contient
contient seulement deux éléments, 0 et 1. L'addition et la multiplication
sont les opérations modulo 2.

11 joue un réle trés important car nous pouvons interpréter les deux
éléments 0 et 1 comme des valeurs logiques. L’addition correspond a I’opé-
ration xor, tandis que la multiplication correspond a and.

+Ouxor‘0 1 ~0uand‘0 1
010 1 00 O
111 0 110 1

Le corps Fy a aussi une propriété intéressante. Si a € ¥y, alors a +a = 0
et a = —a. L'addition et la soustraction sont les mémes et donc les signes
ne jouent pas d'importance. Dans Iy, les erreurs de signe n’existent pas !

Exemple 12.5 (Fy) Le corps Fy existe car 4 = 2% a un seul facteur pre-
mier ; il est constitué de 4 éléments, dont I'élément neutre pour I'addition
(noté 0) et I'élément neutre pour la multiplication (noté 1). Soient a et b
les deux autres éléments.

Nous savons que ce corps existe, et nous pouvons en déduire ses tables
d’addition et de multiplication. La caractéristique de IFy est 2 donc 1 +
1 = 0donc plus généralement 2x = 0 pour tout x € IFy (en effet
x+x=1-x4+1-x=(1+1)-x = 0x = 0). Donc la table d’addition

CORPS FINIS ET ESPACES VECTORIELS 103

d’addition de F4 est de la forme

+[o]1]a]
0)0)1]a Q. 97. Prouvez que dans la table d'un
1]1]0 groupe commutatif (G, x) chaque
alla 0 élément doit se trouver une fois et
b 15 0 une seule dans chaque ligne et chaque
colonne.
Pour boucher les trous, observons que chaque élément doit se trouver
une fois et une seule sur chaque ligne et chaque colonne de la table. En
considérant la colonne de a, il vient que a + 1 vaut 1 ou b; mais 1 n’est
pas possible a cause de la ligne de 1. Donc a + 1 = b. En continuant
de la sorte on obtient la table d’addition de IF4. La table de multiplication
s’obient avec le méme raisonnement (appliqué au groupe Fy = {1,a,b}
muni de la multiplication) et en remarquant que Ox = 0 pour tout x. On
obtient ainsi les tables de Fy :
tof1fal _-Jo1]a]b
0|0|1|a]|b 0jojo0{ofo
1{1({0|b|a 1(10{1|a]|b
allalb|0]1 all0ja|b|1
billbla|l]|0 bj|O|b|1|a
C’est I'unique corps a 4 éléments, a isomorphisme pres. Une représentation
alternative s’obtient par la correspondance 0 — 00,1 — 11,2 — 01,
b +— 10, ce qui donne les tables suivantes :
+ Jloo|11]01]10 - Joo|11]o01]10
00 |[00|11|01]10 00 || 00 | 00 | 00 | 00
11|11 |00 |10 |01 11]00 (11|01 |10
0101|1000 |11 0100|0110 |11
10|10 |01 | 11 | 00 1000 |10| 11|01
ou encore par la correspondance 0 — 00,1 — 01, a — 10, b — 11, ce qui
donne les tables suivantes :
+ [Joojo1|10]11 - Joofo1]10]11
00 || 00|01 |10 |11 00 || 00| 00 | 00| 00
0101|00|11]10 0100|0110/ 11
10|10 | 11 | 00 | O1 10|00 | 10| 11 | 01
11|/ 11|10 | 01 | 00 11]00 (11|01 |10
Nous avons ainsi obtenu trois représentations différentes du corps IFy ; La derniere représentation est celle

qui est le plus ouvent utilisée car
elle correspond a la construction de
Sous les deux derniéres formes, on voit que 'addition dans IF4 est IF, avec des polyndmes, comme en

bien stir, elles sont toutes trois isomorphes.

identique a 'opération xor sur 2 bits. Par contre, la multiplication est Section 14.3.
entierement nouvelle.

12.2 Espaces Vectoriels

Définition 12.3 Soit IC un corps commutatif et (V,+) un groupe com-
mutatif, muni d'une opération binaire notée +. Supposons qu’une opé-
ration externe est définie sur K et V, c’est a dire une application qui a

104 SCIENCES DE L'INFORMATION

A € KetX € V associe un élément, noté AX de V. Les éléments du
corps commutatif sont appelés scalaires et les éléments de V sont appelés
vecteurs. L'opération externe est appelée multiplication scalaire ou encore
produit d’un vecteur par un scalaire. Nous disons que V muni de ces

deux opérations est est un espace vectoriel sur le corps IC si les propriétés

suivantes sont vraies : pour tous scalaires A, y et vecteurs ii, U,
— associativité pour la multiplication scalaire : A(u?) = (Ap)d
— identité:1-7 =7
— distributivité : A(ii + T) = Aii + AT et (a + b)ud

aii + bil

L’exemple le plus connu d’espace vectoriel est ’ensemble IR" des

suites de 7 réels. De maniére générale, si K est un corps commu-
tatif, 'ensemble K" des suites de n éléments de K (aussi appelés
mots de longueur 7) est un espace vectoriel pour les opérations

(xl/ ceey xi’l) + (yll -"/yl’l) - (xl + yZI ceey xi’l + yi’l)
AMx1, e xn) = (Axg, ..., AXy)

Dans ce module, nous allons utiliser les espaces vectoriels V = K"
ott K est un corps fini.

Un sous-ensemble S de V est un sous-espace vectoriel, s’il est
aussi un espace vectoriel sur K. Il est facile de voir que cela est
équivalent a dire que S est stable pour les deux opérations, c’est a
dire que

AMicSetii+7€ Spourtous A € Ketif,7eS

Exemple 12.6 Dans I'espace vectoriel IF3, considérons 'ensemble S
des vecteurs de la forme (1,3u,6u) avec u € Fy. S est un sous-espace
vectoriel car, pour tous A, u,v € Fy:

Au,3u,6u) = (Au,3(Au),6(Au)) € S
(u,3u,6u) + (v,3v,60) = (u+v,3(u+v),6(ut+v)) € S

Considérons aussi I'ensemble S’ des vecteurs ¥ = (xq,x2,x3) qui
satisfont la condition

x1+4x2+3x3 =0 (12.1)

S’ est aussi un sous-espace vectoriel car, si X = (x1,%2,X3),§J =
(v1,Y2,y3) sont dans S’ alors

(x1+y1)+4(x2+y2) +3(x3+y3) =0

donc X+ = (x1 +y1, %2+ y2,x3 +y3) € S'. De méme, pour tout
A €Fy:
(Ax1) +4(Ax2) +3(Ax3) =0

donc AX = (Ax1,Axp,Ax3) € S'.

Une combinaison linéaire de vecteurs ¥; € V,i = 1...m est une
somme de la forme

=

M

i=1

AiT; (12.2)

Dans le contexte d’espace vectoriel,
nous mettons en général une fleche
sur les vecteurs et utilisons la notation
enligne ¥ = (xq,..., %) (il existe
aussi la notation en colonne, que nous
n’utilisons pas ici).

L’élément neutre de I'addition est
noté 0; ainsi dans K", 0 = (0, ..., 0).

Les regles habituelles de manipula-
tion de signes jouent dans tout espace
vectoriel. En particulier :

0% =0

(=A)X = —(AX)

et enfin il n’y a pas de “diviseur de
zéro", c’est a dire que

AM=0=(A=00ux=0)

CORPS FINIS ET ESPACES VECTORIELS 105

ot les coefficients A; sont des scalaires. On peut montrer que I’en-
semble des vecteurs i engendrés par toutes les combinaisons li-
néaires de m vecteurs v; forme un sous-espace vectoriel. On appelle

ce sous-espace vectoriel 'espace engendré par les ;. Q. 98. La suite formée d’un seul
vecteur 7 est-elle linéairement indépen-

Les vecteurs @; sont linéairement indépendants si et seulement si dante?
ante ¢

Yl AT = 0 entraine que tous les coefficients A; sont nuls. Dans ce
cas, une représentation telle que (12.2) est unique : il n’y a qu’une
seule suite de coefficients (A;) qui permette d’écrire le vecteur i
sous cette forme.

La suite de vecteurs @;, i = 1,...,m est une base de 'espace vecto-
riel V si les vecteurs sont linéairement indépendants et engendrent
I'espace vectoriel V. Cela est équivalent & dire que tout vecteur de V
s’écrit de maniére unique comme combinaison linéaire des ;. Les
coefficients d'une telle combinaison s’appellent les coordonnées du
vecteur relativement a cette base.

12.3 Propriétés de la Dimension

SiV = K" ousi V est un sous-espace vectoriel de K7, il possede
des bases finies, et toutes les bases ont le méme cardinal, appelé la

dimension de 1’espace vectoriel, notée dim(V). La dimension de K" est 1.
Si V est de dimension #, tout sous-

Le concept de dimension posseéde quelques propriétés intéres-
P p quelq prop espace vectoriel S a une dimension

santes qui permettent de jongler entre les propriétés d'indépen- k< metsik=mn,alorsS = V. Le
dance linéaire et de génération. Dans un espace vectoriel V de sous-espace vectoriel S = {6} est de
dimension n: dimension k = 0.

1. Si une suite de n = dim(V) vecteurs est linéairement indépen-
dante, elle engendre V (donc c’est une base de V);

2. si une suite de n = dim()) vecteurs engendre V, elle est linéai-
rement indépendante (donc c’est une base de V).

3. Une suite de m > n vecteurs de V est nécessairement linéaire-
ment dépendante, et une suite de m < n vecteurs ne peut pas
engendrer V.

4. Si S et &’ sont des sous-espaces vectoriels de V, etsi S C S’
alors dim(S) < dim(S8’).

5. Si S et S’ sont des sous-espaces vectoriels de V,si S C S’ et
dim(S) = dim(S’) alors S = §'.

Exemple 12.7 Dans V = 5, la suite de vecteurs ((1,0,0), (0,1,0), (0,0,1))
est linéairement indépendante, car toute combinaison linéaire est de la
forme

(AM+A2:04+A3-0, A1-04+A34+A3-0, A1-0+Ay-04+A3) = ()\1,/\2,)\3)

et les composantes ne peuvent étre nulles que si A; = Ay = Az = 0.
Nous pouvons voir que ces trois vecteurs engendrent 5 car n'importe
quel vecteur il = (uq, up, uz) peut étre écrit comme leur combinaison
linéaire en choisissant Ay = uq, Ay = up et A3 = ug. Cette suite de
vecteurs est donc une base de F3, ce qui signifie que R3 est de dimension

3.

106 SCIENCES DE L'INFORMATION

Nous pouvons facilement voir que le rajout d'un quatrieme vecteur a
cette suite la rendrait linéairement dépendante, car ce quatriéme vecteur
peut toujours étre écrit comme une combinaison linéaire des trois premiers.
Par exemple,

(3,2,0) =3-(1,0,0)+2-(0,1,0).

Le sous-espace S de I'Exemple 12.6 est engendré par X = (1,3,6) car
tout vecteur de S peut s’écrire (u,3u,6u) = ut avec u € Fj. la suite
constituée du vecteur U tout seul est une suite linéairement indépendante

car 7 # 0. Donc dim(S) = 1 (on dit que c’est une droite vectorielle).
Q. 99. Quel est le cardinal de I'espace
vectoriel S de 'Exemple 12.6?
Théoreme 12.2 Si V est un espace vectoriel de dimension n sur un corps

fini KC, alors V est fini et card(V) = [card(K)]".

©Preuve : Soit Uy, ..., U, une base de V. Tout élément ¥ de V s’écrit
de maniere unique ¥ = A7 + ... + A, 7, donc I'application

Kr—=v
(/\1, ey)\n) — A0 + ...+ ATy

est une bijection. Par le principe des boitiers : card(V) = card(K") =
[card (K)]". ©lul

12.4 Equations Linéaire et Rang d’une Matrice

Dans V = K", nous appelons équation linéaire une équation de la
forme
ax1+...+apx, =0 (12.3)

ot I'inconnue est ¥ = (x1,..., x,). Les scalaires a1, ..., a, sont les
coefficients de 1'équation, et le vecteur @ = (ay, ..., a,) est le vecteur
de coefficients de 1’équation. Nous donnons sans démonstration le
résultat suivant :

Théoreme 12.3 (Equations d’un Sous-Espace Vectoriel) L’ensemble
S des solutions dans V = K" de m équations linéaires est un sous-espace
vectoriel. Soit r la dimension de I'espace vectoriel engendré par les vecteurs
de coefficients. Alors la dimension de S est n —r.

En particulier, si les vecteurs de coefficients sont linéairement indépen-

dants, la dimension de S est n — m. Le Théoréme 12.3 est bien connu en
géométrie classique : une droite (k = 1)
. . .) . L. du plan R? est défini par2—-1=1
dim(S) = k. Il existe une suite de (n — k) équations linéaires dont équation. Une droite de l'espace R®

I'ensemble des solutions est S, et dont les vecteurs de coefficients sont est défini par 3 —1 = 2 équations. Un
plan (k = 1) de I'espace est défini par
3 —2 =1 équation.

Réciproquement, soit S un sous-espace vectoriel de V = K", avec

linéairement indépendants.

Le rang d’une matrice rectangulaire A a coefficients dans un corps
commutatif est par définition la dimension du sous-espace vectoriel
engendré par les lignes de A. Le nombre r du théoreme précédent
est donc le rang de la matrice obtenue en écrivant les coefficients
des équations. Nous rappelons les résultats suivants d’algebre
linéaire. Pour une matrice rectangulaire A a coefficients dans un
corps commutatif :

CORPS FINIS ET ESPACES VECTORIELS 107

1. Le rang de A est égal a la dimension du sous-espace vectoriel
engendré par les lignes de A ; il est aussi égal a la dimension du
sous-espace vectoriel engendré par les colonnes de A.

2. Lerang de A est le maximum des rangs des matrices carrées
extraites de A.

3. Le rang d’une matrice carrée triangulaire n X n dont tous les
termes diagonaux sont non nuls est 7.

4. Le rang r d'une matrice m x nesttel quer < metr < n.Si
r = m ou r = n la matrice est dite de rang maximal.

Le rang peut étre calculé par exemple en appliquant la méthode du
pivot de Gauss.

Exemple 12.8 Le sous-espace S de I’Exemple 12.6 est de dimension 1
dans V = TF3, donc nous pouvons trouver un systeme de 3 —1 = 2
équations linéaires dont l'ensemble des solutions est S. Trouvons de telles
équations. Par définition de S, un vecteur (x1,x2,x3) est élément de S si
et seulement si il existe u € Fy tel que

X1 =1Uu
Xy =3u (12.4)
X3 = 6u

Eliminons le parametre u : d'une part, si Eq.(12.4) est satisfaite alors :

Xy = 3x1
X3 = 6x1

Réciproquement, si Eq.(12.5) est satisfaite, posons u = x1 et Eq.(12.4) est
satisfaite. Donc Eq.(12.5) est satisfaite si et seulement si (x1,x2,x3) € S,
en d’autres termes, S est I'ensemble des solutions du systéme d’équa-

tions (12.5), que nous pouvons écrire aussi (car les calculs sont dans Fy) :

4x14+x =0
x1+x3=0

La matrice des coefficients du systéme est
e 4 10
1 01
Puisque la dimension de S est 2, le rang de A doit étre 2, ce que nous

. i, . 10
pouvons facilement vérifier en observant que la sous-matrice 01)

est de rang 2 (car triangulaire de termes diagonaux non nuls).

Exemple 12.9 Le sous-espace S’ de I'Exemple 12.6 est défini par une
équation (Eq.(12.1)), dont le vecteur de coefficients est @ = (1,4,3).
Ce vecteur est non nul donc (Question 98) la suite constituée de @ est
linéairement indépendante, donc la dimension de S est k = 2.

Nous allons maintenant trouver une base de S'. Nous savons que S’
est de dimension 2, donc il suffit de trouver 2 vecteurs qui I'engendrent.

(12.5)

(12.6)

Une matrice extraite de A est obtenue
en supprimant certaines lignes et
certaines colonnes. Par exemple dans

F7 avec
4 1 0
Ai(l 0 1)

la matrice

, (40
7=(17)

est une matrice extraite, obtenue en
supprimant la deuxiéme colonne. B est
de rang 2 (item 3), donc A est de rang
> 2 (item 2). Or A est de rang < 2
(item 4). Donc le rang de A est 2. A est
de rang maximal.

Le systeme d’équations (12.4) est ap-
pelé systeme d’équations paramétriques
de S.

Q. 100. Combien y a-t'il de solutions a
’équation x1 + [4]7x2 + [3]7x3 = [0]7,
ot I'inconnue est la suite (x1, xp, x3)
d’éléments de Z/77.?

108 SCIENCES DE L'INFORMATION

Nous en obtenons 2 en fixant d'abord xo = 1,x3 = 0 puis x = 0,x3 = 1.
Nous obtenons ainsi par exemple :

Montrons qu’ils engendrent S'. La matrice dont ces vecteurs sont les

B:310
4 0 1

. 10 ,
Elle est de rang 2 car la sous-matrice 0 1 est de rang 2 (car tri-

lignes est

angulaire de termes diagonaux non nuls). Donc la dimension de I'espace
vectoriel engendré par les lignes de B, c’est-a-dire par d et b, est 2. Cet es-
pace vectoriel est inclus dans S’ (car @ et b sont dans S'), donc il est égal
S’ (car il est de méme dimension que S’. Donc @ et b forment une base de
S

13
Codes Linéaires

Nous pouvons maintenant introduire les codes correcteurs ou
détecteurs linéaires, qui sont les codes utilisés dans les systemes
informatiques.

13.1 Code Linéaire

Définition 13.1 Soit C un code en bloc de longueur n. Nous disons que
C est un code linéaire si

1. L’alphabet du code est un corps fini KC.
2. Le code est un sous-espace vectoriel de K".

Puisqu'un code linéaire est un sous-espace vectoriel, il a une di-
mension, que nous noterons souvent k. Le nombre de mots de code
est card(KC)* (Théoreme 12.2), donc le rendement d’un code linéaire
de dimension k est %

Exemple 13.1 (Petit Code de la Figure 11.1 en page 91) L’alphabet
est A = K = TF, qui est un corps. Le code comporte huit mots de code,
donnés dans la colonne de droite de la Figure 11.1. Soient Ty = 0,7, =
(0,0,1,1,1,0,0),...,37 = (1,0,1,0,0,1,1) les huit mots de code. Nous
avons

Uy = U1+70
Us U1 + U3
Ug Uy + U3

11 s’en suit que le code C est I'ensemble de toutes les combinaisons linéaires
de et T1, U, et Tz (en effet, une telle combinaison est de la forme A1 +
ATy + A3Ts avec Aj = 0 ou 1). Donc C est un sous-espace vectoriel,
engendré par (U1,Tp,U3). Donc C est un code linéaire, de dimension
k=3

La premiere simplification importante qu’apporte un code li-

néaire est que sa distance minimale peut étre calculée d'une fagon
plus efficace.

Théoréme et Définition 13.2 Si K est un corps fini, le poids de Ham-
ming de X € K" est le nombre de composantes non nulles, c’est i dire aussi

w(%) ¥ d4(0, 7).

Pour un code linéaire, la borne
de Singleton prend donc la forme
dmm(c) <n—k+1.

Selon le contexte, nous notons un élé-
ment de IF} soit sous la forme 0011100,
soit sous la forme (0,0,1,1,1,0,0). Les
deux notations sont synonymes.

Q. 101. Quelle est la dimension de C?
Q. 102. Le code obtenu en rajoutant

a une suite de k chiffres décimaux

les deux chiffres de controle de la
procédure MOD g7-10 (Exemple 7.2,
page 63) est-il liéaire ?

110 SCIENCES DE L'INFORMATION

La distance minimale d'un code linéaire C est égale a

dmin(C) = min_w(T) (13.1)
XeC;x#0

En d’autres termes, la distance minimale est le plus petit poids de
Hamming d’un mot de code non nul.

. 3 * :
Preuve : Soit d* = ming ..

théoreme ; d* est la distance de 0 a un certain mot de code (un de

40 w(X) la valeur donnée dans le

ceux qui atteignent le minimum dans la formule (13.1)). Comme 0
est un mot de code, dmin (C) < d*.

Réciproquement, soient X* et i/* deux mots de code qui at-
teignent le minimum dans la définition de dpin (C), c’est a dire
dmin(C) = d(X*,y*). Comme le code est linéaire, —j* = (—1) - i*
est aussi un mot de code, et donc ¥* — i/* est aussi un mot de code.
Or d(x*,y*) = w(y* — x*), donc dpmin(C) > d*. Donc finalement
d* = dmin (C). O

Exemple 13.2 (Petit Code de la Figure 11.1) En inspectant les 7
mots de code non nuls de la colonne de droite de la Figure 11.1, nous
voyons que les poids de Hamming sont 3,5,4,4,3,5 et 4, donc la distance
minimale du code est 3.

Voici deux autres exemples de codes parfois utilisés en pratique.

Exemple 13.3 Code de parité (n,n —1). L'alphabet est Fy, les messages
sont des suites de n — 1 bits. Les mots de code sont obtenus en ajoutant Nous appelons ici “bit" un élément de
aux messages un seul bit de contrile, qui est tel que le nombre de 1 dans .
le mot de code soit pair. Par exemple, ¥ = (1,0,1,1,0,0,1) devient
7 = (1,0,1,1,0,0,1,0). Les mots de codes sont donc des suites de bits
(Y1, -y Yn) tels que

Yyi+..+tyn =0 (13.2)

(ot l'addition est dans IFy, c’est a dire c’est I'opération xor). Le code est

donc un sous-espace vectoriel de IF, c’est le sous-espace défini par I'équa-

tion (13.2). 1l est donc de dimension k = n — 1. Q. 103. Que donne la borne de Single-
Sa distance minimale vaut 2, donc il peut détecter (mais pas corriger) ton pour ce code?

les erreurs portant sur un bit. (En fait, ce code détecte tout nombre impair

d’erreurs mais ne détecte aucune erreur portant sur un nombre pair de

bits.)

Exemple 13.4 Code a répétition (n,1). Ici, par contre, il n'y a qu’un
seul bit d'information et n — 1 bits de contrble qui sont obtenus par répé-
tition du bit d’information. Les mots de codes sont donc des suites de bits
(Y1, -y Yn) tels que

2=4
(13.3)
Yn=MW1mN

C’est donc un code linéaire, de dimension k = 1.

CODES LINEAIRES 111

1l n’y a en fait que deux mots de code, 0 et (1,1,...,1). La Figure 11.2
montre les codes a répétition pour n =2 et n = 3.

La distance de ce code vaut donc dmin = n, ce qui permet de détecter Q. 104. Que donne la borne de Single-
toute erreur portant sur n — 1 bits ou moins, et de corriger erreur portant ton pour ce code?
sur moins de (n — 1) /2 bits. La capacité correctrice/détectrice de ce code

est trés élevée, mais son rendement, %, est tres faible.

13.2 Matrice Génératrice d'un Code Linéaire

Comme un code linéaire est un sous-espace vectoriel, un mot de
code X € C peut étre écrit d"'une maniére unique comme combinai-
son linéaire des vecteurs d'une base de C. Nous allons écrire cela en
termes matriciels.

13.2.1 Matrice Génératrice et Encodage

Définition 13.3 Soit C un code linéaire sur le corps K, de longueur

n et dimension k. Soit (U1, ..., Uy) une base de C. La matrice obtenue en
écrivant a la i—iéme ligne le vecteur ; est appelée une matrice génératrice
du code.

Exemple 13.5 (Petit Code de la Figure 11.1) Nous avons vu dans
I"Exemple 13.1 que les trois premiers vecteurs non nuls v1 = (0,0,1,1,1,0,0),
v, =1(0,1,1,1,0,1,1) et %3 = (1,1,1,0,1,0,0) constituent une base du

code. Donc une matrice génératrice du code est

Les noms des vecteurs 7 etc écrits a

0011100 U1 droite de la matrice sont placés la dans
G= 01 11011 Uo (13.4) un souci d'illustration; ils ne font pas
1110100 75 partie de la matrice.

Notons que nous pourrions aussi bien prendre comme base (U3, T, U1), ce
qui donne une autre matrice génératrice :

1110100 U3
G=10111011 ¥, (13.5)
0011100 ¥
qui differe de G par une permutation des lignes. 1l est facile de voir que Q. 105. Prouvez que (2,2, &), avec

€1 =03+, 6 =0+ eté =7y,

(U3 + Up, Tp + U1, T1) constitue aussi une base de C. Une troisieme matrice i
constitue une base de C.

génératrice du code C est donc

1 00 1 111 U3 + s
G' = 01 00111 Uy + 701 (13.6) Ici le corps est IF; et les additions de
0 01 1.1 00 51 vecteurs se font donc modulo 2.

Puisqu’un code linéaire de dimension k posséde card(K)* mots

de code, il peut étre utilisé pour encoder des suites de k symboles
de K. Chaque choix d"une matrice génératrice correspond a une
méthode d’encodage, définie comme suit. Considérons la suite

& =(0,.,0,1,0,...,0) (oi1 le vecteur est de longueur k et le symbole

1 est dans la i—ieéme position). Cette suite est souvent appelée la

112 SCIENCES DE L'INFORMATION

base canonique de K¥. La méthode d’encodage encode &' par la
iieme ligne de la matrice génératrice. Ensuite, si il = (uy, ..., uy) est
un mot quelconque & encoder, le mot de code correspondant ¥ est
obtenu par la formule

X=iuG (13.7)

Exemple 13.6 (Encodage, Petit Code de la Figure 11.1) Supposons
que nous utilisions la matrice G de I’'Eq.(13.4) et calculons les encodages
de quelques message. Pour le message 100, nous prenons ii = (1,0,0) et
obtenons le mot de code

00111
=(1,00 011 1 0 =(0,0,1,1,1,0,0)
11101

o = O
o = O

correspondant au message 0011100. Nous avons obtenu la premiére

ligne de la matrice, ce qui est normal puisque c’est ainsi que nous avons
construit notre méthode d’encodage. Si le message a encoder est 101, nous
mettons il = (1,0,1) et

00111
=100 1110 =(1,1,0,1,0,0,0)
11101

O = O
O = O

donc le mot de code est 1101000. En faisant cela pour les 6 autres mes-
sages possibles, nous obtenons la méme table d’encodage que dans la Fi-
gure 11.1.

Par contre, si nous utilisons la matrice G' de I'Eq.(13.5), nous obtenons
une table d’encodage différente. Par exemple, le mot 100 est encodé par
1110100 au lieu de 0011100 précédemment.

La correction d’effacement peut se faire a I’aide de la matrice gé-
nératrice, en résolvant un systéme d’équations linéaires, comme
illustré sur 1’exemple suivant.

Exemple 13.7 (Correction d’Effacement, Petit Code de la Figure 11.1)
Supposons que nous ayons re¢u le mot ij = (0,?,1,1,2,0,0). La distance
minimale du code est 3, donc nous savons que nous pouvons corriger cet
effacement. Pour cela, nous écrivons I'équation iiG = ij en supprimant les
lignes correspondant aux effacements. Nous obtenons le systeme

Uz = 0

Uy +up +us 1
ui +up 1

Us 0

Uy = 0

C’est un systeme a 5 équations et 3 inconnues ; il peut ne pas admettre

de solution (cela arrive quand il y a eu a la fois des effacements et des er-
reurs). Ici il y a une solution unique : (uq,uz,uz) = (1,0,0). Le décodeur
corrige l'effacement en déclarant que le mot transmis est 100.

Q. 106. Existe-t-il un mot a encoder qui
soit toujours encodé de la méme fagon,
quelle que soit la matrice génératrice
choisie ?

13.2.2 x Forme Systématique

Le sous-espace vectoriel engendré par les lignes de G reste in-
changé si I'on permute ces lignes ou si 'on ajoute une ligne a une
autre. Aussi, nous pouvons appliquer les opérations élémentaires
sur les lignes de G dans le but de mettre G sous une forme plus
simple a utiliser, par exemple comme la matrice G’ de I'Eq.(13.6).

Définition 13.4 Une matrice G a k lignes et n > k colonnes est dite sous

forme systématique si

G=[I P (13.8)

oit I est la matrice identité d’ordre k (une matrice dont les éléments de
la diagonale sont égaux a 1 et tous les autres a 0) et P est une matrice de
dimensions k x (n — k).

La matrice G” de I'Eq.(13.6) est sous forme systématique. Cette
forme présente des avantages pratiques. En effet, le mot de code ¥
correspondant au message i est alors de la forme

X = (ul, U, eeey Uy 11 ouey T’n,k)

c’est a dire que les symboles porteurs d’information u1, ...,y sont
inchangés. L'encodage consiste donc a ajouter les symboles restant
1, ..., 'n—k (appelés symboles de contrdle), calculés a partir de la
matrice P.

Exemple 13.8 (Forme Systématique, Petit Code de la Figure 11.1)
Supposons que nous utilisions la matrice génératrice G” de I'Eq.(13.6).
L’encodage consiste a ajouter au message ii = (uy, up, uz) quatre bits de
controle controle donnés par

o = up-+us
rp = uip+up+ug
r3 = uUp-+up
ra = Uyp+up

En général, la théorie de I'élimination de Gauss montre qu’il est
possible de mettre toute matrice G de rank k sous forme systéma-
tique par des opérations élémentaires consistant soit & permuter
des lignes, soit des colonnes, soit a ajouter a une ligne un multiple
d’une autre ligne, soit a multiplier une ligne par un élément non
nul du corps.

Notons que toutes ces opérations sauf les permutations de co-
lonnes ne changent pas le sous-espace vectoriel engendré par les
lignes de la matrice, donc ne changent pas le code. Par contre, les
permutations de colonnes changent le code (le changement cor-
respond a permuter les composantes du mot de code). Mais le
code reste essentiellement le méme, seul 1’ordre des symboles est
éventuellement modifié ; en particulier le rendement et la distance
minimale restent les mémes. En résumé, quitte a modifier 1’ordre
des symboles du code, tout code linéaire peut étre mis sous forme
systématique.

CODES LINEAIRES 113

Ici le corps est [F; et les additions sont
donc modulo 2.

La matrice génératrice d'un code li-
néaire de dimension k est forcément de
rang k, puisque le rang est la dimen-
sion de I'espace vectoriel engendré par
les colonnes.

Un code linéaire systématique présente
I'avantage d’étre facile a réaliser

a l'aide de circuits logiques et de
registres a décalages, car il ne faut
stocker que la matrice P, qui est dans
certains cas beaucoup plus petite que
G.

114 SCIENCES DE L'INFORMATION

13.3 Matrice de Controle et Syndrome

13.3.1 Matrice de Controle

Puisque un code linéaire est un sous-espace vectoriel de K" de
dimension k, il est possible, d’apres le Théoréme 12.3 de définir les
mots de codes par n — k équations linéaires :

Définition 13.5 Soit C un code linéaire sur le corps KC, de longueur n
et dimension k. Une matrice de contréle du code est une matrice a n — k
lignes et n colonnes, dont les lignes sont les vecteurs de coefficients de
n — k équations linéaires qui définissent le sous-espace vectoriel C dans
K". Ces n — k lignes sont nécessairement indépendantes.

En écriture matricielle, H est une matrice de contréle du code si I'équa-
tion

HT =0 (13.9)

définit les mots de code X.

Pour trouver une matrice de contrdle, il faut mettre le sous-espace
vectoriel en équations.

Exemple 13.9 (Matrice de Contrdle, Petit Code de la Figure 11.1)
Supposons que nous utilisions la matrice G de I'Eq.(13.4). Il nous fait
trouver 4 équations du sous-espace vectoriel C. Soit ajx1 + axxy +

. +ayxy = 0 une telle équation. Nous voulons trouver les coefficients
ai, ..., ay. Pour cela nous exprimons que I'équation doit étre vérifiée par les
trois lignes de G, ce qui donne les conditions :

az+ag+as = 0
ap+az+ag+ag+ay; =

ay+ax+az+as =

Rappelons nous que nous sommes dans I, donc

a3 = a4 +as
a; = a3+ag+ag+ay
ap = dap-+asz—+as

et nous avons un systéme sous forme triangulaire, qui permet de calculer
ay,ay et az a partir de ay, as, ag, ay. Nous faisons d’abord (a4, as, ag, ay) =

(1,0,0,0) et obtenons un premier vecteur de coefficients @ = (1,0,1,1,0,0,0).

Ensuite nous faisons : (ay,as,a¢,a7) = (0,1,0,0), puis (ay, as, ag, ay) =
(0,0,1,0), et finalement (a4, as,as,a7) = (0,0,0,1,). Nous obtenons
ainsi quatre vecteurs de coefficients, qui sont nécessairement linéairement
indépendants. Finalement, nous obtenons la matrice

(13.10)

uy

|
O S S =
[)
S O O
O O = O
O = O O
_= O O O

1
1
0
0

La notation HT signifie la transposée
de H. C’est la matrice obtenue en
permutant lignes et colonnes.

CODES LINEAIRES 115

En d’autres termes, X est un mot de code si et seulement si

X1+x3+x4 =
X1 +X2+Xx3+x5 =

X1 +xX2+x5 =

o O O O

X1 +Xx2+x7 =

Ces équations sont appelées des équations de contréle de parité.

13.3.2 Syndrome

La matrice de contrdle permet de détecter simplement des er-
reurs. Soit ¥ le mot de code transmis et i le mot de code recu. Le
syndrome est par définition

§=yH'

S’il n’y a pas d’erreur, le syndrome est égal a 0. Une méthode
simple de détection d’erreur consiste donc a déclarer une erreur
si le syndrome est non nul. Quelles sont les erreurs non détectées
par cette méthode ?

Soit & = if — X l'erreur. Notons que ¥ est un mot de code donc
¢ H' = ij HT. L'erreur ¢ est non détectée par cette méthode si
¢ HT = 0, c’est a dire si & € C. Les erreurs non détectées sont donc
celles qui correspondent a 1’addition d’un mot de code lors de la
transmission.

Comme tous les mots de code non nuls ont un poids de Ham-
ming au moins égal & dmin(C), toutes les erreurs de poids inférieur

a dmin(C) sont détectées, comme nous nous y attendons. Q. 107. Est-il possible que cette mé-
thode de détection d’erreur déclare
Exemple 13.10 (Petit Code de la Figure 11.1) Supposons que nous une erreur alors quil n’y en a pas?

recevions le mot j = (1,0,1,0,1,1,1). En appliquant par exemple la
matrice de contrdle H de I’'Eq.(13.10), nous obtenons le syndrome § =
(1,1,0,0), qui est non nul donc il y a une erreur.

La correction d’erreur est plus compliquée, sauf exception. Une
méthode générale, basée sur le Théoreme 11.4, consiste a chercher
une erreur € de poids inférieur a dmi%(c), telle que i — € soit un mot
de code, c’est a dire telle que & HT = ij H'. Le Théoréme 11.4
garantit que si un tel vecteur d’erreur existe, il est unique. Quand

dmin(C) est trés petit, une recherche exhaustive est possible.

Exemple 13.11 (Correction d’erreur pour le code a répétition (1,1))
Rappelons que ce code répete le méme bit n fois et que sa distance mini-
male est dmin(C) = n. Supposons par exemple que n = 6 et que le mot de
code recu est j = (1,0,1,1,0,1) ; un vecteur d’erreur possible est obtenu
en supposant que les symboles 0, qui sont en minorité sont erronés. Cela
donne € = (0,1,0,0,1,0), qui est de poids 2 < dm%(c) = 2.5. Donc c’est
l'unique vecteur d’erreur possible de poids inférieur a 2.5 et c’est celui

que calcule la méthode de correction d’erreur proposée plus haut. Le mot

de code original obtenu est X = (1,1,1,1,1,1) et le bit encodé est donc
u=1

116 SCIENCES DE L'INFORMATION

De maniére générale : pour corriger les erreurs dans un code a répéti-
tion il suffit de déterminer le bit qui se trouve en majorité. Cette méthode
de décodage corrige toutes les erreurs de poids < d'“i#(c). Elle ne permet
pas de corriger les erreurs de poids supérieur. Par exemple si le mot recu
estij = (1,0,0,0,0,0) et que le vecteur d’erreur est (0,1,1,1,1,1), ce
décodeur déclare que le bit encodé est u = 0, ce qui est faux, mais il est
impossible de le savoir.

11 peut méme arriver que ce décodeur ne fournisse pas de résultat,

quand il n'y a pas de majorité, ce qui arrive quand n est pair et qu’il y a

exactement % erreurs, par exemple si le mot de code recu est (1,0,1,0,1,0).

13.3.3 * Matrice de Controle et Forme Systématique

Le calcul d'une matrice de controle est tres facile si nous dispo-
sons d’une matrice génératrice sous forme systématique.

Théoréme 13.1 Si la matrice génératrice G est sous la forme systéma-
tiqgue G = [Iy P] alors une matrice de contrile est

H=[-PT I, (13.11)

©®Preuve : 1l nous fait montrer que 1’ensemble S des solutions de
¥ HT = 0, 0u ¥ € K", est le code C. Pour cela nous montrons que
(1) S contient C et (2) S et C ont méme dimension. D’apres la note
de marge de la page 105, cela prouvera en effet que S = C.

(1) Soit ¥ un mot de code quelconque; il peut se mettre sous la
forme ¥ = ilG pour un certain i € KF. Notons que

GH' = [I, P] L.
e

_P]:—P+P:Q

Donc ¥HT = iiGHT = ii0 = 0. Donc X € S.

(2) La dimension de C est k (par définition de k). Les lignes de la
matrice H sont linéairement indépendantes a cause du bloc I, .
D’apres le Théoreme 12.3, la dimension de S est donc n — (n — k) =
k. ©lm

Exemple 13.12 (Petit Code de la Figure 11.1) Supposons que nous
utilisions la matrice G' de I'Eq.(13.6). Elle est sous forme systématique
avec

11
P=1]101
11

O = =
O = =

La matrice de controle correspondante est

1011000
1110100
1100010
11000 01

Notons que c’est la méme matrice
que celle que nous avons trouvé en
Eq.(13.10) ; ceci est par hasard. En
effet, en général, une matrice de
contrdle n’est pas unique et différentes
méthodes de calcul donnent des
matrices de controle différentes. Par
contre, bien sir, si on obtient un
syndrome nul avec une matrice de
controle, il sera nul avec toute autre
matrice de controle.

14
Codes de Reed-Solomon

A T'exception du code de répétition dont le rendement est trés
faible, les meilleurs codes que nous ayons vu dans ce module ont
une distance minimale de 3. C’est assez bon pour montrer l'idée
principale du codage mais n’est pas suffisant dans beaucoup d’ap-
plications réelles. Sur un disque, par exemple, nous pouvons faire
un trou de Imm de diametre et le code utilisé est encore assez puis-
sant pour retrouver l'information. Comme un bit occupe a peu pres
10~® metre sur le disque, un tel trou couvre des milliers de bits sur
chaque piste. Comment pouvons nous construire des codes ayant
une grande distance minimale ?

Le probleme est difficile pour les codes binaires, c’est-a-dire,
pour les codes sur [F,. Mais si nous considérons un alphabet plus
grand, une solution optimale a été proposée dans les années 1950
par Irvine Reed et Gus Solomon. Ces codes sont appelés les codes
de Reed-Solomon en leur honneur et jusqu’a aujourd’hui ce sont
les codes les plus utilisés. Chaque seconde, il y a des centaines de
millions des codes Reed-Solomon en fonctionnement, et ils assurent
que la plupart de nos communications soient essentiellement sans
erreurs.

Meéme si les codes Reed-Solomon sont puissants, leur définition
est simple; elle est basée sur des évaluations de polynémes.

14.1 Définition

Rappelons d’abord ce qu’est un polynéme, puis nous allons
introduire une notation tres utile pour la suite.

Définition 14.1 (Polynémes) Soit K un corps fini. Un polynéme P i
coefficients dans K est une application K — K de la forme

X—P(X)=a1+aX+..+a,1 X"

ot a1, ..., Ay 11 sont des éléments de IC.
Le degré du polynome est la plus grande puissance affectée d’'un coeffi-
cient non nul. Le polyndme 0 est de degré indéfini.

Pour toute suite i = (uq,...,u) € Kk de k éléments de K nous
appelons Pj; le polyndme dont les coefficients sont uy, ..., uy, par

ordre de puissances croissantes. En d’autre termes Par exemple, avec K = Fs, Poy3(X) =
2+4X + 3X2 et P0000432(X) = 4X4 +
3X° 4 2X6.

118 SCIENCES DE L'INFORMATION

Pz(X) def Uy +u X + M3X2 + ...+ leinl (14.1)

et donc P; est un polyndéme de degré k — 1. Nous pouvons mainte-
nant définir les codes de Reed-Solomon.

Définition 14.2 (Reed-Solomon) Soient n et k des entiers avec 1 <
k < n. Un code de Reed Solomon de parametres (n, k) est défini comme
suit :

1. L'alphabet est un corps fini K de cardinal > n.

2. Choisissons n éléments distincts de IC, a1, a5...,a,. Une suite de k
symboles ii = (uy,...,u;) € K est encodée en la suite de n symboles
X = (x1,..,xn) € K" définie par

i Pi(X) %

; 00 0 00000
x; = Py(a; ouri=1.n 14.2

i = Paai) p (14.2) 0 x 01234
N 02 2X 02413
Le code de Reed-Solomon C est I'ensemble de tous les encodages X pos- 03 3X 03142
sibles, pour tous les i € KCk. Cest donc un code en bloc de longueur 04 4X 04321
n 10 1 11111
’ 11 1+X 12340
. 12 142X 13024
Exemple 14.1 (Code de Reed-Solomon sur F5) Construisons un code 13 143X 14203
de Reed-Solomon sur Fs. Nous pouvons choisir n’importe quelle longueur 14 1+4X 10432
nentre 1 et 5 = card(Fs). Choisissons le maximum possible, n = 5 20 2 22022
= 5): P A= 21 24X 23401
11 nous faut aussi choisir 5 éléments de 5, mais ici nous n’avons pas le 22 242X 24130
choix, il faut les prendre tous : a1 = 0,a; = 1,a3 = 2,a4 = 3 et a5 = 4. 23 2+3X 20314
oix, il faut les prendre tous : @ = 0,4, = 1,a3 ’4ﬂ36 > 24 244X 21043
Calculons les encodages. Par exemple, si le message est ii = (0,0), le 30 3 33333
polynome a évaluer est Py = 0 donc Pg(ay) = ... = Ps(as) = 0, et le mot 31 3+X 34012
d d d 2= (0.0.0.00 32 342X 30241
e code correspondant est X = (0,0,0,0,0). 33 343X 31420
Siil = (3,2), alors P3(X) = P3p(X) = 3+ 2X et donc 34 3+4X 32104
40 4 44444
P;(ay) = P3(0) =3 41 44X 40123
42 442X 41302
Py(az) = Py(1) = 0 43 443X 42031
Py(az) = Pz(2) =2 44 4+4X 43210

Pq(%) - P;(3) =4 FIGURE 14.1: Table d’encodage il +—

Py(as) = Pz(4) =1 ¥ d’un code de Reed-Solomon de

longueur n = 5 et de dimension k = 2.

donc X = (3,0,2,4,1). En faisant cela pour les 25 suites de k = 2
éléments de IF5 nous obtenons la table d’encodage de la Figure 14.1.

14.2 Propriétés

Nous allons maintenant voir que les codes de Reed-Solomon
jouissent de propriétés remarquables. Pour cela nous avons besoin
d’un résultat fondamental sur les polyndmes, qui dit quun poly-
noéme a un nombre de racines inférieur ou égal a son degré.

Théoréme 14.1 (Racines d’un Polyndéme) Soit ii € KX oit K est un
corps commutatif. Le polynome Py est de degré k — 1. S'il existe k éléments
tous distincts ay, ..., ar de K tels que Py(a;) = 0, alors if = 0.

©Preuve : Nous faisons la preuve quand K est un corps fini, ce
qui suffit a notre propos (mais le théoréeme est vrai méme si le

corps commutatif /C est infini). Soit ¢ I'application KX — k¥ qui a ¢ est en fait I'encodage d’un code de

Reed-Solomon de parametres (k, k).

CODES DE REED-SOLOMON 119

& € KK quelconque associe (Pg(a1), ..., P(ax)). L'hypothese est que
(i) = 0 et nous voulons montrer que i = 0.

Pour cela nous allons montrer que ¢ est injective. Par le principe
des tiroirs, comme les ensembles d’arrivée et de départ de i sont
finis et ont méme cardinal, il suffit de montrer que ¢ est surjective,
ce que nous faisons maintenant.

Soit (x1,..., x¢) € K quelconque. Cherchons un polynéme P
de degré < k — 1 tel que (P(a1) = x1,...,P(ax) = xi). Un tel
probléme est connu sous le nom d’“interpolation” : les valeurs
x; et les points d’évaluation a; sont connus et il faut trouver un
polyndéme qui donne ces valeurs. Sa solution est connue, il suffit
d’utiliser le polyndme d’interpolation de Lagrange. Soit Q;, i =
1, ...k, le polyndéme défini par

(X — al)(X - ai_l)(X - ai+1)...(X - [lk)
(a; —ay)...(a; — a;_1)(a; — aj1)-(a; — ag)

Qi(X) =

(14.3)

C’est un polyndme de degré < k — 1 (produit de k — 1 termes de Le degré ici est par rapport a la va-
degré 1) et il a la propriété que Q;(a;) = 1 et Q;(a;) = 0 pour i # j. riable X
Soit maintenant P le polynome défini par

P(X) = x1Q1(X) + ... + x,Qx(X)

de sorte que P est un polyndme de degré < k — 1 (comme somme
de k polynomes de degré -1) et P(a;) = x; pour i = 1...k. C’est donc
une solution a notre probleme d’interpolation.

Soit alors v1 = le coefficient de degré 0 de P, etc..., vy = le coef-
ficient de degré k — 1 de P, de sorte que P = Pz et donc ¢ (%) = X.
Nous avons donc montré que ¢ est surjective.

Donc ¢ est injective. Or ¢(0) = 0. Donc i et 0 ont la méme image
par ¢, donc ii = 0. ©lu|

14.2.1 Linéarité
Les codes de Reed-Solomon sont en fait des codes linéaires :

Théoreme 14.2 Un code de Reed Solomon de parametres (n, k) est un
code en bloc linéaire de taille n et de dimension k.

Preuve : (1) Montrons d’abord la linéarité. Soient ¥ et ¥’ deux mots
de codes. Donc il existe i, i’ tels que

Py(aj) = x;j

Py (aj) = x;

pour j = 1,..,n. Il est immédiat de voir que Py, 7 (X) = Pz(X) +
Py (X) donc Py (a;) = Pz(a;) + Py(a;), en d’autres termes

x]‘ + x} = Pﬁ+ﬁ/ (ﬂ])

donc le mot ¥ + X/, dont le terme générique est Xj+ x;-, est un mot
de code (correspondant a i + ii’). De la méme fagon, pour tout

120 SCIENCES DE L'INFORMATION

A € K, le mot AX est un mot de code (correspondant a Aif). Donc C
est un sous-espace vectoriel de K".

(2) I nous reste a montrer que dim(C) = k. Pour cela nous allons
trouver une base de C de cardinal k. Soit (¢), i = 1..k la base
canonique de K et ¥’ le mot de code correspondant a &. Montrons

ue (¥ ,1 = 1..k est une base de C. Tout message i peut s’écrire Rappelons que & = (0,..,0,1,0,...,0
q & p 192 q
ot le vecteur est de longueur k et le

- —k iy symbole 1 est dans la iiéme position.
U1 Xt + ... + ux*, donc (¥'), i = 1...k engendre de C. Le polynome correspondant a & est

il = u1@ + ... + u;é* et le mot de code correspondant est ¥ =

Montrons qu’elle est linéairement indépendante. Supposons X! done ¥ = ait.
qu’une combinaison linéaire soit nulle, c’est-a-dire u1x! + ... +
u ¥ = 0. Donc le polynéme P; vérifie Py(a;) = 0 pour tous j, c’est
a dire qu’il possede n racines distinctes. Comme n > k, P; posséde
k racines distinctes. D’apres le Théoréme 14.1, i = 0, ce qui montre

que (¥'), i = 1...k est linéairement indépendante. O

Exemple 14.2 (Code de la Figure 14.1) Une matrice génératrice de

ce code de Reed-Solomon sur FFs est obtenue en considérant les encodages
de la base canonique de F3. La premiere ligne est obtenue est obtenue en
prenant ii = (1,0), ce qui correspond au polyndome Pyg = 1; la deuxieme
ligne est obtenue est obtenue en prenant ii = (0,1), ce qui correspond au
polynéme Py = X. Donc

11 1 1 1 11111
G= = (14-4)
apg a1 ap as dag 01 2 3 4
Le mot de code correspondant au message il = (u1,uy) est

X = (ul, uz)G

UNE MATRICE DE CONTROLE peut facilement étre obtenue a 1’aide
des polyndmes d’interpolation de Lagrange. En effet, soit ¥ un mot
de code. Le message if peut étre obtenu comme la suite des coeffi-
cients du polyndme d’interpolation sur les k premieres valeurs :

Py(X) = x1Q1(X) + .. + % Qk(X)

ou Q; est défini en Eq.(14.3). Donc nécessairement, x; pour j > k est
la valeur de ce polynéme en a;, c’est a dire que

x1Q1(a;) + ... + x,Qx(aj) = xjpour j =k +1,..,n (14.5)

ce qui donne un systéme de n — k équations linéaires en X. Récipro-
quement, si un vecteur X satisfait ces n — k équations, il est néces-
sairement le mot de code correspondant au message ii. En d’autres
termes, ces équations définissent le code C et nous pouvons les
prendre pour obtenir une matrice de controle.

Exemple 14.3 (Code de la Figure 14.1) Nous allons obtenir une ma-
trice de controle en écrivant les équations (14.5). Les polynomes Q1 et Q;
sont

=Xl —4(x-1)

Q(X)=F=X

©
E
|

CODES DE REED-SOLOMON 121

et les équations (14.5) sont

x1Q1(2) +x20Q2(2) = x3
x1Q1(3) +x20Q2(3) = x4
x1Q1(4) +x20Q2(4) = x5

donc une matrice de controle est Q. 108. Comment pouvez vous vérifier
que H est bien une matrice de controle

- (2) —Q(2) 1 00 compatible avec la matrice génératrice
H = _Ql(s) _Q2(3) 010 de I'Eq.(14.4)?
—Qi1(4) —Qx(4) 0 0 1
1 3100
= 22010
31001

14.2.2 Optimalité

Théoréme 14.3 Un code de Reed Solomon de parametres (n, k) a pour
distance minimale dpi, = n — k + 1. En d’autres termes, il atteint la
borne de Singleton, et sa distance minimale est la plus grande possible
pour un code en bloc de longueur n et de dimension k.

©Preuve : (1) Montrons par 1'absurde que tout mot de code non
nul a un poids de Hamming > n — k. Soit donc un mot de code ¥
tel que w(¥) < n — k. Cela veut dire qu’au moins k des composantes
de X sont nulles. Soit if le message correspondant au mot de code ¥.
Si la jieme composante de ¥ est nulle, cela signifie que Pz (a;) = 0,

donc le polyndéme Pj; posséde au moins k racines. Ceci contredit le

Q. 109. Dans 'Exemple 11.3, nous
supposons avoir a disposition un code
(2) Dong, d’apres le Théoreme 13.2, dpin(C) > n — k donc dpin (C) > de longueur 7 et de dimension 3 et qui

n — k + 1. Par la borne de Singleton, dpin(C) <n—k+1,doncilya atteigne la borne de Singleton. Pouvez
PRI vous proposer un tel code?
égalité. ©0

Théoreme 14.1.

Exemple 14.4 (Correction d’Effacements) Avec le code de la Fi-

Qure 14.1, supposons que nous recevions le mot ij = (2?2?1). 1l y a trois
effacements. Comme 3 < dnin(C) — 1 = n — k = 3, nous savons que nous
pouvons reconstruire le mot transmis de facon unique. Soit X le mot trans-
mis et i le message. Nous savons que X = iiG. De plus, ¥ et ij coincident
dans les positions 3 et 5. Nous avons donc le systeme d’équations

Uy +2upy =2
U +4up; =1

que nous pouvons facilement résoudre dans Fs pour obtenir uy = 3,
uy = 2. Le message est donc 32. Nous pouvons aussi calculer le mot de
code complet. Nous obtenons X = iiG = 30241.

LE cHOIX DES ELEMENTS a; du corps K est en théorie sans im-
portance, car les propriétés que nous avons vues du code de Reed
Solomon en sont indépendantes.

En pratique, cependant, il existe des choix qui rendent les calculs
plus rapides. Le choix standard consiste a trouver tout d’abord un

122 SCIENCES DE L'INFORMATION

élément spécial g du corps K tel que tout élément non nul de K soit
une puissance de g (la période de g dans le groupe (K*,-) est donc
égale a card(K) — 1). Un tel élément existe toujours dans un corps
fini, et est appelé un générateur de K. Soit m = card(K) — 1. L'appli-
cation (Z/mZ,+) — (K*,-), [{]m — g* est alors un isomorphisme
de groupes, dont I’application inverse est appelé un logarithme
discret. Un logarithme discret transforme les multiplications et di-
visions dans le corps fini K en additions et soustractions modulo

m.

On choisit alors a; = ¢/~1, pour j = 1..n. Le terme générique de
la matrice génératrice est alors G;; = g=DU-1 1l existe des algo-
rithmes tres rapides, en particulier utilisant le logarithme discret,
pour le calcul de I'encodage et de la correction d’effacement avec de
telles matrices.

14.3 * Le Corps [Fpsg

Les codes de Reed-Solomon utilisent comme alphabet un corps
fini. Il serait trés pratique de pouvoir prendre comme alphabet
K = Z/2567Z, car alors il y a un symbole par octet, ce qui est la
quantité d’information fondamentale des systémes numériques.
Mais nous savons que Z/256Z n’est pas un corps car 256 n’est
pas un nombre premier. Heureusement, nous savons aussi qu’il
existe un corps [Fa56 & 256 éléments, car 256 est une puissance du
nombre premier 2. Dans cette section nous allons décrire comment
est construit ce corps.

Pour cela il nous faut définir la division des polyndmes a co-
efficients dans un corps fini, qui est trés semblable a la division
euclidienne des entiers. Soient a(X) et b(X) deux polyndmes a
coefficients dans un corps commutatif, et supposons que les coeffi-
cients de b(X) ne sont pas tous nuls. La division selon les puissances
décroissantes, aussi appelée division longue, est définie de maniere
semblable a celle des entiers. Nous pouvons trouver des polynomes
g(X) et r(X), uniques, appelés quotient et reste, tels que

a(X) = q(X)b(X) +r(X) avec degr(X) < degb(X)

Nous ne prouvons pas ce fait, mais remarquons seulement que
la condition importante est que les coefficients des polynomes
appartiennent a un corps commutatif, par exemple IF,. lllustrons
ceci sur un exemple.

Exemple 14.5 (Division) Effectuons la division de a(X) = X' + X° +
X8+ X7 + X0+ X* par b(X) = X8 + X* + X3 + X2 + 1. Ce sont des
polyndmes a coefficients dans Fp (donc — = +).

Par exemple, dans K = F5, g = 2 est
un générateur car ses puissances sont
{2,4,3,1}; la période de g est 4 donc
I'ensemble des puissances de g est
I'ensemble des 4 éléments non nuls de
IFs.

Q. 110. Le corps F5 possede-t-il un
autre générateur ?

Q. 111. Prouver que 'application
[kls — gFavecg = [2]5 est un
isomorphisme des groupes (I, -) et
(Z/4Z, +).

degr(X) est le degré du polynome
r(X).

X4 X0+ X8+ X7+ X0+ X4 | XB+ XA+ X3+ X241
X11+X7+X6+X5+X3 X3

X+ X8+ X+ X+ X3

X+ X84 X0+ x4+ X3 +X

XX+ XX+ X

X8+ X

X84 X +1

XX+ X3+ X241

+XA X3+ X2 X+ 1

XX+ X2+ X+1

Le quotient est q(X) = X3+ X + letleresteest r(X) = X* + X3 +
X?+X+1.

L’analogie avec les nombres entiers va plus loin. Nous disons que
b(X) divise a(X), ou encore que a(X) est multiple de b(X) si le
reste de a(X) dans la division par b(X) est nul; cela équivaut a dire
qu’il existe un polyndome g(X) tel que a(X) = b(X)q(X). Un poly-
nome est dit irréductible si les seuls polynémes qui le divisent sont
de degré 0 (c’est a dire les constantes) Nous pouvons maintenant
définir]F256 :

Définition 14.3 (Construction de Fys¢) Le corps Fosg est constitué des
256 polynomes binaires distincts de degré au plus 7 i coefficients dans Fy,
c’est-a-dire tous les polynomes {0,1,X, X +1,X%, X2 +1,X> + X, X> +
X+1, X+ X0+ X0+ X+ X3+ X2+ X + 1}

L’addition est I'addition des polynomes usuelle, ot les composantes
binaires sont additionnées dans le corps Fy.

Pour la multiplication, considérons d’abord un polynéme fixé f(X) =
X8 + X* + X3 + X% + 1, qui est irréductible. Le produit de deux poly-
nomes a(X) et b(X) est défini comme le reste dans la division par f(X)
du produit usuel de a(X) et b(X).

Cela signifie que pour multiplier deux polynémes a(X), b(X) €
[Fp56, nous faisons d’abord la multiplication usuelle des deux po-
lynémes . Ceci donne, disons, le polyndme &(X) qui peut avoir

un degré au plus égal a 14. Calculons le reste dans la division par
f(X), c’est-a-dire, écrivons &(X) comme ¢(X) = f(X)a(X) + ¢(X),
ot ¢(X) est un polynéme de degré 7 au maximum. Notons qu’il y a
une facon unique d’écrire ¢(X). Le produit dans FFys4 de a(X) et de
b(X) est alors, par définition, égal a c¢(X).

Exemple 14.6 Soit a(X) = X*+ X2+ 1, b(X) = X’ + X*. Alors,
a(X)+b(X) = X"+ X>+1

Notons que chaque fois que nous additionnons deux polyndmes de degré
7 au maximum, nous obtenons un polynéme de degré au plus 7, qui est
aussi un élément de Fosg.

La multiplication est un peu plus complexe. Notons a(X) - b(X) cette
multiplication, oit les deux polyndmes sont considérés comme les éléments

CODES DE REED-SOLOMON 123

Le concept de polyndme irréductible
est 'équivalent du concept de nombre
premier.

124 SCIENCES DE L'INFORMATION

du corps Fas6. Nous calculons d’abord le produit usuel des polynomes, que
nous notons dans ce contexte a(X) * b(X) :

a(X)xb(X) = (XA 4+ X2+ 1) (X7 + X)) = X+ X0+ X8+ X7+ X6 + x*

La partie droite n'est pas un élément du Fps¢ parce que son degré est 11.
Nous avons besoin de le “réduire”, c’est a dire calculer son reste dans la
division par f(X) :

XM 4 X%+ X84 X7+ X0+ X* =
(XB+X+ X+ X2+ D)X+ X+ + (X + X3+ X2+ X +1).

donc
XX+ x84+ X7+ X0+ X =X+ X3+ X2+ X +1 (mod f(X))

donc finalement le produit dans Fose de a(X) et b(X) est a(X) - b(X) =
X+ X34+ X2+ X +1

Pour montrer que notre définition donne bien un corps, le seul
point non évident est que tout polynome posséde un inverse. Cela
est vrai parce que le polynéme f(X) (le module) est irréductible.
Nous ne montrons pas ce fait, mais signalons que c’est I’analogue

du fait que Z/pZ est un corps si p est un nombre premier. Mentionnons aussi que l'algorithme
d’Euclide de la Section 8.4 s’étend

. o de maniere immédiate au cas des
POUR CALCULER EFFICACEMENT dans [Fps56, nous utilisons un élé- polynomes et peut étre utilisé pour

ment générateur, c’est & dire un élément g(X) € Fas4 tel que tous calculer I'inverse dans Fas.
les éléments non nuls de Fys4 soient une puissance de g(X). Nous

savons qu’un tel élément existe dans tout corps fini. De plus, il est

possible de s’arranger (par le choix du module f(X)) pour que

g(X) = X soit un générateur. Cela permet de simplifier considéra-

blement les calculs, ce qui revient a utiliser le le logarithme discret.

Nous expliquons ceci sur un exemple.

Exemple 14.7 Par simplicité, nous choisisson un corps plus petit F1¢4
(notons que 16 = 2*). Ce corps contient tous les polyndmes binaires
de degré < 3{0,1,X, X%, X3, X+ 1, X2 +1,. X3 + X2+ X + 1},
ot l'addition est I'addition usuelle des polyndmes et la multiplication
est définie modulo le polynome irréductible f(X) = X* + X3 + 1. Ce
polyndme est irréductible et est tel que X est un générateur.

En effet, comme nous travaillons modulo X* + X3 + 1, nous avons

Xt = —x3-1=Xx3+1
x5 X(XC+1) =X +X=X>+X+1

X = X4+ X2+X=X3+X*+X+1

X = X+X+X+X=2X4+X+X+1=X*+X+1
etc.

X =1

donc la période de X pour la multiplication est 15, qui est le cardinal du
groupe multiplicatif, et donc g(X) = X est un générateur.

Nous pouvons représenter un élément de IF1q par la suite des coeffi-
cients (usuellement représentée par ordre de puissances décroissantes),

CODES DE REED-SOLOMON 125

comme dans la colonne (c) de la Figure 14.2. L'addition est alors tres facile @) | ® | ©
a faire car nous additionnons les polyndmes comme d’habitude, en ajoutant 0 0 | 0000
les coefficients modulo 2, et c’est donc I'opération xor bit a bit. 1 1 | 0001
Par contre, pour la multiplication, il est plus simple d’utiliser la re- X§ X’§ 8(1)(1)8
présentation par une puissance de X, comme dans la colonne (a) de la X3 x3 | 1000
Figure 14.2. Par exemple, x4 X%+1 | 1001
X5 X3+ X+1 | 1011
X0 | X34+ X*+X+1 | 1111
(1110).(0101) = X8.X° = X'7 = X2 = (0100) P R e el e
(0111)"! = X7 =X"7.XY = X8 = (1110) x5 X+ X2+ X | 1110
X9 X241 | 0101
x10 X34+ X | 1010
11 3 2
Exemple 14.8 (Le corps [, revisité) Dans I’Exemple 12.5 nous avons ;2 X XX ii (1)(1](1)1
obtenu des représentations de IF4 par déduction directe. Regardons main- X1 X2+ X | 0110
tenant, a titre de comparaison, ce que donne la construction a partir de ;ig X+ Xi (1)(1)8(1)
polyndmes. Avec cette construction, les éléments du corps IF4 sont les
polyndmes binaires de degré < 1, {0,1, X, X + 1}. L'addition est l'ad- FIGURE 14.2: Le corps Fy4. Les élé-
dition usuelle des polynomes et la multiplication est modulo le polynome ments de [Fj¢ peuvent étre vus comme
) Lo ,. . . des polyndmes de degré < 3 a co-
f(X) = X*+ X +1, dont on peut vérifier qu'il est irréductible. efficients dans FF, (colonne (b)). Ils
Construisons la table de multiplication. On a bien sir 0 - P(X) = O et peuvent aussi étre représentés comme
1. P(X) — P(X) De plus nombres binaire (colonne (c)), ou
' P comme puissance du générateur
5 g(X) = X (colonne (a)).
XX = X=1+X +f(X) =X+1 (mOd f(X)) Q. 112. Démontrez que le polynéme
(X+1)-(X+1) = X*+1=X+f(X)=X (mod f(X)) mﬁw£?=zﬁ+x+wﬁ
rreqauctible.
X-(X4+1) = X®+X=1+f(X)=1 (mod f(X))
Nous obtenons donc les tables suivantes :
+ | o | 1| X |[x+1 - o] 1 | X [X+1
0 0 1 X | X+1 0 0 0 0 0
1 1 0 X+1| X 1 0 1 X | X+1
X X | X+1 0 1 X 0] X |X+1 1
X+1|X+1| X 1 0 X+1|0]X+1 1 X

Si nous représentons les polynomes par leurs deux coefficients (par
puissance décroissante) nous obtenons les tables suivantes :

+ Jloofo1]10]11 - Joo]o1|10]11
00 oo fo110]11 00 J[000000] 00
010100 11]10 01 [o0o0o1]10]11
10][10 [110001 10 o0 [101101
1111100100 1100|1101 10

qui sont les mémes qu’a la fin de I’Exemple 12.5.

14.4 Codes Correcteurs et Détecteurs en Pratique

Nous avons vu que les codes linéaires permettent de résoudre
efficacement le probléme de la correction ou détection d’erreur. Les
codes linéaires sont facile a stocker (par leur matrice génératrice
ou de contrdle). De plus, 'encodage, la détection d’erreur et la cor-
rection d’effacement sont faciles. Les codes de Reed-Solomon sont

126 SCIENCES DE L'INFORMATION

optimaux en terme de distance minimale, et sont utilisés sur un
tres grand nombre de systémes. Par exemple, les lecteurs de CDs
utilise plusieurs codes de Reed-Solomon imbriqués. La correction
d’erreur est une tache plus difficile. Ici, la linéarité aide beaucoup et
il faut aussi des structures supplémentaires. Mais ceci est une autre
histoire...

Bibliographie

Y. Biollay, A. Chaabouni, and J. Stubbe. Savoir-faire en maths :
bien commencer ses études scientifiques. Presses polytechniques et
universitaires romandes, 2008. ISBN 2880747791.

Alexis Fabre-Ringborg and Sébastien Saunier. Entropie du
francais. http://cb.sogedis.fr/files/entropie/Entropie_
Francais_FabreRingoborg_Saunier.pdf, 2003.

H. Gharavi and R. Steele. Conditional entropy encoding of LOG-
PCM speech. Electronics Letters, 21(11) :475—476, 2007. ISSN 0013-
5194.

G. Michaud-Briere, Y. Pearson, S. Perreault, and L.-O. Roof.

La cryptographie. http://nomis80.org/cryptographie/
cryptographie.html, 2002.

C.E. Shannon. The mathematical theory of communication. Bell
Syst. Tech. |, 27 :379—423, 1948.

C.E. Shannon. Prediction and entropy of printed English. Bell
System Technical Journal, 30(1) :50-64, 1951.

R. Singleton. Maximum distance g-nary codes. Information Theory,
IEEE Transactions on, 10(2) :116—118, 1964.

Livres

T. Cover and J. Thomas, Elements of Information Theory. Wiley &
Sons, New York, 1991.

R. W. Hamming, Coding and information theory. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.

R. B. Ash, Information Theory. Dover Publications Inc, New York,
1990.

Gérard Battail, Théorie de I'Information. Ed Masson, 1997.

David MacKay, Information Theory, Inference and Learning Algorithms,
Cambridge University Press, 2003

S. Lin and D. J. Costello, Jr., Error Control Coding : Fundamentals and
Applications. Prentice Hall, 1983.

R. E. Blahut, Theory and Practice of Error-Control Codes. Addison-
Wesley, 1983.

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes.
Cambridge University Press, 2003

R. J. McEliece, The Theory of Information and Coding. Cambridge
University Press

http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://nomis80.org/cryptographie/cryptographie.html
http://nomis80.org/cryptographie/cryptographie.html

Réponses aux Questions en Marge

Q.1. (p. 3). Bravo, vous avez trouvé, c’est bien ici.
Q.2. (p. 10). La méme que pour Sy, ps,(j) = /6 pour j =1,...,6.

Q.3. (p. 11). Non, car par exemple on a p1(0,0) =0 # pr, (0)p,(0) =

3

[e[6)]
[e)

Q.4. (p. 12). Oui, d’apres la remarque précédente. L'hypothese
entraine que S; et S; sont indépendantes, donc la densité condition-
nelle de S; sachant que S; = s; ne dépend pas de la valeur de sy,
pour tout s tel que pg, (s1) > 0.

Q.5. (p. 13). ps,is,(ilj) = 1/6 = ps, (i). La densité condition-
nelle sachant que S, = j est la méme pour tous les j. S et Sy sont
indépendantes.

Q.6. (p. 15). Si une information, correspondant a une probabilité
p, vaut 1 ban, c’est qu’on a log;,(1/p) = 1. Si elle vaut 1 déciban,
c’est qu’on a log;((1/p) = 0.1. L'information mesurée en bits est

1 1
B = log,(1/p). On a log,(1/p) = %{f(g’) donc B = 015 = 0332,

Un déciban vaut environ un tiers de bit.

Q.7. (p. 16). Le maximum vaut 1 bit et est obtenu pour g4 = 0.5
(les symboles sont équiprobables). Le minimum vaut 0 et est obtenu
pour g = 0 ou g = 1 (la source est certaine).

Q.8. (p. 16). Il y égalité, comme on le voit par la définition.

Q.9. (p. 19). S est une source composée dont les n composantes
51,5, ... sont indépendantes, donc H(S) = H(S1) + H(S) + ... =
nlog,(6).

Q.10. (p. 21). Non, car —2 et 2 ont la méme image, donc on ne
peut pas dire qu’a tout élément de 1’ensemble d’arrivée correspond
un seul élément de I'ensemble de départ.

Q.11. (p. 21). Le dictionnaire C est un sous-ensemble de D x
.. x D = DE, dont le cardinal est DL. Le cardinal de C est M donc
M < DL,

REPONSES AUX QUESTIONS EN MARGE

Q.12. (p. 22). f n’est pas injective car par exemple f(—1) = f(1).
Elle n’est pas surjective car —1 n’a pas d’antécédent. g n’est pas

injective pour la méme raison mais est surjective car pour tout

2 a au moins une solution. / est

2

y € [0, +00) I'équationen x : y = x
bijective car pour tout y € [0, +o0) 'équation en x : y = x* a une

solution unique dans [0, +0).

Q.13. (p. 23). Oui, car d’abord il est a décodage unique, et en-
suite, quand on connait la longueur commune L de tous les mots
de code, il suffit de compter les symboles de code recus. Quand on
a recu une suite de L symboles, on peut la décoder sans attendre.

Q.14. (p. 24). Oui, car si tous les mots de code ont méme lon-
gueur, aucun mot de code ne peut étre préfixe d'un autre.

Q.15. (p. 24). Contraposée : (P2) : (n n’est pas divisible par 4) =
(n est impair).

Réciproque : (P3) : (n est divisible par 4) = (n est pair).

Contraposée de la réciproque : (P4) : (n est impair) = (n n’est
pas divisible par 4).

(P3) et (P4) sont vraies pour tout 1, mais (P1) et (P2) ne le sont
pas.

Q.16. (p. 25).

1. faux; par exemple C est a décodage unique mais n’est pas ins-
tantané

2. vrai, c’est le Théoréme 2.1

3. vrai, c’est la contraposée de l'item précédent

4. faux, c’est la contraposée de l'item 1

Q.17. (p. 25). Notons d’abord que O est de longueur constante,
donc instantané, donc son arbre de décodage est bien défini. Son
arbre de décodage est égal a son arbre complet (voir Figure 2.1).

Q.18. (p. 25). Ce sont les codes D-aires de longueur constante
Lmax et dont le nombre de mots de code est DEmax, tel le code O.

Q.19. (p. 26). Si la suite de symboles X est regue sans erreur il
n’y aura pas d’erreur de décodage. Par contre si certains symboles
de code recgus sont faux ou manquant, 1 ‘algorithme pourrait étre
conduit a descendre ’arbre en suivant des branches absentes. Par
exemple, avec le code B, si on regoit X = 1111, l'algorithme re-
tourne une erreur.

Q.20. (p. 29). Elle dit que MD™L <1, cestadire M < DL. Le
théoreme de Kraft-McMillan est évident dans ce cas : un code de
longueur constante est & décodage unique donc doit satisfaire cette

129

130 SCIENCES DE L'INFORMATION

inégalité, ce que 1'on sait déja puisque tous les mots de code sont
distincts et on peut former au maximum D% mots de longueur L;
réciproquement, si M < D! on peut trouver un code de longueur
constante égale a L, il suffit de considérer toutes les suites de L
éléments de X' (il y en a D' > M), et de n’en conserver que M.

Q.21. (p. 30).

1. vrai. I est a décodage unique (Théoreme 2.1) donc satisfait I'in-
égalité de Kraft.

2. vrai d’apres le théoreme de Kraft-McMillan.

3. faux. Le code C vérifie 'inégalité de Kraft mais n’est pas instan-
tané.

4. faux : voir Exemple 2.5.

5. = 2. (La proposition 5. est équivalente a la proposition 2., donc
elle est vraie.)

6. = 4., faux

7. =1.,vrai

8. = 3., faux.

Q.22. (p. 31). Un code binaire de longueur constante L comporte
au plus 2F mots de code, comme le code doit comporter 4 mots
de code, il faut que L > 2. Donc la longueur moyenne d’un code
constant est L > 2 > 1.35, qui est la longueur de B’ et B’ est donc
plus efficace.

Q.23. (p. 35). Oui, en utilisant la méthode de la Section 2.7.

Q.24. (p. 35). En général non. Pour les exemples que nous avons
vu, I'y est un code de Huffman et L(I'y) = 1.30 qui est supérieur a
la borne inférieure 1.022.

Q.25. (p. 37). Soit S1 la source qui donne une lettre (sans préciser
majuscule ou minuscule), et S, une deuxiéme source qui précise
si le caractere est minuscule ou majuscule. L'entropie du nouveau
robot-page est H(S1,S2) > H(Sq) d’apres Eq.(4.1). Nous pouvons
méme dire plus, car S est une source binaire donc H(S;|S1 = s1) <
1 bit pour tout sq et donc aussi H(S;|S1) < 1 bit. Or

H(Sl,SZ) = H(Sl) + H(Sz‘sl) < H(Sl) +1

donc finalement l’entropie du nouveau robot-page est supérieure a
celle de I'ancien, et la dépasse d’au maximum 1 bit.

Q.26. (p. 38).
H(L1|Ly) = H(L) — H(L,) = 0.0055556 ~ 0.05 bit

Q.27. (p. 39).

REPONSES AUX QUESTIONS EN MARGE

1. Si H(S2|S1) = H(Sy) alors S; et S sont indépendantes.
2. H(S2|51) = H(S1) : on ne peut rien conclure de particulier.

Q.28. (p. 39). Par récurrence.

(Etape d’Initialisation) La propriété est vraie pour n = 2 (pre-
miere égalité du Théoréme 4.1).

(Etape de Récurrence) Supposons que la propriété soit vraie jus-
qu’a n et appliquons le Théoréme 4.4 a la source ((Sy,...,Sn), Sp41) :

H(Sl, vy Sy, Sn+1) = H(SnJrl ‘Slr ey Sn) + H(Sl, ey Sn)
= H(Sn+1 ‘Slr ey Sn) + H(Sn\Sl, Sy, ..., Sn—l) + H(Sn—l ‘51, Sy, ..., Snfz)
oo+ H(S3]S1,S2) + H(S2]S1) + H(S1)

donc la formule est vraie aussi pour n + 1.

Q.29. (p. 39).

H(S1,S2) = H(Sy) + H(S,|S1) VRAL

H(S1,52) = H(Sy) + H(S2|S1) FAUX en général

H(S1) > H(S1,S2) FAUX en général

H(S1,S2) = H(S1) + H(Sz) FAUX en général (vraisi S; et Sp
sont indépendantes)

H(S,|$;) > 0 VRAI

H(S1,S2) > H(S1) + H(S2) FAUX en général (mais vrai avec
égalité si 51 et S sont indépendantes)

7. H($1/S2) < H(Sy) VRAI

8. H(S1,S2) = H(S1) + H(S1|S2) FAUX en général

9. (Sl) < H(Sl, 52) VRAI

10. H(51]S2) < H(Sy) FAUX en général

B ®doR

SR

)
11. (52) < H(Sl, 2) VRAI
12. (52|51) < H(2) VRAI
13. H(Sy) > H(S1,S2) FAUX en général
14. H(S1,52) < H(S1) + H(S2) VRAI
15. H(S],Sz) = (52) + H(Sl‘SZ) VRAI

Q.30. (p. 40). D’apres le Théoreme 4.6, H(Sz) < H(Sq) et
H(S1) < H(S,). Donc H(S;) = H(S).

Q.31. (p. 41). Si on veut y parvenir, il faut maximiser 1'informa-
tion recue a chaque question, donc essayer d’obtenir une entropie
conditionnelle aussi proche que possible de 1bit, donc essayer de
poser des questions dont les réponses sont équiprobables.

Cela amene a la méthode de dichotomie : & chaque étape, Bernard
divise par 2 l'intervalle des réponses possibles. Une facon simple
de décrire cela est d'utiliser la représentation binaire du numéro
inconnu (c’est a dire de l'écrire en base 2). Tout nombre entier peut
s’écrire en base 2, c’est a dire en utilisant seulement les chiffres 0 et
1. Par exemple la représentation binaire du nombre décimal 23 est

131

132 SCIENCES DE L'INFORMATION

10111 car
23=1x2*+0x22+1x224+1x2+1x2°

Le plus grand nombre entier qu’on peut écrire avec 14 chiffres
binaires est x = 11 1111 1111 1111, si on lui ajoute 1 on obtient
100 0000 0000 0000, donc

x=2"_1=16383

Donc on peut écrire tous les numéros de cadenas sur 14 chiffres
binaires.

Imaginons que Bernard demande pour chaque chiffre binaire du
cadenas s’il vaut 0. Cela fait 14 questions, et Bernard obtiendra le
numéro tant convoité a coup stir. Donc la réponse est oui.

Q.32. (p. 41).
1. Si H(S1,S2) = H(S7) alors S; est fonction de S;.
2. Si H(S;|S1) = 0 alors S, est fonction de S;.

Q.33. (p. 45). Soit S = (Sy,...Sy, ...) une source stationnaire.

(1) H(Sy) est indépendant de n puisque la densité de probabilité
de S, est indépendante de n. Donc I’entropie d’un symbole existe.

(2) Soit pour n > 2 :

def
un = H(S4|S1,S2, .., Su_1) (14.6)
Par le Théoreme 4.3 (“conditionner réduit I’entropie") :
Up = H(Sn |Slr SZ/ ey Si’l—l) < H(S'rl |SZr cees Si’l—l)

D’autre part, puisque la source est stationnaire, la densité de pro-
babilité de (Sy, ..., Sy) est la méme que celle de (S, ...,S,—1). Il s’en
suit que

H<Sn|52/---/ Snfl) = H<Sn71|slrm/ Sn—Z) =Up—1

puisque ces quantités sont entierement calculées a partir de la den-
sité de probabilité. Donc
Un < Uy

ce qui exprime que la suite u,, est décroissante au sens large. Or
uy, > 0 puisque c’est une entropie conditionnelle. Un théoreme
classique de l’analyse des nombres réels dit qu'une suite > 0 dé-
croissante au sens large ne peut pas faire autrement que converger
vers une limite finie, donc I'entropie par symbole existe.

Les deux conditions de la Définition 5.2 sont satisfaites donc la
source étendue S est réguliere.

Q.34. (p. 46). Que les sources marginales S1, S, ... ne sont pas
indépendantes.

REPONSES AUX QUESTIONS EN MARGE

Q.35. (p. 46). Posons u; = H(S1) = H(S) et uy, = H(S4|S1, .-, Su—-1)-

Nous savons que S est réguliere et que limy, ;o tt, = H*(S). Nous
savons aussi (Question 33) que

H(S)=u; > uy > ... > uy... > H*(S)
Or H(S) = H*(S) par hypothese donc il y a égalité partout :
H(S)=u; =up = ... = uy... = H*(S)

en particulier u, = uj c’est a dire H(S,|S1,...,Sy—1) = H(S1) =
H(Sy); par le Théoreme 1.4, S, et Sy, ..., S,_1 sont indépendantes,
et cela est vrai pour tout n. Cela exprime que toutes les sources
marginales sont indépendantes.

Q.36. (p. 46). Si I'entropie par symbole est nulle on ne peut rien
conclure de trés précis, mais on peut dire qu'une tres longue suite
de symboles a tendance a ne pas apporter beaucoup plus d’in-
formation qu’une suite moins longue; on peut qualifier une telle
source de “bavarde", comme un locuteur qui a tendance a se répé-
ter.

Q.37. (p. 49). Pile ou Face. Le code de Huffman est le code 0/1,
nous utilisons 1 bit de code par symbole de source, donc la lon-
gueur est 60 bits, ce qui fait un bit de code par symbole de source.

Beau ou Mauvais. Ici c’est plus compliqué, il nous faut encoder
la suite de la Figure 5.1 en utilisant le code de la Table 5.3. Nous
obtenons une suite de 10 mots de code dont les longueurs sont
2,5,5,2,5,2,2,2,5,5. La longueur totale est 35, ce qui fait 0.583 bit
de code par symbole de source.

Vert ou Bleu. Il faut 1 bit pour coder toute la suite de 60 sym-
boles, ce qui fait 0.0167 bit de code par symbole de source.

Q.38. (p. 51). Oui, car la suite des “B" et “N" dans la colonne du
milieu est alternée, il suffit donc de connaitre le premier. On peut
méme éviter totalement d’indiquer “B" ou “N en convenant par
exemple que la premiere plage est blanche (si le premier pixel est

noir, on considere alors que la longueur de la premiere plage est 0).

Cela permet de supprimer 1 bit de la suite des symboles a encoder,
et donc de réduire la longueur moyenne du code de Huffman.

Q.39. (p. 54). Essayons une recherche exhaustive, qui n’est pas
trop compliquée puisqu’il n'y a que 26 clés. Le texte clair est sans
doute “IBM" et la clé est K = 25.

Q.40. (p. 57). La clé est choisie uniformément parmi les 2" clés
possibles, donc H(K) = log,(2") = n bits.

La densité de probabilité du texte chiffré est aussi uniforme. En
effet, d’apres I’'Eq.(6.1) et le Théoreme 0.1, la densité de probabilité
de la clé est p¢(C) = 5. Donc H(C) = n bits aussi.

>~

o R R PR PR 22NN NNNDN o
ORP NWHE AN OORRLRDNWEROG

=N W 0oy N

OMEHIN@EPEPNRXSE<SAHOLWRIOIOZZ - R— —~ I

NXXS<CHOLWAIOUIUOZIrR—=—=TOmmINwmp»

R =T OmMEHINIPNRXS<OHOLRIOTOZZI

133

134 SCIENCES DE L'INFORMATION

Le texte clair comporte au plus n bits, donc H(P) < log,(2") =
n. Les deux inégalités des théoremes sont bien vérifiées.

Q.41. (p. 59).23=4x5+4+3doncg=4etr=3.

—23 = —5x5+2donc g = —5 et r = 2. Attention, le reste dans
la division de —23 n’est pas —3, car, par définition de la division
euclidienne, un reste est toujours > 0.

Q.42. (p. 59).
13 mod 10 =3
(—13) mod 10 =7
13 mod (—10) =3
(—13) mod (—10) =7

13 mod 0 n’est pas défini.

Q.43. (p. 59).Ona
24163584354 = 10 x 2416358435 + 4

donc le reste de 24163584354 dans la division par 10 est 4. D'une
maniere générale, le reste d’un nombre entier positif dans la divi-
sion par 10 est son dernier chiffre.

Q.44. (p. 59). Nous faisons la preuve seulement pour b > 2.

(Existence :) Pour un nombre réel quelconque x soit | x| la partie
entiere par défaut, c’est a dire que [x]| € Zetx —1 < [x] < x. Soit
q=[5]etr=a—bg, desorte que a = bg+r. Nousavons 0 < r < b
donc, comme r et b sont entiers, 0 < r < b — 1. Donc il existe un
couple d’entiers (g,) qui satisfait les conditions demandées.

(Unicité :) Supposons que a = bg + r avec g, v entiers satisfaisant
les conditions demandées. Nous avons alors g = 7 — ; donc § —
b2l < g < %donc§ < g < f. Comme q estentier, § = [4], d’out
r=a—b|] donc g et r sont uniquement définis.

Q.45. (p. 59). 27 et 255 sont divisibles par 3, 256 est divisible par
2 donc aucun de ces nombres n’est premier.

Q.46. (p. 60). 12 =22 x 3,100 = 22 x 52 et 256 = 28,

Q.47. (p. 60). Soit p1 le plus petit facteur premier. On peut écrire

a = pibavech = p’fﬁl...pzk. Comme pp > p1etb > p; il s’en suit
que b > p;. Donc

a>p?
donc p; < /a.
Q.48. (p. 60). Pour le savoir, nous testons si les éléments de la

suite des nombres premiers divisent 257 ; il suffit méme de s’arré-
ter a v/257 =~ 16 car si a n’est pas premier son plus petit facteur

REPONSES AUX QUESTIONS EN MARGE

premier est < 17 (Question 47). Nous testons donc 2,3,5,7,11,13 :
aucun de ces nombres ne divise 257 donc c’est un nombre premier.

Q.49. (p. 61). Nous avons les décompositions 12 = 2% x 3 et
100 = 2% x 5% donc pged(12,100) = 22 = 4.

Q.50. (p. 61). 12 = 22 x 3 et 20 = 22 x 5, le facteur premier 2 est
commun, donc ils ne sont pas premiers entre eux.

12 = 22 x 3et35 = 5 x 7 donc 12 et 35 n’ont aucun facteur
premier en commun, donc sont premiers entre eux.

257 est un nombre premier et 234 < 257 donc 234 et 257 sont
premiers entre eux.

Q.51. (p. 61).

1. C’est une conséquence de l'item 2 (il suffit d’appeler a le plus
petit des deux nombres premiers et p 1'autre).

2. La décomposition en facteurs premiers de a ne peut pas compor-
ter p car sinon on aurait a > p, et la décomposition en facteurs
premiers de p est p; donc les deux décompositions n’ont aucun
facteur commun. Donc (Théoréme 50) a et p sont premiers entre
eux.

3. Soita = p’i‘l...p;:" eth = qll...qé}‘ les décompositions en facteurs
premiers. Comme 4 et b sont premiers entre eux, p; # g;j pour
tous i et j. Comme a divise ¢, la décomposition en facteurs pre-
miers de ¢ comporte p; avec un exposant > «;, pour tout i, et
aussi g; avec un exposant > f;. Donc

c= pi‘i...ng‘qfa...qf/‘rr...rZ{”
avec o) > w; et ,B; > B, et ot les 1, sont les autres facteurs
premiers de ¢, s’il y en a. Donc

c— ab pga’l—al)."p’({u,’(—txk)qgﬁﬁ—ﬁl)mqﬁﬁéfﬁz)r'lylmrrvnm

et c est divisible par ab.

Q.52. (p. 61). 257 est un nombre premier donc tous les nombres
de 1 a 256 sont premiers avec 257. Il y en a 256.

Q.53. (p. 61). Oui:

(=) Supposons a divisible par 12, donc {5 est entier, donc aussi
% = 445 donc a divisible par 3, de méme par 4. (<=) Supposons
que a est divisible par 3 et par 4. Par l'item 3 du Théoreme 7.6, a est
divisible par 12 car 3 et 4 sont premiers entre eux.

Q.54. (p. 61). Non, par exemple 6 est divisible par 2 et 6 mais pas
par 12. On ne peut pas appliquer le Théoréme 7.6 car 2 et 6 ne sont
pas premiers entre eux.

135

136 SCIENCES DE L'INFORMATION

Q.55. (p. 61). Elles sont toutes vraies sauf —23 =3 (mod 5).

Q.56. (p. 62).

1. FAUX; par exemple 4 =0 (mod 2) mais 4 ne divise pas 2.

2. VRAL; (=):sia =0 (mod m) < m alorsa = mq ot q est le
quotient dans la division par m donc ;. = g et donc m divise a.
(<) : supposons que m divise a; donc a = mx pour un certain
x € Z. Donc a = mx + 0 et donc par le Théoréme 7.1, le reste est
r=0,donca=0 (mod m).

3. FAUX: par exemple 4 = 0 (mod 2) mais 4 et 2 ne sont pas
premiers entre eux (leur PGCD est 2).

Q.57. (p. 62).
1. Oui.

2. Non (la transitivité n’est pas vraie : 0R,1 et 1R»2 mais on n'a
pas 0R22).

Q.58. (p. 63). Division par 10:o0n a

10°=1 (mod 10)
10=0 (mod 10)
10 =0 (mod 10),k>1

donc

a=d x10F +di_; x 1061+ . +dy x 101 4+ dg x 10°
=dpx0+d_ 1 x04+...4+d; x0+dyx1 (mod 10)
=dy (mod 10)

donc tout nombre entier est congru modulo 10 & son dernier chiffre
décimal.
Division par3:ona

10=1 (mod 3)

comme pour m = 9 donc tout nombre entier est congru modulo 3 a
la somme de ses chiffres décimaux.
Division par4:ona

10°=1 (mod 4)
10! =1 (mod 4)
10> =0 (mod 4)
10f=0 (mod 4),k>2

donc

a=dex 10" +dp_q x 1051 + .. +dy x 10 4 dgy x 10°
=dp X04dpe_1 X0+ ...+dy x04dy x10+dy x 1 (mod 10)
=d; x10+dyx1 (mod 10)

REPONSES AUX QUESTIONS EN MARGE

donc tout nombre entier est congru modulo 4 au nombre constitué
par ses deux derniers chiffres décimaux.
Les restes de a sont :
— division par 10: 2 = 0 (mod 10) donc le reste est 0; (a est
divisible par 10)
— divisionpar3:a = (1+2+34+4+5+6+7+8+9) x3 =
135 = 9 = 0 donc le reste est 0 (a est divisible par 3);
— division par 4 : a = 10 = 2 donc le reste est 2;

Q.59. (p. 65). Toutes les erreurs simples sauf l'erreur qui consiste
a remplacer un chiffre 0 par 9 ou vice versa sont détectées.
Les erreurs de permutation ne sont pas détectées.

Q.60. (p. 67). Les classes sont ¢y = {0,1,...,9}, c1 = {10,11, ...,99},
c2 = {100,101, ..., 999} ..., cx = {1ok,...,1ok+1 - 1}

Q.61. (p. 68). Il suffit de consulter les tables d’addition et de
multiplication dans Z/3Z puis Z/4Z. Pour m = 3 :
1. [x]2 = [1]; a deux solutions : x = [1]3 et x = [2]5.
2. [2]3[x]3 = [0]3 a une solution x = [0]3.
3. [x]3+ [x]3 = [0]3 est la méme équation que en 2.
Pourm =4:

1. [x]3 = [1]s a deux solutions : x = [1]4 et x = [3]4.

N

[2]4[x]4 = [0]4 a deux solution x = [0]4 et x = [2]4..
[

[x]4 + [x]4 = [0]4 est la méme équation que en 2.

»

Q.62. (p. 69).

([=517)° + [=4]; [-3], = ([2]7)* + [12], = [4]5 + [5]7 = [9)7 = [2]7

2([3], + [5]4) = 5([3],)* = 2[8]s — 5[9) = 2[0]4 — 5[1]4 = [-5]s =

3]

. ([2498242]9)1000 = ([0]9)" = [0]g car 298242 =0 (mod 9) (voir
Exemple 7.1).

NP

(S8

Q.63. (p. 69). Une erreur. Dans notre contexte, elle n’a pas de
sens, car la somme (comme le produit) est définie uniquement pour
des classes de congruence modulo le méme m. Nous ne pouvons
donc pas additionner [3]4 et[4]s.

Q.64. (p. 69). Il suffit de regarder les tables de multiplication
(Table 8.1). Il ny a pas de diviseur de zéro dans Z/3Z car il n’y
a pas de 0 dans la table de multiplication sauf dans les lignes ou
colonnes de 0.

Par contre, il y a des diviseurs de 0 dans Z/4Z : [2]4 est un
diviseur de zéro.

137

138 SCIENCES DE L'INFORMATION

Q.65. (p. 70). Il n'y a guere d’autre moyen que la force brute,
c’est a dire un recherche exhaustive (nous laissons tomber les cro-
chets, les calculs sont dans Z/13Z.:) :

20 =
7l
22
3
2t =

W 0 B N -

Donc x = 4 est une solution.

Q.66. (p. 70). [0]na’ = [0] pour tout m > 2 donc il est impos-
sible de trouver 4’ tel que [0],a’ = [1]m.
C’est vrai, car [1],4[1] = [1]m pour tout m > 2.

Q.67. (p. 72). Appliquer le Théoreéme 8.5 et remarquer que la

ua

relation “étre premiers entre eux" est symétrique.

Q.68. (p. 73).

— VRALI: [a],, est inversible donc si [a]y[b]m = [0]m, en multi-
pliant par l'inverse de [a],, on obtient [b],, = 0 donc [a],, ne
peut pas étre un diviseur de 0.

— VRALI : c’est la contraposition de 1.

Q.69. (p. 73). Utilisons le méme raisonnement que dans I'Exemple 8.2.
Soit x le numéro original, x' le numéro erroné, et k la position ot il
y a une erreur. Alors

x—x' = (cp — cj)10F
Si x’ était un numéro valable, nous aurions [x]o; — [x"]o7 = [0]g7

donc ([10]o7)F ([ex)o7 — [ctlo7) = [0]o7 or [10]g7 est inversible donc
[cklo7 = [cr]o7 donc ¢ = ¢} ce qui est exclus.

Q.70. (p. 73). 257 est un nombre premier (voir Q.48) donc ¢(257) =
256; il y a 256 éléments inversibles dans Z /2577 (tous les éléments
sauf [0}257).

Q.71. (p. 74). Oui et I'inverse est [21]12;.

Q.72. (p. 74). La forme réduite de [143]12, est [143]120 = [21]122
donc [143]15, est inversible et ([143}122)_1 = ([21]122)_1 = [93]122.

Q.73. (p. 74). Si x est solution, en multipliant par I'inverse de
[93]122 il vient :

x = [21]12 - [40]120 = [21 - 40]120 = [108]122

Réciproquement, les mémes calculs montrent que [108]12, est
solution.

REPONSES AUX QUESTIONS EN MARGE

Donc il y a une solution et une seule : x = [108]17;.
Q.74. (p. 76). Dans le premier cas 0, dans le deuxiéme 1.
Q.75. (p. 76). Chaque élément est son propre symétrique.

Q.76. (p. 76). Dans (Z/5Z x Z/7Z,+) : 35 éléments ; dans
(Z/5Z* X Z)7Z*,") : p(5)p(7) = 46 = 24.

Q.77. (p. 78). f est I'application réciproque de 1 de 'Exemple 9.5
donc f est un isomorphisme donc f(a-b) = f(a) + f(b).

Q.78. (p. 78). (Z/4Z,+) et (Z/5Z%, ") sont isomorphes.

(Z/5Z,+) a 5 éléments et tous les autres 4, donc (Z/5Z, +)
n’est isomorphe a aucun des autres.

(Z/8Z",-) et (Z/22?,+) sont isomorphes

Q.79. (p. 80). Dans (Z/mZ,+) c’est le plus petit entier k > 1 tel
que [k]n = [0],, la période est donc k = m.
Dans (Z/mZ",-) c’est le plus petit entier k > 1 tel que [1]¥, =

[1]m, la période est donc k = 1.

Q.80. (p. 81). Les nombres de 1 a 9 premiers avec 10 sont 1,3,7 et
9 donc ¢(10) = 4. Nous pouvons appliquer le théoreme d’Euler car
7 est premier avec 10. Calculons ([7]10)4 :

Q.81. (p. 82). Le nombre p = 7 est premier donc nous pouvons
appliquer le theoreme de Fermat. Calculons ([10]7)7 (nous laissons
tomber les crochets ; ainsi 10 = 3 signifie [10]y = [3]7) :

10=3
3?=2
3#=22=4

3¥=32.3=2-3=6
107 =3"=4.6=24=3=10

donc nous avons bien ([10]7)7 = [10]y.

Q.82. (p. 85). Non. Il suffit de trouver un contre-exemple. Soit
f:IN = N, x — 2x. L'application f est injective mais pas surjective
(seuls les entiers pairs ont un antécédent).

La réciproque est aussi fausse. Considérons par exemple ¢ : N —
N, x — |x/2]. L'application g est surjective, mais pas injective.

Q.83. (p. 85). (35) = ¢(5)p(7) =4-6 =24.

139

140 SCIENCES DE L'INFORMATION

Q.84. (p. 88). Ce sont bien trois nombres premiers; 17 n’est pas
stir car 17 = 2 x 8 + 1 et 8 n’est pas premier. Par contre 83 et 107
sontstirscarp = 41 x2+ 1,9 = 2 x 53 41 et 41 et 53 sont des
nombres premiers.

Q.85. (p. 88). Soient p =1+2p',q =1+ 2¢" avec p’,q’ premiers;
donc ppem(p — 1,9 — 1) = 2p'q’. Les facteurs premiers de e ne sont
pas 2 (car e est impair) ni p’ (car p’ > e) ni g’ (car ¢’ > e); e et 2p'q’
n’ont aucun facteur premier en commun et sont donc premiers
entre eux.

Q.86. (p. 92). C’est un code en bloc si nous considérons k comme
fixé. Les mots de code sont constitués de k chiffres arbitraires et
de 2 chiffres de contrdle, donc n = k + 2. Il y a 10¥ mots de code
possibles. Le rendement est donc

‘ ~

1 k
r = mloglo(lo) =

=

+2

Q.87. (p. 93). Le code peut détecter toutes les erreurs simples
(Question 69), donc deux mots de code distincts ne peuvent pas
différer d’un seul bit et la distance minimale est > 2.

Par ailleurs, il existe des mots de code dont la distance de Ham-
ming est 2. Il suffit de prendre pour x un mot de code commengant
par 00 et pour y le mot obtenu en remplagant les deux premiers
chiffres 00 par 97. Alors [x]gy = [y]97, donc puisque x est un mot de
code, y 'est aussi.

Donc la distance minimale de ce code est 2.

Q.88. (p. 95). Par définition du canal a effacement, tous les effa-
cements sont détectables, quel que soit leur poids.

Q.89. (p. 95). La distance minimale est 2 donc on peut corriger
tous les effacements simples.

Les effacements doubles ne peuvent pas tous étre corrigés, par
exemple si 'effacement a agi sur deux positions contigués et si les
chiffres originaux étaient 00, on ne peut pas savoir si les chiffres
originaux étaient 00 ou 97.

Q.90. (p. 96). La distance minimale est 2 donc on peut détecter
toutes les erreurs simples.

Par contre, on ne peut pas étre assuré de pouvoir corriger les
erreurs, méme simples.

Cependant, nous avons vu que l'on peut détecter certaines er-
reurs doubles, par exemple celles qui consistent a intervertir deux
chiffre contigus.

Q.91. (p. 98). Toutes les erreurs simples, c’est a dire de poids 1.

REPONSES AUX QUESTIONS EN MARGE

Q.92. (p. 99). n —rn = 2 donc la borne donne dp,in (C) < 3; nous
savons que dmin(C) = 2, donc la borne n’est pas atteinte.

Q.93. (p. 101). Oui, en particulier tout nombre rationnel sauf 0 a
un inverse qui est aussi un nombre rationnel.

Q.94. (p. 102). Non, nous avons vu par exemple que (Z/47Z, +)
et (Z/27Z%,+) ont tous deux 4 éléments et ne sont pas isomorphes.

Q.95. (p. 102). Non, bien qu’ils aient le méme nombre d’élé-
ments, car Z/4Z n’est pas un corps. En effet [2]4 n’est pas inver-
sible alors qu’il est non nul.

Q.96. (p. 102). Non, car 15 n’est pas une puissance d’'un nombre
premier (il a deux facteurs premiers, 3 et 5).

Q.97. (p. 103). Soit une colonne de la table du groupe, correspon-
dant a I’élément a. L'application G — G, x — a x x est une bijection
car I'équation en x : 2 x x = y posseéde toujours une solution unique
x = y*x' ot x’ est le symétrique de x. Les éléments de la colonne
de a sont les images de cette application, donc chaque élément de G
s’y trouve une fois et une seule. Idem pour les lignes.

Q.98. (p. 105). Une combinaison linéaire se réduit ici a A@ = 0.
Sid # 0 alors il faut que A = 0; doncsid # 0 la suite formée d’un
seul vecteur 7 est linéairement indépendante.

Par contre si @ = 0, la combinaison linéaire 17 est nulle alors que
le coefficient est non nul, donc la suite formée du seul vecteur 0 est
linéairement dépendante.

Q.99. (p. 106). C’est un espace vectoriel de dimension 1 sur un
corps de cardinal 7, donc le cardinal de S est 7' = 7.

Q.100. (p. 107). Notons que Z/7Z = Fy et que cette équation
est I’équation (12.1) qui définit S’. Donc le nombre de solutions est
le nombre d’éléments de S’. Comme c’est un espace vectoriel de
dimension 2, son cardinal est 72 = 49. Il y a 49 solutions.

Q.101. (p. 109). C comporte 8 éléments donc (Théoréme 12.2) sa
dimension est 3. Ou bien : les vecteurs ((71, 72, U3) sont linéairement
indépendants donc ils constituent une base de C, donc dim(C) = 3.

Q.102. (p. 109). L'alphabet est 'ensemble des 10 chiffres déci-
maux, qui ne peut pas étre un corps car il n’existe pas de corps a 10
éléments.

Q.103. (p. 110). dpin(C) < 2 donc la borne de Singleton est
atteinte.

141

142 SCIENCES DE L'INFORMATION

Q.104. (p. 111). dpin(C) < n donc la borne de Singleton est
atteinte.

Q.105. (p. 111). C est de dimension 3 puisqu’il posseéde une base
de 3 vecteurs, (71,7, 73). Notons que &}, ¢, et &3 sont dans C car ils
sont combinaisons linéaires d’éléments de C.

Comme (€1, 8,,€3) est aussi constituée de 3 vecteurs, il suffit de
montrer, au choix, soit que ces vecteurs sont linéairement indépen-
dants, soit qu’ils engendrent C. Montrons qu’ils engendrent C.

Comme C est engendré par (7,72, 73), il suffit de montrer que
¥;, pour i = 1,2,3, est combinaison linéaire de &, ¢, et 3. Or, par un
peu de calcul nous obtenons facilement :

U1 = @&
Uy = & +e3
U3 = e +th=0¢1+&+¢e

Q.106. (p. 112). Le mot 000 est toujours encodé par 0000000.

Q.107. (p. 115). Non, car s’il n'y a pas d’erreur le syndrome est
nul.

Q.108. (p. 121). Il faut vérifier que les lignes de H sont orthogo-
nales aux lignes de G.

Q.109. (p. 121). Par exemple : un code de Reed-Solomon sur [F;
de longueur n = 7 et de dimension k = 3.

Q.110. (p. 122). Oui, g = 3 est aussi un générateur car ses puis-
sances sont {3,4,2,1}.

Q.111. (p. 122). Vérifions tout d’abord que la définition a un
sens, c’est a dire que ¢* ne dépend que de [k];. Cela vient du fait
que g est de période 4, donc si [k']; = [k]4 alors k = k' + 4A avec
A € Z donc

/ A ! ! /
gF = g4 = [g4] oK = 1. gk = gk

Ensuite, cette application est surjective car les puissances de g
donnent tous les éléments non nuls de [F5, donc elle est bijective.
Enfin, gk”‘, =gF gk, donc c’est un isormorphisme.

Q.112. (p. 125). Supposons que f(X) = X?+ X + 1 ne soit
pas irréductible. Alors on peut le factoriser en deux polyndémes
de degré > 1; comme la somme des degrés des facteurs vaut 2
(le degré de f(X)), ces deux facteurs sont de degré 1, donc sont
soit X soit 1 + X ; dans tous les cas, f(X) aurait une racine. Or

REPONSES AUX QUESTIONS EN MARGE 143

f(0) = f(1) =1 donc f n’a pas de racine : contradiction. Donc f(X)
est irréductible.

Index

N, 62

]Fpm, 102

Z/mZ, 68

Z./mZ*, 76

équations paramétriques, 107
équation linéaire, 106
équiprobables, 8
équivalentes, 24
étrangers, 61
événements, 9

a décodage unique, 22
“plaintext”, 53

alphabet, 8

alphabet du code, 20
anneau commutatif, 68
antécédent, 21

application, 8

arbre de décodage, 25
arithmétique, 59
arithmétique modulaire, 67
asymétrique, 53
authentification, 53

Bézout, 71

base, 105

base canonique, 112
bijection, 21
bijective, 21

binaire, 20, 102
binaires, 8

bit, 15

bloc, 42

César, 54

Canal a Effacements, 94
Canal a Erreurs, 94
caractéristique, 101
cardinal, 8

checksum IP, 65

chiffres de contrdle modulo 97, 63
ciphertext, 53

clé, 53

classe d’équivalence, 67
classe de congruence, 67

codage par longueur de plage, 50
code, 91

code correcteur ou détecteur, 91
code de source, 20

Code en Bloc, 92

code linéaire, 109

code optimal, 34

codebook, 20

codes de Huffman, 34
coefficients, 106

combinaison linéaire, 104
complément a 1, 65

concave, 16

Concavité de log, 16
confidentialité, 53
confidentialité parfaite, 56
congru a, 61

congruence, 61

contrdle de parité, 115
contraposée, 24

convexe, 16

coordonnées, 105

corps commutatif, 100

couple, 8

critere des deux gendarmes, 48
cryptanalyse, 53
cryptogramme, 53

cryptographie, 53

débit, 92

décodage, 21

déduit de maniere déterministe, 39
déterministe, 40

densité conditionnelle, 11
densité de probabilité, 8
dichotomie, 131
dictionnaire, 20
dimension, 105

distance de Hamming, 92
Distance minimale, 93
divise, 59

diviseur, 59

diviseurs de zéro, 69
division longue, 122

division selon les puissances décrois-

santes, 122
droite vectorielle, 106

encodage, 20

engendré, 105

entropie, 15

entropie conditionnelle, 36
entropie d’un symbole, 44
entropie par symbole, 44
espace métrique, 92
espace vectoriel, 104
Euclide, 70, 74

facteurs premiers, 60
field, 100

fonction, 8

fonction de, 39

forme réduite, 68

forme systématique, 113

générateur, 122

Galois, 100

groupe abélien, 75

groupe commutatif, 75
groupe non commutatif, 75
groupe produit, 76

Hamming, 92

IBAN, 64

il existe, 10

image, 8

implication réciproque, 24
inégalité de Kraft, 26
indépendants, 9
Indicatrice d’Euler, 73
information, 15
injection, 22

injective, 22
instantané, 23
intégrité, 53

inverse, 70, 75
inversible, 70
irréductible, 123
isomorphes, 77

isomorphisme, 77
Jensen, 16
Kerckhoffs, 53

I'arbre complet du code, 21
Lagrange, 80, 119

linéairement indépendants, 105
logarithme discret, 70
longueur, 21

longueur constante, 21
longueur moyenne, 31
longueur variable, 21

masque a usage unique, 56
matrice de contrdle, 114
matrice extraite, 107
matrice génératrice, 111
messages non cachés, 87
mod, 59

MOD g7-10, 63

module, 61

modulo, 61

mot de code, 20

multiple, 59
multiplication scalaire, 104

one time pad, 56

one to one, 22

onto, 22

opération binaire, 75
opération externe, 103
opération produit, 76
oppos¢é, 75

ou exclusif, 56

période, 79

paire, 93
partition, 67

PGCD, 60

pigeon holes, 84, 98

plus grand commun diviseur, 60
poids d’un effacement, 94
poids d’une erreur, 94
poids de Hamming, 109
polynoéme, 117

préfixe, 24

premier, 59

premier avec, 61

premiers entre eux, 61
principe des boitiers, 84, 98
principe des tiroirs, 84, 98
probabilité, 9

probabilité conditionnelle, 9
produit cartésien, 8, 76

quel que soit, 10
quotient, 59

réguliére, 44

récurrence, 43

récursif, 71

réflexive, 62

régle d’enchainement, 39
raisonnement par l'absurde, 27
rang, 106

rang maximal, 107

rate, 92

redondance, 91

relation, 62

relation d’équivalence, 62
rendement, 92
représentant, 67

reste, 59

str, 88
sans préfixe, 24
scalaires, 104

INDEX 145

sens unique, 60

shannon, 15

Shannon-Fano, 33

si et seulement si, 24

Singleton, 98

somme en complément a 1 sur 16
bits, 66

source, 8

source binaire, 15

source composée, 10

Source Etendue, 42

sources indépendantes, 11

sources marginales, 10

sous-espace vectoriel, 104

ssi, 24

stationnaire, 44

substitution monoalphabétique, 54

substitution polyalphabétique, 55

surjection, 22

surjective, 22

symétrique, 53, 62, 75

symboles, 8

symboles de code, 20

syndrome, 115

texte chiffré, 53

texte clair, 53

Théoreme de Cesaro, 47
Traitement de 'Information, 40
transitive, 62

transposée, 114

uniforme, 8

variable aléatoire, 8
vecteur de coefficients, 106
vecteurs, 104

Vernam, 56

Vigenere, 55

	I Codage de Source
	Préliminaires de Probabilités
	Source et Probabilité
	Probabilité d'un Evénement, Indépendance, Probabilités Conditionnelles
	Sources Composées, Source Indépendantes

	Information et Entropie
	Comment Mesurer l'Information
	Entropie d'une Source
	Propriétés de l'Entropie
	Entropie d'une Source Composée

	Codage de Source
	Définition d'un Code de Source
	Représentation d'un Code par son Arbre Complet
	Décodage Unique
	Code Instantané, Code Sans Préfixe
	Arbre de Décodage d'un Code Instantané
	Théorème de Kraft-McMillan
	Construire un Code Instantané dont les Longueurs de Mots sont Données.

	Efficacité d'un Code de Source
	Première Inégalité de l'Entropie
	Code de Shannon-Fano et Deuxième Inégalité de l'Entropie
	Code Optimal ou Code de Huffman

	Entropie Conditionnelle
	Entropie Conditionnelle
	Propriétés de l'Entropie Conditionnelle
	 Traitement de l'Information

	Théorème du Codage de Source
	Sources Etendues
	Entropie par Symbole d'une Source Etendue Régulière
	Théorème du Codage de Source
	Compression et codage de source en pratique

	II Cryptographie
	La Cryptographie
	Eléments d'un Système Cryptographique
	 Confidentialité Parfaite

	Arithmétique
	Les Entiers
	Congruences

	Arithmétique Modulaire
	Les Ensembles Z/mZ
	Opérations dans Z/mZ
	Eléments Inversibles de Z/mZ
	Calcul de l'Inverse

	Eléments d'Algèbre Abstraite
	Groupes Commutatifs
	Isomorphisme
	Période d'un Elément

	Cryptographie Asymétrique
	Le Théorème des Restes Chinois
	Cryptographie à Clé Publique
	L'Algorithme de Rivest-Shamir-Adleman (RSA)
	Choix des Paramètres du Cryptosystème RSA: Nombres Premiers Sûrs

	III Codes Correcteurs
	Les Codes Correcteurs ou Détecteurs
	Codes Correcteurs ou Détecteurs
	Distance de Hamming
	Modèles de canal
	Les Théorèmes de la Distance Minimale

	Corps Finis et Espaces Vectoriels
	Corps Finis
	Espaces Vectoriels
	Propriétés de la Dimension
	Equations Linéaire et Rang d'une Matrice

	Codes Linéaires
	Code Linéaire
	Matrice Génératrice d'un Code Linéaire
	Matrice de Contrôle et Syndrome

	Codes de Reed-Solomon
	Définition
	Propriétés
	 Le Corps F256
	Codes Correcteurs et Détecteurs en Pratique

	Bibliographie
	Réponses aux Questions en Marge
	Index

