
J E A N - Y V E S L E B O U D E C , PAT R I C K T H I R A N ,

R Ü D I G E R U R B A N K E

S C I E N C E S D E L’ I N F O R -
M AT I O N

N O V E M B E R 2 8 , 2 0 1 4

2

Les fichiers échangés sur Internet et stockés sur les disques
durs contiennent de l’information qui deviendra finalement du
texte, des images ou des sons. Comment cette information est-elle
mesurée et comprimée ? comment est-elle sécurisée pour éviter
les copies illicites ? comment est-elle protégée contre les erreurs
lors d’une recopie ? Ce sont les trois questions auxquelles ce livre
répond.

Il s’adresse aux étudiants de première année de l’enseignement
supérieur, et au-delà, à toute personne intéressée à une première
approche scientifique des sciences de l’information. Les pré-requis
sont une formation de base en mathématiques du niveau de la fin
de l’enseignement secondaire. Il est issu des supports du cours
“Sciences de l’Information" donné en première année d’informa-
tique et de systèmes de communication à la faculté I&C de l’EPFL.

Ce livre a été écrit avec le souci constant de délivrer les idées
profondes qui sous-tendent les théories, tout en restant aussi simple
que possible, mais sans déformer la vérité scientifique. Nous avons
mis en avant les concepts fondamentaux à chaque fois que cela sim-
plifie l’exposé, même si en apparence la description peut paraître
plus longue. Ainsi par exemple, nous présentons le théorème des
restes chinois comme un isomorphisme, plutôt que comme une
méthode astucieuse pour résoudre un certain type d’équations ; ou
encore, nous présentons le théorème d’Euler comme un cas parti-
culier du théorème plus simple qui dit que la période d’un élément
d’un groupe fini divise le nombre d’éléments du groupe. Cette ap-
proche, qui dévoile les structures sous l’habillage des algorithmes,
nous semble essentielle à la compréhension des sciences de l’infor-
mation ; elle vise aussi à cultiver chez le lecteur l’habitude de recon-
naître des abstractions communes dans des situations apparemment
très différentes – ce qui est à la base de la pensée algorithmique
moderne. Et peut-être permettra-t-elle à la lectrice ou au lecteur de
percevoir une certaine beauté dans les sciences de l’information...

Dans la partie I nous découvrons comment définir la quantité
d’information et sa mesure, en utilisant des axiomes simples et in-
tuitifs. Les concepts essentiels qui apparaissent sont l’entropie et
l’entropie conditionnelle. La définition même de ces concepts est
basée sur une interprétation probabiliste du monde ; il n’est cepen-
dant pas nécessaire de connaître en détail la théorie des probabilités
car les concepts nécessaires sont expliqués de manière élémen-
taire dans un chapitre de rappel. Les codes de source permettent
de comprimer n’importe quel fichier numérique ; leurs propriétés
fondamentales sont analysées et expliquées sur des exemples très
simples. Cela permet d’aborder le premier théorème de la théorie
de l’information, qui établit que la quantité d’information, définie
plus haut à partir d’axiomes intuitifs, correspond exactement à la
taille en bits que peut obtenir le meilleur code de source.

Dans la partie II nous découvrons comment sécuriser l’informa-
tion par la cryptographie. Nous analysons tout d’abord ce qu’est

3

la confidentialité parfaite – cela dérive simplement des concepts
de la partie I. La cryptographie est fille de la théorie des nombres ;
nous en donnons une présentation aussi élémentaire et pratique
que possible, sans en cacher les idées fondamentales. Pour cela,
nous introduisons l’arithmétique modulaire et quelques éléments
d’algèbre abstraite, ce qui forme aussi le sur lequel est bâti la partie
suivante. La présentation et l’analyse de l’algorithme de cryptogra-
phie asymétrique RSA en découlent alors simplement.

La partie III est consacrée à la protection de l’information contre
les erreurs qui apparaissent durant l’écriture, la lecture, la trans-
mission ou le stockage. Les concepts fondamentaux sont la distance
minimale et la borne de Singleton, qui permettent de quantifier la
puissance correctrice d’un code correcteur. Pour la réalisation pra-
tique de codes, nous avons choisi de présenter les codes linéaires :
ce sont parmi les plus puissants et les plus commodes à analyser.
Cela nous permet de permet de présenter et comprendre les codes
de Reed Solomon, qui sont parmi les plus efficaces et les plus uti-
lisés. Ici aussi, la présentation n’essaie pas d’escamoter la théorie
sous-jacente, qui est celle des espaces vectoriels sur des corps finis –
une théorie particulièrement puissante et dont la beauté est immé-
diatement accessible à toute personne ayant étudié un petit peu de
géométrie vectorielle élémentaire.

Une lecture interactive de ce livre est facilitée et encouragée
par les nombreuses questions en marge, qui ont été insérées dans le
but de d’activer compréhension profonde.

Q. 1. Où se trouve la réponse à une
question en marge ?

Pour la commodité du lecteur, l’index rassemble tous les termes

nouveaux et permet de les retrouver rapidement dans leur contexte.
Les preuves des théorèmes sont classées en deux niveaux de

difficultés. Les preuves signalées par ce signe , sont des preuves
faciles mais qui illustrent bien la logique et la façon de raisonner en
sciences de l’information ; chacun(e) devrait les étudier. Les autres
preuves sont abordables mais demandent plus de temps et peuvent
être omises. Les chapitres, sections, questions marqués par cet autre
signe ? peuvent être omis sans risque pour la compréhension glo-
bale.

De nombreuses personnes ont contribué à ce livre de manière
directe ou indirecte, en particulier : Gregory Dyke, Iryna Andriya-
nova, Shrinivas Kudekar, Ramtin Pedarsani, Bastani Parizi Mani,
Nicolas Gast et Dan-Cristian Tomozei.

Que tous soient remerciés ici.

Jean-Yves Le Boudec, Patrick Thiran, Rüdiger Urbanke

Table des matières

I Codage de Source 7

0 Préliminaires de Probabilités 8

1 Information et Entropie 14

2 Codage de Source 20

3 Efficacité d’un Code de Source 31

4 Entropie Conditionnelle 36

5 Théorème du Codage de Source 42

II Cryptographie 52

6 La Cryptographie 53

7 Arithmétique 59

8 Arithmétique Modulaire 67

9 Eléments d’Algèbre Abstraite 75

10 Cryptographie Asymétrique 83

5

III Codes Correcteurs 90

11 Les Codes Correcteurs ou Détecteurs 91

12 Corps Finis et Espaces Vectoriels 100

13 Codes Linéaires 109

14 Codes de Reed-Solomon 117

Bibliographie 127

Réponses aux Questions en Marge 128

Index 144

I

Codage de Source

0
Préliminaires de Probabilités

Combien d’information un message contient-il ? Comment
mesurer l’information ? Pourquoi est-il possible de comprimer
des données sans en perdre ? Ce sont quelques unes des questions
que nous allons aborder dans cette partie. Pour cela nous allons
découvrir le concept central d’entropie d’une source d’information.

Mais avant de définir l’entropie, il nous faut modéliser les sources
de données informatiques en utilisant quelques concepts simples de
la théorie des probabilités, que nous rappelons maintenant.

0.1 Source et Probabilité

Nous appelons source la donnée d’un ensemble fini appelé al-

phabet A et d’une densité de probabilité, c’est à dire d’une application
p : A → [0, 1] satisfaisant ∑s∈A p(s) = 1. Les éléments de A sont

Une application d’un ensemble E vers
un ensemble F fait correspondre à tout
élément x de E un et un seul élément
de F (appelé l’image de x). Une fonction
d’un ensemble E vers un ensemble F
fait correspondre à certains élément
de E un et un seul élément de F. Le
domaine de définition d’une fonction
est le sous-ensemble de E constitué
des éléments qui ont une image. Ainsi
x 7→ x2 définit une application de R

vers R, alors que x 7→
√

x définit une
fonction de R vers R, dont le domaine
de définition est [0,+∞) ; x 7→

√
x

définit une application de [0,+∞) vers
R.

Dans la notation d’intervalle telle que
[0, 1), 0 est inclus et 1 est exclus, alors
que dans la notation [0, 1], les deux
bornes 0 et 1 sont incluses.

La notation ∑s∈A p(s) veut dire
la somme de tous les p(s) quand s
prend toutes les valeurs possibles dans
l’ensemble fini A.

En théorie des probabilités, une source
est appelée “variable aléatoire discrète".

appelés les symboles.

Exemple 0.1 (Pièce Non Biaisée) A = {“P”, “F”}, p(“P”) =

p(“F”) = 0.5.

On dit que les sources des exemples
0.1 et 0.2 sont binaires (A a 2 éléments).

Exemple 0.2 (Le Vélo d’Anne) Anne prête son vélo à Bernard mais ne
lui donne pas le numéro du cadenas, qui est un nombre de 4 chiffres. Ber-
nard pense pouvoir le deviner et appelle Anne, qui n’accepte de répondre
qu’à une seule question, et par oui ou non. Ici A = {“Oui”, “Non”} et
p(“Oui”) = 0.0001, p(“Non”) = 0.9999.

Exemple 0.3 (Dé Non Pipé) A = {1, 2, 3, 4, 5, 6} et p(i) = 1/6 pour
tout i ∈ A.

Le signe × est le produit cartésien. Il
signifie que A est l’ensemble des
36 couples (i, j) avec i = 1, 2..., 6 et
j = 1, 2, ..., 6. Un couple est une suite
de deux éléments ; l’ordre compte et il
peut y avoir des répétitions.

Exemple 0.4 (Deux Tirages Successifs d’un Dé Non Pipé) A =

{1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} et p(i, j) = 1/36 pour tout (i, j) ∈ A.

On dit que tous les symboles de la source sont équiprobables, ou
encore que la densité de probabilité est uniforme quand p(s) = 1/M

pour tout s ∈ A, où M = card(A) est le nombre de symboles dans
l’alphabet. Les symboles des sources des Exemples 0.1, 0.3 et 0.4 Si A est un ensemble fini, card(A) est

le nombre d’éléments de A et se lit
cardinal de A.

sont équiprobables. Ce n’est pas le cas pour l’Exemple 0.2.

préliminaires de probabilités 9

0.2 Probabilité d’un Evénement, Indépendance, Probabilités Condi-
tionnelles

On appelle événements les sous-ensembles de A ; on dit que la
probabilité d’un événement E est

P(E) def
= ∑

s∈E
p(s)

Exemple 0.5 (Suite de l’Exemple 0.4) E = {(i, j) ∈ A tels que i = j}.
E modélise l’événement “Les deux dés ont produit le même résultat". On a

P(E) = p(1, 1) + p(2, 2) + p(3, 3) + p(4, 4) + p(5, 5) + p(6, 6) = 1/6

On dit que deux sous-ensembles B et C sont indépendants si

P(B ∩ C) = P(B)P(C)

L’indépendance exprime que la réalisation d’un événement ne

B ∩ C se lit “B inter C". C’est le sous-
ensemble obtenu en prenant tous
les éléments de l’alphabet qui sont
à la fois dans B et C. En langage
d’événements, on dit aussi “B et C"

donne aucune information sur l’autre.

Exemple 0.6 (Suite de l’Exemple 0.4) B = {(6, j) avec j ∈ {1, ..., 6}}.
B est l’événement “Le premier tirage vaut 6". On a P(B) = 6 · 1

36 =
1/6, B ∩ E = {(6, 6)} et P(B ∩ E) = 1/36 = P(B)P(E), donc B
et E sont indépendants. Savoir que le premier tirage vaut 6 n’aide pas
à savoir si les deux tirages sont égaux, et réciproquement. Soit C = Quand P(E) = 1 on dit que l’événe-

ment E est “certain".{(i, j) ∈ A : i + j ≥ 10} (“la somme des tirages vaut au moins 10"). On
a :

P(C) = p(4, 6) + p(5, 5) + p(5, 6) + p(6, 4) + p(6, 5) + p(6, 6) = 1/6

B ∩ C = {(6, 4), (6, 5), (6, 6)}
P(B ∩ C) = 3/36 6= P(B)P(C)

donc B et C ne sont pas indépendants. Savoir que le premier tirage vaut
6 donne de l’information sur la somme, qui a plus de chance de valoir au
moins 10.

Soient B et C deux sous-ensembles de A avec P(C) > 0. La
probabilité conditionnelle de B sachant C est

P(B|C) def
=

P(B ∩ C)
P(C)

Elle exprime la probabilité que l’on assigne à B quand on suppose a
priori que C est réalisé. P(C|C) = 1, comme il faut s’y at-

tendre, C est certain sachant C !Soient B et C deux sous-ensembles tels que P(B) > 0 et P(C) >
0. B et C sont indépendants si et seulement si P(B|C) = P(B), ou
bien encore si et seulement si P(C|B) = P(C).

Exemple 0.7 (Suite de l’Exemple 0.6) Calculons la probabilité P(B|C),
c’est à dire la probabilité que le premier tirage soit 6 sachant que la somme
des deux tirages vaut au moins 10 :

P(B|C) =
P(B ∩ C)

P(C)
=

3/36

1/6
= 0.5

10 sciences de l’information

Notons que P(B|C) 6= P(B), c’est à dire que B et C ne sont pas indépen-
dants. Par contre.

P(B|E) =
P(B ∩ E)

P(E)
=

1/36

1/6
= 1/6 = P(B)

c’est à dire que B et E sont indépendants, comme on le sait déjà.

0.3 Sources Composées, Source Indépendantes

Dans l’Exemple 0.4 (deux tirages successifs d’un dé), l’alphabet
de la source est un produit cartésien A = A1 ×A2 (avec A1 = A2 =

{1, 2, 3, 4, 5, 6}), c’est à dire que la source S produit un symbole de
la forme (i, j) avec i ∈ {1, 2, 3, 4, 5, 6} et j ∈ {1, 2, 3, 4, 5, 6}. On dit
qu’on a une source composée à deux composantes. On peut dériver
de la source composée S deux sources marginales qui sont S1, le
résultat du premier tirage, et S2, le résultat du deuxième tirage.
L’alphabet de S1 est A1 = {1, 2, 3, 4, 5, 6}, idem pour S2. La densité Q. 2. Quelle est la densité de probabi-

lité de S2 dans l’Exemple 0.4 ?de probabilité pS1 de S1 est déduite de la densité de probabilité p
de S par la formule :

pS1(i) = ∑
j∈A2

p(i, j) = 1/6, ∀i ∈ {1, 2, 3, 4, 5, 6}

Plus généralement, on dit qu’une source S est une source composée L’expression “∀i ∈ E" se lit “quel que
soit i ∈ E". L’expression “∃i ∈ E" se lit
“il existe i ∈ E".

si son alphabet est de la forme A = A1 ×A2 × ...×An. Cela modé-
lise une suite de n observations. A partir d’une source composée on
peut dériver n sources marginales, obtenues en considérant chaque
composante individuellement, ce qu’on écrit

S = (S1, S2, ..., Sn)

La source marginale Sk a pour alphabet Ak et pour densité de pro-
babilité

pSk (s)
def
= ∑

s1∈A1...,sk−1∈Ak−1,sk+1∈Ak+1,...,sn∈An

p(s1, ..., sk−1, s, sk+1, ..., sn)

(1)
Notons que la densité marginale de probabilité est une densité de
probabilité (comme le nom l’indique), et donc en particulier

Dans l’Equation (2) nous pour-
rions écrire ∑sk∈Ak

pSk (sk) ou
∑truc∈Ak

pSk (truc) au lieu de
∑s∈Ak

pSk (s) : la variable de som-
mation est muette et son identificateur
n’a qu’un sens local à l’intérieur de
l’expression sur laquelle porte le signe
∑.

∑
s∈Ak

pSk (s) = 1 (2)

Exemple 0.8 (Somme de Deux Dés Codée Sur Deux Chiffres) Lisa
lance deux dés non pipés et annonce la somme des deux nombres obtenus,
codée comme un entier décimal à 2 chiffres. Par exemple si les dés donnent
5 et 6, Lisa annonce 11 ; si les dés donnent 2 et 2, Lisa annonce 04. La
source L ainsi obtenue a pour alphabet A = A1 ×A2 où A1 = {0, 1} et
A2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} c’est à dire qu’un symbole de la source est
de la forme (i, j) avec i ∈ A1 et j ∈ A2.

La densité de probabilité de la source est donnée dans la table 1. Ex-
pliquons par exemple comment est obtenue pL(1, 1), c’est-à dire la pro-
babilité que la somme des deux dés soit 11. Considérons la source S de

préliminaires de probabilités 11

l’Exemple 0.4 qui donne les résultats des deux dés. La probabilité deman-
dée est la probabilité de l’événement (5, 6), (6, 5) pour la source S, donc
vaut

pL(1, 1) = pS(5, 6) + pS(6, 5) =
1
36

+
1

36
=

2
36

i 0 1
j pL(i, j) pL2 (j)
0 0 3/36 3/36
1 0 2/36 2/36
2 1/36 1/36 2/36
3 2/36 0 2/36
4 3/36 0 3/36
5 4/36 0 4/36
6 5/36 0 5/36
7 6/36 0 6/36
8 5/36 0 5/36
9 4/36 0 4/36

pL1 (i) 5/6 1/6

Table 1: Densité de probabilité pL(i, j)
de la source L de l’Exemple 0.8 et
des deux sources marginales L1 et
L2. pL(i, j) est la probabilité que la
somme des deux dés soit ij, pL1 (i) la
probabilité que le premier chiffre de
la somme soit i et pL2 (j) la probabilité
que le premier chiffre de la somme soit
j.

Soient L1 et L2 les sources marginales de L, i.e. L1 est le premier chiffre
de la somme et L2 le deuxième. Les densités de probabilités de L1 et L2

peuvent s’obtenir par l’Eq.(1) ; par exemple :

pL1(0) = pL(00) + pL(01) + pL(02) + pL(03) + pL(04)
+pL(05) + pL(06) + pL(07) + pL(08) + pL(09)
= 0 + 0 + 1

36 + 2
36 + 3

36 + 4
36 + 5

36 + 6
36 + 5

36 + 4
36 = 30

36 = 5
6

Définition 0.1 On dit que les sources marginales S1, ..., Sn sont des
sources indépendantes si

p(s1, s2, ..., sn) = pS1(s1)pS2(s2)...pSn(sn), ∀(s1, s2, ..., sn) ∈ A

Q. 3. Les deux sources marginales
de l’Exemple 0.8 sont-elles indépen-
dantes ?

Exemple 0.9 (Suite de l’Exemple 0.4, deux tirages successifs d’un dé.)
La source S1 donne le résultat du tirage du premier dé, S2 du deuxième.
On a p(i, j) = 1/36 = pS1(i)pS2(j) pour tout i ∈ {1, 2, 3, 4, 5, 6} et
j ∈ {1, 2, 3, 4, 5, 6}, donc les sources sont indépendantes. Pour un obser-
vateur qui connaît la densité de probabilité de S, c’est à dire qui sait que le
dé n’est pas pipé, observer le résultat du premier tirage ne donne aucune
information sur le deuxième tirage.

Définition 0.2 Si S est une source composée à deux composantes, la
densité conditionnelle de la source marginale S2 sachant que S1 = s1 est
définie pour tout s1 ∈ A1 tel que pS1(s1) > 0 par

pS2|S1
(s2|s1)

def
=

p (s1, s2)

pS1(s1)
, ∀(s1, s2) ∈ A (3)

Si pS1(s1) = 0 la densité conditionnelle de la source marginale S2

sachant que S1 = s1 n’est pas définie. La densité conditionnelle de
la source marginale S2 sachant que S1 = s1 exprime ce que nous
savons de S2 quand on nous révèle que S1 = s1. Notons cependant qu’il n’y pas de

concept de temps ni de causalité
dans cette définition : on n’a pas
besoin qu’une source soit observée
avant l’autre pour définir la densité
conditionnelle.

La définition s’étend facilement à plus de deux sources mar-
ginales, auquel cas on peut faire de nombreuses combinaisons ;
nous ne les écrivons pas en toute généralité car la notation de-
vient lourde, mais il est facile de la deviner ; par exemple, si S =

(S1, S2, ..., Sn) on peut définir la densité marginale de (S1, S2) sa-
chant que (S3, ..., Sn) = (s3, ..., sn) par

pS1,S2|S3,...,Sn(s1, s2|s3, ..., sn) =
p(s1, ..., sn)

pS3,...,Sn(s3, ..., sn)

avec pS3,...,Sn(s3, ..., sn) = ∑(s1,s2)∈A1×A2
p(s1, s2, s3, ..., sn).

Le théorème suivant est essentiel pour comprendre ce que signi-
fie l’indépendance. En bref, il exprime que deux sources marginales
sont indépendantes si et seulement si la densité conditionnelle de
l’une sachant l’autre ne dépend pas de l’autre. La propriété d’indé-
pendance exprime donc que l’observation d’une source marginale
ne donne aucune information sur l’autre, pour un observateur qui
connaît la densité de probabilité de la source S.

12 sciences de l’information

Théorème 0.1 Soit S = (S1, S2) une source composée. Les propriétés
suivantes sont équivalentes

1. les deux sources marginales S1 et S2 sont indépendantes, c’est à dire
p(s1, s2) = pS1(s1)pS2(s2), ∀(s1, s2) ∈ A ;

2. la densité conditionnelle de S2 sachant que S1 = s1 (qui est définie
pour tout s1 tel que pS1(s1) > 0) vaut pS2|S1

(s2|s1) = pS2(s2),
∀(s1, s2) ∈ A ;

3. la densité conditionnelle de S2 sachant que S1 = s1 (qui est définie
pour tout s1 tel que pS1(s1) > 0) ne dépend pas de la valeur de s1 ;

L’ordre des deux sources dans ce
théorème n’a pas d’importance et peut
être inversé. Ainsi nous pouvons dire
que S1 et S2 sont indépendantes si et
seulement si la densité conditionnelle
de S1 sachant que S2 = s2 (qui est
définie pour tout s2 tel que pS2 (s2) >
0) ne dépend pas de la valeur de s2.

Q. 4. Supposons que la densité condi-
tionnelle de S1 sachant que S2 = s2 ne
dépende pas de la valeur de s2, pour
tout s2 tel que pS2 (s2) > 0. Peut on
conclure que la densité conditionnelle
de S2 sachant que S1 = s1 ne dépend
pas de la valeur de s1, pour tout s1 tel
que pS1 (s1) > 0 ?

Preuve :

(1)⇒ (2) Supposons que S1 et S2 sont indépendantes. Donc
p(s1, s2) = pS1(s1)pS2(s2) pour tout (s1, s2) ∈ A. Soit s2 tel

que pS2(s2) > 0. Alors pS2|S1
(s2|s1) =

pS1
(s1)pS2 (s2)

pS1
(s1)

= pS2(s2) ce

qui montre (2)
(2)⇒ (1) Soit s1 tel que pS1(s1) > 0. En utilisant la définition de la

densité conditionnelle :

p(s1, s2) = pS1(s1)pS2(s2). (4)

Il reste à montrer que l’égalité précédente vaut aussi pour un
éventuel s1 tel que pS1(s1) = 0. Soit donc un s1 ∈ A1 fixé, tel que
pS1(s1) = 0. Nous avons :

pS1(s1) = ∑
s2∈A2

p(s1, s2) = 0

or si une somme de nombres ≥ 0 est nulle, c’est que chaque
élément de la somme est nulle. Donc p(s1, s2) = 0 pour tout
s2 ∈ A2. Donc l’égalité (4) vaut aussi pour notre s1 fixé. En
résumé, nous avons montré que l’égalité (4) vaut pour tous s1 ∈
A1, s2 ∈ A2, ce qui montre que S1 et S2 sont indépendantes.

(2)⇒ (3) C’est évident : nous supposons que pS2|S1
(s2|s1) =

pS2(s2) qui ne dépend pas de s1 donc (3) est vrai.
(3)⇒ (2) Nous supposons que pS2|S1

(s2|s1) ne dépend pas de
s1. Donc nous pouvons écrire pS2|S1

(s2|s1) = ϕ(s2) où ϕ est
une certaine application définie sur A2. Donc, en utilisant la
définition de la densité conditionnelle, pour s1 tel que pS1(s1) >

0 :
p(s1, s2) = pS1(s1)ϕ(s2) (5)

Cette égalité reste vraie si pS1(s1) = 0 car nous avons vu plus
haut qu’alors p(s1, s2) = 0. En sommant cette égalité sur toutes
les valeurs de s1 dans A1 nous obtenons à gauche la densité
marginale de S2, donc, pour tout s2 ∈ A2 :

pS2(s2) =

[
∑

s1∈A1

pS1(s1)

]
ϕ(s2) = ϕ(s2)

(le crochet vaut 1, car pS1 est une densité de probabilité sur A1).
Cela montre que (2) est vraie.

préliminaires de probabilités 13

Nous avons montré (1)⇔ (2) et (2)⇔ (3). 2

Exemple 0.10 (Suite de l’Exemple 0.8) L1 est le premier chiffre de la
somme de deux dés, et L2 le deuxième. La densité de probabilité condition-
nelle du deuxième chiffre sachant le premier est donnée par la Table 2. Elle
est obtenue par application de l’Eq.(3) ; par exemple

pL2|L1
(2|0) = pL(02)

pL1 (0)
= 1/36

5/6 = 1
30

Les deux sources ne sont pas indépendantes, la densité conditionnelle de
L2 sachant que L1 = i dépend de i (i.e. les deux dernières colonnes de la
Table 2 ne sont pas identiques).

i 0 1
j pL2 |L1

(j|i)
0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0

Table 2: Densité conditionnelle du
deuxième chiffre L2 de l’Exemple 0.8
sachant que le premier est L1 = i.

Q. 5. Quelle est la densité condition-
nelle pS1 |S2

(i, j) de S1 sachant que
S2 = j dans l’Exemple 0.9 ?

1
Information et Entropie

Quelle quantité d’information y a-t-il dans une source déli-
vrant des messages ? C’est la question à laquelle ce chapitre répond,
sous le nom d’“entropie". Avant d’introduire cette notion, il nous
faut introduire le concept d’“information" d’un événement.

1.1 Comment Mesurer l’Information

Considérons une source discrète d’information S = (A, p) dé-
livrant un message, ou symbole s ∈ A avec la probabilité p(s).
Lorsqu’on reçoit un tel message s, si p(s) = 1 (et donc p(s′) = 0
pour tout s′ 6= s), il n’y a aucune surprise à recevoir le symbole s,
celui-ci n’apporte aucune information. Par contre, si p(s) = 0.0001,
la “surprise" de recevoir s parmi les M symboles que la source peut
délivrer est beaucoup plus grande, ainsi que la quantité d’informa-
tion apportée. L’information réside dans l’effet de surprise qu’elle
engendre et croît donc en sens inverse de la probabilité.

log(x) est le logarithme népérien,
ou naturel, de x, défini pour x > 0

par log(x) def
=
∫ x

1
dt
t , c’est à dire

que la dérivée de log(x) est 1/x et
log(1) = 0. log est une fonction
dérivable, donc continue, et est une
application (0,+∞) → R, qui satisfait
log(xy) = log(x) + log(y).

Le nombre e est défini par log(e) = 1.
Pour b > 0, le logarithme à base

b est logb(x) def
=

log(x)
log(b) ; il vérifie

logb(xy) = logb(x) + logb(y) et
logb(b) = 1. On utilise fréquemment
le logarithme décimal (b = 10) et le
logarithme binaire (b = 2).

On peut montrer que les fonctions
logarithmes à base b sont les seules
fonctions f : (0,+∞) → R qui soient
continues et satisfassent f (xy) =
f (x) + f (y).

Notons que logb(1) = 0 et
logb(1/x) = − logb(x).

On cherche à définir l’information I(E) d’un événement E ; pour
cela, il est donc naturel de prendre une fonction décroissante de la

probabilité P(E) de cet événement, c’est à dire de poser I(E) def
=

ϕ(P(E)), où ϕ : [0, 1] → R+ est une fonction décroissante qu’il nous
faut maintenant déterminer. Il y a beaucoup de telles fonctions
décroissantes ; pour en choisir une, nous sommes guidés par le
désir d’obtenir la propriété suivante :

si B et C sont indépendants, alors I(B ∩ C) = I(B) + I(C)

qui exprime que quand deux événements sont indépendants, obser-
ver l’un et l’autre donne la somme des informations qu’on obtient
en observant l’un ou l’autre séparément.

x log2(x)

0 −∞
2−10 ≈ 10−3 −10

0.25 -2
0.5 -1

1 0

2 1

4 2

10 3.32219

256 8

1024 10

1 048 576 20

Table 1.1: Quelques valeurs de
log2(x).

Comme la probabilité de deux événements indépendants est le
produit des probabilités, la fonction ϕ doit vérifier ϕ(pq) = ϕ(p) +
ϕ(q). Cette condition est satisfaite si on prend ϕ(p) = − logb(p)
où b est un nombre positif à déterminer, c’est à dire que l’on prend
I(E) = − logb(P(E)). C’est même le seul choix possible si l’on
impose que ϕ soit une fonction continue.

On pourrait choisir b comme on le souhaite, mais aujourd’hui
tout le monde est d’accord pour prendre b = 2 :

information et entropie 15

Définition 1.1 Soit (A, p) une source et E un sous-ensemble de A.

L’information de l’événement E est I(E) def
= − log2(P(E))

L’unité d’information est le bit, parfois aussi appelé shannon. Claude E. Shannon (1916 – 2001) a
inventé en 1948 la théorie de l’informa-
tion que nous étudions ici.

C.E. Shannon. The mathematical
theory of communication. Bell Syst.
Tech. J, 27:379–423, 1948

Exemple 1.1 Anne et Bernard jouent aux échecs et tirent au sort le
joueur qui aura les blancs. C’est Anne qui est choisie. L’information

Le choix de b = 2 dans la définition de
l’information vient du désir d’obtenir
une quantité d’information égale à 1
bit dans l’exemple 1.1.

reçue peut être modélisée par une source semblable au Pile ou Face de
l’Exemple 0.1, et l’information reçue est −log2(0.5) = 1 bit.

Exemple 1.2 (Le Vélo d’Anne, suite) Bernard demande à Anne si
le numéro de son cadenas est 6987, et Anne répond non. L’informa-
tion reçue par Bernard est log2(0.9999) ≈ 1.4 · 10−4 bit, c’est à dire
presque rien. Si Bernard avait vu juste, l’information reçue aurait été
−log2

(
10−4) ≈ 13.3 bits. Supposons qu’au lieu de deviner un numéro

L’équipe d’Alan Turing qui travaillait
à décrypter la machine allemande
Enigma pendant la deuxième guerre
mondiale utilisait le déciban, qui est
le dixième de l’unité d’information
obtenue en prenant b = 10. On utilise
parfois aussi le nat, qui correspond à
b = e.
Q. 6. Combien de bits vaut un déci-
ban ?

au hasard, Bernard pose la question “Le numéro est-il inférieur à 5000 ?".
La réponse sera oui avec probabilité 0.5 et non avec la même probabilité.
Quelle que soit la réponse, Bernard recevra 1 bit d’information.

1.2 Entropie d’une Source

Nous avons introduit la notion d’information d’un événement,
mais nous allons voir maintenant que cela ne suffit pas et que la
notion centrale est celle d’entropie. Pour voir pourquoi l’information
ne suffit pas, considérons de nouveau le début de l’Exemple 1.2.
Savoir que Bernard reçoit 13.3 bits d’information s’il a vu juste ne
donne pas une bonne mesure, car la probabilité de cet événement
est très faible (10−4). En pratique, on est presque sûr de tomber
dans l’autre cas, c’est à dire que Bernard n’a pas vu juste et reçoit
1.4 · 10−4 bit d’information. C’est pourquoi on utilise l’information
moyenne, appelée entropie :

Définition 1.2 Soit S = (A, p) une source. L’entropie de S est

H(S) def
= − ∑

s∈A
p(s) log2(p(s)).

Dans cette définition, si p(s) = 0 pour un certain s, on remplace par
convention le terme p(s) log2(p(s)) de la somme par 0.

L’unité d’entropie est la même que l’unité d ’information, à savoir,
le bit ou shannon.

Exemple 1.3 (Suite de l’Exemple 1.2) Soit S la source qui modélise la
réponse à la question de Bernard : “ton numéro est-il 6987 ?". L’entropie
de S est H(S) = 0.0001 · 13.3 + 0.99991.4 · 104 = 0.0015 bit.

Si au lieu de cela Bernard pose la question “ton numéro est-il infé-
rieur à 5000 ?", l’entropie de la réponse est H(S) = −0.5 log2(0.5) −
0.5 log2(0.5) = 1 bit.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

H
(S

)
=

 H
(q

)

Entropie de source binaire

Figure 1.1: La fonction q 7→ h(q),
donnant l’entropie d’une source
binaire.

On peut généraliser l’exemple précédent : l’entropie d’une source

binaire, c’est à dire qui émet deux symboles, disons 0 et 1, avec les
probabilités q et (1− q), vaut :

h(q) def
= −q log2(q)− (1− q) log2(1− q) (1.1)

16 sciences de l’information

voir Figure 1.1. Q. 7. Pour quelle valeur de q l’entropie
h(q) est-elle maximum ? minimum ?
Q. 8. Comparer h(q) et h(1− q)

1.3 Propriétés de l’Entropie

La propriété suivante exprime que les seules sources d’entropie
nulle (qui n’apportent aucune information) sont les sources cer-
taines. Elle dérive immédiatement de la définition de l’entropie, ce
qui ne l’empêche pas d’être importante en pratique.

Théorème 1.1 1. H(S) ≥ 0
2. Si pour un certain s ∈ A, p(s) = 1 (i.e. la source émet le symbole s

avec certitude, et donc p(s′) = 0 pour s′ 6= s), alors H(S) = 0.
3. Réciproquement, si H(S) = 0, alors il existe un s ∈ A tel que

p(s) = 1 et p(s′) = 0 pour tous les autres symboles s′ 6= s.

Preuve : (1) H(S) est une somme de termes ≥ 0 donc est ≥ 0.
(2) Si p(s) = 1 alors il suffit d’appliquer la définition et on trouve
H(S) = 0.
(3) Nous supposons donc que l’entropie de S vaut 0. L’entropie
est une somme de S termes, qui sont tous ≥ 0. Donc si la somme
est nulle, c’est que chaque terme est nul. Si p(s) ∈ (0, 1) alors
−p(s) log2(p(s)) > 0, ce qui n’est pas possible. Donc p(s) = 0 ou 1
pour tout s ∈ A. Comme la somme des probabilités vaut 1, il faut
qu’exactement un des p(s) soit égal à 1. 2

Dans l’Exemple de la source binaire illustrée en Figure 1.1, nous
voyons que l’entropie est maximum quand les symboles de source
sont équiprobables. Cette propriété est importante et est vraie en
général ; avant de voir pourquoi, nous avons besoin de la propriété
suivante de la fonction log :

x1
x2 x = α1x1+ α2x2

log2(moyenne des x)

moyenne des log2(x)

y2=log2 (x2)

y1=log2 (x1)

log2(x)

y = α1y1+ α2y2

Figure 1.2: Tout x compris entre x1
et x2 peut se mettre sous la forme
x = α1x1 + α2x2 avec α1 ∈ [0, 1]
et α2 = 1− α1. Soit y1 = log2(x1)
et y2 = log2(x2) ; y = α1y1 + α2y2
est l’ordonnée du point de la corde
d’abscisse x. L’inégalité (1.2) exprime
que log2(x) ≥ y, ce qui signifie que la
corde est au-dessous du graphe.

Une fonction qui possède la propriété
que son graphe est au-dessus de ses
cordes est dite concave. Si une fonction
définie sur un intervalle est deux fois
dérivable et sa dérivée seconde est
négative, elle est concave. C’est le cas
de la fonction log2 puisque sa dérivée
seconde est −1

log2 x2 .

L’inégalité de Jensen (1.2) est vraie
si l’on remplace log2 par une fonction
concave quelconque.

Une fonction qui possède la pro-
priété que son graphe est au-dessous
de ses cordes est dite convexe. Si une
fonction définie sur un intervalle est
deux fois dérivable et sa dérivée se-
conde est positive, elle est convexe.
L’inégalité de Jensen (1.2) est vraie
dans l’autre sens si l’on remplace log2
par une fonction convexe. La fonction
x 7→ x2 est convexe, donc le carré
d’une moyenne est inférieur ou égal à
la moyennes des carrés.

Théorème 1.2 (Concavité de log, Inégalité de Jensen) Le logarithme
d’une moyenne est supérieur ou égal à la moyenne des logarithmes.

Plus précisément, soient M nombres xi > 0 et M coefficients αi ≥ 0
avec α1 + ... + αM = 1 ; alors

log2(α1x1 + ... + αMxM) ≥ α1 log2(x1) + ... + αM log2(xM) (1.2)

S’il y a égalité dans Eq.(1.2) et αi > 0 pour tout i, alors tous les xi sont
égaux.

Nous ne démontrons pas ce théorème, mais signalons simple-
ment qu’il est dû au fait que la fonction log2 est concave, c’est
à dire que le graphe de la fonction est au-dessus des cordes (Fi-
gure 1.2). Nous sommes maintenant en mesure de montrer l’inéga-
lité principale de l’entropie :

Théorème 1.3 Soit S une source avec un alphabet de M symboles.

1. H(S) ≤ log2(M)

2. Si les M symboles de la source sont équiprobables, alors H(S) =

log2(M)

3. Si H(S) = log2(M) alors les M symboles de la source sont équipro-
bables.

information et entropie 17

,Preuve : (1) Soit une source quelconque avec M symboles.
(1a) Supposons d’abord que p(s) > 0 pour tout s ∈ A. Utilisons la
notation A = {s1, ..., sM}. L’entropie de la source est

H(S) = −p(s1) log2(p(s1))− ...− p(sM) log2(p(sM))

= p(s1) log2

(
1

p(s1)

)
+ ... + p(sM) log2

(
1

p(sM)

)

Appliquons l’inégalité (1.2) à αi = p(si) et xi =
1

p(si)
, et obtenons

log2 (1 + ... + 1) ≥ H(S)

log2 (M) ≥ H(S)

(1b) Il reste à montrer l’inégalité quand p(si) = 0 pour certains
i. Soit S′ la source obtenue en supprimant de S les symboles qui
ont une densité de probabilité nulle. Nous avons H(S′) = H(S)
d’après la définition de l’entropie H. La source S′ possède M′ < M
symboles et tous les symboles de S′ ont une densité de probabilité
non nulle. Nous pouvons appliquer (1a) à S′ et

H(S) = H(S′) ≤ log2(M′) < log2(M)

(2) Pour une source dont tous les M symboles sont équiprobables
on a :

H(S) = − 1
M

log2 (1/M)− ...− 1
M

log2 (1/M)

=
1
M

log2 (M) + ... +
1
M

log2 (M) = M
1
M

log2(M) = log2(M)

(3) Nous supposons que H(S) = log2(M). Il n’est pas possible que
p(si) = 0 pour certains i car nous avons vu en (1b) que dans un tel
cas H(S) < log2(M). Appliquons le Théorème 1.2 à αi = p(si) et
xi =

1
p(si)

. Nous avons égalité dans l’inégalité de Jensen, et αi > 0
donc tous les xi sont égaux, c’est à dire que les M symboles sont
équiprobables. ,2

Exemple 1.4 (Entropie d’un robot-page francophone) Les fré-
quences d’apparition des caractères du Français ont été calculées 1 et on

1. G. Michaud-Brière, Y. Pearson,
S. Perreault, and L.-O. Roof. La cryp-
tographie. http://nomis80.org/

cryptographie/cryptographie.html,
2002

trouve les valeurs données dans la table 1.2. L’entropie calculée à partir de
cette table est 3.95 bits : comparez à l’entropie maximale pour une source
de 26 symboles, qui est log2(26) ≈ 4.70.

A quoi correspond cette entropie ? A celle d’une source qui tire au sort
une lettre selon la répartition de la langue française. C’est peut-être le
cas d’un “robot-page", une machine qui ouvre un livre à une page au
hasard et lit une lettre, tirée au sort dans la page. Les textes français ne
sont pas (sauf exception) produits par des robots-pages, et nous verrons en
Section 5.1 que l’entropie par caractère du Français est bien plus faible
que 3.95 bits.

lettre fréquence

A 8,11

B 0,81

C 3,38

D 4,28

E 17,69

F 1,13

G 1,19

H 0,74

I 7,24

J 0,18

K 0,02

L 5,99

M 2,29

N 7,68

O 5,20

P 2,92

Q 0,83

R 6,43

S 8,87

T 7,44

U 5,23

V 1,28

W 0,06

X 0,53

Y 0,26

Z 0,12

Table 1.2: Fréquences des lettres du
Français, exprimées en pourcentages.

http://nomis80.org/cryptographie/cryptographie.html
http://nomis80.org/cryptographie/cryptographie.html

18 sciences de l’information

1.4 Entropie d’une Source Composée

Soit S une source composée avec deux marginales S = (S1, S2).
Nous pouvons calculer l’entropie de la source et de ses marginales ;
faisons-le pour deux exemples.

Exemple 1.5 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
La densité de probabilité de L = (L1, L2) est donnée dans la Table 1
(page 11), d’où on trouve :

H(L) = 3.27 bits

La densité marginale du premier chiffre L1 est donnée dans la dernière
ligne de la Table 1 (page 11), d’où :

H(L1) = −5/6 log2(5/6)− 1/6 log2(1/6) = 0.65 bit

La densité marginale du deuxième chiffre L2 est donnée dans la dernière
colonne de la Table 1 (page 11), on obtient :

H(L2) = 3.22 bits

Notons que
H(L) < H(L1) + H(L2)

c’est à dire que l’information moyenne donnée par L est moindre que la
somme des informations données par L1 et L2. Il y a une certaine redon-
dance entre L1 et L2 : une partie de l’information contenue dans L2 est
déjà contenue dans L1 ; par exemple, quand le premier chiffre L1 vaut 0 on
sait que le deuxième chiffre L2 ne peut valoir que 0, 1 ou 2.

Exemple 1.6 (Deux Dés non Pipés, suite) S1 est le résultat du tirage
d’un premier dé non pipé, S2 du deuxième. On a PS1,S2(i, j) = 1/36, c’est à
dire que tous les symboles sont équiprobables donc

H(S1, S2) = log2(36) = 2 log2(6) = 5.170

On a aussi H(S1) = H(S2) = log2(6) = 2.585. Ici H(S1, S2) =

H(S1)+ H(S2). Il n’y a pas de redondance entre S1 et S2. Cela est naturel
puisque nous savons que S1 et S2 sont indépendantes (Exemple 0.9).

Dans les exemples précédents, nous avons vu que H(S1, S2) ≤
H(S1) + H(S2), avec égalité quand S1 et S2 sont indépendantes.
C’est un fait général :

Théorème 1.4 Soit S = (S1, ..., Sn) une source composée.

1. H(S1, ..., Sn) ≤ H(S1) + ... + H(Sn)

2. H(S1, ..., Sn) = H(S1) + ... + H(Sn) si et seulement si les n sources
marginales S1, ..., Sn sont indépendantes.

Preuve : Nous faisons la preuve seulement pour n = 2. Pour sim-
plifier la notation, supposons que les alphabets de S1 et S2 sont
A1 = {1, 2, ..., I} et A2 = {1, 2, ..., J}. Supposons aussi pour simpli-
fier que p(i, j) > 0 pour tous (i, j).

information et entropie 19

(1) Soit j ∈ A2 fixé ; appliquons l’inégalité de Jensen (1.2) avec

αi =
p(i,j)
pS2 (j) et xi =

pS1
(i)

p(i,j) :

x def
=

I

∑
i=1

αixi =
I

∑
i=1

pS1(i)
pS2(j)

=
1

pS2(j)

1︷ ︸︸ ︷
I

∑
i=1

pS1(i)=
1

pS2(j)

et on a bien ∑I
i=1 αi = 1 donc l’inégalité de Jensen donne :

log2(x) = log2(1/pS2 (j)) ≥
I

∑
i=1

p(i, j)
pS2(j)

log2

(
pS1(i)
p(i, j)

)

=
1

pS2(j)

I

∑
i=1

p(i, j)
[
log2

(
pS1(i)

)
− log2 (p(i, j))

]
(1.3)

donc, en multipliant par pS2(j) et en sommant sur tous les j :

Ce sont l’associativité et la commutativité
de l’addition des nombres réels qui
permettent de permuter l’ordre des
indices dans et d’écrire

J

∑
j=1

I

∑
i=1

x(i, j) =
J

∑
j=1

[
I

∑
i=1

x(i, j)

]
=

I

∑
i=1

[
J

∑
j=1

x(i, j)

]

H(S2)︷ ︸︸ ︷
J

∑
j=1

pS2(j) log2(1/pS2 (j)) ≥
J

∑
j=1

I

∑
i=1

p(i, j)
[
log2

(
pS1(i)

)
− log2 (p(i, j))

]
=

J

∑
j=1

I

∑
i=1

p(i, j) log2
(

pS1(i)
)
−

J

∑
j=1

I

∑
i=1

p(i, j) log2 (p(i, j))

=
I

∑
i=1

[
J

∑
j=1

p(i, j) log2
(

pS1(i)
)]

+ H(S1, S2)

=
I

∑
i=1

log2
(

pS1(i)
) [J

∑
j=1

p(i, j)

]
+ H(S1, S2)

=
I

∑
i=1

log2
(

pS1(i)
) [

pS1(i)
]
+ H(S1, S2)

= −H(S1) + H(S1, S2)

ce qui montre l’inégalité demandée.
(2)(a) Indépendance⇒ Egalité.
Si S1 et S2 sont indépendants, alors, pour j fixé tous les xi sont

égaux, donc on a égalité partout dans ce qui précède.
(2)(b) Egalité⇒ indépendance.
Si on a égalité dans ce qui précède, comme l’inégalité est obtenue

en sommant J inégalités (1.3), il faut qu’il y ait égalité (1.3) pour
tout j. Par la stricte concavité de la fonction log2, cela implique
que tous les xi sont égaux, car αi > 0. Or xi = 1/pS2 |S1

(j|i). Donc
pS2|S1

(j|i) est le même pour tous les i. D’après le Théorème 0.1, cela
implique que S1 et S2 sont indépendants. 2

Q. 9. On tire un dé n fois de suite et
on envoie un message S contenant la
suite des résultats obtenus. Quelle est
l’entropie de S ?

2
Codage de Source

Après avoir mis en place les concepts théoriques d’en-
tropie et de source, nous pouvons passer au thème principal de
ce module, le codage de source. On appelle ainsi l’opération qui tra-
duit les symboles d’une source en des symboles utilisables par une
machine, à des fins de transmission ou de stockage. Pourquoi tra-
duire les symboles de source ? Une première raison immédiate est
d’adapter l’alphabet de la source à celui de la machine : un ordina-
teur ne comprend pas les lettres de l’alphabet, mais des suites de 0
et 1. Une autre raison est l’efficacité : nous voulons comprimer autant
que possible la source et prendre le moins de place possible sur le
disque ou en transmission, ceci sans aucune altération (compression
sans perte). Nous reviendrons en Section 3 sur ce que nous enten-
dons par efficacité. Pour l’instant, nous allons étudier ce qu’est un
code de source.

Notons qu’il y a différentes sortes de codage, en plus du codage
de source qui vise à comprimer les messages : le codage détecteur
et correcteur d’erreurs, au contraire du précédent, augmente la lon-
gueur et la redondance des messages pour permettre la détection et
éventuellement la correction à la réception des erreurs provoquées
par un canal perturbé par le bruit. Nous l’étudierons en détail dans
un autre module. Il y a aussi le codage d’émission ou de ligne qui
vise une adaptation technique des signaux à celles du canal (bande
passante, distorsion linéaire, etc.).

Le Code ASCII est un code de source.
Il traduit les caractères alphanumé-
riques des langues occidentales en
suites de 8 bits. Par exemple, le ca-
ractère ’A´ est représenté par la suite
01000001.

2.1 Définition d’un Code de Source

Nous avons, comme précédemment, une source S d’alphabet
A = {s1, ..., sM}. Nous avons un deuxième alphabet, l’alphabet

du code D, qui est un ensemble de D symboles de code. Le plus
souvent D = 2 et alors D = {0, 1}. Les éléments de D sont les
symboles de code. Un dictionnaire C (en Anglais codebook) est un

Une suite de n éléments de A est no-
tée le plus souvent sous la forme :
(s1, s2, s3, s4) (par exemple pour
n = 4). On utilise aussi la notation
s1s2s3s4 (qui ne veut alors pas dire
un produit), quand le contexte est
clair. Ainsi les notations 01000001 et
(0, 1, 0, 0, 0, 0, 0, 1) sont synonymes.

Quand D = 2 on dit qu’on a un code
binaire.sous-ensemble fini de suites finies d’éléments construites avec l’al-

phabet D. Un élément de C est appelé mot de code. Pour le code ASCII, l’alphabet du code
est {0, 1}, le dictionnaire est constitué
des 256 suites de 8 chiffres binaires ;
01000001 est un mot de code.

Définition 2.1 (Code de Source) Un code de source, ou encodage, Γ, est
une application bijective Γ : A → C.

codage de source 21

Si f est une application d’un ensemble
de départ E vers un ensemble d’arrivée
F, tout élément x de l’ensemble de
départ E a une image unique, notée
f (x). Pour y dans l’ensemble d’arrivée
F on dit que x ∈ E est un antécédent
de y si y = f (x). En général, un
y ∈ F peut avoir 0, 1 ou plusieurs
antécédents.

Si tout y ∈ F possède exactement
un et un seul antécédent, on dit que
l’application f est bijective, ou encore
que f est une bijection. Cela équivaut
à dire que pour tout y ∈ F l’équation
y = f (x), où l’inconnue est x ∈ E, a
une solution unique.

Si E et F sont des ensembles finis
et s’il existe une bijection de E vers F
alors card(E) = card(F). Par exemple,
le dictionnaire du code C et l’alphabet
de la source A ont le même nombre
d’éléments.

Si f est une application bijective,
elle peut être inversée, et l’application
inverse est notée f−1. Par exemple,

f : (0,+∞) → R

x 7→ log2(x)

est bijective car l’équation en x :
y = log2(x) a une solution unique
égale à x = 2y ; l’application inverse est
définie par la formule y 7→ 2y, ce qu’on
peut aussi écrire :

f−1 : R → (0,+∞)

x 7→ 2x

puisque x comme y est une variable
muette.
Q. 10. L’application R → R, x 7→ x2

est-elle bijective ?

Le code Γ permet donc de traduire tout symbole de la source
en un mot de code, de façon que pour chaque symbole il existe un
mot de code, et inversement, à chaque mot de code correspond un
symbole unique de la source (c’est la définition d’une application
bijective). Puisqu’une application bijective ne peut exister qu’entre
ensembles ayant mêmes nombres d’éléments, le dictionnaire C com-
porte exactement S mots de code, comme l’alphabet de la source.

Q. 11. Montrer que si le code Γ est à
longueur constante L, alors M ≤ DL.

La longueur d’un mot c ∈ C est `(c) = le nombre de symboles
de code de c (ainsi si c = x1x2...xk alors `(c) = k). On dit qu’un
code est à longueur constante si tous les mots de code ont la même
longueur, dans le cas contraire on dit que le code est à longueur

variable.

Exemple 2.1 (Quatre Petits Codes) La Table 2.1 donne quatre exemples
de codes binaires. L’alphabet de chacun des codes est {0, 1}. Le diction-
naire du code O est {00, 01, 10, 11}, celui du code A est {0, 01, 10, 11}. Le
code O est à longueur fixe, les codes A, B et C sont à longueur variable.

code O A B C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Table 2.1: Quatre codes binaires.
L’alphabet de la source est {a, b, c, d}.

Puisqu’un code est une application bijective, elle peut être inver-
sée ; l’application inverse, Γ−1 : C → A qui consiste à traduire un
mot de code en un symbole de la source, est appelé décodage.

2.2 Représentation d’un Code par son Arbre Complet

Pour raisonner sur les codes, il est utile d’utiliser la représenta-
tion par arbre complet, plutôt que par une table comme plus haut. La
Figure 2.1 donne les arbres complets des exemples que nous avons
vu précédemment.

L’arbre complet d’un code est construit de la façon suivante. Un
tel arbre débute par une racine, donnant naissance à D branches
(où D est le nombre de symboles de code). Chaque branche se ter-
mine en un noeud, et est étiquetée avec un des D symboles de l’al-
phabet du code. Chaque noeud de cette première génération est à
son tour ramifié en D branches et ainsi de suite. On construit un tel
arbre jusqu’à une profondeur égale à Lmax, la longueur maximale
des mots du code.On obtient ainsi un arbre dont chaque noeud re-
présente une suite d’au plus Lmax symboles de code. Certains des
noeuds sont dans le dictionnaire du code, on les étiquette par le
mot de code correspondant. L’arbre ainsi étiqueté est appelé l’arbre

complet du code. L’arbre est dit complet parce qu’on y met tous les
DLmax noeuds possibles, qu’ils soient utiliés par le code ou non.
Sur l’arbre complet d’un code, les mots de codes sont placés à une
profondeur égale à leur longueur.

On dit que l’arbre obtenu est un arbre D-aire, c’est à dire qu’à
chaque noeud de l’arbre il y a D branches. Sur la Figure 2.1, D = 2
et nous avons des arbres binaires.

22 sciences de l’information

a

0 1
0 1 0 1

Code O

0 1
0 1 0 1

b c d
a

Code A
b c d

0

0 1
0 1 0 1

1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

a
b

c10
0 1

Code O Code A

0

0 1
0 1 0 1

1 0 1 0 1 0 1
a

b
c 0 1 0 1 0 1 0 1 0 1 0 1 0 1c

d
0 1

Code C

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1c
d

Code B
Figure 2.1: Les arbres complets des
codes O, A, B,C.

2.3 Décodage Unique

Supposons que l’on nous donne un mot de code, reçu sans er-
reur (nous traiterons le cas des erreurs dans un autre module), par
exemple 01 alors que le code est le code A de l’exemple précédent.
Le décodage est toujours possible, par définition d’un code, et nous
pouvons conclure que le symbole émis est b. Supposons maintenant
que l’on vous donne une suite de mots de code, par exemple 0110,
reçue sans erreur, et que vous souhaitiez décoder cette suite. Si l’on
vous donne un moyen de trouver les frontières des mots de code,
par exemple comme dans 01 10 cela ne pose pas de difficulté, il
suffit d’appliquer l’opération de décodage Γ−1 à chacun des mots
reçus pour obtenir que la suite de symboles de la source est bc.
Mais en faisant une telle hypothèse, on a supposé qu’il existe un
symbole de code spécial, le délimiteur (ici l’espace). En pratique,
dans les ordinateurs, le délimiteur n’existe pas, il faut utiliser le
code lui-même pour savoir où s’arrêtent les mots.

Nous considérons donc dans la suite que nous recevons une
suite de mots de code, mis bout à bout. Si nous recevons 0110 et
que le code est O, nous pouvons dire que le message de la source
est bc. Par contre si le code est A, il y a une ambiguïté : les deux
messages bc et ada sont possibles. Cela montre que notre défini-
tion de code n’est pas suffisante, il nous faut introduire le concept
suivant.

Définition 2.2 Soit Γ un code de source. Γ est à décodage unique si pour
toute suite de symboles de code, qui résulte de l’encodage d’une suite de
symboles de la source, il existe un décodage unique.

Une autre façon, plus formelle, de définir le décodage unique, est
la suivante. Soient A∗ [resp. D∗] l’ensemble de toutes les suites fi-
nies d’au moins un élément de A [resp. D]. A∗ est l’ensemble des
“mots" que l’on peut écrire avec l’alphabet de la source. Ainsi, avec
le code A de la Table 2.1, la suite de symboles bc est un élément de
A∗ et la suite 0110 de D∗. On peut étendre par concaténation l’ap-

Une application f : E → F est injective
(on dit aussi que f est une injection ;
Ang.one to one) si tout élément de
l’ensemble d’arrivée F possède 0 ou 1
antécédent. Cela équivaut à dire que
pour tout y ∈ F l’équation y = f (x),
où l’inconnue est x ∈ E, a au plus une
solution.

Une application f : E → F est
surjective (on dit aussi que f est une
surjection ; Ang.onto) si tout élément
de l’ensemble d’arrivée F possède au
moins 1 antécédent. Cela équivaut à
dire que pour tout y ∈ F l’équation
y = f (x), où l’inconnue est x ∈ E, a au
moins une solution.

Une application est bijective si
et seulement si elle est injective et
surjective.

injection surjection

bijection

Q. 12. Les applications f : R → R,
x 7→ x2 ; g : R → [0,+∞), x 7→ x2 et
h : [0,+∞) → [0,+∞), x 7→ x2 sont-
elles injectives, surjectives, bijectives ?

plication d’encodage Γ définie sur A en une application d’encodage
Γ∗ définie sur A∗, c’est à dire que si s1...sn ∈ A∗ est une suite de
symboles de la source, Γ∗(s1...sn) est la suite des symboles de code

codage de source 23

de Γ(s1), ..., Γ(sn) mis bout à bout. Ainsi Γ(b) = 01, Γ(c) = 10 et
Γ∗(bc) = 0110. On dit alors que le code Γ est à décodage unique si
l’application Γ∗ est injective.

Par exemple, avec Γ = A on a Γ∗(bc) = 0110 et Γ∗(ada) = 0110 ;
l’élément 0110 de D∗ possède deux antécédents distincts bc et ada,
donc Γ∗ n’est pas injective et le code n’est pas à décodage unique.

Le code O est à décodage unique. En fait, tout code de longueur
constante, disons L, est à décodage unique : par hypothèse Γ est
bijectif donc toute suite de symboles de code reçue sans erreur peut
être décodée de manière unique, en découpant les symboles de
code par paquets de L symboles. Par exemple, si on reçoit la sé-
quence ASCII 0100100001100101011011000110110001101111, on peut
la décoder comme suit :

1. découper en quatre blocs de 8 bits : 01001000, 01100101, 01101100,
01101100 et 01101111

2. Chercher chaque mot de code dans la table du code et obtenir :
Hello

On pourrait se demander pourquoi ne pas se limiter aux codes
à longueur constante, puisque leur décodage est plus simple. Nous
verrons plus loin que, en général, le code optimal (qui assure la
compression maximale) est à longueur variable, ce qui est une
bonne raison pour considérer des codes à longueur variable.

Il est facile de comprendre intuitive-
ment pourquoi les codes à longueur
constante peuvent être inefficaces :
Imaginons que nous devons encoder
un texte français avec un code binaire
de longueur constante ; même en
ignorant les accents, les majuscules,
les espaces et les signes de ponctua-
tion (ce qui est très laid), il faut 26

caractères, donc un code de longueur
constante doit avoir au moins 5 sym-
boles binaires (aussi appelés bits). Or
le caractère ‘E’ est très fréquent (plus
d’un caractère sur six) alors que ‘W’
est très rare (moins d’un caractère sur
1600) ; il serait donc plus efficace de
coder ‘E’ avec une séquence courte,
peut-être 1 ou2 bits, et ‘W’ avec une
séquence plus longue, peut-être 7 ou 8

bits.

Le code B est à décodage unique car le symbole 0 marque la fin
des mots de code, donc on peut analyser toute suite de symboles
reçus en groupant les symboles jusqu’à trouver un 0. Par exemple,
la suite 0110 est décodable en ac et il n’y a pas d’autre possibilité.
De la même façon, le code C est à décodage unique car le symbole
0 marque le début des mots. La suite reçue 0110 est décodable en ca
et il n’y a pas d’autre possibilité.

“la suite 0110 est décodable en ac" peut
se dire aussi : "0110 a pour antécédent
ca" par l’application Γ∗ qui à une suite
de symboles de la source associe la
suite des mots de code.

Nous nous intéressons à la compression sans perte, aussi seuls
les codes à décodage unique sont intéressants. En effet, pour pou-
voir obtenir exactement les symboles de la source à partir d’une
suite de symboles de code, il faut que le code soit à décodage
unique.

2.4 Code Instantané, Code Sans Préfixe

Parmi tous les codes possibles, il en est de plus faciles à manipu-
ler, ce sont les codes instantanés.

Définition 2.3 Nous disons qu’un code est instantané

1. s’il est à décodage unique,
2. et si, à mesure que les séquences de symboles de l’alphabet du code sont

reçus, les mots du code peuvent être déterminés sans s’inquiéter des
symboles de code suivants.

Q. 13. Un code à longueur constante
est-il instantané ?Par exemple, le code B défini ci-dessus est instantané, au contraire

du code C. En effet, supposons que la séquence reçue soit 00110.
Avec le code B, dès la réception du premier symbole 0, le récepteur

24 sciences de l’information

sait qu’il s’agit de a. Avec le code C par contre, aucune conclusion
ne peut être tirée dès la réception du premier symbole. Il faut at-
tendre le deuxième 0 pour décider que le premier représentait a.

Définition 2.4 On dit qu’un mot de code c = x1x2...xk est préfixe

d’un autre mot de code c′ si on peut écrire c′ = x1x2xkxk+1...x` pour
un certain ` ≥ k + 1. Sur l’arbre du code, cela veut dire que c′ est un
descendant de c. On dit que le code Γ est sans préfixe si aucun mot de code
n’est préfixe d’un autre mot de code. Sur l’arbre du code, cela veut dire que
aucun mot de code n’est descendant d’un autre mot de code.

Q. 14. Un code de longueur constante
est-il nécessairement sans préfixe ?Nous voyons sur la Figure 2.1 que les codes O et B sont sans pré-

fixe, mais que les codes A et C ne le sont pas. Par exemple, dans
le code A, le mot de code 0 est préfixe du mot de code 01, donc A
n’est pas sans préfixe.

Les codes sans préfixe sont toujours des “bons" codes :

Théorème 2.1 Un code est sans préfixe si et seulement si il est instan-
tané.

Les implications “A ⇒ B" et
“(non B)⇒ (non A)" sont équiva-
lentes. On dit que la deuxième est la
contraposée de la première.

Par contre, “A ⇒ B" et
“(non A)⇒ (non B)" ne sont pas
équivalentes.

L’implication “B ⇒ A" est appelée
l’implication réciproque de “A ⇒ B".
Donc “(non A)⇒ (non B)" est équiva-
lente à la réciproque de “A⇒ B".

Il se peut qu’une implication soit
vraie mais pas la réciproque, ou vice
versa. Par contre, si une implication est
vraie, la contraposée l’est aussi.

Si “A ⇒ B" et “B ⇒ A" sont vraies
toutes les deux en même temps, on
dit que A et B sont équivalentes. On
écrit aussi A si et seulement si B, ou en
abrégé A ssi B.

Q. 15. Soit n un entier et soit l’im-
plication (P1) : (n est pair)⇒ (n est
divisible par 4). Quelles sont la contra-
posée, la réciproque, et la contraposée
de la réciproque ? Lesquelles sont
vraies pour tout entier n ?

Preuve : (1) , instantané⇒ sans préfixe. Nous montrons cette im-
plication par contraposition : non (sans préfixe)⇒ non instantané.
Soit donc Γ un code qui n’est pas sans préfixe, c’est à dire qu’il est
avec préfixe, ou encore, qu’il existe un mot de code c = x1x2...xk qui
est préfixe d’un autre mot de code c′ = x1x2xkxk+1...x`. Supposons
que nous ayons reçu les symboles de code x1x2...xk. Nous ne pou-
vons pas décoder à cet instant, car il se pourrait très bien que le mot
de code reçu soit c, ou le début de c′. Pour le savoir, il faut attendre
d’avoir reçu les symboles de code xk+1...x`. Donc le code n’est pas
instantané.,
(2) sans préfixe⇒ instantané. Nous avons deux choses à montrer.
(2a) sans préfixe⇒ à décodage unique. Par contraposition : non (à
décodage unique)⇒ non (sans préfixe). Par hypothèse le code n’est
pas à décodage unique. Nous allons d’abord montrer que le code
vérifie la propriété (P) :

Par exemple avec le code A la suite de
symboles de code X1 = x1x2...xn =
0110 peut être décodée de deux façons
s1s2...sn1 = bc et s′1s′2...s′n2

= ada.
Les premiers symboles de source des
décodages sont respectivement b et a,
et sont différents.

(P) Il existe une suite de symboles de code que l’on peut décoder de
deux façons différentes au moins, et dont les décodages diffèrent par
le premier symbole de source.

Pour cela, remarquons que, par hypothèse, il existe une suite de
symboles de code X1 = x1x2...xn, de longueur n > 0, que l’on
peut décoder de deux façons au moins, soient S = s1s2...sn1 et
S′ = s′1s′2...s′n2

. Si s1 6= s′1 alors P est vraie et c’est fini. Sinon, soit
s1...sk le plus long préfixe commun à S et S′ et soient S̃ et S̃′ les
deux suites de symboles obtenues en supprimant de S et S′ leurs
préfixes communs. Nécessairement S̃ n’est pas vide, car sinon S est
préfixe de S′, et l’encodage de S′ est plus long que celui de S, ce
qui contredit l’hypothèse que S et S′ ont le même encodage. Pour
la même raison, S̃′ n’est pas vide. De plus, S̃ et S̃′ diffèrent par leur
premier symbole.

codage de source 25

Soit x1...x` l’encodage du préfixe commun s1...sk. Supprimons
de X1 les ` premiers symboles de code, et soit X2 la suite de sym-
boles résultante. X2 est l’encodage de S̃ et S̃′, qui diffèrent par leur
premier symbole, donc nous avons montré (P).

Nous pouvons maintenant achever la preuve de (2a). Soit x1x2...xn

une suite de symboles de code que l’on peut décoder de deux fa-
çons en S = s1s2...sn1 et S′ = s′1s′2...s′n2

avec s1 6= s′1. Soit c = x1...x` le
mot de code correspondant à s1 et c′ = x1...x`′ le mot de code cor-
respondant à s′1. Forcément, c 6= c′ car un code est bijectif et donc
` 6= `′. Si ` < `′ alors c est préfixe de c′, sinon c′ est préfixe de c.
Donc le code n’est pas sans préfixe.
(2b) sans préfixe⇒ item 2 de la définition de code instantané.
Supposons que nous ayons reçu une suite de symboles du code
x1x2...xk, qui est un mot de code c. Quand nous avons reçu le der-
nier symbole xk, nous savons que le mot de code reçu est c, car il
n’y a aucun autre mot de code commençant par x1x2...xk, par hypo-
thèse. Donc nous pouvons décider que le mot reçu est c, et le code
est donc instantané. 2

Q. 16. Les implications suivantes
sont-elles vraies ?

1. à décodage unique⇒ instantané
2. instantané⇒ à décodage unique
3. non (à décodage unique)⇒ non

instantané
4. non instantané⇒ non (à décodage

unique)

Exemple 2.2 (Quatre Petits Codes, suite) Les codes O et B sont ins-
tantanés et sont donc à décodage unique. Le code C n’est pas instantané
mais est à décodage unique. Le code A n’est pas à décodage unique et n’est
pas instantané.

2.5 Arbre de Décodage d’un Code Instantané

Pour un code est instantané, il est très pratique d’utiliser l’arbre

de décodage. Il est construit à partir de l’arbre complet du code
en supprimant toutes les branches qui ne mènent pas à un mot
de code. Comme le nom l’indique, l’arbre de décodage permet de
décoder simplement, en utilisant par exemple l’algorithme décrit
dans l’Algorithme de la Figure 2.3.

0 1
0 1

0 1
a

b
c 0c

d

Figure 2.2: L’arbre de décodage du
code instantané B.

Notons que l’arbre de décodage est défini seulement si le code
est instantané. Pour un code à décodage unique non instantané tel
que le code C de la Figure 2.1, il n’y en a pas (le décodage d’un tel
code est plus complexe). Q. 17. Quel est l’arbre de décodage du

code O ?
Q. 18. Quels sont les codes dont l’arbre
de décodage est égal à l’arbre complet
du code ?

2.6 Théorème de Kraft-McMillan

Nous sommes intéressés à avoir des codes dont la longueur des
mots de code soit aussi petite que possible. Cependant, on ne peut

26 sciences de l’information

1: aller à la racine de l’arbre de décodage
2: erreurDeDécodage← false
3: while X 6= ∅ and not erreurDeDécodage do
4: x ← entête de X ; supprimer x de la tête de X
5: descendre l’arbre en suivant la branche étiquetée par x
6: if cela produit une erreur then
7: erreurDeDécodage←true
8: else
9: if le noeud courant possède une étiquette s then

10: imprimer s ; aller à la racine de l’arbre
11: end if
12: end if
13: end while

Figure 2.3: Pseudo-code de l’al-
gorithme de décodage d’un code
instantané. Supposons que nous ayons
reçu une suite X de symboles de code.
L’algorithme imprime la suite des
symboles de source reçus jusqu’à épui-
sement des symboles reçus, ou jusqu’à
ce qu’une erreur ait lieu.

pas prendre trop de mots de code ayant une très faible longueur,
comme l’exprime le théorème suivant.

Théorème 2.2 (Kraft-McMillan) Soit Γ un code D-aire dont les lon-
gueurs des M mots de code sont `1, ..., `M. Si Γ est à décodage unique
alors il satisfait l’inégalité de Kraft :

D−`1 + ... + D−`M ≤ 1 (2.1)

Réciproquement, si des nombres `1, ..., `M satisfont l’inégalité de Kraft (2.1),
il existe un code D-aire instantané (donc à décodage unique) dont le dictio-
naire possède M mots de code et dont les longueurs des mots de code sont
`1, ..., `M.

Q. 19. Pourquoi pourrait-il y avoir
une erreur dans l’Algorithme de
la Figure 2.3 ?

Preuve : (1) décodage unique⇒ inégalité de Kraft. Pour chaque
entier n ≥ 1 soit Cn l’ensemble des concaténations de n mots de
code de Γ. Comme Γ est à décodage unique, tout élément c de

Par exemple, si n = 2 et Γ est le code
B, qui est à décodage unique :

C2 = {00, 010, 0110, 01110,

100, 1010, 10110, 101110,

1100, 11010, 110110, 1101110,

11100, 111010, 1110110, 11101110}

Les 16 éléments de C2 peuvent
s’écrire de manière unique comme
concaténation de 2 éléments de C1 :

C2 0 10 110 1110

0 00 010 0110 01110
10 100 1010 10110 101110

110 1100 11010 110110 1101110
1110 11100 11010 1110110 11101110

Par contre, si Γ est le code A, qui
n’est pas à décodage unique, C2
comporte seulement 15 éléments
et on ne peut pas décomposer un
élément de C2 de manière unique :

C2 0 01 10 11

0 00 001 010 011
01 010 0101 0110 0111
10 100 1001 1010 1011
11 110 1101 1110 1111

Cn peut être décodé de manière unique, et on peut donc écrire
c = c1...cn de manière unique, où c1, ..cn sont des mots de code de Γ.
Nous allons calculer de deux façons la quantité

Fn
def
= ∑

c∈Cn

D−`(c)

où `(c) est la longueur du mot de code c, comptée en symboles de
code ; notons que si c = c1...cn alors `(c) = `(c1)+ ...+ `(cn). Remar-
quons que pour n = 1, F1 est le membre de gauche de l’inégalité de
Kraft.

Par exemple si Γ est le code B :

F2 = 2−`(00) + 2−`(010) + 2−`(0110) + 2−`(01110)

+2−`(100) + 2−`(1010) + 2−`(10110) + 2−`(101110)

+2−`(1100) + 2−`(11010) + 2−`(110110) + 2−`(1101110)

+2−`(11100) + 2−`(111010) + 2−`(1110110) + 2−`(11101110)

= 2−`(0)2−`(0) + 2−`(0)2−`(10)

+2−`(0)2−`(110) + 2−`(0)2−`(1110)

+2−`(10)2−`(0) + 2−`(10)2−`(10)

+2−`(10)2−`(110) + 2−`(10)2−`(1110)

+2−`(110)2−`(0) + 2−`(110)2−`(10)

+2−`(110)2−`(110) + 2−`(110)2−`(1110)

+2−`(1110)2−`(0) + 2−`(1110)2−`(10)

+2−`(1110)2−`(110) + 2−`(1110)2−`(1110)

=
[
2−`(0) + 2−`(10) + 2−`(110) ++2−`(1110)

]
·
[
2−`(0) + 2−`(10) + 2−`(110) ++2−`(1110)

]
= F1 · F1 = F2

1

Premièrement, puisque c s’écrit de manière unique c1...cn, nous
pouvons écrire

Fn = ∑
c1∈C...cn∈C

D−`(c1...cn) = ∑
c1∈C...cn∈C

[
D−`(c1)...D−`(cn))

]
=

[
∑

c1∈C
D−`(c1)

]
...

[
∑

cn∈C
D−`(cn))

]

par la formule du produit du développement d’une somme. Cha-
cun des crochets est le même car la variable de sommation est

codage de source 27

muette, et vaut F1. Donc :

Fn = F1...F1 = (F1)
n (2.2)

Deuxièmement, comme l’addition est associative, on peut re-
grouper les termes de la somme comme on veut. Mettons en-
semble les éléments de Cn qui ont la même longueur, c’est à dire
soit Ck

n = {c ∈ Cn, `(c) = k}, pour k = 1 à nLmax (Lmaxest la lon-
gueur maximale d’un mot de code de Γ) :

Fn = ∑
c∈C1

n

D−`(c) + ... + ∑
c∈Ck

n

D−`(c) + ... + ∑
c∈CnLmax

n

D−`(c)

= ∑
c∈C1

n

D−1 + ... + ∑
c∈Ck

n

D−k + ... + ∑
c∈CnLmax

n

D−nLmax

= D−1cardC1
n + ... + D−kcardCk

n + ... + D−nLmaxcardCnLmax
n

Notons que certains de ces ensembles Ck
n peuvent être vides, au-

Par exemple si Γ est le code B :

C1
2 = ∅ (ensemble vide)

C2
2 = {00}
C3

2 = {010, 100}
C4

2 = {0110, 1010, 1100}
C5

2 = {01110, 10110, 11010, 11100}
C6

2 = {101110, 110110, 111010}
C7

2 = {1101110, 1110110}
C8

2 = {11101110}

quel cas la somme correspondante vaut 0. Maintenant, remarquons
que chaque élément de Ck

n est une suite de k symboles de code ; il y
a au maximum Dk telles suites, donc card(Ck

n) ≤ Dk. Donc

Fn ≤ D−1D1 + ... + D−kDk + ... + D−nLmax DnLmax

=

nLmax fois︷ ︸︸ ︷
1 + ... + 1 + ... + 1= nLmax

En comparant avec Eq.(2.2), nous avons montré que :

∀n ≥ 1 : (F1)
n/n ≤ Lmax (2.3)

Or, nous savons du cours d’analyse que pour tout nombre b > 1, on
a

lim
x→+∞

bx

x
= +∞

Appliquons cela à b = F1 ; si on avait F1 > 1, on aurait

Pour b > 1, limx→+∞ bx = +∞ et la
fonction x 7→ bx croît “plus vite" que x.

lim
n→+∞

(F1)
n/n = +∞ (2.4)

ce qui est impossible compte tenu de Eq.(2.3). Donc F1 ≤ 1, c’est à
dire que l’inégalité de Kraft est satisfaite.

C’est un raisonnement par l’absurde :
pour montrer A ⇒ B, on suppose
que l’hypothèse A est vraie et que la
conclusion B est fausse, et on arrive à
une contradiction. Ici la contradiction
est entre Eq.(2.3) et Eq.(2.4).

(2) inégalité de Kraft⇒ il existe un code instantané D-aire de
longueurs `i, i = 1 à M. Classons les longueurs de mots par ordre

croissant : `1 ≤ `2 ≤ ... ≤ `M
def
= Lmax. Nous allons construire un

arbre de décodage, de la façon suivante (Figure 2.4).
Construisons d’abord un arbre D-aire complet de profondeur

Lmax. Puis choisissons le premier noeud de profondeur `1, étiquetons-
le c1, et supprimons tous ses descendants. Ce faisant, nous avons
supprimé DLmax−`1 noeuds terminaux de profondeur Lmax. Puis
recommençons : choisissons le premier noeud de profondeur `2

de l’arbre ainsi construit, étiquetons-le c2, et supprimons tous ses
descendants. Lesdits descendants sont distincts de ceux de c1, par
construction, et les descendants terminaux de profondeur Lmax sont
au nombre de DLmax−`2 . Ce faisant, nous avons supprimé DLmax−`2

28 sciences de l’information

noeuds terminaux de profondeur Lmax, donc en tout nous en avons
supprimé DLmax−`1 + DLmax−`2 .

Continuons cette procédure. A la me étape, nous avons supprimé
DLmax−`1 + ... + DLmax−`m noeuds terminaux de profondeur Lmax.
Mais l’inégalité de Kraft est vraie par hypothèse, donc

DLmax−`1 + ... + DLmax−`m ≤ DLmax

c’est à dire que ce nombre est inférieur au nombre total de noeuds
de profondeur Lmax. Donc, après avoir placé les mots c1...cm de
cette façon, il reste au moins un noeud terminal de profondeur
Lmax. Choisissons le premier de ces noeuds, et remontons l’arbre
vers la source jusqu’à la profondeur `m+1 ; choisissons ce noeud,
étiquetons-le cm+1, et supprimons tous ses descendants. Cette pro-
cédure peut continuer jusqu’à avoir placé cM. A la fin, nous avons
construit un arbre de décodage, donc un code sans préfixe, dont les
longueurs de mots sont `1, ..., `M. 2

Exemple 2.3 (Interprétation Graphique) La preuve de la deuxième
partie du Théorème de Kraft-McMillan nous donne aussi une interpré-
tation simple et utile de l’inégalité de Kraft pour un code instantané.
Nous l’illustrons sur le code B en Figure 2.4. Pour chaque mot de code
placé sur l’arbre de décodage, comptons le nombre de noeuds terminaux
de l’arbre complet qui descendent du noeud où est placé le mot de code.
On trouve : 23, 22, 21 et 20. Il y a en tout 24 noeud terminaux donc
23 + 22 + 21 + 20 ≤ 24.

En général, pour un mot de longueur `i, il y a DLmax−`i noeuds termi-
naux. Il y a en tout DLmax noeuds terminaux, donc

DLmax−`1 + ... + DLmax−`M ≤ DLmax

ce qui, après multiplication par D−Lmax est l’inégalité de Kraft.

0 1
0 1

0 1
0

a
b

c
d

23 22 21 20

Figure 2.4: L’inégalité de Kraft expli-
quée sur l’exemple du codeB.

Exemple 2.4 (Quatre Petits Codes, suite) L’inégalité de Kraft donne :

O : 2−2 + 2−2 + 2−2 + 2−2 = 1 ≤ 1
A : 2−1 + 2−2 + 2−2 + 2−2 = 1.25 > 1
B ou C : 2−1 + 2−2 + 2−3 + 2−4 = 0.9375 ≤ 1

Elle est vérifiée sauf pour le code A. Les codes O, B et C sont à décodage
unique donc satisfont l’inégalité de Kraft, comme on le vérifie.

Par contraposition du théorème, nous pouvons conclure que A n’est pas
à décodage unique, ce qu nous savions déjà.

codage de source 29

Soit un code Γ dont les longueurs de mots sont `1, ..., `M. Si l’in-
égalité de Kraft n’est pas satisfaite, le Théorème de Kraft-McMillan
permet de conclure, par contraposition, que le code n’est pas à
décodage unique (comme dans l’exemple précédent).

Par contre, si l’inégalité de Kraft est satisfaite, nous ne pouvons
pas conclure que Γ est à décodage unique. Le théorème dit seule-
ment qu’il existe un code à décodage unique ayant les mêmes lon-
gueurs de mots, mais rien n’assure que ce code soit précisément Γ,
comme l’illustre l’exemple suivant.

Exemple 2.5 (Non décodage unique malgré Kraft) Soit le code A′,
ternaire, (c’est à dire sur l’alphabet de code {0, 1, 2}) donné par la même
table que le code A. . Il n’est pas à décodage unique pour la même raison

Notons que le code A′ est ternaire par
définition de l’alphabet, mais en fait
il n’utilise pas le symbole 2. C’est un
code d’intérêt purement académique,
que nous utilisons seulement comme
contre-exemple.

que A (bc et ada sont encodés de la même façon). Par contre il satisfait
l’inégalité de Kraft : 3−1 + 3−2 + 3−2 + 3−2 = 2/3 ≤ 1.

Q. 20. Que donne l’inégalité de Kraft
pour les codes de longueur constante
L ?

2.7 Construire un Code Instantané dont les Longueurs de Mots
sont Données.

Bien sûr, ceci n’est possible que si les longueurs de mot satis-
font l’inégalité de Kraft. La preuve de la deuxième partie du Théo-
rème de Kraft-McMillan donne une telle construction : il suffit de
construire un arbre D-aire complet de profondeur égale à la plus
grande longueur des mots, de classer les longueurs de mots par
ordre croissant, et de placer les mots sur l’arbre, en prenant soin de
supprimer les branches descendant d’un mot placé.

Exemple 2.6 (Code équivalent à A′, mais à décodage unique)
Le code A′ de l’exemple précédent (qui n’est pas un bon code) peut-être
remplacé par un code ternaire qui a les mêmes longueurs de mots mais est
à décodage unique. Pour cela, on construit l’arbre de décodage ci-dessous :

0 21
0 2a

b dc1

On obtient le code :

symbole de source a b c d

mot de code 0 10 11 12

qui a les mêmes longueur de mots que A′, mais qui est instantané (par
construction) donc à décodage unique.

Enfin, une conséquence spectaculaire du théorème de Kraft-
McMillan est qu’on peut toujours remplacer un code à décodage
unique par un code instantané :

Théorème 2.3 Pour tout code à décodage unique, il existe un code ins-
tantané sur les mêmes alphabets de source et de code qui a les mêmes
longueurs de mot.

30 sciences de l’information

,Preuve : Soit Γ un code à décodage unique. Les longueurs de
mots satisfont l’inégalité de Kraft (première partie du Théorème
de Kraft-McMillan). Donc il existe un code instantané avec ces lon-
gueurs de mots (deuxième partie du Théorème de Kraft-McMillan).
,2

Par exemple, le code C est à décodage unique et a les mêmes lon-
gueurs de mot que le code B. On peut le remplacer par le code B et
obtenir un code qui est équivalent du point de vue des longueurs
de mots. Q. 21. Les implications suivantes

sont-elles vraies ?

1. Γ est instantané⇒ Γ vérifie l’inéga-
lité de Kraft

2. Γ est à décodage unique⇒ Γ
vérifie l’inégalité de Kraft

3. Γ vérifie l’inégalité de Kraft⇒ Γ est
instantané

4. Γ vérifie l’inégalité de Kraft⇒ Γ est
à décodage unique

5. Γ ne vérifie pas l’inégalité de Kraft
⇒ Γ n’est pas à décodage unique

6. Γ n’est pas à décodage unique⇒ Γ
ne vérifie pas l’inégalité de Kraft

7. Γ ne vérifie pas l’inégalité de Kraft
⇒ Γ n’est pas instantané

8. Γ n’est pas instantané⇒ Γ ne
vérifie pas l’inégalité de Kraft

3
Efficacité d’un Code de Source

Maintenant que nous avons fait connaissance avec les
codes de longueur variable, nous pouvons commencer à nous in-
téresser à obtenir des codes efficaces. A cette occasion nous allons
retrouver notre vieille amie l’entropie.

3.1 Première Inégalité de l’Entropie

La quantité d’intérêt pour l’efficacité d’un code est sa longueur
moyenne, définie comme le nombre moyen de symboles de code
par symbole de source :

Définition 3.1 Soit une source S d’alphabet A et de densité de proba-
bilité p, et soit Γ un code D-aire de la source S. La longueur moyenne du
code Γ est

L(Γ) def
= ∑

s∈A
p(s)`(Γ(s))

L’unité est le symbole de code par symbole de source (si D = 2 on dit bits
par symbole de source).

On utilise le même mot “bit" pour
désigner deux concepts différents : un
symbole binaire, et l’unité d’informa-
tion.

symbole de source proba code B′

s p(s)

a 0.05 1110
b 0.05 110
c 0.1 10
d 0.8 0

Table 3.1: Densité de probabilité pour
la source des quatre petits codes de la
Table 2.1, et code B′.

Q. 22. Montrez que le code B′ est
plus efficace (c’est à dire : a une lon-
gueur moyenne plus faible) que n’im-
porte quel code binaire de longueur
constante pour cette source.

Exemple 3.1 (Codes O, B et B′) Supposons que les probabilités pour la
source des codes O et B (voir Table 2.1 en page 21) soient comme dans la
Table 3.1. Le code O est de longueur constante égale à 2 symboles binaires
(bits) donc sa longueur moyenne est L(O) = 2 bits. Pour le code B les
longueurs des mots sont respectivement 1, 2, 3 et 4 donc

L(B) = 0.05 · 1 + 0.05 · 2 + 0.1 · 3 + 0.8 · 4 = 3.65 bits par symbole

Si on remplace le code B par le code B′ dont les mots sont pris en ordre
inverse de B (Table 3.1) on obtient

L(B′) = 0.05 · 4 + 0.05 · 3 + 0.1 · 2 + 0.8 · 1 = 1.35 bits par symbole

Le code B′ est plus efficace que les codes B et O, car il donne des longueurs
courtes aux symboles les plus fréquents.

Pour obtenir un code efficace (c’est à dire pour comprimer l’in-
formation), nous sommes intéressés à avoir des codes de longueur
moyenne aussi petite que possible. L’entropie nous donne une li-
mite inférieure à ce qu’il est possible d’atteindre :

32 sciences de l’information

Théorème 3.1 (Première Inégalité de l’Entropie) Soit une source S
d’entropie H(S) et soit Γ un code D-aire de la source S. Si Γ est à déco-
dage unique, sa longueur moyenne satisfait

L(Γ) ≥ H(S)
log2(D)

(3.1)

Pour un code Γ binaire on a donc
simplement L(Γ) ≥ H(S).

,Preuve : Nous utilisons l’inégalité de Kraft et l’inégalité de
concavité du logarithme. Soient M = card(A), `i la longueur du
ième mot de code et pi la densité de probabilité du ième symbole
de source, pour i = 1...M. Par le Théorème de Kraft-McMillan :

D−`1 + ... + D−`M ≤ 1

donc
log2

(
D−`1 + ... + D−`M

)
≤ 0 (3.2)

Appliquons l’inégalité de concavité (1.2) à αi = pi et xi =
D−`i

pi
, il

vient :

log2

(
D−`1 + ... + D−`M

)
≥ p1 log2

(
D−`1

p1

)
+ ... + pM log2

(
D−`M

pM

)
= p1 log2

(
D−`1

)
− p1 log2 p1 + ... + pM log2

(
D−`M

)
− pM log2 pM

= −p1`1 log2(D)− ...− pM`M log2(D)− p1 log2 p1 − ...− pM log2 pM

= −L(Γ) log2(D) + H(S)

En comparant avec Eq.(3.2), il vient

0 ≥ −L(Γ) log2(D) + H(S)

ce qui donne l’inégalité à démontrer. ,2

Exemple 3.2 (Codes B et B′, suite) Les trois codes sont à décodage
unique (nous le savons déjà pour O et B, B′ l’est aussi, pour la même
raison que B). L’entropie de la source est

H(S) = −2 · 0.05 log2(0.05)− 0.1 log2(0.1)− 0.8 log2(0.8) = 1.022 bits

et on a bien L(B) = 3.65 ≥ H(S) et L(B′) = 1.35 ≥ H(S) Le code B′ est
sans doute assez efficace car sa longueur moyenne est proche de la borne
inférieure de l’entropie.

3.2 Code de Shannon-Fano et Deuxième Inégalité de l’Entro-
pie

Pour obtenir un code efficace, il faut donner des longueurs pe-
tites aux symboles les plus fréquents. L’idée du code de Shannon-
Fano est de choisir un code D-aire avec logD(1/p(s)) comme lon-
gueur du mot de code pour le symbole s ; plus exactement, comme
ce nombre n’est pas forcément entier, on choisit l’arrondi entier
par excès dlogD(1/p(s))e. Il reste à voir si de tels codes à décodage
unique existent, ce qui est le cas :

Pour un nombre réel x, on note dxe la
partie entière par excès de x, définie
comme le plus petit nombre entier
≥ x. Par exemple d3.14e = 4, d3e = 3
et d−3.14e = −3. On a :

∀x ∈ R : x ≤ dxe < x + 1

efficacité d’un code de source 33

Théorème 3.2 Soit une source S avec M symboles dont les densités de
probabilité sont p1, ..., pM. Il existe des codes D-aires instantanés (donc à
décodage unique) dont les longueurs de mots sont `i = dlogD(1/pi)e pour
i = 1...M. De tels codes sont appelés codes D-aires de Shannon-Fano.

,Preuve : Il suffit de montrer que l’inégalité de Kraft est vraie. Or

`i
def
= dlogD (1/pi)e ≥ logD (1/pi)

donc D−`i ≤ pi et

D−`1 + ... + D−`M ≤ p1 + ... + pM = 1

donc l’inégalité de Kraft est vérifiée. ,2

Pour construire un code de Shannon-Fano, il suffit d’appliquer la
méthode de la Section 2.7, puisque les longueurs de mots de code
sont connues.

Exemple 3.3 (Code ΓSF). Considérons la source des quatre petits codes
et construisons un code binaire ΓSF de Shannon-Fano. Les longueurs des
mots sont données dans la Figure 3.1. L’arbre de décodage est donné sur la
figure.

La longueur moyenne du code ΓSF est

L(ΓSF) = 2 · 0.05 · 5 + 0.1 · 4 + 0.8 · 1 = 1.7 bits par symbole

symbole de source proba longueur

a 0.05 5

b 0.05 5

c 0.1 4

d 0.8 1

1

0 1
0

0
0

a
d

1
1
0

0

ab
c

Figure 3.1: Code de Shannon-Fano
pour la source de la Table 3.1.

Le code ΓSF est assez efficace, il n’est pas trop loin de la borne inférieure
de l’entropie (1.022), et est plus efficace que le code B (longueur moyenne
3.65). Cependant, il n’est pas le plus efficace : le code B′ a une longueur
moyenne plus petite (longueur moyenne 1.35).

Comme l’illustre l’exemple ci-dessus, les codes de Shannon-Fano
sont assez efficaces, sans être en général les plus efficaces. Cepen-
dant, et c’est leur principal attrait, ils sont garantis : ils ne peuvent
pas être à plus d’une unité de la borne inférieure de l’entropie.

Théorème 3.3 (Deuxième Inégalité de l’Entropie) La longueur
moyenne L(ΓSF) d’un code D-aire de Shannon-Fano d’une source d’entro-
pie H(S) vérifie

H(S)
log2(D)

≤ L(ΓSF) <
H(S)

log2(D)
+ 1 (3.3)

,Preuve : Notons que la première inégalité de (3.3) est la première
inégalité de l’entropie, qui est vraie car un code de Shannon-Fano
est instantané, donc à décodage unique. Il nous reste à montrer la
deuxième inégalité. Soient `1, ..., `M les longueurs des mots du code
de Shannon-Fano et p1, ..., pM les probabilités. On a :

`i
def
= dlogD (1/pi)e < logD (1/pi) + 1

donc

L(ΓSF)
def
= `1 p1 + ... + `M pM

34 sciences de l’information

< p1 logD (1/p1) + ... + pM logD (1/pM) +

1︷ ︸︸ ︷
p1 + ... + pM

=
p1 log2 (1/p1) + ... + pM log2 (1/pM)

log2(D)
+ 1

=
H(S)

log2(D)
+ 1

,2

Pour un code binaire de Shannon-Fano
on a

H(S) ≤ L(ΓSF) < H(S) + 1

Exemple 3.4 (Code ΓSF) La longueur moyenne du code ΓSF est 1.7, on a
bien

1.022 = H(S) ≤ L(ΓSF) = 1.7 < 2.022

3.3 Code Optimal ou Code de Huffman

Nous avons obtenus jusqu’ici une borne inférieure sur la lon-
gueur de tout code, et nous avons vu que les codes de Shannon-
Fano sont à au plus unité de cette borne inférieure. Mais est-ce que
les meilleurs codes possibles atteignent la borne inférieure ? En
général, la réponse est non. Par contre, nous allons voir dans cette
section que l’on peut toujours créer un code optimal, c’est à dire de
longueur minimale parmi tous les codes à décodage unique pos-
sibles : ce sont les codes de Huffman. Nous commençons par décrire
la procédure pour créer un code de Huffman.

Les codes de Huffman existent pour toutes les valeurs de D,
mais leur description est un peu compliquée quand D ≥ 3, aussi
nous nous limitons aux codes de Huffman binaires. Etant donné une
source S, un code binaire de Huffman est un code instantané bi-
naire dont l’arbre de décodage est construit de la manière suivante.

1. L’arbre est construit à l’envers, en partant des noeuds terminaux.
Chaque noeud est étiqueté avec deux attributs : un nombre dans
[0, 1] (la probabilité du noeud), et une indication de statut “actif"
ou “inactif".

2. Créer M noeuds terminaux, un par symbole de source, la proba-
bilité d’un noeud est celle du symbole de source correspondant.
Tous les noeuds ont le statut “actif".

3. Choisir 2 noeuds de probabilités les plus petites, changer leur
statut à “inactif", et créer un nouveau noeud ancêtre de ces deux
noeuds. Le nouveau noeud prend le status “actif" et sa probabi-
lité est la somme des probabilités des noeuds qu’il remplace.

4. Continuer l’étape précédente jusqu’à obtention d’un noeud
dont la probabilité est 1. On a alors obtenu un arbre binaire dont
les noeuds terminaux sont associés aux symboles de source.
Étiqueter les branches de l’arbre avec les symboles de code 0
et 1 selon un choix arbitraire. L’arbre obtenu est un arbre de
décodage qui définit un code instantané.

a b c d
0.05 0.05 0.1 0.8

a b c d
0 05 0 05 0 1 0 8

0.1

0.05 0.05 0.1 0.8

0.2

a b c d
0.05 0.1 0.8

0.1

0.05

1.0

0.2
1

1 0

0

a b c d
0.05 0.1 0.8

0.1

1 0

0

0.05

symbole de source proba code ΓH
s p(s)

a 0.05 111
b 0.05 110
c 0.1 10
d 0.8 0

Figure 3.2: Construction d’un code de
Huffman. Les noeuds actifs à la fin de
chaque étape sont plus gros que les
noeuds inactifs. Le code obtenu, ΓH ,
est optimal.

Exemple 3.5 La Figure 3.2 illustre la construction du code de Huffman
pour la source des 4 petits codes (Table 3.1). Le code obtenu est le code ΓH ,
qui diffère du code B′ par le codage du symbole a.

efficacité d’un code de source 35

Le théorème suivant exprime que les codes de Huffman sont opti-
maux. La preuve est un peu longuette et nous l’omettons. Voir par exemple http://icwww.epfl.

ch/~chappeli/it/courseFR/Glossary.

php pour une preuve du Théorème 3.4,
ainsi qu’une description des codes de
Huffman D-aires avec D > 2.

Théorème 3.4 (Code de Huffman) La méthode décrite ci-dessus pro-
duit un code binaire instantané ΓH optimal, c’est à dire que pour tout
autre code binaire à décodage unique Γ pour la même source, on a

L(ΓH) ≤ L(Γ)

Notons que, puisque le binaire code de Huffman ΓH est optimal,
il domine le code binaire de Shannon-Fano ΓSF, donc L(ΓH) ≤
L(ΓSF) < H(S) + 1. Donc finalement, pour des codes binaires

H(S) ≤ L(ΓH) ≤ L(ΓSF) < H(S) + 1

Exemple 3.6 (Source des 4 Petits Codes) Le code de Huffman ΓH

obtenu sur la Figure 3.2 a pour longueur moyenne 1.30 bits. D’après le
Théorème 3.4, on ne peut pas faire mieux que ce code et sa longueur est la
longueur minimale d’un code pour cette source.

Notons que la longueur du code optimal ΓH est supérieure à la borne
inférieure de l’entropie, qui vaut H(S) = 1.022. Pour cette source, la
borne inférieure de l’entropie ne peut pas être atteinte.

Exemple 3.7 (Robot-page, suite) Nous avons calculé un code binaire
de Huffman ΓH pour le robot-page de l’Exemple 1.4. Les longueurs, en
bits, des mots de code assignés par le code à chaque lettre de l’alphabet sont
indiquées dans la Table 3.2. La lettre la plus fréquente, E, est codée sur 2
bits, alors que la lettre la moins fréquente, K, nécessite 11 bits.

lettre fréquence bits

A 8,11 4

B 0,81 7

C 3,38 5

D 4,28 5

E 17,69 2

F 1,13 7

G 1,19 6

H 0,74 7

I 7,24 4

J 0,18 9

K 0,02 11

L 5,99 4

M 2,29 6

N 7,68 4

O 5,20 4

P 2,92 5

Q 0,83 7

R 6,43 4

S 8,87 4

T 7,44 4

U 5,23 4

V 1,28 6

W 0,06 11

X 0,53 7

Y 0,26 8

Z 0,12 10

Table 3.2: Fréquences des lettres du
Français, exprimées en pourcentages,
et nombre de bits assignés par un code
binaire de Huffman.

La longueur moyenne du code optimal est L(ΓH) = 4.00, ce qui est
proche de la borne de l’entropie H(S) = 3.95.

Q. 23. La Table 3.2 donne les longueur
des mots du code de Huffman, mais
pas les mots de code. Est-il possible de
déduire les mots de code à partir des
longueurs de mots seulement ?

Q. 24. La longueur moyenne d’un code
de Huffman est-elle égale à la borne
inférieure donnée dans Eq.(3.1) ?

http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php
http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php
http://icwww.epfl.ch/~chappeli/it/courseFR/Glossary.php

4
Entropie Conditionnelle

La théorie de l’entropie et du codage que nous avons vue jus-
qu’ici concerne le codage d’un seul message d’une source. Dans le
cas du robot-page de l’Exemple 3.7, le meilleur code de source uti-
lise 4 bits par lettre, ce qui est très proche de l’entropie de la source
(3.95 bits). En comparaison avec un code naïf qui consisterait à co-
der les 26 lettres sur 5 bits (25 = 32) le gain n’est pas nul, mais n’est
pas spectaculaire non plus. Des algorithmes de compression utilisés
sur des fichiers de texte peuvent faire beaucoup mieux, atteignant
environ 1 bit par lettre. N’est ce pas contradictoire avec la borne
inférieure de l’entropie ? La réponse est non, bien sûr, puisque les
inégalités de l’entropie sont mathématiquement prouvées. La raison
pour cette différence est que les textes français ne sont pas produits
par des robots-pages, mais par des auteurs. Cela nous amène à
considérer l’entropie conditionnelle, définie dans ce chapitre.

4.1 Entropie Conditionnelle

Définition 4.1 Soit S = (S1, S2) une source composée. L’entropie

conditionnelle de S2 sachant que S1 = s1 est l’entropie de la densité
conditionnelle de S2 sachant que S1 = s1 :

H(S2|S1 = s1)
def
= − ∑

s2∈A2

pS2|S1
(s2|s1) log2(pS2|S1

(s2|s1))

Notons que l’ordre des sources dans
la définition n’a pas d’importance, on
définit de la même façon l’entropie
conditionnelle de S1 sachant S2 par

H(S1|S2 = s2)
def
=

−∑s1∈A1
pS1 |S2

(s1|s2) log2(pS1 |S2
(s1|s2))

et

H(S1|S2)
def
= ∑

s2∈A2

H(S1|S2 = s2)pS2 (s2)

L’entropie conditionnelle de S2 sachant S1 en est la moyenne :

H(S2|S1)
def
= ∑

s1∈A1

H(S2|S1 = s1)pS1(s1)

L’entropie conditionnelle mesure la quantité d’information
moyenne que l’on reçoit quand on observe une source, après avoir
observé l’autre, ce qu’on peut aussi appeler l’information “supplé-
mentaire".

Exemple 4.1 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
L1 est le premier chiffre de la somme de deux dés, L2 le deuxième. La den-
sité conditionnelle de L2 sachant que L1 = i pour i = 0, 1 est donnée dans

entropie conditionnelle 37

la Table 2 en page 13. On obtient donc

H(L2|L1 = 0) = 2.857426 bits
H(L2|L1 = 1) = 1.459148 bits

La densité marginale de L1 est donnée dans la dernière ligne de la Table 1
(page 11), d’où :

H(L2|L1) = 5/6× 2.857426 + 1/6× 1.459148 = 2.624379bits

Connaissant le premier chiffre, observer le deuxième donne 2.62 bits d’in-
formation (alors qu’observer le deuxième chiffre sans connaître le premier
donne H(L2) = 3.22 bits d’information).

4.2 Propriétés de l’Entropie Conditionnelle

Notons d’abord que, comme l’entropie, l’entropie conditionnelle
est toujours ≥ 0, puisque c’est une somme de nombres ≥ 0.

Il est souvent plus facile de calculer l’entropie conditionnelle en
utilisant le théorème suivant, qui exprime que l’information que
nous délivre la source composée est la somme de l’information
délivrée par une composante, plus l’information supplémentaire
délivrée par l’autre composante :

Théorème 4.1 (Calcul de l’Entropie Conditionnelle) Soit S =

(S1, S2) une source composée.

H(S1, S2) = H(S1) + H(S2|S1)

= H(S2) + H(S1|S2)

Comme l’entropie conditionnelle est ≥ 0, il s’en suit en particulier que

H(S1) ≤ H(S1, S2) (4.1)
Q. 25. Nous avons trouvé que le robot-
page, qui met tous les caractères en
majuscule, a une entropie de 3.95.
Comment cette entropie serait-elle
modifiée par un nouveau robot page
qui conserverait la casse des lettres
(minuscule ou majuscule) ?

Preuve : Nous faisons la preuve seulement pour le cas où la den-
sité de probabilité de S est positive (c’est à dire que pS1(s1) > 0
pour tout symbole s1). Appliquons la définition de l’entropie condi-
tionnelle :

H(S2|S1) = − ∑
s1∈A1

pS1(s1) ∑
s2∈A2

pS2|S1
(s2|s1) log2

(
pS2|S1

(s2|s1)
)

= − ∑
(s1,s2)∈A

pS1(s1)pS2|S1
(s2|s1) log2

(
pS2|S1

(s2|s1)
)

où nous avons appliqué l’associativité de la somme. Maintenant
remarquons que

log2

(
pS2|S1

(s2|s1)
)
= log2(p(s1, s2))− log2(pS1(s1))

où p est la densité de probabilité de S = (S1, S2). Donc

H(S2|S1) =

(1)︷ ︸︸ ︷
− ∑

(s1,s2)∈A
pS1(s1)pS2|S1

(s2|s1) log2(p(s1, s2))

+

(2)︷ ︸︸ ︷
∑

(s1,s2)∈A
pS1(s1)pS2|S1

(s2|s1) log2(pS1(s1))

38 sciences de l’information

Or

(1) = − ∑
(s1,s2)∈A

p(s1, s2) log2(p(s1, s2)) = H(S1, S2)

et

(2) = ∑
s1∈A1

=1︷ ︸︸ ︷[
∑

s2∈A2

pS2|S1
(s2|s1)

]
pS1(s1) log2(pS1(s1)) = −H(S1)

Donc H(S2|S1) = H(S1, S2)− H(S1). 2

Exemple 4.2 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
Nous avons déjà calculé les entropies dans l’Exemple 1.5 : H(L) =

H(L1, L2) = 3.274402 bits, H(L1) = 0.650022 bit et H(L2) = 3.218846
bit. Donc

H(L2|L1) = H(L1, L2)− H(L1) = 3.274402− 0.650022 = 2.624379 ≈ 2.62 bits

ce qui est la même valeur que celle déjà calculée dans l’Exemple 4.1, mais
cette méthode de calcul est plus simple.

Notons que

H(L2|L1) = 2.62 bits < H(L2) = 3.22 bits

i.e. l’entropie conditionnelle (= information supplémentaire) est moindre
que l’entropie.

Q. 26. Quelle est l’entropie condition-
nelle du premier chiffre L1 sachant le
deuxième L2 ?

Exemple 4.3 (Deux Dés non Pipés, suite) S1 est le résultat du tirage
d’un premier dé non pipé, S2 du deuxième. Dans l’Exemple 1.6 nous
avons calculé que

H(S1, S2) = 2 log2(6), H(S1) = H(S2) = log2(6)

donc

H(S2|S1) = H(S1, S2)− H(S1) = log2(6)

H(S1|S2) = H(S2, S1)− H(S2) = log2(6)

Ici H(S2|S1) = H(S2), ce qui est naturel puisque S1 et S2 sont indépen- De même H(S1|S2) = H(S1).

dantes. Connaître S1 n’apporte aucune information sur S2 quand on sait
que le dé n’est pas pipé.

Dans les exemples précédents, nous avons vu que H(S2|S1) ≤
H(S2), avec égalité quand S1 et S2 sont indépendantes. C’est un fait
tout à fait général, conséquence du Théorème 1.4 :

Théorème 4.2 (Conditionner Réduit l’Entropie) Soit S = (S1, S2)

une source composée. On a bien sûr le même résultat en
inversant l’ordre : H(S1|S2) ≤ H(S1) et
il y a égalité si et seulement si S1 et S2
sont indépendantes.

1. H(S2|S1) ≤ H(S2)

2. H(S2|S1) = H(S2) si et seulement si S1 et S2 sont indépendantes.

entropie conditionnelle 39

,Preuve : (1) Par les Théorèmes (4.1) et (1.4) on a

H(S2|S1) = H(S1, S2)− H(S1) ≤ [H(S1) + H(S2)]− H(S1) = H(S2)

ce qui prouve l’item 1. (2) Supposons qu’il y ait égalité dans ce qui
précède. Alors H(S1, S2) = H(S1)+ H(S2) ; d’après le Théorème 1.4,
S1 et S2 sont indépendantes. ,2

Une variante du Théorème 4.2, qui nous sera utile plus tard, est
le théorème suivant, que nous ne démontrons pas. Il exprime que
l’information supplémentaire apportée par S3 quand on connaît S1

et S2 est moindre que celle obtenue quand on ne connaît que S2 :

Q. 27. Soit S = (S1, S2) une source
composée.

1. Si H(S2|S1) = H(S2) que peut-on
conclure ?

2. Même question avec H(S2|S1) =
H(S1).

Théorème 4.3 (Conditionner Réduit l’Entropie, suite) Soit S =

(S1, S2, S3) une source composée.

H(S3|S1, S2) ≤ H(S3|S2)

Dans une notation telle que
H(S3|S1, S2), on considère qu’il y a
une source composée S = ((S1, S2), S3)
dont la première composante est
elle-même une source composée.

Enfin nous terminons cette section avec la règle suivante, appelée
parfois règle d’enchaînement, qui généralise le calcul de l’entropie
conditionnelle quand on a n sources :

Q. 28. Prouvez le Théorème 4.4.
Théorème 4.4 (Calcul Incrémental de l’Entropie Conditionnelle)
Soit S = (S1, S2, ..., Sn) une source composée à n composantes.

H(S1, S2..., Sn) = H(Sn|S1, S2, ..., Sn−1) + H(Sn−1|S1, S2, ..., Sn−2)

+... + H(S3|S1, S2) + H(S2|S1) + H(S1)

Le théorème est facile à retenir si on interprète l’entropie condi-
tionnelle comme information supplémentaire : l’information totale
délivrée par la source S est l’information délivrée par S1, plus l’in-
formation supplémentaire délivrée par S2, plus etc.... plus l’infor-
mation supplémentaire délivrée par Sn.

Q. 29. Soit S = (S1, S2) une source
composée. Parmi les égalités ou
inégalités suivantes, dire celles qui
sont toujours vraies :

1. H(S1, S2) = H(S1) + H(S2|S1)
2. H(S1, S2) = H(S2) + H(S2|S1)
3. H(S1) ≥ H(S1, S2)
4. H(S1, S2) = H(S1) + H(S2)
5. H(S2|S1) ≥ 0
6. H(S1, S2) ≥ H(S1) + H(S2)
7. H(S1|S2) ≤ H(S1)
8. H(S1, S2) = H(S1) + H(S1|S2)
9. H(S1) ≤ H(S1, S2)
10. H(S1|S2) ≤ H(S2)
11. H(S2) ≤ H(S1, S2)
12. H(S2|S1) ≤ H(S2)
13. H(S2) ≥ H(S1, S2)
14. H(S1, S2) ≤ H(S1) + H(S2)
15. H(S1, S2) = H(S2) + H(S1|S2)

4.3 ? Traitement de l’Information

Le traitement de l’information dans un ordinateur est en principe
déterministe. Quand une source S2 est obtenue à partir d’un algo-
rithme appliqué à S1, il n’y a aucune information supplémentaire
quand on observe S2, pour un observateur qui connaît l’algorithme.
Cela nous amène au concept suivant :

Définition 4.2 Soit S = (S1, S2) une source composée. On dit que S2 se
déduit de manière déterministe de S1, ou encore que S2 est fonction de S1 si
pour tout s1 ∈ S1 tel que pS1(s1) > 0 il existe un unique s2 ∈ S2 tel que
pS2|S1

(s2|s1) = 1.
Dire que S2 se déduit de manière
déterministe de S1 est équivalent à
dire qu’il existe une application f :
A1 → A2 telle que pS2 |S1

(f (s1)|s1) = 1,
c’est à dire que S2 se déduit de S1 par
une application.Théorème 4.5 S2 est fonction de S1 si et seulement si H(S2|S1) = 0.

40 sciences de l’information

Preuve : (1) (S2 est fonction de S1)⇒ (H(S2|S1) = 0) : H(S2|S1 =

s1) = 0 pour tout s1 ∈ A1 (Théorème 1.1) donc H(S2|S1) = 0.
(2) (H(S2|S1) = 0)⇒ (S2 est fonction de S1) :

0 = H(S2|S1) = ∑
s1∈A1

pS1(s1)H(S2|S1 = s1)

et chacun des termes de la somme est ≥ 0, donc chaque terme est
nul. Soit s1 tel que pS1(s1) > 0 ; donc H(S2|S1 = s1) = 0, et donc
(Théorème 1.1) il existe un s2 tel que pS2|S1

(s2|s1) = 1 ; cet s2 est
unique car s’il y en avait un deuxième la somme des probabilités
conditionnelles serait au moins 2, ce qui est impossible. 2

Comme corollaire du Théorème 4.5 nous avons :

Théorème 4.6 (Traitement de l’Information) Si S2 est fonction de S1 alors

H(S1, S2) = H(S1) (4.2)

H(S2) ≤ H(S1) (4.3) On a bien sûr le même résultat en
inversant l’ordre : si S1 est fonction
de S2, alors H(S1, S2) = H(S2) et
H(S1) ≤ H(S2).

Intuitivement, l’inégalité du traitement de l’information explique
ce qui se passe quand on applique un algorithme à un message S1

pour produire un message S2. S2 n’apporte aucune information
(si on connaît l’algorithme), donc l’entropie de S = (S1, S2) est
égale à celle de S1, Eq.(4.2). D’autre part, S2 ne peut contenir que de
l’information déjà présente dans S1 ; donc son entropie est au mieux
égale à celle de S1, Eq.(4.2).

Preuve : Par les Théorèmes 4.5 et 4.1, H(S1, S2) = H(S1) +

H(S2|S1) = H(S1), ce qui prouve Eq.(4.2). Eq.(4.3) est alors une
conséquence de Eq.(4.1). 2

Exemple 4.4 (Somme de Deux Dés Codée Sur Deux Chiffres, suite)
Soient S = (S1, S2) les résultats des deux tirages de dés et L = la somme On suppose ici qu’on peut distinguer

les deux dés, par exemple l’un est
rouge et l’autre est vert.

des deux tirages. Nous savons que H(S) = 5.17 bits et H(L) = 3.27 bits.
La somme L se déduit de manière déterministe de S. Appliquons le

Théorème 4.6 à la source composée (S, L) dont la première composante est
elle même une source composée. Le théorème dit qu’on doit avoir H(L) ≤
H(S), ce qui est vérifié.

Dire “S2 est fonction de S1 et récipro-
quement" équivaut à dire “S2 se déduit
de S1 par une application bijective".

Une conséquence immédiate est que si est S2 est fonction de S1

et réciproquement, alors S1 et S2 contiennent la même information,
donc ont même entropie :

Théorème 4.7 Soit S = (S1, S2) une source composée telle que S2

se déduit de manière déterministe de S1, et vice versa, S1 se déduit de
manière déterministe de S2. Alors H(S1) = H(S2) = H(S1, S2).

Q. 30. Prouvez le Théorème 4.7.

Exemple 4.5 (Le Vélo d’Anne, suite) Bernard pose à Anne des ques-
tions dont la réponse ne peut être que “oui" ou “non". Le but de Bernard

entropie conditionnelle 41

est de deviner le numéro du cadenas d’Anne, qui est un nombre de quatre
chiffres décimaux. Bernard a le droit de poser n questions au maximum.

Nous pouvons modéliser les réponses d’Anne comme une source S =

(S1, S2, ..., Sn), où Sk est la réponse d’Anne à la k-ième question. Il se
peut que Bernard pose moins de n questions, auquel cas nous donnons la
valeur “oui" pour les réponses aux questions non posées. Imaginons une
source S′ qui délivre (X, S1, ..., Sn) où X représente le numéro de cadenas ;
bien sûr cette source ne peut pas être observée par Bernard, qui ne peut
observer que la source marginale S = (S1, ..., Sn).

Par le Théorème de Traitement de l’Information, S est une fonction
déterministe de X (nous supposons qu’Anne ne triche pas ; les réponses
S1, ..., Sn sont entièrement déterminées si le numéro de cadenas X est
connu). Donc

H(X, S) = H(X)

D’autre part, par les Théorèmes 4.1, 1.3 et 1.4 :

H(X, S) = H(X|S) + H(S)

H(S) ≤ H(S1) + ... + H(Sn) ≤ n

donc
H(X|S) ≥ H(X)− n

L’information supplémentaire H(X|S) est celle qui manque à Bernard
pour trouver le numéro du cadenas. Si les questions sont bien conçues,
cette information est petite, si elles sont mal conçues, cette information
est grande. Les questions sont bien conçues si l’entropie H(S) est aussi
grande que possible, ce qui a lieu quand les réponses aux question posées
sont équiprobables. Donc Bernard doit essayer de poser des questions dont
les probabilités de réponse soient proches de 0.5.

Supposons qu’Anne a choisi son numéro uniformément parmi les
10′000 possibles, donc H(X) = log2(10′000) = 4 log2(10) = 13.287.
Nous avons alors

H(X|S) ≥ 13.287− n

En particulier si n ≤ 13 l’entropie conditionnelle est > 0 donc Bernard ne
peut pas être certain de trouver le numéro en 13 questions ou moins.

Q. 31. Existe-t-il un système de 14

questions qui permette à Bernard de
trouver le numéro d’Anne à coup sûr ?

Q. 32. Soit S = (S1, S2) une source
composée.

1. Si H(S1, S2) = H(S1), que peut-on
conclure ? Même question avec :

2. H(S2|S1) = 0

5
Théorème du Codage de Source

Nous arrivons maintenant au bout de nos efforts et pouvons
comprendre comment mesurer l’information d’une source réelle
(plutôt que d’un robot-page). Nous allons considérer un modèle
de source plus complexe, celui de “source étendue", qui modélise
mieux la production d’un texte en français. Pour une source éten-
due, le concept-clé est celui d’“entropie par symbole", défini à partir
de l’entropie conditionnelle.

5.1 Sources Etendues

Jusqu’ici nous avons considéré des source étendues avec un
nombre fixé de composantes. Pour aller plus loin, en particulier
pour modéliser des textes écrits par des auteurs plutôt que des
robots-pages, il nous faut pouvoir considérer des sources produi-
sant un nombre indéfini de symboles. Pour cela, nous introduisons
le concept de “source étendue", que nous pouvons imaginer comme
une machine à produire, sur demande, pour tout n, une suite (ap-
pelée bloc) de n symboles définis sur le même alphabet. Pour être
cohérent, il faut que la densité de probabilité du bloc des n pre-
mières observations soit la même quel que soit le nombre total
d’observations.

En bref, nous pouvons dire qu’une source étendue modélise un
nombre illimité de symboles du même alphabet.

Définition 5.1 (Source Etendue) Une source étendue S sur l’alphabet A
est la donnée d’une famille de sources Sn définies pour tout n = 1, 2, 3, ...
telles que

1. Sn est une source à n composantes, sur l’alphabet A× ...×A ; notons
pSn sa densité de probabilité ;

2. la densité de probabilité de la source constituée des n premières sources
marginales de Sn+k est égale à pSn , pour tous k ≥ 1 et n ≥ 1.

Une définition apparemment plus
simple serait de définir une source
étendue comme la donnée d’un alpha-
bet A et d’une densité de probabilité
définie sur l’ensemble des suites infi-
nies d’éléments de A. Mais cela nous
emmènerait un peu loin, car il faudrait
faire une théorie des probabilités sur
des ensembles infinis, ce qui est plus
complexe et n’est pas nécessaire pour
ce cours.

On note S = (S1, S2, ..., Sk, ...) la source étendue, où Sk est la k-ième
marginale, et Sn = (S1, ..., Sn) la source à n composantes qui en
dérive. On dit aussi que Sn est un “bloc" de n symboles de la source
étendue (rappelons que chaque symbole du bloc est élément du
même alphabet A).

théorème du codage de source 43

Exemple 5.1 (Pile ou Face) SPF modélise des tirages successifs d’une
pièce non biaisée ; Sk représente le résultat du k-ième tirage. La densité de
probabilité de pSn est définie par

pSn(s1, ..., sn) =
1
2n , ∀(s1, ..., sn) ∈ {“P”, “F”}n

c’est à dire que, pour n fixé, tous les blocs de n symboles sont équipro-
bables.

Il est intuitivement clair que SPF satisfait à la définition de source
étendue ; l’item 1 est clair ; pour l’item 2, il faut se demander si la densité
de probabilité des n premières observations est la même quel que soit le
nombre total d’observations. La réponse semble évidemment oui.

? Voici une preuve formelle que SPF
satisfait à la définition de source
étendue ; il faut montrer que l’item 2

est vrai. La densité des n premières
marginales de Sn+k est :

pSn+k
1 ,...,Sn+k

n
(s1, ..., sn)

def
=

∑sn+1 ,...,sn+k
pSn+k (s1, ..., sn, sn+1, ..., sn+k)

=

2k termes︷ ︸︸ ︷
∑

sn+1 ,...,sn+k

1
2n+k = 2k 1

2n+k = 1
2n

= pSn (s1, ..., sn)

ce qui prouve que SPF satisfait l’item 2

de la définition.
De la même façon, pour Sbm, notons

que, d’après Eq.(5.1) la densité de Sn+k

satisfait :

pSn+k (s1, ..., sn+k) =
pSn (s1, ..., sn)pSk+1

2 ,...,Sk+1
k+1 |S

k+1
1

(sn+1, ..., sn+k |sn)

Donc

pSn+k
1 ,...,Sn+k

n
(s1, ..., sn)

def
=

∑sn+1 ,...,sn+k
pSn+k (s1, ..., sn, sn+1, ..., sn+k)

= pSn (s1, ..., sn)×
1 car c’est une proba︷ ︸︸ ︷

∑
sn+1 ,...,sn+k

pSk+1
2 ,...,Sk+1

k+1 |S
k+1
1

(sn+1, ..., sn+k |sn)

= pSn (s1, ..., sn)

ce qui prouve que Sbm satisfait l’item 2

de la définition.

Exemple 5.2 (Beau ou Mauvais) Le temps qu’il fait jour après jour
n’est pas indépendant d’un jour à l’autre, il a tendance à se répéter sou-
vent (mais pas toujours). Supposons que le temps qu’il fait un jour k est,
avec probabilité q = 6/7, le même que le jour précédent. Supposons que le
temps au jour k = 1 est équiprobable. Nous modélisons cela par une source
étendue Sbm sur l’alphabet A = {b, m} (“beau", “mauvais"). La densité
de probabilité de S4, par exemple, est telle que :

pS4(bbbm) = 0.5× q× q× (1− q)

En général nous avons

pSn(s1, ..., sn) = 0.5qn−1−c(s1,...,sn)(1− q)c(s1,...,sn) (5.1)

où c(s1, ..., sn)
def
= le nombre de changements dans la suite (s1, ..., sn) ;

ainsi c(bbbm) = 1, c(bbbb) = 0 et c(bmbm) = 3.
Notons aussi que, par construction de S , la densité conditionnelle du

temps d’aujourd’hui sachant les temps des jours passés ne dépend que du
temps d’hier. En termes mathématiques :

pSn
n |Sn

1 ,...,Sn
n−1

(sn|s1, ..., sn−1) =

{
q si sn = sn−1

(1− q) si sn 6= sn−1

Comme dans l’exemple précédent, il est intuitivement clair que Sbm

satisfait, par construction, à la définition de source étendue. Quelle est la

Pour prouver un résultat du type

∀n ∈ {n0, n0 + 1, ...} , P(n)

on peut utiliser un raisonnement par
récurrence. Cela consiste à prouver :

1. (étape initiale) : P(n0) est vraie.
2. (étape de récurrence) : pour tout

n ∈ {n0, n0 + 1, ...}, si P(n) est vraie
alors P(n + 1) est vraie.

Par exemple, soit S(n) = 1 + 2 +
... + n défini pour n ≥ 1, et soit P(n) la
phrase

S(n) =
n(n + 1)

2
Nous pouvons montrer par récurrence
que P(n) est vraie pour tout n =
1, 2, 3, ... :

1. (étape initiale) : P(1) est vraie car
S(1) = 1 = 1(1+1)

2
2. (étape de récurrence) : Suppo-

sons P(1), P(2), ..., P(n) donc en
particulier S(n) = n(n+1)

2 . Alors

S(n + 1) = 1 + ... + n + (n + 1)
= S(n) + (n + 1)
= n(n+1)

2 + (n + 1)
= (n+1)(n+2)

2

donc P(n + 1) est vraie.

Donc P(n) est vraie pour tout n ∈
{1, 2, 3, ...}.

probabilité uk qu’il fasse beau au jour k ? Montrons que uk = 0.5 pour
tout k = 1, 2, 3....

(Etape d’initialisation) Pour k = 1, u1 = 0.5 par construction.
(Etape de récurrence) Supposons que u1 = u2 = ... = uk = 0.5. Soit

vk = 1− uk la probabilité qu’il fasse mauvais au jour k ; nous avons :

uk+1 = quk + (1− q)vk = 0.5q + 0.5− 0.5q = 0.5

donc la propriété est vraie pour k + 1.

Exemple 5.3 (Vert ou Bleu) Au pays des Schtroumpfs, il y a deux
partis : les bleus (nationalistes) et les verts (écologistes). Quand un
Schtroumpf atteint l’âge de voter, il tire à pile ou face et se prononce
une fois pour toutes pour l’un des deux partis. Pour le reste de sa vie, il
conservera ce choix.

44 sciences de l’information

Nous pouvons modéliser les votes d’un Schtroumpf par une source
étendue SVB sur l’alphabet A = {V, B}. La densité de probabilité de Sn

est :

pSn(VVV...V) = 0.5

pSn(BBB...B) = 0.5

et toutes les autres suites de symboles ont une probabilité nulle. Ici aussi,
il est clair que SVB satisfait, par construction, à la définition de source
étendue.

La probabilité qu’un Schtroumpf vote B à la k-ième votation est 0.5,
c’est à dire que les symboles de la k-ième source marginale sont équipro-
bables.

Pour les trois sources étendues des exemples précédents, la proba-
bilité que le k-ième symbole prenne une des deux valeurs possibles
vaut 0.5. Cependant, les trois sources sont très différentes, comme
l’illustre la Figure 5.1 et nous verrons que nous pouvons les compri-
mer avec des rapports de compression différents.

F m V
F b V
P b V
F m V
F m V
P m V
P m V
F m V
F b V
F m V
P m V
F b V
F m V
P m V
F m V
P m V
P m V
F b V
F b V
F m V
F m V
P m V
F m V
F b V
F b V
F b V
F b V
P b V
F b V
P b V
F b V
P b V
P b V
P b V
P b V
F b V
F b V
P b V
F m V
P m V

Figure 5.1: Exemple de suites de 40
symboles produits par les trois sources
étendues “Pile ou Face", “Beau ou
Mauvais" et “Vert ou Bleu".

5.2 Entropie par Symbole d’une Source Etendue Régulière

Pour une source étendue, nous pouvons calculer l’entropie du k-
ième symbole, et appliquer un code efficace pour chaque symbole,
dont la longueur moyenne sera proche de cette entropie. Cepen-
dant, nous allons voir que cette méthode n’est pas la plus efficace :
il est plus malin de considérer des blocs de n symboles. Le concept
essentiel devient alors l’entropie par symbole, qui est définie comme
la quantité d’information moyenne supplémentaire obtenue quand
on reçoit un symbole. Pour éviter des complications inutiles, nous
avons besoin de poser une hypothèse technique :

Définition 5.2 La source étendue S est dite régulière si les deux limites

1. H(S) def
= limn→+∞ H(Sn) et

2. H∗(S) def
= limn→+∞ H(Sn|S1, S2, ..., Sn−1)

existent et sont finies.
Pour une source étendue régulière S , H(S) est appelée l’entropie d’un

symbole et H∗(S) est appelée l’entropie par symbole.

Toutes les sources étendues utilisées en pratique pour modéliser les
sources d’information sont régulières. Une raison simple est que
toutes les sources stationnaires sont régulières, et que la plupart des
modèles de source sont stationnaires.

On dit que la source étendue S est sta-
tionnaire si, pour tout n fixé, la densité
de probabilité de (Sk+1, ..., Sk+n) est la
même pour toutes les valeurs de k ≥ 0.

En d’autres termes, la stationnarité
signifie que les blocs

(S1, S2, ..., Sn)
(S2, S3, ..., Sn+1)

...
(Sk+1, Sk+2, ..., Sn+k)

ont toutes la même densité de probabi-
lité, quel que soit k ≥ 0. La source ne
change pas son comportement moyen
quand le temps passe, elle ne vieillit ni
ne rajeunit.

On peut montrer que les trois
sources “Pile ou Face", “Beau ou
Mauvais" et “Vert ou Bleu" sont sta-
tionnaires.

Exemple 5.4 (Les Trois Sources) Examinons si les trois sources éten-
dues des exemples précédents sont régulières, et si oui, calculons leurs
entropies d’un symbole et par symbole.

Pile ou Face. D’une part la densité de probabilité de Sn est la même
pour tout n donc H(Sn) = H(S1), i.e. la suite H(Sn) est une suite
constante, donc elle a une limite. L’entropie d’un symbole existe donc et est
H(SPF) = H(S1) = 1 bit.

théorème du codage de source 45

Pour déterminer si l’entropie par symbole existe, il nous faut l’entropie
conditionnelle. Or

H(Sn|S1, ..., Sn−1) = H(Sn) = 1 bit

car Sn est indépendante de S1, ..., Sn−1. Donc, évidemment, la limite existe
et vaut aussi 1 bit. Donc l’entropie par symbole est H∗(SPF) = 1 bit.
Cette source est régulière, et ses entropies d’un symbole et par symbole
sont égales. Q. 33. ? Démontrez qu’une source

stationnaire est régulière.Beau ou Mauvais. Nous avons montré que la probabilité qu’il fasse
beau au jour n est 0.5, donc H(Sn) = 1 bit. La suite H(Sn) est une suite
constante, donc elle a une limite. L’entropie d’un symbole existe donc et est
H(Sbm) = H(S1) = 1 bit.

Sachant que (S1, ..., Sn−1 = s1, ..., sn−1), Sn vaut “beau" ou “mauvais"
avec probabilités q et 1− q, ou l’inverse. Dans tous les cas :

H(Sn|S1 = s1, ..., Sn−1 = sn−1) = h(q)

où la fonction h est l’entropie d’une source binaire, Eq.(1.1). Cela ne dé-
pend pas de (s1, ..., sn−1), donc, en prenant la moyenne nous obtenons :

H(Sn|S1, ..., Sn−1) = h(q)

aussi. Donc l’entropie conditionnelle H(Sn|S1, ..., Sn−1) est la même pour
tout n, donc elle converge et l’entropie par symbole existe. Elle vaut :

H∗(Sbm) = h(q) = 0.592 bit

Cette source est régulière, et son entropie d’un symbole est plus grande
que son entropie par symbole.

H H∗

Pile ou Face 1 bit 1 bit
Beau ou Mauvais 1 bit 0.592 bit

Vert ou Bleu 1 bit 0 bit

Table 5.1: Entropie d’un symbole (H)
et par symbole (H∗) de trois sources
binaires.

Vert ou Bleu. Ici Sn = S1 pour tout n donc comme pour les deux
autres sources, la suite H(Sn) est une suite constante égal à 1 bit, donc
l’entropie d’un symbole existe et vaut H(SVB) = H(S1) = 1 bit.

La densité de probabilité conditionnelle de Sn sachant que (S1, ..., Sn−1 =

s1, ..., sn−1) est la densité de probabilité d’une source certaine, et donc

H(Sn|S1 = s1, ..., Sn−1 = sn−1) = 0

Donc H(Sn|S1, ..., Sn−1) = 0 et la limite existe, avec H∗(SVB) = 0. Cette
source est régulière, et son entropie d’un symbole est plus grande que son
entropie par symbole.

Exemple 5.5 (Source Non Régulière) Tirons à pile ou face une fois
par jour, avec une pièce biaisée qui dépend du jour de la semaine. La pièce
des dimanches retourne “P" avec probabilité 1, celle des lundis avec pro-
babilité 1/2, des mardis avec probabilité 1/3, etc... celle des samedi avec
probabilité 1/7.

Soit S = (S1, S2, ...) une suite infinie de tirages commençant un
dimanche. Alors

H(S1) = 0, H(S2) = 1, ..., H(S7) = 0.592
H(S8) = 0, H(S9) = 1, ..., H(S14) = 0.592
...
H(S7n+1) = 0, H(S7n+2) = 1, ..., H(S7n+7) = 0.592

de sorte que la suite H(Sn) ne converge pas. Cette source n’est pas régu-
lière.

46 sciences de l’information

Q. 34. Si pour une source régulière
l’entropie par symbole est strictement
inférieure à l’entropie d’un symbole
que peut-on conclure ?
Q. 35. ? Démontrez que si pour une
source stationnaire l’entropie par
symbole et l’entropie d’un symbole
sont égales, alors les marginales sont
indépendantes
Q. 36. Si pour une source régulière
l’entropie par symbole est nulle, que
peut-on conclure ?

Dans les exemples précédents de sources régulières, l’entropie
par symbole est majorée par l’entropie d’un symbole, et il n’y a
égalité que dans le cas “Pile ou Face", où les sources marginales
sont indépendantes. C’est une illustration du résultat suivant :

Théorème 5.1 Pour une source étendue régulière :

1. l’entropie par symbole est ≤ l’entropie d’un symbole, i.e. H∗(S) ≤
H(S) ;

2. si les sources marginales sont indépendantes alors il y a égalité.

,Preuve : (1) Soit S = (S1, S2, ...) la source étendue régulière.
L’entropie d’un symbole est h = limn→∞ H(Sn) et l’entropie par
symbole est H∗(S) = limn→∞ H(Sn|S1, ...Sn−1) . Or conditionner
réduit l’entropie (Théorème 4.2) donc

H(Sn|S1, ...Sn−1) ≤ H(Sn)

donc par passage à la limite H∗(S) ≤ H(S).
(2) indépendance⇒ égalité : Les sources sources marginales sont

indépendantes par hypothèse, donc H(Sn|S1, ...Sn−1) = H(Sn) et
par passage à la limite : H(S) = H∗(S). ,2

Exemple 5.6 (Robot-Page contre Flaubert) L’entropie du robot page
est l’entropie d’un symbole de la langue française et vaut environ 3.95
bits. L’entropie par symbole peut être calculée en estimant directement
un = H(Sn|S1, ..., Sn−1). Pour cela, on commence par faire l’hypothèse
que les textes écrits, par exemple un livre de Gustave Flaubert, peuvent
être modélisés par une source régulière (car stationnaire). Cela est valide si
on estime que la langue ne change pas au cours d’un livre, ce qui est vrai
en général.

Voici un exemple pour comprendre
comment sont estimées les densités
de probabilités conditionnelles et mar-
ginales de l’Exemple 5.6. Supposons
que nous ayons un texte de N = 2173
caractères, dans lequel nous avons
observé 53 fois le préfixe QU. Nous
avons trouvé les résultats suivants
pour le successeur de QU :

caractère occurrences

A 23

E 16

I 9

0 5

autres 0

total 53

Nous obtenons alors

pS3 |S1 ,S2
(A|QU) = 23/53 ≈ 0.434

pS3 |S1 ,S2
(E|QU) = 16/53 ≈ 0.302

pS3 |S1 ,S2
(I|QU) = 9/53 ≈ 0.170

pS3 |S1 ,S2
(O|QU) = 5/53 ≈ 0.094

pS3 |S1 ,S2
(sn|QU) = 0 sinon

d’où nous calculons que H(S3|S1 =
Q, S2 = U) = 1.800 bits. Notons
qu’ici nous utilisons implicitement
l’hypothèse que la source qui modélise
le texte est régulière.

Il faut ensuite faire cela pour tous
les préfixes (s1, s2) de n = 2 lettres.
Puis, nous calculons les probabilités
pS1 ,S2 (s1, s2) pour tous les préfixes
(s1, s2) (il y en a 226, nous ignorons les
espaces dans cet exemple). Nous avons
un texte de N = 2173 caractères, il y
a donc N − 2 = 2171 suites possibles
de 2 caractères qui peuvent être suivis
d’un caractère : nous avons observé
53 fois la suite QU donc nous prenons
pS1 ,S2 (QU) = 53/2171 ≈ 0.00244. Il
faut faire ces deux étapes pour tous les
préfixes (s1, s2) de n = 2 lettres, ce qui
permet de calculer u2.

Ensuite on calcule un pour chaque n = 1, 2, ... fixé en estimant

1. d’une part les densités de probabilités conditionnelles
pSn |S1,...,Sn−1

(sn|s1, ..., sn−1) pour chaque (s1, ..., sn−1) et chaque sn ;
cela permet de calculer H(Sn|S1 = s1, ..., Sn−1 = sn−1) pour chaque
(s1, ..., sn−1) ;

2. d’autre part les densités de probabilités marginales pS1,...,Sn−1(s1, ..., sn−1)

pour chaque s1, ..., sn−1 ; en combinant avec ce qui précède cela permet
de calculer

un = H(Sn|S1, ..., Sn−1) =

∑(s1,...,sn−1)
pS1,...,Sn−1(s1, ..., sn−1)H(Sn|S1 = s1, ..., Sn−1 = sn−1)

On fait cela pour plusieurs n et on cherche la limite de un quand n
croît, ce qui donne l’entropie par symbole. Shannon l’a fait pour la langue
anglaise 1 et obtenu l’entropie par caractère h∗ ≈ 1.5. Cela a été fait par 1. C.E. Shannon. Prediction and en-

tropy of printed English. Bell System
Technical Journal, 30(1):50–64, 1951

d’autres pour la langue française 2 et on trouve l’entropie par caractère

2. Alexis Fabre-Ringborg and Sébas-
tien Saunier. Entropie du français.
http://cb.sogedis.fr/files/

entropie/Entropie_Francais_

FabreRingoborg_Saunier.pdf, 2003

h∗ ≈ 1. La valeur dépend des textes et des auteurs choisis et des conven-
tions utilisées pour l’alphabet (par exemple, avec ou sans le caractère
espace, avec ou sans les minuscules, les caractères accentués, etc.).

http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf

théorème du codage de source 47

5.3 Théorème du Codage de Source

Le moment est venu d’introduire la botte secrète du codage de
source : le codage par bloc. L’idée est simple : au lieu de coder un
symbole de la source S1, on code un bloc de n symboles, c’est à dire
que nous codons la source Sn = (S1, ..., Sn). Le premier résultat
remarquable concerne l’entropie de Sn, qui, pour n grand, est à peu
près égale à n fois l’entropie par symbole :

Théorème 5.2 (Entropie d’un Bloc) Soit S une source étendue régu-
lière. Alors

lim
n→+∞

H(S1, ..., Sn)

n
= H∗(S)

où H∗(S) est l’entropie par symbole et H(S1, ..., Sn) l’entropie d’un bloc
de n symboles.

Théorème de Cesàro : si une suite un de
nombres réels converge vers une limite
` (finie ou infinie) quand n → ∞, alors
la moyenne vn = u1+...+un

n converge
aussi vers `.

,Preuve : Nous appliquons le théorème de Cesàro (que nous ne
démontrons pas) à la formule de calcul incrémental de l’entropie
conditionnelle :

H(Sn) = H(S1, ..., Sn) = H(Sn|S1, ..., Sn−1) + H(Sn−1|S1, ..., Sn−2)

+... + H(S3|S1, S2) + H(S2|S1) + H(S1)

Posons un = H(Sn|S1, ..., Sn−1) pour n ≥ 2 et u1 = H1. Nous avons
donc

H(Sn)

n
=

u1 + ... + un

n
Or limn→+∞ un = H∗(S) donc, par le théorème de Cesàro,

lim
n→+∞

H(Sn)

n
= H∗(S)

,2

Exemple 5.7 (Les Trois Sources, suite) Pour chacune des trois sources
étendues régulières des exemples précédents, nous pouvons calculer exacte-
ment l’entropie d’un bloc.

Pile ou Face. Puisque les marginales sont indépendantes, nous avons

H(S1, ..., Sn) = H(S1) + ... + H(Sn) = n bits

car H(S1) = ... = H(Sn) = 1. Nous avons H(S1,...,Sn)
n = 1 donc a fortiori

limn→+∞
H(S1,...,Sn)

n = 1 = H∗(SPF) et le Théorème 5.2 est vérifié.
Beau ou Mauvais. Nous avons calculé que H(Sn|S1 = s1, ..., Sn−1 =

sn−1) = h(q) où la fonction h est l’entropie d’une source binaire, Eq.(1.1).
Donc

H(S1, ..., Sn) = H(Sn|S1, ..., Sn−1) + H(Sn−1|S1, ..., Sn−2)

+... + H(S3|S1, S2) + H(S2|S1) + H(S1)

=

(n−1) fois︷ ︸︸ ︷
h(q) + ... + h(q) +1 = (n− 1)h(q) + 1 = 0.592n + 0.408

Nous avons limn→+∞
H(S1,...,Sn)

n = 0.592 = H∗(Sbm) et le Théorème 5.2
est vérifié.

H H∗ Hn

Pile ou Face 1 1 n
Beau ou M. 1 0.592 0.592n + 0.408

Vert ou Bleu 1 0 1

Table 5.2: Entropie (exprimée en bits)
d’un symbole (H), par symbole (H∗) et
d’un bloc de n symboles (Hn) de trois
sources binaires.

48 sciences de l’information

Vert ou Bleu. La source (S1, ..., Sn) prend deux valeurs (VV...V et
BB...B) avec probabilités 0.5 donc

H(S1, ..., Sn) = H(S1) = 1 bit

Nous avons H(S1,...,Sn)
n = 1

n et limn→+∞
H(S1,...,Sn)

n = 0 = H∗(SVB) ; le
Théorème 5.2 est vérifié.

Considérons maintenant un bloc de n symboles d’une source éten-
due régulière. Nous pouvons l’encoder en utilisant un code binaire
efficace, par exemple un code de Shannon-Fano ou un code de
Huffman. Nous avons maintenant réuni tous les éléments pour
prouver que, pour de tels codes et pour n grand, le nombre moyen
de symboles de code par symbole de source approche l’entropie
par symbole d’aussi près qu’on veut. Ce résultat est connu comme
le “premier théorème de Shannon", ou le “théorème du codage de
source".

Théorème 5.3 (Codage de Source) Soit S une source étendue régulière
et H∗(S) son entropie par symbole. Soient Ln

SF, respectivement Ln
H , les

longueurs moyennes des codes D-aires de Shannon-Fano, respectivement
Huffman, pour un bloc de n symboles de la source. Alors

lim
n→+∞

Ln
H

n
= lim

n→+∞

Ln
SF
n

=
H∗(S)

log2(D)

,Preuve : Par les deux inégalités de l’entropie :

H(S1, ..., Sn)

log2(D)
≤ Ln

H ≤ Ln
SF <

H(S1, ..., Sn)

log2(D)
+ 1

Nous nous intéressons au nombre moyen de symboles de code par

symbole de source, Ln
H
n et Ln

SF
n ; il s’en suit que :

H(S1, ..., Sn)

n log2(D)
≤

Ln
H

n
≤

Ln
SF
n

<
H(S1, ..., Sn)

n log2(D)
+

1
n

(5.2)

Appliquons maintenant le Théorème 5.2, il vient :

lim
n→+∞

H(S1, ..., Sn)

n log2(D)
=

H∗(S)
log2(D)

lim
n→+∞

H(S1, ..., Sn)

n log2(D)
+

1
n

=
H∗(S)

log2(D)

Les deux termes extrêmes de Eq.(5.2) convergent vers la même
limite quand n → +∞, donc, par le “critère des deux gendarmes" 3,

3. Y. Biollay, A. Chaabouni, and
J. Stubbe. Savoir-faire en maths:
bien commencer ses études scienti-
fiques. Presses polytechniques et
universitaires romandes, 2008. ISBN
2880747791

les termes du milieu aussi. ,2

Le critère des deux gendarmes est
le suivant : si un ≤ vn ≤ wn et
limn→+∞ un = limn→+∞ wn = `, alors
limn→+∞ vn = ` aussi.

Remarque. Pour tout autre méthode de codage à décodage unique,
sa longueur moyenne Ln pour un texte de n symboles de la source
satisfait Ln ≥ Ln

H (puisque un code de Huffman est optimal). Donc

toute autre méthode de codage ne peut pas faire mieux que H∗(S)
log2(D)

symboles de code par symbole de source. Appliquons cela avec
D = 2 : H∗(S) est donc le nombre minimum de bits par symbole de
source que n’importe quelle méthode de codage à décodage unique
peut atteindre.

théorème du codage de source 49

Exemple 5.8 (Les Trois Sources, suite) Calculons la longueur moyenne
d’un code binaire de Huffman pour un bloc de n symboles pour chacune
des trois sources étendues régulières.

Pile ou Face. Les symboles de la source Sn sont tous équiprobables, il
est donc naturel d’essayer un code dont tous les mots de code ont la même
longueur. Considérons par exemple le code Γn qui traduit “F" en 0 et “P"
en 1. La longueur moyenne de ce code est

L(Γn) = 2n × 1
2n × n = n bits

Or H(Sn) = n bits donc le code Γn atteint la borne inférieure de l’en-
tropie, et donc il est optimal et un code de Huffman a forcément la même
longueur moyenne. Nous avons

L(Γn
H)

n
= 1 = H∗(SPF)

La limite prévue par le Théorème 5.3 est en atteinte pour tout n ≥ 1.
Beau ou Mauvais. La longueur moyenne d’un code binaire de Huff-

man appliqué à un bloc de n symboles satisfait

0.592 +
0.408

n
≤

L(Γn
H)

n
< 0.592 +

1.408
n

Pour obtenir la valeur exacte de L(Γn
H) il faut calculer le code de Huffman,

ce qui est facile à faire si n est petit. Pour n = 6 nous trouvons le code
illustré en Table 5.3 et

0.660 ≤
L(Γn

H)

n
= 0.6632 < 0.8267

Le code de Huffman est très proche de la borne inférieure, et plus n est
grand plus il en est proche. D’autre part, plus n est grand plus la borne
inférieure est proche de H∗(Sbm) = 0.592. En codant par bloc, on gagne
donc sur deux tableaux.

bbbbbb 2 bbbbbm 5
mbbbbb 5 mbbbbm 7
bmbbbb 7 bmbbbm 9
mmbbbb 5 mmbbbm 7
bbmbbb 7 bbmbbm 10
mbmbbb 10 mbmbbm 12
bmmbbb 7 bmmbbm 10
mmmbbb 5 mmmbbm 7
bbbmbb 7 bbbmbm 10
mbbmbb 9 mbbmbm 12
bmbmbb 12 bmbmbm 13
mmbmbb 9 mmbmbm 12
bbmmbb 7 bbmmbm 10
mbmmbb 9 mbmmbm 11
bmmmbb 7 bmmmbm 9
mmmmbb 5 mmmmbm 7
bbbbmb 7 bbbbmm 5
mbbbmb 10 mbbbmm 7
bmbbmb 12 bmbbmm 10
mmbbmb 10 mmbbmm 7
bbmbmb 12 bbmbmm 10
mbmbmb 13 mbmbmm 12
bmmbmb 12 bmmbmm 10
mmmbmb 10 mmmbmm 7
bbbmmb 7 bbbmmm 5
mbbmmb 9 mbbmmm 7
bmbmmb 12 bmbmmm 9
mmbmmb 9 mmbmmm 7
bbmmmb 7 bbmmmm 5
mbmmmb 9 mbmmmm 7
bmmmmb 7 bmmmmm 5
mmmmmb 5 mmmmmm 2

Table 5.3: Source “Beau ou Mauvais" :
nombre de bits alloué par le code de
Huffman à chaque bloc de n = 6
symboles. La longueur moyenne du
code est 3.97929 bits.

Vert ou Bleu. La source Sn peut émettre deux suites de symboles :
BBBB...B et VVVV...V, et chaque suite a la même probabilité, égale à
0.5. Donc un code évident pour Sn est donné par Γn(BBBB...B) = 0,
Γn(VVVV...V) = 1. Sa longueur moyenne est 1, et aucun code ne peut
faire mieux, donc c’est un code optimal. Donc L(Γn) = 1 bit et

L(Γn
H)

n
=

1
n

La limite prévue par le Théorème 5.3 est 0, ce qui est bien le cas ici.

Q. 37. Considérons les suites des
60 symboles produites par les trois
sources de la Figure 5.1. Supposons
que nous les encodions avec le code
binaire de Huffman pour la source cor-
respondante par blocs de 6 symboles.
Quelle est la longueur en bits de la
suite encodée, pour chacun des trois
cas ?5.4 Compression et codage de source en pratique

Le code de Huffman est optimal, mais comme nous l’avons vu,
il faut pouvoir coder par bloc si l’on veut comprimer efficacement.
Si l’alphabet de la source est de grande taille, sa complexité peut
devenir grande. la construction de l’arbre binaire peut devenir ex-
trêmement complexe en nombre d’opérations. L’algorithme de

50 sciences de l’information

Huffman ne peut donc être utilisé qu’avec des alphabets de source
de taille raisonnable (Par exemple, le codage des opérations sur le
processeur Intel 432 fait appel à des techniques du type Huffman
pour la compression des programmes). De tels alphabets sont ob-
tenus après plusieurs étapes préliminaires de compression utilisant
d’autres algorithmes, dont certains sont mentionnés ci-dessous et
seront étudiés dans les cours de traitement du signal, des images,
de l’audio, ainsi naturellement que dans ceux de théorie de l’in-
formation et du codage. Le théorème du codage de source permet
alors de vérifier, a posteriori, si une méthode de codage est proche
de l’optimum.

Ainsi pour des textes ASCII, on utilise souvent l’algorithme de
Lempel-Ziv. Cet algorithme sera vu dans le cours de théorie de
l’information en 4ème année. Les commandes Unix compress et
zip (winzip sur Windows) utilisent cet algorithme. Vous pouvez
facilement observer en pratique la performance de ce code, on
trouve fréquemment un rapport de compression de l’ordre de 1 : 8.
Or l’entropie par symbole d’un texte français est, en gros, de l’ordre
de 1 bit par caractère ; un caractère encodé suivant le code ASCII
coûte 8 bits. Le théorème de codage de source dit donc qu’un code
par bloc efficace permet d’atteindre environ 1 bit par caractère, ce
qui, pour un texte ASCII, donne un rapport de compression égal
à 1 : 8. Cela montre que l’algorithme de Lempel-Ziv est quasi-
optimal.

Les fichiers audio utilisée en téléphonie sont des suites de sym-
boles de 8 bits ; l’entropie par symbole en dehors des périodes de
silence est de l’ordre de 4 bits. Il est donc possible de comprimer les
périodes d’activité avec un rapport de compression proche de 1 : 2,
en utilisant un code de Huffman 4. Comme les silences occupent

4. H. Gharavi and R. Steele. Conditio-
nal entropy encoding of LOG-PCM
speech. Electronics Letters, 21(11):
475–476, 2007. ISSN 0013-5194

environ la moitié du temps (pour une conversation équilibrée), il
est possible de comprimer avec un rapport d’environ 1 : 4, sans
perte. Les fichiers audio HiFi sont des suites de symboles de 16 bits,
là aussi il est possible d’atteindre un rapport de compression (sans
perte) proche de 1 : 2.

B
B
B
B
N
N
N
B
B
B
N
N
B
B
B
B
N
N
N
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
N
N
N
N
B
B
B
B
B
B
N

B4
N3
B3
N2
B4
N3
B24
N4
B6
N1

1
0
1
1
1
0
1
0
0
0
1
1
1
0
1
1
1
0
0
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
0

Figure 5.2: Une suite de pixels noirs
et blancs, son encodage par longueur
de plage, et l’encodage final, obtenu en
encodant les longueurs de plages par
le code de Huffman dans la Table 5.4.

Exemple 5.9 (Codage par Longueur de Plage (“Run Length Encoding"))
Un algorithme de codage assez simple pouvant s’appliquer à des images
graphiques à deux niveaux (noir (N), blanc (B)), dont l’exemple typique
est le fax, est le codage par longueur de plage (“Run Length Encoding").
L’image est découpée en carrés élémentaires, les pixels. Prenons une ligne
d’une telle image, qui est donc une succession de pixels blancs et noirs.
Par exemple, prenons la colonne de gauche dans la Figure 5.2.

Au lieu d’encoder chaque pixel blanc par un bit 0 et chaque pixel noir
par un bit 1, ce qui ne procure aucune compression, on compte le nombre
de pixels blancs et noirs successifs (qu’on appelle plages), et on code cette
longueur par un entier, en notation décimale. On obtient la colonne du
milieu dans la figure.

Ensuite on code ces symboles entiers par un code binaire approprié,
soit à longueur constante, soit plus efficacement par un code de Huffman

théorème du codage de source 51

(les symboles de la source sont les entiers qui représentent les longueurs
des plages de pixels blancs et noirs). Une des normes recommandées par
le CCITT (Comité Consultatif International Téléphonique et Télégra-
phique, devenu ITU, International Telecommuncation Union) propose un
algorithme de Huffman modifié pour le codage des plages. Par exemple,
une plage de 100 pixels blancs est encodée par la suite 1101100010101,
soit 13 bits de code pour 100 bits de sources. Les probabilités d’apparition
des différentes longueurs de plages sont estimées à partir d’images tests.
Quelques valeurs du code de Huffman sont données dans la Figure 5.2, ce
qui permet de déduire l’encodage final de l’exemple.

longueur
de plage blanche noire

1 000111 010
2 0111 11
3 1000 10
4 1011 011
5 1100 0011
6 1110 0010
...

24 0101000 ...
Table 5.4: Code de Huffman utilisé
pour encoder les longueurs de plages
blanches et noires.

Q. 38. Pourrait-on supprimer les “B"
et “N" dans le codage par longueur
de plage illustré dans la Figure 5.2
(colonne du milieu) ?

Au-Delà de la Compression Sans Perte Tous les algorithmes de com-
pression décrits ci-dessus sont sans pertes (lossless compression), ce
qui veut dire qu’ils sont uniquement décodables. Pour des sources
audio ou vidéo, il est souvent possible d’augmenter fortement le
taux de compression en acceptant une modification des données
(compression avec perte, lossy compression). Ainsi, les standards
de compression audio/video JPEG, MPEG, MP3, etc se font avec
pertes. Ils seront étudiés dans les cours de traitement des signaux,
audio et images, lors des 3ème et 4ème années.

II

Cryptographie

6
La Cryptographie

Le besoin de protection de l’information est aussi ancien que la
civilisation elle-même. D’abord exclusivement utilisée par les mili-
taires et les diplomates, elle a acquis avec l’apparition des réseaux
informatiques quantité d’applications commerciales. On distingue
habituellement les propriétés suivantes :

– l’intégrité : le message reçu est identique à celui qui a été en-
voyé ;

– la confidentialité : seul le destinataire autorisé est capable de lire
le message ;

– la authentification : le destinataire peut être certain que le mes-
sage a vraiment été écrit par la personne qui prétend en être
l’auteur.

chiffrement

P

C = EK(P)

déchiffrement

P = Dk(C)

intrus

clé K

clé k

Figure 6.1: La cryptographie : un texte
clair P est chiffré à l’aide d’une clé
K, transmis, puis déchiffré à l’aide
d’une clé k. Un intrus peut voir le texte
transmis C, mais, sans la connaissance
de la clé k, il ne peut le déchiffrer.

6.1 Eléments d’un Système Cryptographique

Lors de l’opération de chiffrement, le texte clair (“plaintext”) P
est transformé par une fonction E paramétrée par une clé K, pour
ainsi obtenir un texte chiffré, appelé aussi cryptogramme (“ciphertext”)
C = EK(P). Ce cryptogramme est alors transmis au récepteur, qui
applique un algorithme de déchiffrement Dk muni d’une clé k, qui
recouvre le texte clair original : P = Dk(C) = Dk(EK(P)). La clé
de déchiffrement k peut être identique à la clé de chiffrement K
(auquel cas on parle de cryptographie symétrique), ou pas (on parle
alors de cryptographie asymétrique). Si le système est symétrique
il faut que la clé soit maintenue secrète. Nous étudierons au Cha-
pitre 10 un algorithme asymétrique, qui n’utilise pas la même clé au
chiffrement et au déchiffrement.

On suppose que “l’intrus” écoute et peut reproduire fidèlement
le cryptogramme complet. Il ne connaît cependant pas les clés,
et ne peut retrouver aisément le message en clair bien que l’on
suppose qu’il connaisse l’algorithme utilisé. Cette hypothèse est
connue sous le nom de thèse de Kerckhoffs. Parfois l’intrus ne se

Pourquoi faire l’hypothèse de Kerck-
hoffs ? L’histoire a montré qu’un
secret ne le reste pas longtemps une
fois qu’il est partagé par plusieurs
personnes, nous ne pouvons donc
pas supposer qu’un algorithme de
chiffrement restera inconnu. Alors
que changer d’algorithme chaque
fois que le système est compromis
serait long et couteux, il n’y a pas de
problème à changer fréquemment la
clé. Le modèle de base de chiffrement
comporte donc une méthode générale
de chiffrement constante et connue,
paramétrée par une clé secrète et
facilement modifiable.

contente pas d’écouter le canal de communication (intrus passif),
mais peut altérer les messages ou injecter ses propres messages
dans le canal de communication (intrus actif). L’art de composer
des cryptogrammes est la cryptographie, l’art de les briser est la
cryptanalyse.

54 sciences de l’information

Le problème du cryptanalyste peut être divisé en plusieurs caté-
gories, en fonction de l’information dont il dispose. S’il ne dispose
que d’une certaine quantité de cryptogrammes, mais pas du texte
clair correspondant, il essaie de compromettre le système cryp-
tographique par une attaque à texte chiffré seul (“ciphertext-only
attack”). Clairement, un chiffrement doit être protégé contre une
telle attaque, puisque nous faisons l’hypothèse qu’il a accès au ca-
nal de communication. Si le cryptanalyste peut analyser des paires
composées de texte clair et du cryptogramme correspondant, l’at-
taque devient à texte clair connu (“known plaintext attack”). Une
telle attaque est possible lorsque l’intrus, à un moment donné, a
eu accès à une base de données contenant de telles paires. Comme
nous ne pouvons être sûrs que cela ne se produira jamais, notre
système doit aussi pouvoir résister à ce genre d’attaque. Enfin, si les
circonstances sont tellement favorables (du point de vue du crypta-
nalyste) que celui-ci peut obtenir le cryptogramme correspondant
au texte clair de son choix (si, par exemple, il parvient à accéder au
mécanisme d’encodage, mais ne peut pas voir la clé) on parle alors
d’attaque à texte clair choisi (“chosen plaintext attack”).

Exemple 6.1 (Chiffre de César) Jules César utilisait un procédé de
chiffrement symétrique qui consistait en une rotation de toutes les lettres
de l’alphabet de trois positions. Ainsi, a devenait d, b devenait e, . . .et z
devenait c. On peut généraliser le chiffrement de César pour permettre
une rotation de K lettres, au lieu de prendre toujours 3 lettres. Dans ce
cas la clé K est un nombre entre 0 et 25, interprété comme une rotation de
l’alphabet.

Q. 39. Dans le film Odyssée de l’Espace
2001, le nom de l’ordinateur est HAL,
et c’est en fait un texte chiffré, utilisant
un chiffre de César. Quel est le texte
clair correspondant ? Et quelle est la
clé K ?

Evidemment, le chiffrement de rotation n’est pas très sécurisé. Puisque,
par hypothèse (de Kerckhoffs), le cryptanalyste sait que nous utilisons un
chiffrement de rotation, il n’y a que 26 clés possibles et il est trivial de
toutes les essayer.

Exemple 6.2 (Chiffrement par Substitution) Un chiffrement symé-
trique plus sécurisée que le chiffre de César consiste à remplacer chaque
lettre de l’alphabet du texte clair par une autre lettre, sans respecter une
relation de rotation entre les deux alphabets. Ce système général est appelé
substitution monoalphabétique, la clé étant le tableau de correspondance
entre les alphabets du texte en clair et du texte crypté. Par exemple, on
pourrait prendre la clé de la Figure 6.2.

texte texte texte texte
clair chiffré clair chiffré

a Q n F
b W o G
c E p H
d R q J
e T r K
f Z s L
g U t Y
h I u X
i O v C
j P w V
k A x B
l S y N

m D z M
Figure 6.2: Exemple de clé du chiffre-
ment par substitution monoalphabé-
tique.

Pour un alphabet de D caractères, il y a D! clés possibles. Puisque
26! ∼ 1026, un très grand nombre, ce qui semble indiquer que cet algo-
rithme soit relativement sécurisé. Malheureusement, ce n’est pas tout à fait
le cas.

En effet, le cryptanalyste peut utiliser la distribution des fréquences
des lettres dans le cryptogramme. Par exemple, en Anglais, les lettres
les plus fréquentes sont e et t, que le cryptanalyste peut alors essayer
d’assigner aux deux lettres les plus fréquentes dans le cryptogramme. Il
trouvera vraisemblalement alors beaucoup de triplets de la forme tXe,
suggérant fortement que X corresponde à h. En procédant de la sorte, il
peut retrouver, lettre par lettre, la clé de chiffrement assez rapidement (du

la cryptographie 55

moins avec un ordinateur).
De plus, il peut parfois deviner certains mots selon le contexte. Par

exemple, s’il s’agit d’une transaction boursière, le message risque de com-
porter les mots “action” ou “cours”. . .

Pour compliquer la tâche du cryptanalyste, il faut donc “cacher” la dis-
tribution de fréquences des lettres, de telle sorte que des lettres comme e, a,
t ne soient pas si faciles à repérer. Une manière de procéder est d’introduire
plusieurs alphabets cycliques, pour obtenir un chiffrement de Vigenère, qui
est un exemple de chiffrement utilisant la substitution polyalphabétique. La
clé est d’habitude un mot court, facile à mémoriser, comme BONJOUR (au
lieu du tableau complet des 26 lettres dans le cas monoalphabétique). La clé
est répétée constamment sous le texte en clair, et indique quelle rangée de
la table précédente doit être utilisée pour le chiffrement – voir Figure 6.3.

Un exemple célèbre de méthode de
chiffrement par substitution polyalpha-
bétique est la machine ENIGMA utili-
sée par les forces de l’axe (Allemagne,
Japon et leurs alliés) pendant la se-
conde guerre mondiale. La substitution
s’opérait grâce à trois rotors ayant
chacun 26 positions. Les positions
initiales des rotors étaient encodées sur
l’en-tête du message, ce qui était une
faiblesse exploitée par les cryptana-
lystes britanniques, français et polonais
(http://www.bletchleypark.org.uk/).

alphabet d’origine a b c d e f g h i j k l m n o p q r s t u v w x y z

rangée A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
rangée B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
rangée C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
rangée D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
rangée E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
rangée F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
rangée G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
rangée H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
rangée I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
rangée J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
rangée K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
rangée L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
rangée M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
rangée N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
rangée O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
rangée P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
rangée Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
rangée R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
rangée S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
rangée T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
rangée U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
rangée V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
rangée W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
rangée X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
rangée Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
rangée Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

texte clair : l a c r y p t o g r a p h i e
clé : B O N J O U R B O N J O U R B
texte crypté : M O P A M J K P U E J D B Z F

Figure 6.3: Chiffrement de Vigenère.
La lettre l est chiffrée avec l’alphabet
de la rangée B et devient M, la lettre a
est chiffrée avec l’alphabet de la rangée
O et devient O, etc.

http://www.bletchleypark.org.uk/

56 sciences de l’information

Bien qu’il soit plus sûr qu’un chiffrement de substitution monoalpha-
bétique, un chiffrement de substitution polyalphabétique peut encore être
brisé par une attaque à texte crypté seul. L’astuce consiste à deviner la
longueur de la clé.

6.2 ? Confidentialité Parfaite

Il est possible en théorie de fabriquer un système qui assure
une confidentialité parfaite (mais nous allons voir que cela pose
quelques problèmes). Considérons un crypto-système symétrique,
dont la clé K = k est secrète et inconnue de l’intrus. L’intrus peut
observer le texte chiffré C, mais ne connaît pas le texte clair P. In-
terprétons les messages P et C comme délivrés par des sources P
et C. Pour que le système soit parfait, il faut que l’information qu’il
obtient en observant C ou en ne l’observant pas soit la même, ce
qui correspond à dire que les sources sont indépendantes :

Définition 6.1 On dit que le cryptosystème est à confidentialité parfaite si
les sources qui délivrent les messages P et C sont indépendantes.

Exemple 6.3 (Vernam) Le masque à usage unique (Ang. one time pad)
ou cryptosystème de Vernam est un système utilisé dans les ambassades. Il
fonctionne de la façon suivante.

L’opération xor sur 1 bit (aussi appelé
“ou exclusif")est définie par la table

xor 0 1
0 0 1
1 1 0

L’opération xor bit par bit, que nous
notons ⊕, porte sur des suites de n
bits, et est obtenue en appliquant la
table bit par bit :

a1a2...an ⊕ b1b2...bn = c1c2...cn

avec ci = ai xor bi pour i = 1...n. Par
exemple :

0100
⊕ 1101
= 1001

Notons que a = b⊕ c est équivalent à
b = a⊕ c.

Le texte clair P est encodé comme une suite de n bits (chiffres binaires).
La longueur n est constante et connue de tous. On s’arrange pour que
tous les textes aient pour longueur n (les messages plus long que n bits
sont fragmentés, les messages plus courts que n bits sont allongés en ajou-
tant des caractères “espace"). La clé K est aussi une suite de n bits, tirée
au sort, indépendamment de P, et utilisée une seule fois. Nous suppo-
sons que tous les choix de clés ont la même probabilité. Le texte chiffré est
C = P⊕ K, où ⊕ est l’opération xor bit par bit. Le déchiffrement se fait
par

P = C⊕ K

ce qui suppose que le récepteur connaît par avance la clé secrète.
Soit P la source qui émet le texte clair P, K celle qui émet la clé secrète

K et C celle qui émet le texte chiffré C (un intrus ne peut observer que
C). La densité de probabilité de la source (P ,K) a une forme produit
car le message en clair P et la clé K sont indépendants : pP ,K(P, K) =

pP (P)pK(K).
Notons que K = C ⊕ P donc la probabilité de l’événement E : “les

sources P et C émettent P et C" est pP ,C(P, C) = pP ,K(P, C ⊕ P),
puisque l’événement E est aussi égal à “P émet P et K émet C ⊕ P".

Supposons que chaque lettre est
codée sur 5 bits par sa position dans
l’alphabet (A est codée par 1, B est
codée par 2, etc. et l’espace par 0).
Utilisons le cryptosytème de Vernam
avec des suites de 8 lettres, ce qui
donne un masque K de longueur
n = 40 bits. Nous voulons transmettre
le mot BONJOUR ; le texte clair P est
obtenu en ajoutant un espace et vaut,
en base 10 :

2 15 14 10 15 21 18 0

Converti en binaire, cela donne le texte
clair :

P =
00010 01111 01110 01010
01111 10101 10010 00000

Le masque à usage unique est aléa-
toire ; supposons qu’on ait :

K =
01100 01000 11001 10111
00101 11010 01011 10001

Le texte chiffré est obtenu par l’opéra-
tion xor : C = P⊕ K

C =
01110 00111 01111 11101
01010 01111 11001 10001

Le déchiffrement s’obtient de la même
façon en calculant C⊕ K.

Donc
pP ,C(P, C) = pP (P)pK(C⊕ P) =

1
2n pP (P) (6.1)

où la dernière égalité est parce que toutes les clés ont même probabilité.
Nous pouvons en déduire la densité de probabilité conditionnelle du

texte chiffré sachant que le texte clair est P :

pC|P (C|P)
def
=

pP ,C(P, C)
pP (P)

=
1
2n

la cryptographie 57

Donc cette densité conditionnelle est indépendante de P ; par le Théo-
rème 0.1, les sources P et C sont indépendantes. Donc le cryptosystème
de Vernam est à confidentialité parfaite. Dans un certain sens, il offre la
meilleure confidentialité possible (à condition de pouvoir se mettre d’accord
sur les clés par avance, et les conserver en lieu sûr).

Notons que l’hypothèse que les clés ont toute même probabilité est
essentielle. En effet, si elle n’est pas vraie, le terme pK(C ⊕ P) dans
l’Eq.(6.1) dépend à la fois de P et C et nous ne pouvons pas factoriser.
Par contre, il n’y a aucune hypothèse sur la densité de probabilité du texte
clair (qui, en général, n’est pas uniforme).

Dans l’exemple précédent, nous voyons que la clé est aussi longue
que le texte clair. C’est un fait général, comme l’expriment les deux
théorèmes suivants. Le premier s’applique à tout système crypto-
graphique symétrique, qu’il soit à confidentialité parfaite ou pas.
Il dit que l’entropie du texte chiffré est au moins aussi grande que
celle du texte clair.

Théorème 6.1 (Cryptographie Symétrique) Considérons un système
de cryptographie symétrique (donc à clé secrète) ; supposons de plus (ce
qui est raisonnable) que la clé soit choisie indépendamment du texte clair.
Alors

H(P) ≤ H(C) (6.2)

où H(P) est l’entropie du texte clair, et H(C) l’entropie du texte chiffré.

,Preuve : Le texte chiffré dépend de manière déterministe de la
combinaison du texte clair et de la clé, donc d’après le théorème de
traitement de l’information (Eq.(4.2) en Section 4.3) H(C,P ,K) =

H(P ,K). De même, puisque le déchiffrage fonctionne, le texte clair
dépend de manière déterministe de la combinaison du texte chiffré
et de la clé, donc H(C,P ,K) = H(C,K). Donc, en combinant les
deux :

H(P ,K) = H(C,K) (6.3)

Puisque P et K sont indépendantes, le membre de gauche de
Eq.(6.3) est égal à H(P) + H(K) (Théorème 1.4). Par la règle
d’enchaînement (Théorème 4.4), le membre de droite est H(K) +
H(C|K). Donc

H(P) = H(C|K)

Or conditionner réduit l’entropie (Théorème 4.2), donc H(C|K) ≤
H(C). ,2

Le deuxième théorème s’applique aux systèmes à confidentialité
parfaite et exprime que l’entropie de la clé secrète doit être au
moins aussi grande que celle du texte clair (et aussi du texte chif-
fré) : Q. 40. Calculer l’entropie de la clé et

du texte chiffré pour le cryptosystème
de Vernam (Exemple 6.3) et vérifier
les inégalités du Théorème 6.1 et du
Théorème 6.2.

Théorème 6.2 (Confidentialité Parfaite) Considérons un système de
cryptographie symétrique à confidentialité parfaite. Supposons que la clé
soit choisie indépendamment du texte clair. Alors

H(P) ≤ H(C) ≤ H(K) (6.4)

58 sciences de l’information

où H(P) est l’entropie du texte clair, H(K) l’entropie de la clé et H(C)
l’entropie du texte chiffré.

Preuve : La première inégalité du théorème est l’Eq.(6.2), donc il
nous reste seulement à démontrer la seconde.

Montrons d’abord l’inégalité (6.5) ci-dessous, qui est vraie pour
les systèmes cryptographiques symétriques, qu’ils soient à confi-
dentialité parfaite ou pas. Le texte chiffré dépend de manière dé-
terministe de la combinaison du texte clair et de la clé, donc (Théo-
rème 4.5 en Section 4.3) H(C|P ,K) = 0. Par la règle d’enchaînement
(Théorème 4.4), H(C,K|P) = H(K|P) + H(C|P ,K) = H(K|P).
D’autre part, toujours par la règle d’enchaînement, H(C|P) =

H(C,K|P)− H(K|C,P) ≤ H(C,K|P). En combinant les deux, nous
obtenons :

H(C|P) ≤ H(K|P) (6.5)

En termes simples, cette inégalité exprime que l’information sup-
plémentaire ajoutée par la clé quand on connaît le texte clair est
au moins aussi grande que celle ajoutée par le texte encrypté – ce
qui est normal puisque si on connaît la clé et le texte clair, on peut
trouver le texte encrypté.

Supposons maintenant que le système soit à confidentialité
parfaite, c’est à dire que P et C sont indépendantes. Alors (Théo-
rème 4.3) H(C|P) = H(C), donc en utilisant l’Eq.(6.5) : H(C) ≤
H(K|P) ≤ H(K), où la dernière inégalité est parce que condition-
ner réduit l’entropie. 2

7
Arithmétique

La cryptographie moderne ne se base pas sur des substitutions
alphabétiques. Au lieu de cela, on considère un texte clair comme
une suite de bits, et, en regroupant les bits par blocs, comme une
suite de nombres entiers. On applique ensuite des opérations sur
les nombres entiers. Pour aller plus avant, il nous faut donc étudier
la théorie des nombres entiers, appelée arithmétique.

7.1 Les Entiers

On désigne par Z l’ensemble des entiers (positifs et négatifs). Si
on ajoute, soustrait ou multiplie des entiers, on obtient des nombres
entiers. Par contre, ce n’est pas vrai, en général, pour la division
(par exemple 1

2 n’est pas un nombre entier). On peut cependant
définir une division qui produit des nombres entiers, à condition de
conserver un reste.

Q. 41. Quels sont le reste et le quotient
dans la division de 23 par 5 ? de −23
par 5 ?

Q. 42. Combien valent 13 mod 10,
(−13) mod 10, 13 mod (−10),
(−13) mod (−10) et 13mod0 ?

Q. 43. Combien vaut 24163584354 mod
10 ?

Théorème 7.1 (Division Euclidienne) Soient a et b des entiers avec
b 6= 0. Il existe un couple unique d’entiers (q, r) tel que

a = bq + r et 0 ≤ r ≤ |b| − 1.

?Q. 44. Prouvez le Théorème 7.1.

Dans le langage Python, a%b est
le reste de a dans la division par b
pour b > 0, ainsi 23%5 retourne 3 et
(−23)%5 retourne 2.

Dans les langages C++ et Java,
malheureusement, c’est un peu plus
compliqué ; si a ≥ 0 et b > 0, a%b
vaut le reste de la division de a par b,
mais si a < 0 le résultat vaut (reste −
b). Ainsi, dans ces langages, 23%5
retourne 3 mais (−23)%5 retourne −3.

Définition 7.1 L’entier q est appelé le quotient et r le reste de a dans la
division par b. Le reste de a dans la division par b se note habituellement
a mod b.

Définition 7.2 Si a, b ∈ Z et b 6= 0, on dit que b divise a, ou que b est
un diviseur de a, ou encore que a est un multiple de b, si a

b est un entier.
C’est équivalent à dire que le reste de a dans la division par b est 0.

Par exemple 6 divise 12 et ne divise pas 13 ; 12 est un multiple de 6
et 13 n’est pas un multiple de 6.

Définition 7.3 On dit que a ∈ Z, a > 1 est un nombre premier s’il n’a
pas d’autre diviseur positif que a et 1.

Q. 45. Les nombres suivants sont-ils
premiers : 27, 255, 256 ?Les nombres premiers jouent un rôle important en cryptographie.

La suite des nombres premiers commence par 2, 3, 5, 7, 11, 13, 17, 19, 23....

60 sciences de l’information

Un des théorèmes de base de l’arithmétique, que nous ne démon-
trons pas, exprime que tout nombre entier décompose de manière
unique en produit de nombres premiers :

Théorème 7.2 (Factorisation) Pour tout entier a strictement positif il
existe une suite unique de nombres premiers p1 < p2... < pk et une suite
unique d’exposants α1 > 0, ..., αk > 0 tels que Q. 46. Quelles sont les factorisations de

12, de 100 et de 256 ?

a = pα1
1 ...pαk

k

Les nombres p1, ...pk sont appelés les facteurs premiers de a.
Par exemple, la décomposition en
facteurs premiers de de a = 12 est
12 = 22.3, et celle de b = 168 est
168 = 23.3.7. Les facteurs premiers
de a sont 2 et 3 avec exposants 2 et 1.
Ils apparaissent tous les deux dans la
décomposition de b avec un exposant
égal à 3 et 1 donc a divise b. Par contre
a ne divise pas c = 30 car c = 2.3.5 et
le facteur 2 est présent dans a avec un
exposant trop grand.

Théorème 7.3 Soient a et b deux entiers positifs ; a divise b si et seule-
ment si tous les facteurs premiers de a apparaissent dans la décomposition
en facteurs premiers de b, avec un exposant supérieur ou égal.

Si p et q sont deux nombres donnés, il est très facile de calculer
a = pq, même si p et q sont grands. Par contre, si un nombre a est
donné, dont on soupçonne qu’il se factorise sous la forme a = pq
avec p et q premiers, il est (jusqu’à aujourd’hui) très difficile de
calculer p et q, si a est grand (par exemple si a est un nombre de
1000 bits). De manière générale, on pense que la factorisation est
difficile à calculer pour un nombre a très grand ; aucune méthode
connue existe qui soit de complexité raisonnable. Un des postulats
de la cryptographie moderne est que les intrus ne possèdent pas de
méthode pour factoriser rapidement de très grands nombres.

On dit que la fonction qui à deux nombres premiers p, q associe
leur produit pq est une fonction à sens unique, c’est à dire facile
à calculer mais difficile à inverser. De la même façon, un bottin
téléphonique est une fonction à sens unique : il est facile de trouver
le numéro de quelqu’un en connaissant son nom, mais beaucoup
moins évident de trouver le nom de la personne au numéro de
téléphone donné. La cryptographie utilise beaucoup les fonctions à
sens unique.

Q. 47. Montrez que si un nombre a
n’est pas premier alors son plus petit
facteur premier est ≤

√
a.

Q. 48. Le nombre 257 est-il premier ?

Soient a et b deux entiers non tous deux nuls. Les entiers positifs
qui divisent à la fois a et b forment un ensemble fini (ces nombres
sont ≤ a et ≤ b), non vide puisque 1 divise tous les entiers. Par
conséquent, cet ensemble possède un plus grand élément :

Définition 7.4 (PGCD) Soient a et b deux entiers non tous deux
nuls. On appelle plus grand commun diviseur (PGCD) de a et b, (noté
pgcd(a, b)), le plus grand nombre entier positif qui divise à la fois a et b.

Notons que 0 est divisible par tous les
nombres donc les diviseurs communs
à 0 et b 6= 0 sont les diviseurs de
b, dont le plus grand est |b| ; donc
pgcd(0, b) = |b| si b 6= 0.

Si a = b = 0 l’ensemble des diviseurs
de a et b est infini donc pgcd(0, 0) n’est
en principe pas défini ; on fait cepen-
dant la convention que pgcd(0, 0) = 0 ;
la raison en est l’identité de Bézout
(Théorème 8.4).

Pour des nombres positifs pas trop grands, le PGCD peut être cal-
culé simplement à partir des décompositions en facteurs premiers,
en utilisant le théorème suivant (que nous ne démontrons pas) :

Théorème 7.4 Soient a et b deux entiers positifs et soient p1 < p2 <

... < pn la suite des nombres premiers qui divisent a ou b. On peut donc
écrire

a = pα1
1 ...pαk

k

b = pβ1
1 ...pβk

k

arithmétique 61

avec αi ≥ 0 et βi ≥ 0. Alors

pgcd(a, b) = pγ1
1 ...pγk

k

avec γi = min(αi, βi)

Q. 49. Quel est le PGCD de 12 et 100 ?

En d’autres termes, nous obtenons le PGCD en prenant les facteurs
premiers en commun, avec le plus petit exposant. S’il n’y a aucun
facteur en commun, le PGCD vaut 1.

Nous utiliserons souvent la propriété suivante :

Définition 7.5 On dit que deux entiers a et b sont premiers entre eux ou
étrangers, ou encore que a est premier avec b si pgcd(a, b) = 1.

Pour des nombres pas trop grand, un critère facile (que nous ne
démontrons pas) est le suivant.

Théorème 7.5 Soient a et b deux entiers positifs. Ils sont premiers entre Q. 50. Les nombres 12 et 20 sont ils
premiers entre eux ? 12 et 35 ? 234 et
257 ?

eux si et seulement si ils n’ont aucun facteur premier commun.

Trois conséquences immédiates, et importantes, sont les sui-
vantes.

Théorème 7.6 1. Deux nombres premiers distincts sont premiers entre
eux.

2. Soit p un nombre premier et a un entier tel que 1 ≤ a ≤ p− 1. Alors a
et p sont premiers entre eux.

3. Soient a et b deux nombres premiers entre eux, et c un entier. Si a et b
divisent c alors ab divise c.

Q. 51. Prouvez le Théorème 7.6.

Q. 52. Combien y a-t-il de nombres
positifs < 257 qui soient premiers avec
257 ?
Q. 53. Est-il vrai qu’un nombre est
divisible par 12 si et seulement si il est
divisible par 3 et par 4 ?
Q. 54. Est-il vrai qu’un nombre est
divisible par 12 si et seulement si il est
divisible par 2 et par 6 ?

Notons que contrairement à la factorisation, savoir si deux nombres
sont premiers entre eux est un problème facile, que l’on peut ré-
soudre avec l’algorithme d’Euclide, que nous verrons plus loin.

7.2 Congruences

Q. 55. Les congruences suivantes
sont-elles vraies ?

−2394860 ≡ 32474364 (mod 2)
−1 ≡ 1 (mod 2)
2394860 ≡ 0 (mod 2)
23 ≡ 3 (mod 5)
−23 ≡ 3 (mod 5)
−23 ≡ −3 (mod 5)
−23 ≡ 2 (mod 5)

Définition 7.6 (Congruence modulo m) Soient a et b deux entiers et
m un entier non nul. On dit que a est congru à b modulo m, et on écrit

a ≡ b (mod m) (7.1)

si a et b ont le même reste dans la division par m. L’expression (7.1) s’ap-
pelle congruence et m est son module.

Théorème 7.7 Soient a et b deux entiers et m un entier non nul. a ≡ b
(mod m) si et seulement si m divise b− a.

,Preuve : 1. a ≡ b (mod m)⇒ m divise b− a. Faisons la division
euclidienne de a et b par m ; les restes sont les mêmes, donc nous
pouvons écrire a = mq + r et b = mq′ + r. Donc b− a = m(q′ − q)
est un multiple de m.

2. m divise b − a ⇒ a ≡ b (mod m). Faisons la division eu-
clidienne de a par m : nous pouvons écrire a = mq + r avec

62 sciences de l’information

0 ≤ r ≤ |m| − 1 De plus b − a est un multiple de m, donc nous
pouvons écrire b− a = λm avec λ entier. Donc

b = (b− a) + a = λm + qm + r = (λ + q)m + r

comme 0 ≤ r ≤ |m| − 1, par le Théorème 7.1, cette équation donne
le quotient (λ + m) et le reste (r) de la division euclidienne de b par
m. En particulier, le reste de la division de b par m est r, le même
que a. ,2

Les congruences sont utilisées abondamment en cryptographie
et codage correcteur. Leur intérêt principal est qu’on peut calcu- Q. 56. Vrai ou faux :

1. a ≡ 0 (mod m)⇔ a divise m
2. a ≡ 0 (mod m)⇔ m divise a
3. a ≡ 0 (mod m) ⇔ m et a sont

premiers entre eux.

ler avec elles, comme avec des égalités. Pour commencer, notons
que la congruence modulo m possède les propriétés suivantes, qui
en rendent la manipulation aisée, et dont la preuve est une consé-
quence immédiate du Théorème 7.7 :

Théorème 7.8 Soient a, b, c des entiers et m un entier non nul.
– réflexivité : a ≡ a (mod m),
– symétrie : si a ≡ b (mod m) alors b ≡ a (mod m),
– transitivité : si a ≡ b (mod m) et b ≡ c (mod m) alors a ≡ c

(mod m).

L’ensemble de ces trois propriétés font que l’on dit que la congruence
est une “relation d’équivalence".

Intuitivement, une relation R définie
sur un ensemble A fait correspondre à
tout élément a de A 0, 1 ou plusieurs
éléments de A. On écrit aRb si l’élé-
ment b correspond à a. Formellement,
R est un sous-ensemble du produit
cartésien A× A.

Si pour chaque a il existe 0 ou 1
élément b tel que aRb alors R est une
fonction. S’il existe pour chaque a
exactement 1 élément b, alors R est
une application.

On dit que la relation est
– réflexive si ∀a ∈ A, aRa
– symétrique si ∀a, b ∈ A, aRb ⇒

bRa
– transitive si ∀a, b, c ∈ A,

(aRb et bRc)⇒ aRc
Une relation qui possède ces trois
propriétés est dite relation d’équivalence.
Une relation d’équivalence exprime
une propriété du type “a et b ont le
même quelque chose" (par exemple “a
et b ont le même reste dans la division
par m").

Elles ont pour conséquence que l’on peut enchaîner des congruences
et oublier l’ordre dans lequel on les écrit, comme par exemple dans
−2 ≡ 0 ≡ 2 ≡ 4 (mod 2). D’autre part, la congruence modulo
m se combine naturellement avec les opérations de base, sauf la
division :

Théorème 7.9 (Arithmétique Modulaire) Soient a, a′, b, b′, m et n des
entiers. Si

a ≡ a′ (mod m)

b ≡ b′ (mod m)

alors

a + b ≡ a′ + b′ (mod m)

ab ≡ a′b′ (mod m)

an ≡ a′n (mod m)

Ainsi 2 ≡ (−1) (mod 3) donc 2n ≡ (−1)n (mod 3), par exemple
21000 ≡ 1 (mod 3) et donc 21000 + 2 ≡ 2 + 1 ≡ 0 (mod 3) donc
21000 + 2 est divisible par 3.

,Preuve : Nous prouvons la première égalité, les autres sont lais-
sées au soin du lecteur alerte. Supposons que a ≡ a′ (mod m) et
b ≡ b′ (mod m). Par le Théorème 7.7, il existe x, x′ entiers tels que
a− a′ = xm et b− b′ = x′m. Donc (a + b)− (a′ + b′) = (x− x′)m et
donc a + b ≡ a′ + b′ (mod m). ,2

Q. 57. Les relations suivantes R1 et
R2, définies sur l’ensemble N des
entiers positifs ou nuls, sont-elles des
relations d’équivalence ?

1. aR1b si et seulement si a et b
s’écrivent avec le même nombre de
chiffres en base 10.

2. aR2b si et seulement si |a− b| ≤ 1.

arithmétique 63

Attention aux Divisions La congruence est compatible avec les
opérations d’addition, soustraction et multiplication, mais pas la
division. Cela implique que l’on ne peut pas toujours simplifier. Par
exemple

2× 9 ≡ 2× 3 (mod 12)

mais on ne peut pas simplifier par 2 (car on conclurait que 9 ≡ 3
(mod 12), ce qui est faux). Nous verrons plus tard dans quels cas la
simplification est possible.

Exemple 7.1 (Reste dans la division par 9) D’après le théorème
d’arithmétique modulaire

10 ≡ 1 (mod 9)

donc pour tout entier k ≥ 0 :

10k ≡ 1k ≡ 1 (mod 9)

Soit maintenant a un nombre entier positif ; son écriture en base 10 est
dkdk−1...d1d0, ce qui signifie que

a = dk × 10k + dk−1 × 10k−1 + ... + d1 × 101 + d0 × 100

De nouveau d’après le théorème d’arithmétique modulaire :

a ≡ dk × 1 + dk−1 × 1 + ... + d1 × 1 + d0 × 1 (mod 9)

a ≡ dk + dk−1 + ... + d1 + d0 (mod 9)

En d’autres termes, tout nombre entier est congru modulo 9 à la somme

Q. 58. Trouvez une règle semblable
pour le reste dans la division par
10, par 3, par 4 ? Appliquer ces
règles pour trouver les restes dans
la division par 10 [resp. 3 et 4] de
a = 123456789012345678901234567890.

de ses chiffres décimaux. On peut donc calculer le reste d’un nombre dans
la division par 9 en le remplaçant par la somme de ses chiffres, puis en
remplaçant le nombre obtenu par la somme de ses chiffres, etc, jusqu’à
obtention d’un nombre à un seul chiffre. Par exemple

298242 ≡ 2 + 9 + 8 + 2 + 4 + 2 ≡ 27 ≡ 2 + 7 ≡ 9 ≡ 0 (mod 9)

donc 298242 est divisible par 9.
Dans MOD 97-10, le nombre 97 fait ré-
férence au module de la congruence, et
10 au fait que le numéro est interprété
comme un nombre écrit en base 10.

Exemple 7.2 (MOD 97-10 et IBAN) Supposons que nous voulions
transmettre un numéro de n chiffres décimaux (numéro de téléphone, ou
de compte en banque, ou adresse IP) en l’écrivant sur un bout de papier.
Pour détecter des erreurs simples, telles que l’omission d’un chiffre ou une
interversion, nous pouvons y ajouter les deux chiffres de contrôle modulo

97, définis comme le reste dans la division par 97 du nombre original de n
chiffres. Par exemple, les deux chiffres de contrôle pour le numéro 021 235

1234 sont 95 car 212351234 ≡ 95 (mod 97). Nous écrivons sur le bout
de papier : 021 235 1234 - 95.

Supposons que nous écrivions par erreur 021 253 1234 - 95 (nous
avons interverti deux chiffres). Le destinataire peut détecter l’erreur en
recalculant les chiffres de contrôle ; en effet, 212531234 ≡ 63 (mod 97)
donc les deux chiffres de contrôle devraient être 63, et non pas 95. La pro-
cédure appelée MOD 97-10 est basée sur ce principe, avec les modifications
suivantes.

64 sciences de l’information

1. Ajouter 00 à la fin du numéro.

L’IBAN (International Bank Account
Number) est un format internatio-
nal pour les numéros de comptes
bancaires. Le numéro commence
par le code du pays, suivi des deux
chiffres de contrôle MOD 97-10, puis
du numéro de compte proprement
dit. Les symboles sont des chiffres
décimaux ou des lettres de l’alphabet
latin majuscule. Tous les numéros d’un
même pays ont le même nombre de
symboles.

Ainsi tous les numéros suisses
commencent par CH, suivis de deux
chiffres de contrôle, et comportent 21

symboles en tout. Un numéro suisse
pourrait être par exemple CH54 0024
3000 1234 5678 9.

Les deux chiffres de contrôle (ici 54)
sont obtenus comme suit :

(a) Déplacer les 2 premiers symboles
(code de pays) à la fin et supprimer
les deux chiffres de contrôle. Nous
obtenons 0024 3000 1234 5678
9CH.

(b) Remplacer les symboles non
décimaux (c’est à dire les lettres)
par deux chiffres, selon A =
10, B = 11, ..., Z = 35. Nous
obtenons 0024 3000 1234 5678
91217.

(c) Calculer les deux chiffres de
contrôle par la procédure MOD
97-10 appliquée au numéro ainsi
obtenu. Nous obtenons 54.

Pour vérifier la validité d’un numéro
IBAN, il suffit d’applique l’étape 4 de
MOD 97-10, c’est à dire :

(a) Déplacer les 4 premiers sym-
boles (code de pays et chiffres de
contrôle) à la fin. Nous obtenons
0024 3000 1234 5678 9CH54.

(b) Remplacer les symboles non
décimaux (c’est à dire les lettres)
par deux chiffres, selon A =
10, B = 11, ..., Z = 35. Nous
obtenons 0024 3000 1234 5678
9121754.

(c) Le reste dans la division par 97 du
nombre ainsi obtenu doit être égal
à 1.

2. Calculer le reste r dans la division par 97 du numéro ainsi obtenu.
3. Les deux chiffres de contrôle MOD 97-10 sont les deux chiffres du

complément à 98 de r. Remplacer le 00 final par ces deux chiffres.
4. Pour vérifier la validité d’un numéro, vérifier que le reste dans la divi-

sion par 97 est égal à 1.

Appliquons la procédure au numéro 021 235 1234 :

1. x = 21235123400
2. 21235123400 ≡ 91 (mod 97)
3. Le complément à 98 de 91 est 7 = 98 − 91. Les deux chiffres de

contrôle sont donc 07. Le numéro avec chiffres de contrôle MOD 97-10
est 021 235 1234 - 07

4. Vérification : 21235123407 ≡ 1 (mod 97) donc le numéro est
valable. Si nous recevons le numéro 021 253 1234 - 07, nous obtenons
21253123407 ≡ 2 (mod 97), donc ce numéro n’est pas valable.

Pourquoi la vérification fonctionne-t-elle de la façon décrite dans l’étape 4 ?
Le théorème d’arithmétique modulaire nous donne la réponse. En effet, soit
x le nombre obtenu en interprétant le numéro de départ en base 10 et en
ajoutant deux zéros (dans l’exemple, x = 21235123400). Le reste r de
l’étape 2 vérifie

x ≡ r (mod 97)

Soit x′ le nombre avec les chiffres de contrôle (c’est à dire, le nombre ob-
tenu en remplaçant les deux zéros finaux par les chiffres de contrôle ; dans
l’exemple, x′ = 21235123407). Nous avons x′ = x + (98− r), donc par
l’arithmétique modulaire :

x′ ≡ x + 98− r (mod 97)

≡ x + 1− r (mod 97) car 98 ≡ 1 (mod 97)

≡ r + 1− r (mod 97) car x ≡ r (mod 97)

≡ 1 (mod 97)

Le calcul du reste d’une division d’un très grand nombre entier peut
poser des problèmes pratiques (overflow). Cela peut arriver par exemple
si nous appliquons MOD 97-10 aux numéros IBAN, même avec des
entiers longs. Le théorème d’arithmétique modulaire apporte une so-
lution. Par exemple, supposons que x = 1234567890123456789 et
que nous voulions calculer le reste r de x dans la division par 97. Soit
x′ = 123456789012345678 le nombre obtenu en supprimant le dernier
chiffre et r′ son reste dans la division par 97. Alors x = 10x′ + 9 et donc

r ≡ 10r′ + 9 (mod 97)

et le calcul de r′ est un peu plus simple puisque x′ comporte un chiffre de
moins.

Nous pouvons donc utiliser une procédure récursive, en traitant un
numéro comme une chaîne de n symboles décimaux plutôt que comme un
entier – voir ci-contre.

1: function ResteGros(x, m, b)
2: . x : suite d’entiers entre 0 et

b− 1
3: . m : entier ≥ 2
4: . b : entier ≥ 2
5: n← longueur de la suite x
6: x0 ← dernier chiffre de x
7: if n = 1 then
8: r ← x0 mod m
9: else

10: x′ ← enlever dernier
élément de x

11: r′ ← ResteGros (x′, m)
12: r ← (br′ + x0) mod m
13: end if
14: return (r)
15: end function
Fonction qui calcule le reste de x
dans la division par m, où x est traité
comme une chaîne de chiffres en base
b plutôt que comme un entier, pour
éviter les problèmes d’overflow. Pour
MOD 97-10, prendre m = 97 et b = 10.

Exemple 7.3 (? Preuve par 9) Vous êtes naufragé(e) sur une île déserte,
sans aucun instrument de calcul, et devez calculer votre position d’après

arithmétique 65

le soleil et votre montre. Pour cela vous devez effectuer à la main (dans
le sable) une monstrueuse multiplication de deux grands nombres, par
exemple c = ab avec a = 23765 et b = 79087. Pour la plupart des gens,
les chances de se tromper dans une telle opération sont grandes. Vous avez
fort heureusement appris la preuve par 9, qui vous permet de vérifier au
moins partiellement vos calculs.

Pour cela vous calculez les restes dans la division par 9 de a et b, disons
a′ et b′, puis le reste c′ du produit a′b′. Par le théorème d’arithmétique
modulaire, le reste de c dans la division par 9 doit aussi être égal à c′, ce
qui donne un moyen de vérifier si c est correct. Ainsi :

a = 23765 ≡ 2 + 3 + 7 + 6 + 5 ≡ 5 (mod 9)

b = 79087 ≡ 7 + 9 + 0 + 8 + 7 ≡ 4 (mod 9)

c′ = 5× 4 ≡ 2 + 0 ≡ 2 (mod 9)

donc on sait, avant de faire la multiplication, que l’on doit avoir c ≡ 2
(mod 9). On dit que 2 est un “checksum" ou “chiffre de contrôle" de la
multiplication. Q. 59. La preuve par 9 permet-elle de

détecter les erreurs simples, c’est à dire
portant sur un seul chiffre ?

Nous trouvons c = 1879502555, donc c ≡ 2 (mod 9) et le chiffre de
contrôle est correct.

Exemple 7.4 (? Checksum IP ou UDP) Les paquets de données utili-
sés dans l’internet utilisent un code détecteur d’erreur, appelé checksum

IP, qui protège certaines informations importantes (notamment l’adresse
de destination). Il est calculé de la façon suivante. Supposons que nous
ayons un champ C de 16n bits à protéger, c’est à dire une suite de 2n
octets. Nous considérons cette suite de bits comme la représentation en
base 2 d’un nombre x. Puis nous calculons le reste r de x dans la di-
vision par m = 216 − 1. Notons que ce nombre m s’écrit en binaire
m = 1111 1111 1111 1111b (l’indice b indique que le nombre est écrit en
représentation binaire).

Le checksum est le "complément à 1" de r. Par exemple, si on nous

Le complément à 1 d’une suite de
chiffres binaires est la suite obtenue en
remplaçant les 0 par des 1 et inverse-
ment. Par exemple, le complément à 1
de 001101b est 110010b.

Soit une suite de 16 bits et soit x le
nombre dont elle est la représentation
en base 2. Soit x′ le nombre dont
la représentation en base 2 est son
complément à 1. Alors x + x′ =
1111 1111 1111 1111b donc x′ =
216 − 1− x.

donne le nombre suivant de 32 bits (écrit en binaire) :

x = 1000 0001 0000 0011 1000 0000 0001 0010b

le reste dans la division par 216 − 1 est

r = 0000 0001 0001 0110b

donc le checksum est

c = 1111 1110 1110 1001b

Le checksum c est transmis en même temps que le champ à protéger
C ; le destinataire refait les mêmes calculs sur le champ C reçu et vérifie
s’il trouve un checksum égal à c. Si la réponse est négative, le paquet est
certainement en erreur et est détruit.

Calcul du checksum par la somme en complément à 1. Comment
peut-on calculer efficacement ce checksum ? En fait, c’est la même idée que

66 sciences de l’information

pour la preuve par 9. Pour voir pourquoi, regroupons les bits par blocs de
16 bits et soient Wn−1...W1, W0 les nombres qu’ils représentent en base 2.
Nous avons donc : Pour rendre plus lisibles les calculs

en base 2 on utilise souvent la repré-
sentation hexadécimale, c’est à dire
en base 16. Les chiffres hexadécimaux
sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f et
représentent les nombres entiers de 0 à
15. Ainsi par exemple 7 + 8 = f .

Un chiffre hexadécimal représente un
bloc de 4 bits. Ainsi 216 − 1, qui est en
binaire 1111 1111 1111 1111, se note
en hexadécimal f f f f . Avec l’exemple
ci-contre :

x = 8103 8012

et le calcul du checksum IP peut alors
s’écrire :

W1 = 8103
W0 = 8012
W1 + W0 = 0001 0115
W ′1 + W ′0 = 0116 = r
c = f ee9

Notons que c est obtenu par l’opéra-
tion c = f f f f − r.

x = 216(n−1)Wn−1 + ... + 216W1 + W0 (7.2)

Avec l’exemple précédent, cela donne

x =

W1︷ ︸︸ ︷
1000 0001 0000 0011

W0︷ ︸︸ ︷
1000 0000 0001 0010

= 216W1 + W0

Maintenant 216 ≡ 1 mod m puisque 216 = m + 1. Donc

x ≡Wn−1 + ... + W1 + W0 mod m

c’est à dire que l’on peut remplacer x par la somme de ses blocs de 16 bits
(interprétés comme des nombres écris en base 2). Comme avec la preuve
par 9, il suffit de répéter l’opération jusqu’à obtenir un résultat r′ qui
tienne sur un seul bloc de 16 bits. Ainsi pour notre exemple :

W1 = 1000 0001 0000 0011

W2 = 1000 0000 0001 0010

W1 + W0 =

W ′1︷ ︸︸ ︷
0000 0000 0000 0001

W ′0︷ ︸︸ ︷
0000 0001 0001 0101

W ′1 + W ′0 =

W ′′0︷ ︸︸ ︷
0000 0001 0001 0110 = r′

A chaque étape le nombre obtenu est congru au précédent modulo m,
donc finalement

r′ ≡ x (mod m)

Le nombre r′ est entre 0 et m et est appelé la somme en complément à 1
de x (voir ci-contre). Il est presque toujours égal à r, le reste de x dans la

La somme en complément à 1 sur 16 bits,
sc1-16(x), est définie formellement de
la façon suivante. x est une suite de
16n bits, interprétée comme un entier
positif ou nul écrit en base 2. Soient
Wn−1, ...W0 les n entiers positifs ou
nuls correspondant aux blocs de 16
bits, comme en Eq.(7.2).

si n = 1
alors sc1-16(x) = W0
sinon sc1-16(x) =

sc1-16(Wn−1 + ... + W0)

où la dernière addition est l’addition
usuelle des entiers positifs ou nuls.

Notons que x ≡ sc1(x) (mod m).
De plus, sc1(x) est égal au reste de x
dans la division par m = 216 − 1 sauf
si x > 0 et x ≡ 0 (mod m) auquel cas
sc1(x) = m.

division par m. Plus précisément, r est obtenu par :

si r′ = 1111 1111 1111 1111b alors r = 0 sinon r = r′

puis le checksum c est le complément à 1 de r. En résumé le calcul du
checksum c se fait de la façon suivante :

calculer r′, la somme en complément à 1 de x
c′ = 216 − r′(i.e. prendre le complément à 1
si (c′ = 0) c = 1111 1111 1111 1111b sinon c = c′

Notons que le checksum ainsi calculé ne peut jamais être égal à 0.

8
Arithmétique Modulaire

L’étude systématiques des congruences nous amène dans des
nouveaux ensembles de “nombres", les ensembles Z/mZ ; ils
sont utilisés en cryptographie et en codage d’erreurs, comme
nous le verrons. L’étude des calculs dans ces ensembles s’appelle
l’arithmétique modulaire.

8.1 Les Ensembles Z/mZ

Soit R une relation d’équivalence
définie sur un ensemble A. La classe
d’équivalence c`(a) de a ∈ A, est l’en-
semble des a′ ∈ A tels que aRa′. Le
fait que R soit une relation d’équiva-
lence entraîne que

(i) les classes d’équivalence forment
une partition de A, c’est à dire que
tout a ∈ A appartient à une classe
d’équivalence et une seule.

(ii) (aRa′)⇔ (c`(a) = c`(a′))
Q. 60. Soit R1 la relation d’équivalence
définie en Q.57. Quelles sont les
classes d’équivalence ?
Soit A un ensemble et A un ensemble
de sous-ensembles de A. On dit que A
est une partition de A si tout élément de
A appartient à un sous-ensemble de A
et un seul.

Par exemple, soit A = Z,
A0 = {...− 2, 0, 2, 4, ...}, A1 =
{...− 3,−1, 1, 3, ...} (ensembles des
entiers resp. pairs et impairs) et
A = {A0, A1}. A est une partition
de A.

Définition 8.1 (Classe de Congruence) Soit m ≥ 2 un entier fixé
(le “module"). Pour tout entier a, on appelle classe de congruence de
a modulo m, et on note [a]m l’ensemble des entiers a′ tels que a ≡ a′

(mod m).

Par exemple, avec m = 2, [24]2 est l’ensemble des entiers pairs, alors
que [23]2 est l’ensemble des entiers impairs. Notons que [24]2 =

[0]2 = [−100]2 et [−1]2 = [1]2 = [3]2.
Notons que (

a ≡ a′ (mod m)
)
⇔
(
[a]m = [a′]m

)
(8.1)

Si c est une classe de congruence modulo m et c = [a]m on dit que a
est un représentant de c. Ainsi, 24, 0 et −100 sont trois représentants
de [0]2.

Il y a exactement 2 classes de congruence modulo 2, l’ensemble
des entiers pairs et l’ensemble des entiers impairs ; ces deux classes
peuvent être notées de différentes façons, mais le plus simple est de
les noter [0]2 et [1]2. Plus généralement :

Théorème 8.1 Il y a exactement m classes de congruence modulo m, ce
sont [0]m, [1]m, ..., [m− 1]m.

,Preuve : Nous avons à montrer que (i) les m classes dans le théo-
rème sont toutes distinctes et (ii) toute classe dans Z/mZ est égale
à l’une de ces m classes.

(i) Nous raisonnons par l’absurde et supposons donc que i et j
sont dans {0, 1, ...m− 1} avec i 6= j et [i]m = [j]m.

Notons d’abord que le reste de i dans la division par m est i car
i = 0× i + i et 0 ≤ i ≤ m − 1, et la même chose vaut pour j. Par

68 sciences de l’information

Eq.(8.1), i ≡ j (mod m) donc i et j ont même reste dans la division
par m. Donc i = j, ce qui est une contradiction.

(ii) Soit [a]m une classe de congruence modulo m. Soit r le reste
de a dans la division par m. Nous avons [a]m = [r]m et 0 ≤ r ≤
m− 1. ,2

Définition 8.2 On note Z/mZ l’ensemble des classes de congruence
modulo m.

Notons qu’un élément a de Z/mZ peut s’écrire de différentes fa-
çons, par exemple a = [18]12 = [6]12, mais le Théorème 8.1 exprime
qu’il existe une seule façon d’écrire a = [r]m avec 0 ≤ r ≤ m− 1 ;
on l’appelle forme réduite. Ainsi la forme réduite de [18]12 est [6]12.
A partir de maintenant nous pouvons voir Z/mZ tout simplement
comme un ensemble à m éléments :

Z/mZ = {[0]m, [1]m, ..., [m− 1]m} (8.2)

8.2 Opérations dans Z/mZ

Z/3Z + 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Z/3Z × 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Z/4Z + 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z/4Z × 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 8.1: Addition et Multiplication
dans Z/3Z et Z/4Z. Par souci de
légèreté, nous notons dans ces tables
0, 1, 2 au lieu de [0]3, [1]3, [2]3 et 0, 1, 2, 3
au lieu de [0]4, [1]4, [2]4, [3]4.

Nous allons définir une addition et une multiplication dans
Z/mZ. Notons que d’après le Théorème 7.9, si [a]m = [a′]m et
[b]m = [b′]m alors [a + b]m = [a′ + b′]m et [ab]m = [a′b′]m. On
peut donc définir la somme de deux classes de congruence [a]m et
[b]m comme la classe de congruence de [a + b]m, sans se soucier des
représentants choisis, et la même chose vaut pour la multiplication :

Définition 8.3 On définit la somme et le produit dans Z/mZ par :

[a]m + [b]m = [a + b]m (8.3)

[a]m [b]m = [ab]m (8.4)

Comme d’habitude, la multiplication est notée de différentes fa-
çons, à savoir [a]m [b]m, [a]m · [b]m ou [a]m × [b]m, qui sont toutes
synonymes. Q. 61. Résoudre pour m = 3 puis pour

m = 4 les équations suivantes :

1. [x]2m = [1]m
2. [2]m[x]m = [0]m
3. [x]m + [x]m = [0]m

L’addition a les propriétés suivantes :

Un ensemble A muni de deux opéra-
tions, + et × qui satisfont les huit pro-
priétés ci-contre (depuis Associativité
jusqu’à Distributivité) est appelé anneau
commutatif. (Z,+,×) et (Z/mZ,+,×)
sont des anneaux commutatifs.

Associativité : [a]m + ([b]m + [c]m) = ([a]m + [b]m) + [c]m
Elément neutre : [0]m est l’élément neutre : [a]m + [0]m = [a]m
Elément symétrique : [−a]m est l’opposé de [a]m : [a]m + [−a]m = [0]m
Commutativité : [a]m + [b]m = [b]m + [a]m

La multiplication a les propriétés suivantes :

Associativité : [a]m([b]m[c]m) = ([a]m[b]m)[c]m
Elément neutre : [1]m est l’élément neutre : [a]m[1]m = [a]m
Commutativité : [a]m[b]m = [b]m[a]m

Les deux opérations ont la propriété suivante :

Distributivité : [a]m([b]m + [c]m) = ([a]m[b]m) + ([a]m[c]m)

arithmétique modulaire 69

Comme pour les nombres entiers, on adopte la convention que la
multiplication a priorité sur l’addition, ce qui permet d’économiser
des parenthèses :

([a]m[b]m) + ([a]m[c]m) = [a]m[b]m + [a]m[c]m

On note −[a]m l’opposé de [a]m. Nous pouvons donc écrire :

−[a]m = [−a]m

De même, on peut définir la multiplication par un entier ordi- Q. 62. Mettre sous forme réduite les
expressions suivantes :

1. ([−5]7)
2 + [−4]7 [−3]7

2. 2 ([3]4 + [5]4)− 5 ([3]4)
2

3. ([298242]9)
1000

Q. 63. Que représente l’expression
[3]4 + [4]3 ?

naire, de la façon suivante. Pour k entier positif :

k[a]m
def
=

k fois︷ ︸︸ ︷
[a]m + ... + [a]m et (−k)[a]m

def
=

k fois︷ ︸︸ ︷
[−a]m + ... + [−a]m

et pour k = 0 : 0[a]m
def
= [0]m. Ainsi 3[11]18 = [11]18 + [11]18 + [11]18

et (−3)[11]18 = [−11]18 + [−11]18 + [−11]18.
Les propriétés plus haut entraînent alors que, pour k ∈ Z et

a ∈ Z :
k[a]m = [ka]m

Par exemple,

3[11]18 = [11]18 + [11]18 + [11]18 = [33]18 = [3 · 11]18 = [15]18

(−3)[11]18 = [−11]18 + [−11]18 + [−11]18 = [−33]18 = [3 · (−11)]18 = [3]18

En résumé, l’addition et la multiplication dans Z/mZ ont les
mêmes propriétés que l’addition et la multiplication ordinaires,
à l’exception de tout ce qui concerne la division et, par conséquent,
les simplifications. Ainsi ab = 0 n’implique pas, en général, a = 0
ou b = 0. Par exemple

[2]6[3]6 = [0]6 alors que [2]6 6= [0]6 et [3]6 6= [0]6

Si ab = 0 alors que ni a ni b ne sont nuls on dit qu’ils sont des
diviseurs de zéro. Ainsi [2]6 et [3]6 sont des diviseurs de zéro. De Q. 64. Y a-t-il des diviseurs de zéro

dans Z/3Z ? dans Z/4Z ?même, ab = ac avec a 6= 0 n’implique pas forcément b = c. Par
exemple

[2]12[9]12 = [2]12[3]12 alors que [2]12 6= [0]12 et [9]12 6= [3]12

Pour k ≥ 0 entier on définit la kième puissance par

([a]m)
k def
=

k fois︷ ︸︸ ︷
[a]m · ... · [a]m

et ([a]m)
0 = [1]m. Nous pouvons facilement vérifier que ([a]m)

k =

[ak]m, i.e. les règles usuelles s’appliquent (tant qu’il n’y a pas de
division, donc pour des exposants k ≥ 0).

Exemple 8.1 (Calcul d’une Puissance) Le calcul d’une puissance en
arithmétique modulaire est particulièrement simple, il suffit de décomposer

70 sciences de l’information

l’exposant. Calculons par exemple ([3]7)
12 (nous laissons tomber l’in-

dice 7, ce qui est toujours possible si nous nous rappelons que toutes les
opérations sont dans Z/7Z) :

[3]12 = ([3]2)6 = [9]6 = [2]6 =
(
[2]3
)2

= [8]2 = [1]2 = [1]
Q. 65. Trouver un entier x ≥ 0 tel que
([2]13)

x = [3]13.Par contre, l’opération inverse, c’est à dire trouver un entier x s’il
existe tel que [a]xm = [b]m est nettement plus difficile et aucun algorithme
efficace n’est connu, si m est très grand (cette opération inverse s’appelle le
logarithme discret). L’application x 7→ [a]xm est un exemple d’application à
“sens unique".

8.3 Eléments Inversibles de Z/mZ

Nous avons vu que la division pouvait poser problème dans
Z/mZ, mais il est quand même possible de clarifier les choses.

Théorème et Définition 8.4 Soit m ≥ 2 ; on dit que a ∈ Z/mZ est
inversible s’il existe a′ ∈ Z/mZ tel que aa′ = [1]m. Un tel élément a′, s’il
existe, est unique. Il est appelé l’inverse de a et est noté a−1.

Par exemple 2× 7 ≡ 1 (mod 13) donc [2]13[7]13 = [1]13. Donc [2]13

est inversible, et [2]−1
13 = [7]13. Nous pouvons aussi conclure que

[7]13 est inversible, et [7]−1
13 = [2]13.

Par contre [2]12 n’est pas inversible. En effet, en calculant [2]12 ·
a′ pour tous les a′ ∈ Z/12Z nous trouvons successivement :
[0]12, [2]12, [4]12, [6]12, [8]12, [10]12, [0]12, [2]12, [4]12, [6]12, [8]12, [10]12.
Nous n’obtenons jamais [1]12. Q. 66. Montrer que [0]m n’est jamais

inversible pour tout m ≥ 2.
Est-il vrai que [1]m est inversible

pour tout m ≥ 2 ?,Preuve : Soient a′ et a′′ tels que aa′ = [1]m et aa′′ = [1]m. En
multipliant la première égalité par a′′, et comme [1]m est élément
neutre et la multiplication est commutative et associative , nous
obtenons

a′′ = a′′[1]m = a′′(aa′) = (aa′′)a′ = [1]ma′ = a′

donc a′ = a′′. ,2

Théorème 8.2 Si a ∈ Z/mZ est inversible alors a−1 l’est aussi et(
a−1
)−1

= a

,Preuve : Par définition, on a ·a−1a = [1]m donc a−1 satisfait la
définition d’inversibilité et son inverse est a. ,2

L’existence d’un inverse, et éventuellement son calcul sont des
problèmes numériquement “faciles", résolus par les théorèmes
suivants. Nous commençons par une méthode pour calculer le
PGCD sans devoir factoriser en nombres premiers :

Théorème 8.3 (Algorithme d’Euclide) Soient a et b deux entiers avec
b 6= 0, et soit a = bq + r la division euclidienne de a par b. Alors

pgcd(a, b) = pgcd(b, r) (8.5)

arithmétique modulaire 71

En particulier, si r = 0, pgcd(a, b) = b.

Appliquons le Théorème 8.3 au
calcul du PGCD de 120 et 22 :

a b r pgcd(122, 22)

120 22 10 = pgcd(22, 10)
22 10 2 = pgcd(10, 2)
10 2 0 = 2

Au lieu d’utiliser le Théorème 8.3,
nous pouvons employer la méthode de
décomposition en facteurs premiers :

120 = 23 · 3 · 5
22 = 2 · 11

ce qui donne le même résultat
pgcd(122, 22) = 2.

Preuve : Nous allons montrer que, pour tout entier positif d :

(d divise a et b)⇔ (d divise b et r) (8.6)

(1) (⇒) Soit d qui divise a et b ; or r
d = a

d − q b
d est un entier donc

d divise r, donc il divise b et r.
(2) (⇐) se montre de la même façon que (1)
Donc Eq.(8.6) est vraie, donc les diviseurs communs à a et b sont

les mêmes que les diviseurs communs à b et r donc les PGCD sont
les mêmes. 2

Le Théorème 8.3 donne un algorithme récursif (c’est à dire qui fait
appel à lui même) pour calculer le PGCD. En effet, il suffit d’ap-
peler b le plus petit des deux nombres ; Eq.(8.5) permet alors de
remplacer (a, b) par (b, r) avec 0 ≤ r < b, puis de recommencer
jusqu’à obtenir un reste nul. A chaque étape le reste diminue d’au
moins 1, donc l’algorithme s’arrête forcément, en au plus b étapes.

Si nous voulons que l’identité de
Bézout soit vraie pour a = b = 0 il faut
convenir que pgcd(0, 0) = 0.

Théorème 8.4 (Identité de Bézout) Soient a et b deux entiers ; il existe
deux nombres entiers u et v tels que

au + bv = pgcd(a, b) (8.7)

Preuve : (1) Nous montrons par récurrence sur n ≥ 1 que si 1 ≤
a ≤ n ou 1 ≤ b ≤ n alors l’identité de Bézout est vraie.

(étape d’initialisation :) Supposons n = 1, donc soit a = 1 soit
b = 1 ; supposons que a = 1 (sinon c’est pareil), donc pgcd(a, b) = 1
et Eq.(8.7) est vraie avec u = 1, v = 0.

(étape de récurrence :) Supposons que l’hypothèse de récurrence
soit vraie jusqu’à n et montrons qu’elle est vraie pour n + 1. Sup-
posons que a > b (sinon nous échangeons les rôles de a et b) donc
nous pouvons supposer que b ≤ n + 1. Effectuons la division eucli-
dienne de a par b : a = bq + r. Si r = 0 alors pgcd(a, b) = b ; il suffit
de prendre u = 0, v = 1 et Eq.(8.7) est satisfaite. Si au contraire
r > 0, notons que r ≤ b − 1 ≤ n donc nous pouvons appliquons
l’hypothèse de récurrence à (b, r) ; il existe des entiers u1 et v1 tels
que pgcd(b, r) = u1b + v1r. Or pgcd(b, r) = pgcd(a, b) d’après le
Théorème 8.3. En combinant avec a = bq + r nous obtenons

av1 + b(u1 − qv1) = pgcd(a, b) (8.8)

ce qui montre que Eq.(8.7) est satisfaite.
(2) Nous avons donc montré que Eq.(8.7) est satisfaite pour

a et b positifs. Etudions maintenant le cas où a ou b est néga-
tif. Supposons par exemple que a < 0 et b > 0, notons que
pgcd(a, b) = pgcd(|a| , b) donc d’après (1) on peut trouver u1 et
v1 tels que u1 |a|+ vb = pgcd(a, b). Donc Eq.(8.7) est satisfaite avec

72 sciences de l’information

u = −u1 et v = v1. La même chose vaut si a > 0 et b < 0 ou si a et b
sont négatifs.

Il reste le cas où l’un des deux nombres est nul ; supposons par
exemple que a = 0 et b 6= 0 ; alors pgcd(a, b) = b et Eq.(8.7) est
satisfaite avec u = 0, v = 1. Si les deux entiers sont nuls, nous avons
convenu que pgcd(a, b) = 0 et Eq.(8.7) est satisfaite. 2

Théorème 8.5 (Eléments Inversibles de Z/mZ) Soient a et m deux
entiers avec m ≥ 2 ; [a]m est inversible si et seulement si a et m sont
premiers entre eux.

Q. 67. Soient a et m deux entiers ≥ 2.
Montrer que [a]m est inversible si et
seulement si [m]a est inversible.

Les éléments inversibles se trouvent
facilement sur la table de multipli-
cation. Par exemple (Table 8.1), dans
Z/3Z les éléments [1]3 et [2]3 sont
inversibles (1 et 2 sont premiers avec
3), par contre [0]3 ne l’est pas (0 n’est
pas premier avec 3). Dans Z/4Z, les
éléments inversibles sont [1]4 et [3]4 (1
et 3 sont premiers avec 4) ; les éléments
non inversibles sont [0]4 et [2]4 (0 et 2
ne sont pas premiers avec 4).

Preuve : ([a]m inversible)⇒ (a et m premiers entre eux) : Soit a′ un
représentant de ([a]m)

−1. Nous avons aa′ ≡ 1 (mod m), donc le
reste de aa′ dans la division par m est 1 et il existe un entier v (le
quotient) tel que

aa′ = mv + 1

Soit d un entier positif qui divise à la fois a et m, nous avons donc
a = αd et m = µd avec α et µ entiers. En combinant avec l’équation
précédente :

(α− µ)d = 1

donc d est un diviseur de 1 donc d = 1. Donc tout diviseur positif
de a et m est égal à 1, donc pgcd(a, m) = 1, c’est à dire que a et m
sont premiers entre eux.

(a et m premiers entre eux)⇒ ([a]m inversible) : d’après l’identité
de Bézout il existe des entiers u et v tels que au + mv = 1 donc

[a]m[u]m + [m]m[v]m = [1]m

or [m]m = [0]m donc [a]m[u]m = [1]m, c’est-à-dire que [a]m est
inversible et son inverse est [u]m. 2

Simplifications en Arithmétique Modulaire Supposons que

ax ≡ ay (mod m) (8.9)

Nous avons envie de simplifier par a, mais nous avons vu en
page 63 que ce n’est pas toujours légitime. Le Théorème 8.5 nous
permet d’en dire plus, dans le cas où a est premier avec m. Notons
tout d’abord que l’ Eq.(8.9) est équivalente à

[a]m[x]m = [a]m[y]m

Si a est premier avec m, alors [a]m est inversible, donc nous pouvons
“diviser" par [a]m (c’est à dire multiplier par l’inverse de [a]m), ce
qui donne

[x]m = [y]m

que nous pouvons ré-écrire sous la forme

x ≡ y (mod m)

arithmétique modulaire 73

En d’autres termes, nous pouvons simplifier a dans l’Eq.(8.9)
pourvu que a soit premier avec m.

Si x, y sont des entiers et

5× x ≡ 5× y (mod 12)

nous pouvons simplifier par 5 (car 5
est premier avec 12) et conclure que

x ≡ y (mod 12)

Une conséquence du Théorème 8.5, que nous allons souvent
utiliser dans la suite, est :

Q. 68. Vrai/Faux (a et m sont des
entiers avec m ≥ 2) :

1. a est premier avec m ⇒ [a]m n’est
pas un diviseur de 0

2. [a]m est un diviseur de 0⇒ a et m
ont un diviseur commun ≥ 2

Théorème 8.6 (Cas de Z/pZ avec p premier) Si p est un nombre
premier, tous les éléments de Z/pZ sauf [0]p sont inversibles.

,Preuve : Un élément x non nul de Z/pZ peut s’écrire x = [a]p
avec 1 ≤ a ≤ p− 1. Par le Théorème 7.6, a et p sont premiers entre
eux. Donc [a]p est inversible ,2

Exemple 8.2 (MOD 97-10) Les chiffres de contrôle MOD 97-10 peuvent
détecter toutes les interversions de deux chiffres contiguës, par exemple
021 235 1234 remplacé par 021 253 1234. En effet, soit x le numéro origi-
nal, y compris les chiffres de contrôle, et x′ le numéro erroné, dans lequel
les chiffres contigus ck et ck+1 sont intervertis. Alors

x = cn−110n−1 + ... + ck+110k+1 + ck10k + ... + c0

x′ = cn−110n−1 + ... + ck10k+1 + ck+110k + ... + c0

x− x′ = 10k (ck+1 − ck) (10− 1) = 9 · 10k (ck+1 − ck)

Donc (la notation [x]97 est remplacée par [x] car il n’y a pas d’ambiguïté Q. 69. Montrer que toutes les erreurs
consistant à modifier un seul chiffre
sont détectées.

sur le module) :

[x]−
[
x′
]

= [9] · [10]k ([ck+1]− [ck])

Supposons que l’erreur ne soit pas détectée ; alors par définition des chiffres
de contrôle MOD 97-10, les restes de x et de x′ dans la division par 97
chiffres valent 1, donc [x] = [x′] et

[0] = [9] · [10]k ([ck+1]− [ck])

Or 97 est un nombre premier et donc [9] et [10] sont inversibles dans
Z/97Z. Cette dernière équation implique donc que

[ck+1] = [ck]

et donc ck = ck+1. Donc la seule façon pour que l’interversion ne soit pas
détectée est que les chiffres intervertis soient égaux au départ. Dans un tel
cas il n’y pas vraiment d’interversion. Donc l’interversion est détectée.

Définition 8.5 Pour tout entier m ≥ 1 on appelle Indicatrice d’Euler

ϕ(m) le nombre d’éléments inversibles de (Z/mZ, ·) ; ϕ(m) est donc
égal au nombre de nombres entiers n positifs qui sont inférieurs à m et
premiers avec m.

D’après le Théorème 8.6, si p est un nombre premier, ϕ(p) = p− 1.

Par exemple
– ϕ(8) = 4 car les entiers n positifs inférieurs à 8 et premiers

avec 8 sont 1, 3, 5 et 7 ;
– ϕ(5) = 4 car 5 est un nombre premier. Q. 70. Combien vaut ϕ(257) ?

74 sciences de l’information

8.4 Calcul de l’Inverse

La preuve du Théorème 8.5 montre que, pour calculer l’inverse
d’un élément inversible [a]m de Z/mZ, il suffit de connaître les co-
efficients de l’inégalité de Bézout appliquée à a et m. La preuve du
Théorème 8.4 nous donne une méthode récursive pour calculer ces
coefficients (et en même temps pour déterminer si [a]m est inver-
sible). Nous avons donc obtenu un algorithme du calcul de l’inverse
– voir la fonction Bezout dans l’Algorithme 1.

Appliquons la fonction Bezout au
calcul de l’inverse de [21]122, s’il existe.

Bezout(21, 122) [21]−1
122 = [93]122

↓ ↑
Euclide(21, 122) u = −29, v = 5

↓ ↑
Euclide(122, 21)

q = 5, r = 17 u = 5, v = −29
↓ ↑

Euclide(21, 17)
q = 1, r = 4 u = −4, v = 5

↓ ↑
Euclide(17, 4)

q = 4, r = 1 u = 1, v = −4
↓ ↑

Euclide(4, 1)
q = 4, r = 0 u = 0, v = 1

↓ ↑
Euclide(1, 0)

d = 1→ u = 1, v = 0

La fonction Bezout calcule le PGCD
et les coefficients u, v de ’identité de
Bézout appliquée à a = 21, b = 122,
en appelant Euclide(21, 122), ce qui
déclenche une successions d’appels
récursifs à la fonction Euclide. Nous
trouvons que le PGCD est d = 1, donc
l’inverse existe, et l’identité de Bézout
obtenue est

−29× 21 + 5× 122 = 1

donc [21]−1
122 = [−29]122. Sous forme

réduite, nous trouvons [21]−1
122 =

[−29]122 = [93]122.

Algorithm 1 La fonction Bezout détermine si [a]m est inversible, et
si oui, donne la forme réduite de l’inverse ([a]m)

−1.
1: function Bezout(a, m) . a et m entiers avec m ≥ 2
2: (u, v, d)← Euclide(a, m)

3: if d 6= 1 then
4: [a]m n’est pas inversible
5: else
6: calculer le reste r de u dans la division euclidienne par m
7: ([a]m)

−1 ← [r]m
8: end if
9: end function

Algorithm 2 La fonction euclide calcule les coefficients de l’iden-
tité de Bézout. C’est une version récursive de l’algorithme connu
sous le nom d’Algorithme d’Euclide.

1: function euclide(a, b) . a et b entiers ≥ 0
2: . Retourne les coefficients u, v de l’identité de Bézout
3: . et le PGCD d de a et b.
4: if a < b then . Echanger a et b
5: (u1, v1, d1)← Euclide(b, a)
6: u← v1, v← u1, d← d1

7: else
8: if b = 0 then . PGCD est a
9: u← 1,v← 0, d← a

10: else
11: Effectuer division euclidienne de a par b
12: (q, r)← quotient et reste
13: (u1, v1, d1)← Euclide(b, r)
14: u← v1, v← u1 − qv1, d← d1 . Eq.(8.6)
15: end if
16: end if
17: end function

Q. 71. [93]122 est-il inversible, et si oui
quel est son inverse ?

Q. 72. [143]122 est-il inversible, et si oui
quel est son inverse ?

Q. 73. Résoudre dans Z/122Z l’équa-
tion x · [93]122 = [40]122.

9
Eléments d’Algèbre Abstraite

L’algèbre dite abstraite s’intéresse aux structures d’anneau, Je préfère la nommer ainsi [algèbre abs-
traite] plutôt qu’algèbre moderne, parce
qu’elle vivra sans doute longtemps et finira
donc par devenir l’algèbre ancienne.

Francesco Severi, Liège 1949, cité
par Serge Lang dans son livre Algebra,
Addison-Wesley, 1965.

groupe etc, c’est à dire aux propriétés d’opérations qui restent
vraies dans des contextes différents. Nous allons dans ce chapitre
étudier des éléments de la théorie des groupes commutatifs finis,
qui nous seront utiles pour comprendre la cryptographie et, en
Partie III, les codes correcteurs d’erreur.

9.1 Groupes Commutatifs
Une opération binaire définie dans G
est donc une application de G× G vers
G.

Définition 9.1 Soit (G, ?) un ensemble G muni d’une opération bi-

naire ?, c’est à dire d’un mécanisme qui associe à deux éléments a et b de
G, distincts ou non, un élément de G noté a ? b.

(G, ?) est appelé groupe commutatif, ou groupe abélien s’il possède les
propriétés suivantes :

(Associativité) a ? (b ? c) = (a ? b) ? c) pour tous a, b, c ∈ G ;
(Neutre) Il existe un élément e ∈ G tel que a ? e = e ? a = a pour tout

a ∈ G ;
(Symétrique) Pour tout élément a ∈ G il existe un élément a′ ∈ G tel

que a ? a′ = e ; a′ est appelé élément symétrique de a.
(Commutativité) a ? b = b ? a pour tous a, b ∈ G ;

Notons que l’élément neutre e est
forcément unique ; de même, le symé-
trique a′ de a est unique, pour chaque
a.

Si (G, ?) possède les trois premières
propriétés, mais pas la commutativité,
on dit que G est un groupe non commu-
tatif. Dans ce chapitre nous n’étudions
que les groupes commutatifs.

Si l’opération binaire est notée +, on note habituellement l’élé-
ment neutre 0 ; l’élément symétrique de a est appelé opposé de a et
est noté −a.

Si l’opération binaire est notée ·, on note habituellement l’élé-
ment neutre 1 ; l’élément symétrique de a est appelé inverse de a et
est noté a−1.

Exemple 9.1 (Le groupe (Z/mZ,+)) Nous avons vu en Section 8.2
que Z/mZ muni de l’addition modulaire possède les 4 propriétés qui en
font un groupe commutatif. L’élément neutre est [0]m et le symétrique de
[a]m est −[a]m = [−a]m.

Exemple 9.2 (Un non-groupe) Par contre (Z/mZ, ·) pour m entier
≥ 2 n’est pas un groupe commutatif ; les propriétés d’associativité, exis-
tence d’un élément neutre et commutativité sont vraies (avec e = [1]m).
Cependant, la propriété d’existence d’un élément symétrique (i.e. inverse)
n’est pas vrai : il existe au moins un élément, [0]m, qui ne possède pas
d’inverse, car on ne peut jamais avoir [0]ma′ = [1]m.

76 sciences de l’information

Théorème 9.1 Soit Z/mZ∗ l’ensemble des éléments inversibles de
Z/mZ, pour m ≥ 2. (Z/mZ∗, ·) est un groupe commutatif. Q. 74. Voici deux groupes commutatifs

avec leurs tables (nous omettons les
crochets) :

(Z/2Z,+)

+ 0 1

0 0 1
1 1 0

(Z/4Z∗, ·)
· 1 3

1 1 3
3 3 1

Dans chaque cas, quel est l’élément
neutre ?

,Preuve : Il faut d’abord démontrer que la multiplication est
bien une opération binaire dans Z/mZ∗, c’est à dire que si a ∈
Z/mZ∗ et b ∈ Z/mZ∗ alors ab ∈ Z/mZ∗. Si a et b sont inversibles,
alors (ab)(a−1b−1) = [1]m donc ab est inversible (et son inverse est
a−1b−1).

D’autre part, [1]m est inversible donc [1]m ∈ Z/mZ∗ et donc la
multiplication dans Z/mZ∗ possède un élément neutre. L’existence
d’un élément symétrique est évidente par définition Z/mZ∗. Les
autres propriétés (associativité, commutativité) ont déjà été démon-
trées en Section 8.2. ,2

Théorème et Définition 9.2 Soient (G, ?) et (H, ?) deux ensembles
munis chacun d’une opération binaire. L’opération produit est l’opération
binaire ? définie sur l’ensemble G× H par

G × H est le produit cartésien de G et
H, c’est à dire l’ensemble des couples
(x, y) avec x ∈ G et y ∈ H.

Le signe ×, utilisé entre deux en-
sembles, signifie le produit cartésien ;
utilisé entre deux nombres, il signifie
la multiplication.

(a, b) ? (a′, b′) = (a ? a′, b ? b′)

Si e est élément neutre dans G et f dans H alors (e, f) est élément neutre Il y a ici trois opérations binaires (une
dans G, une dans H et une dans le
produit cartésien G × H) ; elles sont
toutes les trois notées de la même
façon (?), mais elles sont différentes.
C’est un abus de notation qui permet
d’éviter une certaine lourdeur.

pour l’opération produit.
Si a admet a′ comme élément symétrique dans G et si b admet b′

comme élément symétrique dans H alors (a, b) admet (a′, b′) comme
élément symétrique dans G× H.

Si (G, ?) et (H, ?) sont des groupes alors (G × H, ?) aussi. On l’ap-
pelle le groupe produit.

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Table 9.1: Table du groupe produit
((Z/2Z)2,+) qui possède 4 éléments.
L’élément neutre est 00. Nous recon-
naissons l’opération xor bit par bit sur
les suites de 2 bits.
Q. 75. Quel est l’élément symétrique
de chaque élément du groupe produit
(Z/2Z×Z/2Z,+) ?

Exemple 9.3 Le groupe produit de (Z/m1Z,+) et (Z/m2Z,+) pos-
sède m1m2 éléments. L’élément neutre est ([0]m1 , [0]m2). L’élément symé-
trique de ([a]m1 , [b]m2) est ([−a]m1 , [−b]m2).

L’opération produit est appelée l’ addition dans Z/m1Z×Z/m2Z,
c’est à dire que nous écrivons :

([j]m1 , [k]m2) + ([j′]m1 , [k′]m2)
def
= ([j]m1 + [j′]m1 , [k]m2 + [k′]m2)

= ([j + j′]m1 , [k + k′]m2) (9.1)

Exemple 9.4 L’opération produit de (Z/m1Z, ·) et (Z/m2Z, ·) possède
un élément neutre ([1]m1 , [1]m2) mais cela n’en fait pas un groupe car
certains éléments n’ont pas d’élément symétrique (ici appelé inverse). Par
exemple ([0]m1 , [b]m2) n’a pas d’inverse, quel que soit b.

L’élément ([a]m1 , [b]m2) est inversible si et seulement si [a]m1 et [b]m2

sont inversibles, c’est à dire si et seulement si a est premier avec m1 et b
est premier avec m2. L’ensemble des éléments inversibles de (Z/m1Z×
Z/m2Z, ·) est donc Z/m1Z∗ ×Z/m2Z∗, il constitue un groupe, qui est
le groupe produit de (Z/m1Z∗, ·) et (Z/m2Z∗, ·).

L’opération produit est appelée la multiplication dans Z/m1Z ×
Z/m2Z et est aussi notée ·, c’est à dire que nous écrivons :

([j]m1 , [k]m2) · ([j′]m1 , [k′]m2)
def
= ([j]m1 · [j

′]m1 , [k]m2 · [k′]m2)

= ([j · j′]m1 , [k · k′]m2) (9.2)
Q. 76. Combien y a-t-il d’éléments
dans les groupes produits (Z/5Z×
Z/7Z,+) et (Z/5Z∗ ×Z/7Z∗, ·) ?

eléments d’algèbre abstraite 77

9.2 Isomorphisme

Des groupes apparemment différents peuvent être les mêmes,
si nous acceptons de changer les noms des éléments ou de l’opé-
ration. Par exemple, les groupes (Z/2Z,+) et (Z/4Z∗, ·) ont des
tables identiques, si nous faisons la correspondance 0 7→ 1 et 1 7→ 3.
Bien que dans le premier cas l’opération binaire soit appelée addi-
tion et dans le deuxième multiplication, ce sont en fait les mêmes,
après renommage. Cette idée, appelée isomorphisme, est utilisée en Ainsi, l’application

Z/2Z → Z/4Z∗

0 7→ 1

1 7→ 3

est un isomorphisme de (Z/2Z,+)
vers (Z/4Z∗, ·).

cryptographie et dans bien d’autres domaines.

Définition 9.3 (Isomorphisme) Soient (G, ?) et (H,⊗) deux en-
sembles munis chacun d’une opération binaire. Un isomorphisme de
(G, ?) vers (H,⊗) est une application ψ : G → H telle que

– ψ est bijective ;
– ψ(a ? b) = ψ(a)⊗ ψ(b) pour tous a, b ∈ G.

On dit que (G, ?) et (H,⊗) sont isomorphes s’il existe un isomorphisme
de (G, ?) vers (H,⊗).

Supposons que ψ est un isomorphisme de (G, ?) vers (H,⊗) alors
les opérations ? et ⊗ sont les mêmes pour quiconque connaît la
correspondance ψ : donc les propriétés de ces deux opérations
doivent se correspondre une par une. En particulier :

1. Si G et H sont finis, ils ont le même cardinal ; Soient G, H, K des sous-ensembles de
Z, et ?,⊕,⊗ trois opérations binaires
définies sur G, H et K.

(a) (G, ?) est isomorphe à (G, ?)
puisque l’identité est évidemment
un isomorphisme.

(b) Si (G, ?) et (H,⊗) sont iso-
morphes alors (H,⊗) et (G, ?).

(c) Si (G, ?) et (H,⊗) sont iso-
morphes, et si (H,⊗) et (K,⊕)
sont isomorphes, alors (G, ?) et
(K,⊕) aussi.

La relation “être isomorphe" est
donc une relation d’équivalence sur
l’ensemble des sous-ensembles de Z

munis d’une opération binaire.

2. Si (G, ?) est un groupe alors (H,⊗) aussi, et réciproquement ;
dans un tel cas, ψ transforme l’élément neutre de (G, ?) en l’élé-
ment neutre de (H,⊗), et l’élément symétrique de a dans (G, ?)
en l’élément symétrique de ψ(a) dans (H,⊗) ;

3. L’application réciproque ψ−1 : (H,⊗) → (G, ?) est aussi un
isomorphisme.

Exemple 9.5 Les groupes (Z/4Z,+) et (Z/5Z∗, ·) sont-ils iso-
morphes ?

Voyons d’abord s’ils ont le même cardinal. Les éléments inversibles
de Z/5Z sont [1]5, [2]5, [3]5 et [4]5 donc Z/5Z∗ a 4 éléments, comme
Z/4Z. Comparons maintenant les tables de ces deux groupes : (en omet-
tant les crochets) :

(Z/4Z,+) 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(Z/5Z∗, ·) 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Ré-écrivons la table de (Z/5Z∗, ·) en changeant l’ordre de 3 et 4 :

(Z/4Z,+) 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(Z/5Z∗, ·) 1 2 4 3

1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

78 sciences de l’information

puis ré-écrivons encore une fois la table de (Z/5Z∗, ·) en changeant les
symboles : 1 7→O, 2 7→I, 4 7→II et 3 7→ III.

(Z/4Z,+) 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

(Z/5Z∗, ·) O I II III

O O I II III
I I II III O

II II III O I
III III O I II

Q. 77. Soit f l’application

f : (Z/5Z∗.·)→ (Z/4Z,+)
[1]5 7→ [0]4 , [2]5 7→ [1]4 ,
[3]5 7→ [3]4 , [4]5 7→ [2]4

Montrer que f (a · b) = f (a) + f (b).Les deux sont maintenant les mêmes, l’une en chiffres arabes, l’autre en
chiffres romains. Donc les deux groupes sont isomorphes, avec comme
isomorphisme celui qui fait correspondre 0 7→O, 1 7→I, 2 7→II et 3 7→III.
Rétablissons les symboles d’origine de Z/5Z∗, nous avons donc obtenu
comme isomorphisme :

ψ : (Z/4Z,+)→ (Z/5Z∗.·)
[0]4 7→ [1]5 , [1]4 7→ [2]5 , [2]4 7→ [4]5 , [3]4 7→ [3]5

ψ est bien bijectif et ψ(a + b) = ψ(a) · ψ(b) L’élément neutre de On dit parfois qu’une application telle
que ψ est une “exponentielle discrète"
à cause de la relation ψ(a + b) =
ψ(a) · ψ(b).

(Z/4Z,+) correspond à l’élément neutre de (Z/5Z∗, ·) :

ψ([0]4) = [1]5

et ψ transforme l’opposé en inverse, par exemple ψ(− [3]4) = ψ([3]4)
−1

comme nous pouvons le vérifier :

ψ(− [3]4) = ψ([1]4) = [2]5
ψ([3]4)

−1 = [3]−1
5 = [2]5

Exemple 9.6 Les éléments inversibles de Z/8Z sont [1]8, [3]8, [5]8 et
[7]8 donc (Z/8Z∗, ·) est un groupe à 4 éléments. Est-il isomorphe à
(Z/4Z,+) ?

(Z/8Z∗, ·) 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Table 9.2: Table du groupe des élé-
ments inversibles de Z/8Z.

La table de multiplication de Z/8Z∗ est donnée ci-contre. Nous voyons
que chaque élément b de Z/8Z∗ vérifie b · b = [1]8 ; donc s’il existait
un isomorphisme entre (Z/4Z,+) et (Z/8Z∗, ·) on devrait avoir la
propriété correspondante dans (Z/4Z,+), c’est à dire qu’on devrait avoir
a + a = [0]4 pour tout a ∈ Z/4Z, ce qui n’est pas vrai (prendre par
exemple a = [1]4. Donc les deux groupes ne sont pas isomorphes, bien
qu’ils aient le même nombre d’éléments.

Exemple 9.7 Le groupe produit de (Z/2Z,+) et (Z/2Z,+) est-il iso-
morphe à (Z/8Z∗, ·) ? En comparant les tables 9.1 et 9.2, nous voyons
que l’application

ψ : Z/2Z×Z/2Z→ Z/8Z∗

00 7→ 1, 01 7→ 3, 10 7→ 5, 11 7→ 7

est un isomorphisme.
Q. 78. Parmi les groupes suivants, dire
lesquels sont isomorphes :

1. (Z/4Z,+)
2. (Z/5Z,+)
3. (Z/5Z∗, ·)
4. (Z/8Z∗, ·)
5. le groupe produit de (Z/2Z,+) et

(Z/2Z,+)

9.3 Période d’un Elément

Théorème et Définition 9.4 (Période) Soit (G, ?) un groupe commu-
tatif fini dont l’élément neutre est noté e.

eléments d’algèbre abstraite 79

1. Pour tout élément a ∈ G il existe un entier k ≥ 1 tel que

k fois︷ ︸︸ ︷
a ? a ? ... ? a=

e. Le plus petit de ces entiers est appelé la période de a.

2. Pour tout entier positif `,

` fois︷ ︸︸ ︷
a ? a ? ... ? a= e si et seulement si la période

de a divise `.

Notons que la période de l’élément neutre est 1.

Preuve :

1. Soit a` la suite définie pour ` = 1, 2, ... par a` =

` fois︷ ︸︸ ︷
a ? a ? ... ? a.

Comme G est un ensemble fini, cette suite ne peut prendre qu’un
nombre fini de valeurs distinctes, c’est à dire qu’il existe `1 ≥ 1 et
`2 > `1 tels que a`2 = a`1 , donc

`2−`1 fois︷ ︸︸ ︷
a ? a ? ... ? a ?

`1 fois︷ ︸︸ ︷
a ? a ? ... ? a =

`1 fois︷ ︸︸ ︷
a ? a ? ... ? a

Soit a′ l’élément symmétrique de a ; nous avons donc :

`2−`1 fois︷ ︸︸ ︷
a ? a ? ... ? a ?

`1 fois︷ ︸︸ ︷
a ? a ? ... ? a ?

`1 fois︷ ︸︸ ︷
a′ ? a′ ? ... ? a′ =

`1 fois︷ ︸︸ ︷
a ? a ? ... ? a ?

`1 fois︷ ︸︸ ︷
a′ ? a′ ? ... ? a′

donc
`2−`1 fois︷ ︸︸ ︷

a ? a ? ... ? a= e donc il existe un entier k = `2 − `1 ≥ 1 tel
que ak = e. Comme tout ensemble d’entiers positifs possède un
plus petit élément, la période est bien définie.

2. (⇐) Notons tout d’abord que si ` et `′ sont des entiers positifs

` fois︷ ︸︸ ︷
a ? a ? ... ? a ?

`′ fois︷ ︸︸ ︷
a ? a ? ... ? a=

`+`′ fois︷ ︸︸ ︷
a ? a ? ... ? a

c’est à dire que nous pouvons écrire comme d’habitude a`+`′ =

a` ? a`
′
. De la même façon,

au` =

` fois︷ ︸︸ ︷
au ? au ? ... ? au= (au)`

Soit maintenant ` tel que a` = e et soit k la période de a. Nous
faisons un raisonnement par l’absurde. Supposons que k ne
divise pas `. Soit ` = kq + r la division euclidienne de ` par k ;
nous avons 1 ≤ r ≤ k− 1. Donc

e = a` = (ak)q ? ar = eq ? ar = ar

Donc r satisfait ar = e, ce qui est impossible car r < k.

(⇒) Soit ` = uk avec u entier. Donc a` =
(

ak
)u

= eu = e.

2

a période

0 1
1 12
2 6
3 4
4 3
5 12
6 2
7 12
8 3
9 4

10 6
11 12

Table 9.3: Périodes des éléments de
(Z/12Z,+) (les crochets sont omis,
ainsi a = 11 signifie a = [11]12).

Exemple 9.8 ((Z/12Z,+)) Dans le groupe (Z/mZ,+) la période de
[a]m est le plus petit entier k ≥ 1 tel que k[a]m = [0]m, c’est à dire que
c’est le plus petit entier k ≥ 1 tel que

ka ≡ 0 (mod m)

80 sciences de l’information

Prenons m = 12 et a = 2 ou 5 :

k 2 3 4 5 6 7 8 9 10 11 12

k[2]12 4 6 8 10 0 ...
k[5]12 10 3 8 1 6 11 4 9 2 7 0

Donc la période de [2]12 est 6, et la période de [5]12 est 12. En répétant ces
calculs pour les 12 éléments de Z/12Z nous obtenons la Table 9.4

Les entiers ` ≥ 1 tels que `[2]12 = [0]12, c’est à dire tels que 2` ≡ 0
(mod 12) sont les multiples de la période k = 6.

Exemple 9.9 ((Z/mZ∗, ·)) Dans le groupe (Z/mZ∗, ·) la période de
[a]m est le plus petit entier k ≥ 1 tel que ([a]m)

k = [1]m, c’est à dire que
c’est le plus petit entier k ≥ 1 tel que

ak ≡ 1 (mod m)

Il est défini si [a]m ∈ Z/mZ∗, c’est à dire si a et m sont premiers entre
eux.

a période

1 1
3 2
5 2
7 2

Table 9.4: Périodes des éléments de
(Z/8Z∗, ·) (les crochets sont omis).

Q. 79. Quelle est la période de [1]m
dans (Z/mZ,+) ? dans (Z/mZ∗, ·) ?

Prenons m = 8, le groupe (Z/8Z∗, ·) comporte 4 éléments, [1]8, [3]8, [5]8
et [7]8. La période de [1]8 est 1 (c’est l’élément neutre). Calculons les pé-
riodes des autres éléments : nous avons [3]28 = [5]28 = [7]28 = [1]8 donc
tous les éléments sauf [1]8 ont pour période 2.

Si deux groupes sont isomorphes, ils ont les mêmes tables après
renommage, donc les périodes des éléments sont les mêmes. Nous
avons donc le théorème suivant, que nous citons sans démonstra-
tion :

Théorème 9.2 Soient(G, ?) et (H,⊗) deux groupes isomorphes et ψ un
isomorphisme G → H. Pour tout x ∈ G, la période de x est égale à la
période de ψ(x).

Exemple 9.10 (Suite de l’Exemple 9.6) Les périodes des 4 éléments
de (Z/8Z∗, ·) sont 1, 2, 2 et 2 alors que les périodes des 4 éléments de
(Z/4Z,+) sont 1, 2, 4 et 4 donc ces deux groupes ne peuvent pas être
isomorphes.

Dans chacun des exemples précédents, la période d’un élément
est un diviseur du nombre d’éléments du groupe. Ceci est vrai en
général, comme l’exprime le théorème le théorème suivant, qui est
une version particulière du théorème de Lagrange :

Théorème 9.3 (Lagrange) Soit (G, ?) un groupe commutatif fini, de
cardinal n. La période de tout élément de G divise n.

En particulier, notons e l’élément neutre de G. Pour tout a ∈ G :

n fois︷ ︸︸ ︷
a ? a ? ... ? a= e

eléments d’algèbre abstraite 81

Preuve : Soit a ∈ G fixé, de période k.
(1) Introduisons la relation R sur G définie par

xRy⇔ ∃` ∈ {0, 1, 2, ..., k− 1} : y = a` ? x

avec la convention a` =

` fois︷ ︸︸ ︷
a ? a ? ... ? a et a0 = e. Montrons que R est

une relation d’équivalence.
– (Réflexive) Pour tout x ∈ G : xRx (prendre ` = 0) ;
– (Symmétrique) Supposons que xRy ; alors il existe ` ∈ {0, 1, 2, ..k− 1}

tel que y = a` ? x. Si ` = 0 alors x = y donc yRx. Sinon,
k ∈ {1, 2, ..k− 1}. Nous avons

ak−` ? y = ak−` ? a` ? x = ak ? x = e ? x = x

avec (k− `) ∈ {1, 2, ..., k− 1} donc yRx ;
– (Transitive) Supposons que xRy et yRz, et soient `, `′ ∈
{0, 1, 2, ..., k− 1} tel que y = a` ? x et z = a`

′
? y. Donc

z = a`+`′ ? x. Soit ` + `′ = qk + r la division euclidienne

de ` + `′ par k. Donc z = aqk+r =
(

ak
)q

? ar = ar avec
r ∈ {1, 2, ..k− 1}, et donc xRz.

(2) Soit x ∈ G ; la classe d’équivalence de x est (par définition de
R) : {

x, a ? x, a2 ? x, ..., ak−1 ? x
}

Tous ces éléments sont distincts ; en effet, sinon on aurait a`1 ? x =

a`2 ? x avec 0 ≤ `1 < `2 donc a`1 = a`2 et donc, comme dans
la preuve du Théorème 9.4 : a`2−`1 = e ce qui est impossible car
1 ≤ `2 − `1 < k. Donc la classe d’équivalence de x comporte k
éléments.
(3) Toutes les classes d’équivalence comportent k éléments chacune.
Or, l’ensemble des classes d’équivalences constitue une partition de
G (c’est la propriété des relations d’équivalence). Soit u le nombre
de classes d’équivalence. Nous avons donc n = uk, c’est à dire que k
divise n. 2

Si G = (Z/mZ,+), le Théorème 9.3 ne nous apprend rien de
nouveau. En effet, le cardinal du groupe est m et le théorème dit
que pour tout a ∈ Z, nous avons m[a]m = [0]m, ce qui est évident
car nous savons que m[a]m = [m]m[a]m = [0]m[a]m = [0]m.

Par contre, pour G = (Z/mZ∗, ·), le résultat est non évident
(et forme un élément important de la méthode de chiffrage asymé-
trique du Chapitre 10). Le cardinal de Z/mZ∗ est ϕ(m) (indicatrice
d’Euler) ; nous avons donc le résultat suivant :

Corollaire 9.4 (Théorème d’Euler) Pour tout entier positif m et tout
entier a premier avec m :

([a]m)
ϕ(m) = [1]m

ou encore
aϕ(m) ≡ 1 (mod m)

Q. 80. Vérifiez le théorème d’Euler
avec a = 7 et m = 10.

82 sciences de l’information

Dans le cas particulier où le module est un nombre premier,
nous obtenons le résultat suivant :

Corollaire 9.5 (Théorème de Fermat) Si p est un nombre premier,
pour tout entier a : (

[a]p
)p

= [a]p

ou encore
ap ≡ a (mod p)

Q. 81. Vérifiez le théorème de Fermat
avec a = 10 et p = 7.

,Preuve : Nous avons vu que ϕ(p) = p− 1 et tous les éléments de
Z/pZ sauf [0]p sont inversibles.

(1) Si x ∈ Z/pZ et x 6= [0]p, d’après le Théorème d’Euler :
xp−1 = [1]p. En multipliant les deux côtés par x :

xp = x (9.3)

(2) Si x = [0]p, l’égalité 9.3 est aussi vraie, donc elle est vraie
pour tout a ∈ Z/pZ. ,2

10
Cryptographie Asymétrique

Nous sommes maintenant presque arrivés au bout des théories
qui nous permettent de comprendre comment fonctionne la cryp-
tographie asymétrique. Il nous reste à découvrir le théorème des
restes chinois, que nous utiliserons pour développer un système
cryptographique.

10.1 Le Théorème des Restes Chinois

Commençons par un petit jeu. Nous voulons remplir une boîte
m1 × m2, comme suit. Nous commençons à la position (0, 0), et
nous y inscrivons 0. Puis nous continuons en suivant la diagonale
et inscrivons 1 dans la case (1, 1). Si nous sortons de la boîte, nous
y revenons par le bord opposé et continuons parallèlement à la
diagonale (voir Figure 10.1). La question du jeu est : pourrons nous
remplir la boîte ?

0 1 2
0 0 4 8
1 9 1 5
2 6 10 2
3 3 7 11

m1 = 3, m2 = 4

0 1
0 0, 4
1 1, 5
2 2, 6
3 3, 7

m1 = 2, m2 = 4

Figure 10.1: Le jeu des restes chinois.

Le théorème des restes chinois donne la solution : si m1 et m2

sont premiers entre eux, alors la réponse est oui, et nous pouvons
remplir la boîte en exactement m1m2 étapes, c’est à dire en utilisant
les nombres de 0 à (m1m2 − 1). Par contre, si m1 et m2 ne sont
pas premiers entre eux, il restera des cases vides, quel que soit le
nombre d’étapes.

Pour comprendre le lien avec l’arithmétique modulaire, imagi-
nons que les coordonnées des cases sont numérotées en utilisant
Z/m1Z et Z/m2Z, comme dans la Figure 10.1. Le jeu consiste en
fait à placer le nombre entier k dans la case dont les coordonnées
sont [k]m1 et [k]m2 . La question du jeu est donc : l’application{

N→ Z/m1Z×Z/m2Z

k 7→ ([k]m1 , [k]m2)
(10.1)

est-elle surjective ?
Observons que si k′ = k+nm1m2 avec n entier, alors ([k′]m1 , [k′]m2) =

([k]m1 , [k]m2). En d’autres termes, deux entiers k et k′ qui sont
congrus modulo m1m2 sont placés dans la même case de la boîte.
Nous pouvons donc arrêter le jeu quand k = m1m2 − 1. D’autre
part, au lieu de l’application définie en (10.1), nous pouvons tout

84 sciences de l’information

aussi bien considérer que le jeu est une réalisation de l’application :

ψ :

{
Z/m1m2Z→ Z/m1Z×Z/m2Z

[k]m1m2
7→ ([k]m1 , [k]m2)

(10.2)

puisque la case dans laquelle est placé k ne dépend que de [k]m1m2 .
La question du jeu devient donc : l’application ψ est-elle surjective ?

[0]3 [1]3 [2]3
[0]4 [0]12 [4]12 [8]12
[1]4 [9]12 [1]12 [5]12
[2]4 [6]12 [10]12 [2]12
[3]4 [3]12 [7]12 [11]12

m1 = 3, m2 = 4

[0]2 [1]2
[0]4 [0]8, [4]8
[1]4 [1]8, [5]8
[2]4 [2]8, [6]8
[3]4 [3]8, [7]8

m1 = 2, m2 = 4

Figure 10.2: Le jeu des restes chi-
nois, vu comme une application de
Z/m1m2Z vers Z/m1Z×Z/m2Z :
[k]m1m2 est placé dans la case
([k]m1 , [k]m2).

Théorème 10.1 (Restes Chinois) Soient m1 et m2 deux entiers ≥ 2.
(1) Si m1 et m2 sont premiers entre eux, l’application ψ définie par

l’Eq.(10.2) est bijective.
(2) De plus c’est un isomorphisme à la fois pour l’addition et la multi-

plication.
(3) Si m1 et m2 ne sont pas premiers entre eux, l’application ψ n’est ni

surjective ni injective.

Le principe des tiroirs, ou principe des
boîtiers, (Ang. pigeon holes), dans une
de ses nombreuses variantes, établit
des liens entre nombres d’éléments
des ensembles et les propriétés d’in-
jection / surjection. Soient E et F des
ensembles finis de même cardinal et f
une application E → F. Ce principe dit
que :

1. Si f est injective alors f est surjec-
tive (donc bijective).

2. Si f est surjective alors f est injec-
tive (donc bijective).

Ni injective ni surjective

Bijective

Par exemple, supposons que nous
ayons des CDs à ranger dans des
boîtiers (ou tiroirs). E est l’ensemble
des CDs et F l’ensemble des boîtiers.
Un rangement des CDs dans les
boîtiers définit une application f : E →
F car il associe à chaque CD un boîtier.
Un rangement est injectif s’il n’y a
jamais deux CDs dans le même boîtier.
Un rangement est surjectif si tous les
boîtiers sont occupés.

Le principe des boîtiers dit que si le
nombres de CDs est égal au nombre
de boîtiers, et s’il n’y a jamais deux
CDs dans le même boîtier, alors tous
les boîtiers sont occupés (et vice-versa).

,Preuve : (1) Supposons que m1 et m2 sont premiers entre eux
et montrons que ψ est injective. Soient k et k′ des entiers tels que
ψ([k]m1m2) = ψ([k′]m1m2). Alors

ψ([k− k′]m1m2) = ([k− k′]m1 , [k− k′]m2) = ([0]m1 , [0]m2)

donc (k− k′) ≡ 0 (mod m1) et (k− k′) ≡ 0 (mod m2).
Donc m1 et m2 divisent (k − k′) et sont premiers entre eux.

D’après le Théorème 7.6, item 3, m1m2 divise (k − k′) donc [k −
k′]m1m2 = [0]m1m2 , donc [k]m1m2 = [k′]m1m2 . Par contraposition,
nous avons montré que si [k]m1m2 6= [k′]m1m2 alors ψ([k]m1m2) 6=
ψ([k′]m1m2), c’est à dire que ψ est injective.

Or les ensembles Z/m1m2Z et Z/m1Z×Z/m2Z sont des en-
sembles finis de même cardinal (m1m2). Comme ψ est injective, elle
est aussi bijective.

(2) Montrons que ψ est un isomorphisme pour l’addition ; il faut
montrer

ψ([k]m1m2 + [k′]m1m2) = ψ([k]m1m2) + ψ([k′]m1m2) (10.3)

pour tous entiers k, k′. Le membre de gauche est ([k + k′]m1 , [k +
k′]m2). Par définition de la loi produit (Eq.(9.1)), le membre de
droite est ([k]m1 + [k′]m1 , [k]m2 + [k′]m2) ; les deux sont donc égaux.

La même chose est vraie pour la multiplication, c’est à dire :

ψ([k]m1m2 · [k′]m1m2) = ψ([k]m1m2) · ψ([k′]m1m2) (10.4)

(3) Supposons que m1 et m2 ne sont pas premiers entre eux.
Soit d ≥ 2 un diviseur commun et m = m1m2

d ; m est un mul-
tiple de m1 car m2

d est entier, et la même chose vaut pour m2 ;
donc ψ([m]m1m2) = ([0]m1 , [0]m2). Or 1 < m < m1m2, donc
[m]m1m2 6= [0]m1m2 . Donc ψ n’est pas injective. Comme Z/m1m2Z

et Z/m1Z×Z/m2Z sont des ensembles finis de même cardinal, ψ

n’est pas surjective non plus. ,2

Une conséquence immédiate concerne la fonction indicatrice
d’Euler.

cryptographie asymétrique 85

Corollaire 10.2 Si m1 et m2 sont premiers entre eux, alors ϕ(m1m2) =

ϕ(m1)ϕ(m2).
Q. 82. Soit f : E → E où E est un
ensemble infini. Est-il vrai que si f
est injective alors f est surjective ? Et
réciproquement ?
Q. 83. Combien vaut ϕ(35) ?

Preuve : (Z/m1m2Z, ·) est isomorphe (par ψ) à (Z/m1Z×Z/m2Z, ·).
Il y a donc autant d’éléments inversibles dans Z/m1m2Z que dans
Z/m1Z×Z/m2Z. Or un élément de ce dernier est inversible ssi
chacune de ses deux composantes l’est, donc il y a ϕ(m1)ϕ(m2)

éléments inversibles. 2

10.2 Cryptographie à Clé Publique

Reprenons le schéma général de la Figure 6.1 ; rappelons qu’un
algorithme de chiffrement E, paramétré par une clé K, transforme
le texte clair P en cryptogramme C = EK(P). L’algorithme de dé-
chiffrement D, paramétré par une clé k, effectue la transformation
inverse P = Dk(C). Dans ce chapitre nous étudions un système
de chiffrement où la clé de chiffrement K est publique, alors que la
clé de déchiffrement k est secrète, connue seulement par le destina-
taire. Avec un tel système, un usager qui désire envoyer et recevoir
des cryptogrammes se munit donc deux clés, l’une (k) qu’il garde
secrète et l’autre (K) qu’il publie dans un annuaire que tous les
autres usagers peuvent consulter. La distribution des clés est donc
extrêmement facile. Comment envoyer du chocolat à un

ami dans un pays où les postiers
aiment beaucoup le chocolat et ont
tendance à le voler ? Si mon ami
possède une clé de mon cadenas, c’est
facile. Sinon, nous pouvons utiliser un
double échange. Chacun garde alors
les clés de son cadenas par devers soi.

10

C’est un problème semblable que
résout la cryptographie à clé publique,
mais avec un seul échange au lieu de
deux.

Pour qu’un tel système fonctionne, il faut que certaines condi-
tions soient remplies :

(1) (Exactitude) L’algorithme de déchiffrement doit rétablir le
texte clair : Dk(EK(P)) = P.

(2) Le chiffrement EK(P) d’un message clair P est une opération
aisée et rapide.

(3) Le déchiffrement Dk(C) d’un cryptogramme C est une opé-
ration aisée pour quiconque connaît la clé k.

(4) Par contre, le déchiffrement sans la connaissance de k est
extrêmement difficile, et impossible à effectuer en pratique, en
un temps raisonnable.

(5) Enfin, il doit être extrêmement difficile de deviner la clé
privée k.

Dans la section suivante, nous allons étudier le système RSA et
montrer qu’il satisfait à ces conditions.

10.3 L’Algorithme de Rivest-Shamir-Adleman (RSA)

Le cryptosystème RSA encode tous les messages (clairs ou chif-
frés) comme des entiers modulo K (c’est à dire des éléments de
Z/KZ). Les longs messages sont subdivisés en blocs, si bien que
tous les messages sont compris entre 0 et K− 1.

1. Le module K est toujours de la forme K = pq où p et q sont des
nombres premiers. Le module K est la clé publique.

86 sciences de l’information

La clé privée k est le plus petit multiple commun à p− 1 et q− 1. On peut aussi prendre comme clé
privée n’importe quel multiple com-
mun à (p− 1) et (q− 1), par exemple
k = ϕ(pq) = (p− 1)(q− 1).

Les facteurs p et q sont secrets et utilisés seulement pour
construire la clé privée k. Ils peuvent être détruits une fois k
calculée.

2. Le chiffrement est défini par C def
= EK(P) tel que [C]K = ([P]K)

e,
où l’exposant e est connu et public.

3. La clé publique K doit être telle que e est premier avec k.
En pratique, on prend souvent e = 65537, qui est un nombre

premier ; dans un tel cas, la condition que e soit premier avec k
est équivalente à : e ne divise ni (p− 1) ni (q− 1).

4. Le déchiffrement est obtenu à l’aide d’un nombre f tel que
[f]k = [e]−1

k . Notons que cet inverse existe précisément grâce
à la condition précédente. Il peut être calculé simplement en

Notons que les congruences utilisées
pour le chiffrement et le déchiffre-
ment sont modulo K, alors que la
congruence qui définit l’exposant de
déchiffrement f est modulo k.utilisant l’identité de Bézout, si on connaît la clé privée k.

Le déchiffrement est alors défini par P′ = Dk(C) avec [P′]K =

([C]K)
f .

Exemple 10.1 Chaque lettre du message clair est codée par sa position
dans l’alphabet, et nous prenons comme clé publique K = 33. Les facteurs
premiers sont p = 3 et q = 11. La clé privée k est le plus petit multiple
commun à 2 et 10, d’où k = 10.

Prenons comme exposant e = 7, qui est premier avec k. L’exposant de
déchiffrement est f = 3 car 7 · 3 ≡ 1 (mod 10). Le chiffrement et le
déchiffrement du mot “BONJOUR” sont montrés dans la Figure 10.3

Texte Texte Texte
clair codé chiffré déchiffré

P C = ([P]33)
7 ([C]33)

3

B 02 29 02 B
O 15 27 15 O
N 14 20 14 N
J 10 10 10 J
O 15 27 15 O
U 21 21 21 U
R 18 06 18 R

Figure 10.3: L’algorithme RSA avec le
module K = 33 et clé exposant e = 7.
La clé publique est K et la clé privée
est (3, 11).

Vérifions maintenant que cet algorithme satisfait aux conditions
posées en 10.2. Commençons par une conséquence immédiate du
théorème des restes chinois :

Théorème 10.3 (Exactitude de RSA) Soient p et q deux nombres
premiers distincts. Soit m un multiple commun à p − 1 et q − 1. Pour
tout entier n : (

[n]pq
)1+m

= [n]pq (10.5)

,Preuve : Puisque (Z/pqZ, ·) est isomorphe (par l’application ψ

des restes chinois) à (Z/pZ×Z/qZ, ·), l’Eq.(10.5) est équivalente à(
[n]p

)1+m
= [n]p (10.6)

et
(
[n]q

)1+m
= [n]q (10.7)

Montrons l’Eq.(10.6). Distinguons deux cas :

1. Si [n]p = 0 alors l’Eq.(10.6) est trivialement vraie.
2. Sinon, [n]p est inversible car p est premier (Théorème 8.6) et

donc, par le Théorème d’Euler,
(
[n]p

)p−1
= [1]p. Par ailleurs

m est multiple de p − 1, donc il existe un entier ` ≥ 0 tel que
m = `(p− 1). Donc(

[n]p
)m

=
(
[n]p

)(p−1)`
=
(
[1]p

)`
= [1]p

En multipliant par [n]p nous obtenons l’Eq.(10.6).

cryptographie asymétrique 87

L’Eq.(10.7) se montre de la même façon. ,2

Nous pouvons maintenant vérifier les conditions de la section 10.2.
(1) (Exactitude) Le message déchiffré est P′ tel que [P′]K =

([C]K) f = ([P]K)e f . Or il existe ` ∈ Z tel que e f = 1 + `k,
d’après la condition 4 de l’algorithme RSA. Comme k (et donc
aussi `k) est un multiple commun à (p − 1) et (q − 1), par
le Théorème 10.3, [P′]K = [P]K. Donc P′ = P puisque les
messages sont des entiers compris entre 0 et K− 1.

(2) Le chiffrement est un calcul de puissance, qui est facile
comme nous l’avons vu sur l’Exemple 8.1. L’exposant e =

65537 est particulièrement intéressant, voir ci-contre.

Pour e = 65537 = 216 + 1, le calcul de
y = xe peut se faire en élevant 16 fois
au carré puis en multipliant par x :
1: y← x
2: for i = 1 to 16 do
3: y← y2

4: end for
5: y← y · x

Pour le chiffrement, il suffit d’appli-
quer cet algorithme avec x = [P]K ,
nous obtenons alors y = [C]K .

(3) Si on connaît la clé privée k, le calcul de l’exposant de dé-
chiffrement f est simple comme nous l’avons déjà vu. Le dé-
chiffrement est également un calcul de puissance, qui est donc
aussi un problème facile.

(4) Le déchiffrement sans connaître la clé privée k revient à
résoudre l’équation xe = [C]K où tout est connu sauf x, c’est à
dire calculer la racine e-ième de [C]K. La méthode exhaustive
consiste à essayer toutes les valeurs de x (et il faut le faire pour
tous les blocs du message chiffré). Il faut donc que soit un
nombre très grand pour que cette méthode soit chère en temps
de calcul. Une autre méthode utilise le logarithme discret
(Exemple 8.1), dont le calcul est aussi un problème difficile
pour K grand. On pense donc aujourd’hui qu’il n’y a pas de

L’élévation à la puissance e est donc
une fonction à sens unique (pour qui-
conque ne connaît pas la clé privée).

moyen simple pour calculer la racine e-ième dans Z/KZ.
(5) Pour que la dernière condition soit satisfaite, il doit être

extrêmement compliqué de déchiffrer sans connaître (p, q),
ce qui revient à ce que la la factorisation de K en nombres
premiers soit difficile à calculer. Une méthode de factorisation
consisterait par exemple à essayer tous les entiers jusqu’à√

K pour retrouver p et q. D’autres algorithmes sont plus
rapides, mais restent totalement inefficaces si K est très grand.
Rivest, Shamir et Adleman ont calculé qu’il faudrait 4 millions
d’années pour factoriser un nombre m de 200 chiffres avec un
processeur de 1Ghz. On pense aujourd’hui que la factorisation
de nombres entiers très grands est un problème difficile.

C’est donc sur les hypothèses de quasi-impossibilité de calcul de la
racine dans Z/KZ et de la factorisation en nombres premiers que
repose la sécurité de RSA.

10.4 Choix des Paramètres du Cryptosystème RSA : Nombres
Premiers Sûrs

Bien que le système RSA satisfasse à toutes les conditions de la
Section 10.3, il est nécessaire de bien choisir les nombres entiers p et
q, sans quoi certains problèmes peuvent survenir, en particulier ce-
lui des messages non cachés. Lors du chiffrement de l’Exemple 10.3,
les nombres 10 et 21 du texte clair sont cryptés respectivement en

88 sciences de l’information

10 et 21 ! En effet, 10 ≡ 107 (mod 33) et 21 ≡ 217 (mod 33),
et donc le cryptogramme et le texte clair sont identiques pour ces
valeurs, ce qui est évidemment tout bénéfice pour le cryptanalyste.
Le texte clair [P]K = [0]K n’est jamais caché. En général, les textes
clairs P qui ne sont pas cachés sont ceux qui satisfont

([P]K)
e = [P]K (10.8)

Il peut y avoir beaucoup de solutions à cette équation en P, sauf
si on choisit pour p et q des nombres premiers “sûrs".

Définition 10.1 Un nombre premier p est dit sûr s’il est de la forme
p = 2p′ + 1 où p′ est aussi un nombre premier.

Il existe beaucoup de nombres pre-
miers sûrs, on pense que leur nombre
est infini.
Q. 84. Les nombres suivants sont-ils
des nombres premiers sûrs : 17, 83,
107 ?

Le théorème suivant dit que dans un tel cas, et avec un exposant de
chiffrement aussi bien choisi, le nombre de messages P qui ne sont
pas cachés est 9 (cela inclus le message P = 0). Comme K = pq
est très grand, leur nombre est infime et il doit donc être possible
d’éviter de tels message avec grand probabilité.

Théorème 10.4 Soient p et q des nombres premiers sûrs distincts supé-
rieurs à 5 et supposons que l’exposant de chiffrement e est tel que e− 1 est
une puissance de 2. Le nombre de solutions [P]K ∈ Z/KZ de Eq.(10.8)

Par exemple e = 65537 = 216 + 1
satisfait cette propriété.
Q. 85. Montrez que si e− 1 est impair
et p, q sont des entiers premiers sûrs >
2e + 1 alors e satisfait les conditions de
RSA, i.e. e est premier avec ppcm(p−
1, q− 1).

est égal à 9.

Preuve : Soient p = 2p′ + 1 et q = 2q′ + 1 avec p et q premiers
distincts (donc p′ > 2 et q′ > 2). Nous avons à résoudre l’équation
ze = z où l’inconnue est z ∈ Z/pqZ. Faisons le changement de
variable ψ(z) = (x, y) où x ∈ Z/pZ, y ∈ Z/qZ. Par le théorème des
restes chinois :

ze = z, z ∈ Z/pqZ⇔


xe = x, x ∈ Z/pZ

et
ye = y, y ∈ Z/qZ

Étudions l’équation en x. Elle équivaut à

(xe−1 − [1]p)x = [0]p, x ∈ Z/pZ

De deux choses l’une : soit x = [0]p, soit x 6= [0]p. Dans le premier
cas x = [0]p est solution ; dans le deuxième cas, x est inversible (car
p est premier) donc nous pouvons simplifier par x (en multipliant
les deux membres par [x]−1

p) et donc xe−1 = [1]p.
Dans ce dernier cas, la période d de x dans Z/pZ∗ divise e− 1,

qui est une puissance de 2, donc d est une puissance de 2 ; elle
divise aussi le cardinal de Z/pZ∗, qui est p− 1 = 2p′ ; comme p′

est premier et 6= 2, d divise 2, donc d = 1 ou 2. Donc x = [1]p ou
sinon x2 = [1]p. Dans ce dernier cas, (x − [1]p)(x + [1]p) = [0]p et
donc comme x− [1]p 6= [0]p, nous pouvons simplifier par (x− [1]p)
et x = [−1]p. Notons que [−1]p 6= [1]p car p > 2.

En résumé, l’équation xe = x, x ∈ Z/pZ a trois solutions : x ∈{
[0]p, [1]p, [−1]p

}
. De même ye = y, y ∈ Z/qZ a trois solutions :

y ∈
{
[0]q, [1]q, [−1]q

}
. A chaque solution en x et en y correspond

cryptographie asymétrique 89

une solution z = ψ−1(x, y) et il y a 3× 3 = 9 façons de choisir le
couple de solutions (x, y). Donc l’équation ze = z, z ∈ Z/pqZ a 9
solutions. 2

III

Codes Correcteurs

11
Les Codes Correcteurs ou Détecteurs

Maintenant que nous savons comment comprimer l’in-
formation et la sécuriser contre des attaques, il nous reste à com-
prendre comment la protéger contre les erreurs. De telles erreurs
arrivent quotidiennement : sur un CD à cause des rayures ou de la
poussière ; dans un ordinateur lorsque les données sont lues et per-
turbées par le bruit thermique introduit par un système électrique ;
ou encore dans la mémoire d’un lecteur MP3 quand les circuits ont
vieilli et que certains transistors sont morts.

Pour protéger l’information, l’idée est toujours d’ajouter des
bits (appelés bits de redondance), en utilisant ce qu’on appelle un
code correcteur ou détecteur (aussi appelé code tout court). Ces bits
de redondance sont utilisés lors du décodage pour reconstruire
l’information initiale même s’il y a des bits perdus ou erronés.
Les chiffres de contrôle MOD 97-10 de l’IBAN que nous avons
rencontrés au Chapitre 7 sont un tel code. Il est peu efficace, et
nous allons voir dans cette partie comment fabriquer des codes bien
meilleurs. En particulier, nous allons construire les codes de Reed-
Solomon, qui sont utilisés dans un très grand nombre de systèmes,
par exemple pour lire un code-barre ou pour obtenir des données
depuis un CD ou un disque dur.

Dans la Partie I, nous avons utilisé des codes de sources. Les
codes dont nous parlons ici sont différents. Les codes de source
compriment l’information ; au contraire, les code correcteurs ou
détecteurs augmentent la taille de l’information. Typiquement, les
données sont d’abord comprimées à l’aide d’un code de source,
puis on utilise un code correcteur ou détecteur avant de les stocker
ou de les transmettre.

11.1 Codes Correcteurs ou Détecteurs

Commençons par un exemple simple.

k = 3 n = 7
000 7→ 0000000
001 7→ 0011100
010 7→ 0111011
100 7→ 1110100
011 7→ 0100111
101 7→ 1101000
110 7→ 1001111
111 7→ 1010011

Figure 11.1: Un code de longueur
n = 7 et sa table d’encodage.

Exemple 11.1 Nous voulons stocker un fichier sur un disque.
Nous supposons que le fichier comporte k = 3 bits ; la valeur de k

pour n’importe quel vrai fichier sera bien sûr beaucoup plus grande que 3,
mais en considérant une si petite valeur nous pouvons comprendre plus

92 sciences de l’information

facilement le concept.
Nous ne pouvons pas savoir par avance la valeur des 3 bits. Il nous

faut donc prévoir tous les cas. Il y a 23 = 8 fichiers possibles (000, 001,
010, 011, 100, 101, 110 et 111). A chaque cas possible nous faisons corres-
pondre une suite de n = 7 bits ; toutes ces suites, appelées mots de code,
doivent être toutes distinctes. Nous espérons pouvoir utiliser l’information
redondante qui se trouve dans le mot de code ensuite, quand nous vou-
drons reconstruire le fichier original d’une observation peut-être altérée. La
table d’encodage est fixée une fois pour toutes, et est connue aussi bien par
la personne qui écrit les données sur le disque (lors de l’encodage) que la
personne qui lit les données (lors du décodage).

Le code C est l’ensemble de tous les mots de code. Nous disons que
c’est un code en bloc, de longueur n = 7.

Le code utilise 7 bits par mot de code, alors qu’il suffit de k = 3 bits
pour décrire les 8 mots originaux. Nous pouvons donc dire que le code est
de rendement r = k

n = 3
7 .

An est le produit cartésien A× ...×A.
Un élément de An (appelé “mot" dans
le contexte des codes) est une suite
(a1, a2, ..., an) de n éléments de A.
L’ordre compte et il peut y avoir des
répétitions.

Définition 11.1 (Code en Bloc) Un code en bloc de longueur n, défini
sur un alphabet A, est un sous-ensemble C de An, c’est à dire un ensemble
de suites de n éléments de A. Les éléments du code sont appelés les mots
de code.

Le rendement du code est défini par r = 1
n logcard(A) card(C).

Le rendement r est aussi appelé débit
(Ang. rate) du code.

L’expression “en bloc" signifie que
tous les mots de code ont la même
longueur n, ce qui est le seul cas
auquel nous nous intéressons dans
cette partie.

Notons que contrairement aux codes
de sources, ici la table de correspon-
dance ne joue pas de grand rôle,
seul l’ensemble des mots de code est
important.

Le rendement du code mesure son coût en nombre de symboles.
Notons que pour l’exemple précédent nous avions r = 1

7 log2(8) =
3
7 , ce qui est compatible avec la définition.

Q. 86. Considérons le code obtenu en
rajoutant à une suite de k chiffres déci-
maux les deux chiffres de contrôle de
la procédure MOD 97-10 (Exemple 7.2,
page 63). Quel est le rendement de ce
code ?

n = 2, dmin(C) = 2
(1,1)(0,1)

(1,0)(0,0)

n = 3, dmin(C) = 3

(1,1,1)(0,1,1)

(1,0,1)(0,0,1)

(, ,)(, ,)

(1,1,0)(0,1,0)

(1,0,0)(0,0,0)

Figure 11.2: Un code en bloc avec 2
mots de code. La longueur du code est
n = 2 (en haut) ou n = 3 (en bas).

11.2 Distance de Hamming

Jusqu’ici nous avons vu qu’un code en bloc a une longueur n
et un rendement r. Mais comment pouvons nous choisir un code ?
Qu’est-ce que c’est un bon code ? Pour cela il nous faut évaluer son
efficacité, ce qui se fait à l’aide des concepts de distance de Hamming
et distance minimale.

Définition 11.2 (Distance de Hamming) Soit A un ensemble fini
(l’alphabet) et n ≥ 1 un entier. Soient x = (x1, ..., xn) ∈ An et
y = (y1, ..., yn) ∈ An deux suites de n éléments de A. La distance de

Hamming d(x, y) est le nombre de positions où x et y diffèrent :

d(x, y) def
= card {i ∈ {1, ..., n} tels que xi 6= yi}

Par exemple,
x = (1, 0, 1, 1, 1, 0) et
y = (1, 0, 0, 1, 1, 1)

ne diffèrent qu’en leur troisième et dernière positions, donc leur
distance de Hamming est d(x, y) = 2. Notons que le cardinal de
l’ensemble vide est 0 donc d(x, x) = 0.

Un ensemble E sur lequel est défini
une distance vérifiant les trois pro-
priétés du Théorème 11.1 est appelé
espace métrique. L’ensemble An des
mots de n symboles, muni de la dis-
tance de Hamming, est donc un espace
métrique.

Théorème 11.1 (Distance de Hamming) La distance de Hamming
possède les trois propriétés suivantes. Pour tous x, y, z ∈ An :

les codes correcteurs ou détecteurs 93

1. d(x, y) ≥ 0 et d(x, y) = 0 si et seulement si x = y ;
2. (symétrie) d(x, y) = d(y, x) ;
3. (inégalité triangulaire) d(x, z) ≤ d(x, y) + d(y, z).

,Preuve : Nous montrons seulement l’inégalité triangulaire, les
deux premiers items sont laissés aux bons soins du lecteur ou de
la lectrice. Soit A l’ensemble des positions où x et y diffèrent, B
l’ensemble des positions où y et z diffèrent et C l’ensemble des
positions où x et z diffèrent. Nous avons donc d(x, y) = card(A),

La négation de la phrase“A et B" est
“non A ou non B".

d(y, z) = card(B) et d(x, z) = card(C). Or :

(xi = yi et yi = zi)⇒ (xi = zi)

donc par contraposition

(xi 6= zi)⇒ (xi 6= yi ou yi 6= zi)

c’est à dire que

Si les deux ensembles E et F sont finis,
et si E est inclus dans F (c’est à dire
E ⊂ F) alors le nombre d’éléments
de E est ≤ celui de F (c’est à dire
card(E) ≤ card(F)).

Le nombre d’éléments de la réunion
de E et F est la somme des cardi-
naux de chacun, moins le nombre de
doublons :

card(E ∪ F) =
card(E) + card(F)− card(E ∩ F)

En particulier :

card(E ∪ F) ≤ card(E) + card(F)

(i ∈ C)⇒ (i ∈ A) ou (i ∈ B)

ou encore
C ⊂ (A ∪ B)

donc card(C) ≤ card(A ∪ B) ≤ card(A) + card(B). ,2

La distance de Hamming possède les propriétés habituelles d’une
distance, de la même façon que la distance euclidienne d(x, y) =√
(x1 − y1)2 + (x2 − y2)2 définie sur R2 : c’est pourquoi nous pou-

vons ré-utiliser une grande partie de notre intuition géométrique.

Définition 11.3 (Distance minimale) La distance minimale d’un code en
bloc C, notée dmin(C), est

dmin(C)
def
= min

x,y∈C;x 6=y
d(x, y)

Autrement dit, la distance minimale d’un code est la plus petite
distance de Hamming entre deux mots de code distincts. Comme
nous allons voir par la suite, la distance minimale reflète bien la
capacité d’un code à détecter ou corriger des erreurs, et un bon
code est un code qui a une grande distance minimale. Q. 87. Quelle est la distance minimale

du code obtenu en rajoutant à une
suite de k chiffres décimaux les deux
chiffres de contrôle de la procédure
MOD 97-10 (Exemple 7.2, page 63) ?

Exemple 11.2 (Distance Minimale du code de la Figure 11.1) Pour
déterminer la distance minimale d’un code donné avec M mots de code,
nous devons prendre le minimum sur toutes les paires distinctes de mots
de code. Nous devons donc vérifier le nombre de combinaisons de 2 pris Une paire est un ensemble à 2 élé-

ments, et est noté {i, j}. L’ordre n’a
pas d’importance ({i, j} = {j, i}), et il
faut que i 6= j (pas de répétition). Si E
est un ensemble à M éléments, il y a
M(M−1)

2 paires d’éléments de E.
Ne confondez pas avec le couple,

noté (i, j) ou encore ij, qui est une
suite de 2 éléments ; l’ordre compte et
il est possible que i = j (les répétitions
sont possibles). Il y a M2 couples
d’éléments de E.

parmi M, à savoir,

(
M
2

)
= M(M−1)

2 paires. Pour notre exemple,

M = 8, et donc nous devons vérifier 28 paires. Ceci est encore faisable, et
nous obtenons dmin(C) = 3.

Pour les codes utilisés en pratique, la vérification directe peut ne
plus être possible. Par exemple, nous allons bientôt étudier des
codes de Reed-Solomon où le nombre de mots de code est de
l’ordre M = 256128. Il nous faudra trouver d’autres méthodes
pour déterminer la distance minimale.

94 sciences de l’information

11.3 Modèles de canal

La nature des phénomènes qui provoquent des erreurs dans les
fichiers peut être arbitrairement compliquée, et nous voulons éviter
de considérer chaque cas séparément. C’est pourquoi nous allons
introduire des modèles de canal, qui sont des abstractions mathé-
matiques qui ne retiennent que certaines propriétés importantes
du canal physique. Nous allons utiliser deux modèles : le canal à
effacements et le canal à erreurs.

Définition 11.4 (Canal à Effacements) Pour le canal à effacements,
nous supposons que chaque composante du mot de code est soit connue
parfaitement, soit effacée. L’effacement signifie que le symbole transmis
à une position effacée a été remplacé par un symbole spécial, disons le
symbole " ?". Le destinataire sait quelles positions ont été effacées, mais ne
sait pas quelles symboles étaient présents avant l’effacement.

Le poids d’un effacement est le nombre de positions qui sont modifiées.

Par exemple, avec le code de la Figure 11.1, supposons que le mot
transmis soit x = (0100111). Une sortie d’un canal à effacement
est par exemple y = (0?001?1) : les bits effacés du canal sont les
composantes 2 et 6. Le poids de l’effacement est 2.

Définition 11.5 (Canal à Erreurs) Pour le canal à erreurs, chaque com-
posante du mot de code est soit reçue parfaitement, soit échangée pour un
autre symbole de l’alphabet. Le destinataire ne sait pas quelles positions
sont victimes d’erreurs.

Le poids d’une erreur est le nombre de positions qui sont modifiées.

Toujours avec le code de la Figure 11.1, supposons que le mot de
code transmis soit x = (0100111). Une sortie possible d’un canal à
erreurs est y = (0000101). Le canal a introduit deux erreurs, sur les
positions 2 et 6. Le poids de cette erreur est 2.

11.4 Les Théorèmes de la Distance Minimale

Dans cette section nous allons voir pourquoi la distance mini-
male permet de quantifier la puissance d’un code.

Supposons que l’opérateur d’une station nucléaire veuille en-
voyer un signal d’alarme au réacteur nucléaire pour réduire sa
puissance ; ou, moins dramatiquement, que vous vouliez sauvegar-
der les données de votre compte bancaire sur un disque. Dans les
deux cas, nous voulons assurer que le signal émis (l’information
sauvegardée) est reçue (est lisible) correctement. Autrement dit,
nous voulons assurer que les erreurs de transmission sont détectées.

Soit C le code utilisé. Supposons que nous choisissions un mot
de code x ∈ C, qui est envoyé sur un canal à erreurs. Le destinataire
observe la sortie du canal, que nous notons y. Bien sûr, le desti-
nataire ne connaît pas le mot de code émis x. Il connaît seulement
le mot reçu y. Si le mot reçu y n’est pas un mot de code, alors le
destinataire sait que le canal a introduit des erreurs. Dans ce cas,

les codes correcteurs ou détecteurs 95

le destinataire peut donner l’alerte pour prévenir l’utilisateur que
la transmission a été erronée. Nous disons que le destinataire peut
détecter l’erreur. Q. 88. Y-a-t’il un résultat analogue

au Théorème 11.2 pour la détection
d’effacements ?Théorème 11.2 (Détection d’Erreurs) (1) Un code C est capable de

détecter toutes les erreurs de poids p < dmin(C).
(2) Inversement, si un code C peut détecter toutes les erreurs de poids

≤ p, alors p < dmin(C).

,Preuve : (1) Soit x un mot de code transmis et y le mot reçu, avec
erreur de poids p. Il nous faut montrer que

p < dmin(C)⇒ l’erreur est détectable

Or l’erreur est détectable si et seulement si y 6∈ C. Il nous faut donc
montrer :

p < dmin(C)⇒ y 6∈ C

Nous allons montrer la contraposée :

y ∈ C ⇒ p ≥ dmin(C)

Nous supposons donc maintenant que y ∈ C. Comme il y a une
erreur d(x, y) 6= 0 ; de plus x ∈ C. Donc, par définition de la
distance minimale, p = d(x, y) ≥ dmin(C).

(2) Montrons la contraposée :
Si p ≥ dmin(C) alors il existe des erreurs de poids ≤ p non

détectables.
Par définition de la distance minimale, il existe au moins deux

mots de code x, y tels que d(x, y) = dmin(C). Transmettons le mot x
de sorte que le mot y soit reçu. L’erreur est non détectable car y est
un mot de code. Le poids de l’erreur est dmin(C) ≤ p. Donc il existe
au moins une erreur de poids ≤ p non détectable. ,2

Par exemple, avec le code de la Figure 11.1, supposons que le mot
de code transmis soit x = (0100111) et le mot reçu y = (0000101).
Le poids de l’erreur est 2, et nous savons que la distance minimale
du code est 3, donc cette erreur peut être détectée. Effectivement, en
inspectant la liste de tous les mots du code, nous voyons que y n’y
figure pas. Q. 89. Quels effacements peut-on cor-

riger avec le code obtenu en rajoutant
à une suite de k chiffres décimaux
les deux chiffres de contrôle de la
procédure MOD 97-10 (Exemple 7.2,
page 63) ?

Détecter c’est bien, corriger c’est mieux. Dans le cas d’un canal à
effacements, la correction consiste à trouver un mot de code x qui
soit compatible avec le mot reçu y. Si le nombre d’effacements n’est
pas trop grand, cela est possible :

Théorème 11.3 (Correction d’Effacements) (1) Un code C est capable
de corriger tous les effacements de poids p < dmin(C).

(2) Inversement, si un code C peut corriger tous les effacements de
poids ≤ p, alors p < dmin(C).

,Preuve : (1) Soit x le mot transmis et y le mot reçu à travers un
canal à effacement. Le mot y n’est pas un mot du code C mais est

96 sciences de l’information

un mot de n symboles construit sur l’alphabet étendu A′ = A∪{?}.
Soit p le poids de l’erreur, donc d(x, y) = p.

Nous connaissons y mais pas x ; nous ne connaissons pas p non
plus, mais nous savons que p < dmin(C). Pour corriger l’effacement,
nous cherchons un mot x qui ne diffère de y que sur les positions
où il y a un effacement. Il en existe au moins un, par hypothèse.
Nous allons montrer par l’absurde qu’il n’en existe pas d’autre.

En effet, soit x′ un deuxième mot possible. Les mots x et x′ ne
diffèrent que dans les positions où il y a eu effacement. Donc,
d(x, x′) ≤ p < dmin(C). Comme x et x′ sont deux mots de code
distincts, dmin(C) ≤ d(x, x′), ce qui est une contradiction avec l’in-
égalité précédente.

(2) Montrons la contraposée :
Si p ≥ dmin(C) alors il existe des effacements incorrigibles de

poids ≤ p.
Par définition de la distance minimale, il existe au moins deux

mots de code distincts x, x′ tels que d(x, x′) = dmin(C). Il y a donc
dmin(C) positions où les symboles de x et x′ sont identiques. Trans-
mettons x, respectivement x′, dans un canal à effacement et effaçons
précisément ces positions. Dans les deux cas le mot reçu y est le
même. En recevant y, il est impossible de savoir si c’est x ou x′ qui
a été transmis. Donc ces deux effacements sont incorrigibles. Le
poids de l’effacement est dmin(C) ≤ p. Donc il existe au moins un
effacement de poids ≤ p non corrigible. ,2

Par exemple, toujours avec le code de la Figure 11.1, supposons
que le mot de code transmis soit x = (0100111) et le mot reçu
y = (0?001?1). Le poids de l’effacement est 2, et nous savons que
la distance minimale du code est 3, donc cet effacement peut être
corrigé. Effectivement, en inspectant la liste de tous les mots du
code, nous voyons que x = (0100111) est le seul mot de code
compatible avec y.

Dans le cas d’un canal à erreurs, la correction est plus difficile,
car on ne sait pas à quelles positions il y a des erreurs. Une mé-
thode simple consiste à chercher le mot x le plus proche du mot y
reçu. Si le nombre d’erreurs n’est pas trop grand, cela marche : Q. 90. Quelles erreurs peut-on détecter

ou corriger avec le code obtenu en
rajoutant à une suite de k chiffres déci-
maux les deux chiffres de contrôle de
la procédure MOD 97-10 (Exemple 7.2,
page 63) ?

Théorème 11.4 (Correction d’erreurs) (1) Un code C est capable de
corriger toutes les erreurs de poids p < dmin(C)

2 .
Plus précisément, si l’erreur est de poids p < dmin(C)

2 , le mot transmis x
est le mot le plus proche (pour la distance de Hamming) du mot reçu y.

(2) Inversement, si un code C peut corriger toutes les erreurs de poids
≤ p alors p < dmin(C)

2 .

Preuve : (1) Soit x le mot transmis et y le mot reçu à travers un
canal à erreurs. Soit p le poids de l’erreur, donc d(x, y) = p et, par
hypothèse, p < dmin(C)

2 . Nous connaissons y mais pas x ; nous ne

connaissons pas p non plus, mais nous savons que p < dmin(C)
2 . Pour

corriger l’erreur, nous cherchons un mot qui soit à distance de y
inférieure à dmin(C)

2 . Il en existe au moins un, par hypothèse, le mot

les codes correcteurs ou détecteurs 97

x transmis. Nous allons montrer par l’absurde qu’il n’en existe pas
d’autre.

En effet, soit x′ un deuxième mot possible. Nous avons, par
construction :

d(x, y) < dmin(C)
2

d(y, x′) < dmin(C)
2

donc par l’inégalité triangulaire :

d(x, x′) ≤ d(x, y) + d(y, x′) < dmin(C)

Or x et x′ sont deux mots de code distincts, donc dmin(C) ≤ d(x, x′),
ce qui est une contradiction.

Donc nous avons montré que pour tout autre mot de code x′,
d(x′, y) ≥ dmin(C)

2 . Donc d(x, y) < d(x′, y) et x est le mot de code le
plus proche de y.

(2) Nous raisonnons par l’absurde. Nous supposons donc que
l’hypothèse est vraie et que la conclusion est fausse. Posons δ =

dmin(C). Nous supposons donc que les entiers positifs p et δ sont
tels que le code C peut corriger toutes les erreurs de poids ≤ p et
δ
2 ≤ p.

Montrons tout d’abord des relations intéressantes. Posons p1 =

bδ/2c, p2 = b(δ + 1)/2c et montrons que Par exemple, pour δ = 5, p1 = 2 et
p2 = 3 et nous avons bien p1 + p2 = δ.

Si l’entier p vérifie δ
2 ≤ p alors

2.5 ≤ p et donc 3 ≤ p. Nous avons bien
p1 ≤ p et p2 ≤ p.

p1 + p2 = δ (11.1)

p1 ≤ p et p2 ≤ p (11.2)

Pour cela considérons séparément les cas pair et impair :
– Si δ est pair alors δ = 2λ avec λ entier positif. Nous avons

p1 = p2 = λ ce qui prouve l’Eq.(11.1). De plus si l’entier p
vérifie δ

2 ≤ p alors λ ≤ p, ce qui prouve l’Eq.(11.2).
– Si δ est impair alors δ = 2λ + 1 avec λ entier positif ou nul.

p1 = λ et p2 = λ + 1, ce qui prouve l’Eq.(11.1). De plus si
l’entier p vérifie δ

2 ≤ p alors λ + 0.5 ≤ p, donc (car λ et p sont
entiers) λ + 1 ≤ p ce qui prouve l’Eq.(11.2).

Revenons maintenant à notre preuve par l’absurde. Par définition
de la distance minimale, il existe au moins deux mots de code x, x′

tels que d(x, x′) = δ. Soit I l’ensemble des positions où les mots x
et x′ diffèrent ; le cardinal de I est δ. Soit I1 le sous-ensemble des Par exemple, avec δ = 5 nous pour-

rions avoir

x = 10100000
x′ = 10111111

Ici I est l’ensemble des positions 3 à 8,
i.e. I = {4, 5, 6, 7, 8}. Nous avons alors
I1 = {4, 5}, I2 = {6, 7, 8} et

y = 10100111

Le mot y résulte de la transmission
de x avec p1 = 2 erreurs ou de la
transmission de x′ avec p2 = 3 erreurs.

p1 premiers éléments de I et I2 le sous-ensemble des p2 éléments
suivants de I . Rappelons que p1 + p2 = δ donc nous avons réalisé
une partition de I . Définissons le mot y de la façon suivante :

yi = xi si i ∈ I1

yi = x′i si i ∈ I2

yi = xi = x′i si i 6∈ I

Le mot y résulte de l’injection de p1 erreurs dans x, ou de l’injection
de p2 erreurs dans x′. Considérons un canal à erreur dans lequel
nous transmettons le mot x, et qui délivre y. Comme p1 ≤ p, il
est possible de corriger ces erreurs et décider que c’est x qui a été
transmis. Supposons maintenant que nous transmettions le mot x′

98 sciences de l’information

et que le canal délivre aussi y. Comme p2 ≤ p, nous pouvons aussi
décoder et décider que c’est x′ qui a été transmis. Dans les deux
cas nous avons reçu le même mot y donc il est impossible de savoir
si c’est x ou x′ qui a été transmis ; il y a une contradiction et notre
preuve par l’absurde est achevée. 2

Q. 91. Quelles erreurs peut corriger un
code de distance minimale égale à 4 ?Par exemple, continuons avec le code de la Figure 11.1, et suppo-

sons que le mot de code transmis soit x = (0100111). Supposons
que nous ayons reçu y = (0000111). En inspectant la liste des
mots de code, nous voyons que le seul élément de C à la distance
dmin−1

2 = 1 de y est le mot x = (0100111). Donc, nous déclarons
que le mot transmis était x = (0100111), ce qui est correct. Ce code
a une distance minimale de 3, donc il est capable de corriger toutes
les erreurs portant sur 1 seul bit.

Enfin nous terminons par une inégalité qui montre que la dis-
tance minimale ne peut pas être arbitrairement grande.

Théorème 11.5 (Borne de Singleton) 1Pour un code en bloc C de lon-

1. R. Singleton. Maximum distance
q-nary codes. Information Theory, IEEE
Transactions on, 10(2):116–118, 1964

gueur n et de rendement r la distance minimale satisfait :

dmin(C) ≤ n(1− r) + 1

,Preuve : Posons δ = dmin(C). Soit f l’application qui, à un mot
de code x, associe le mot obtenu en supprimant les δ− 1 derniers
symboles. C’est donc une application C → An−δ+1.

Montrons que f est injective. Soient deux mots de code x 6= x′ ;
montrons par l’absurde que f (x) 6= f (x′). Supposons que f (x) =

f (x′), alors x et x′ ne peuvent différer que dans leur δ− 1 derniers
symboles, donc d(x, x′) ≤ δ− 1, ce qui contredit la définition de la
distance minimale. Donc, par le principe des tiroirs,

Nous utilisons la variante suivante du
principe des tiroirs ou principe des boîtiers,
(Ang. pigeon holes). Soient E et F des
ensembles finis et f une application
E → F. Cette variante du principe dit
que :

1. Si f est injective alors card(E) ≤
card(F).

2. Si f est surjective alors card(E) ≥
card(F).

3. Si f est bijective alors card(E) =
card(F).

Par contraposition, les items 1 et 2

donnent :

1 bis. Si card(E) > card(F), f n’est
pas injective.

2 bis. Si card(E) < card(F), f n’est
pas surjective.

card(E) > card(F), f ne peut pas être
injective

card(E) < card(F), f ne peut pas être
surjective

Reprenons l’exemple des CDs à
ranger dans des boîtiers (page 84), et
rappelons qu’un rangement est injectif
s’il n’y a jamais deux CDs dans le
même boîtier et surjectif si tous les
boîtiers sont occupés. S’il y a moins de
boîtiers que de CDs, il existe un boîtier
avec au moins 2 CDs (item 1bis). S’il y
a plus de boîtiers que de CDs, il y a au
moins un boîtier vide (item 2bis).

card(C) ≤ card(An−δ+1) = [card(A)]n−δ+1

En prenant le logarithme à base card(A) nous obtenons

logcard(A) card(C) ≤ n− δ + 1

or le terme de gauche vaut rn (par définition du rendement r), d’où
le résultat voulu. ,2

Pour le code de la Figure 11.1, la borne de Singleton donne
dmin(C) ≤ 5, alors que nous savons que dmin(C) = 3, c’est à dire
que la borne n’est pas atteinte. Nous verrons dans la suite de ce
module des codes qui atteignent la borne.

Exemple 11.3 (Le Robot-Code) Le but de cet exemple est d’illustrer ce
que signifie la borne de Singleton. Nous avons un code C de longueur n
sur un alphabet A, et le nombre de mots de code est [card(A)]k où k est
un entier < n. Le code est utilisé pour encoder des messages de longueur
k, et les mots de code ont une longueur n.

Un message de k symboles est choisi et encodé. Un robot-code envoie
à Anne un des symboles du mot de code pris au hasard parmi n, puis un
deuxième, pris au hasard parmi les n− 1 restant, etc, jusqu’à ce qu’Anne

les codes correcteurs ou détecteurs 99

dise “STOP". Anne connaît la position dans le mot de code du symbole
reçu, et la valeur du symbole reçu. Le but du jeu est de décoder le message
en recevant un nombre minimum de symboles. Quand Anne est sûre qu’il
n’existe qu’un mot de code correspondant, elle dit STOP. Dans le pire des
cas, de combien de symboles Anne a-t-elle besoin ?

Par exemple, supposons que le code soit celui de la Figure 11.1 ; card(A) =
2, les symboles sont des bits. Supposons que les positions des symboles
choisis par le robot soient 1,2,6,7,3,4 et 5. Supposons que le message soit
001, donc le mot de code est 0011100. La Figure 11.3 montre la suite en-
voyée par le robot-code. Après avoir reçu 4 symboles, Anne ne sait pas si le
mot de code est 0000000 ou 0011100. Par contre après avoir reçu le 5ième
symbole, Anne sait que le seul mot de code possible est 0011100 ; elle peut
donc dire STOP et décider que le message est 001.

position symbole

1 0
2 0
6 0
7 0
3 1
4 1
5 1

Figure 11.3: La suite des symboles
reçus par Anne quand le robot-code
envoie les symboles du mot de code
dans un ordre aléatoire. Le message
est 001 et le code utilisé est celui de la
Figure 11.1

En général, puisque la distance minimale de ce code est 3, il est possible
de corriger 2 effacements, donc Anne peut être sûre de pouvoir décoder
après avoir reçu 5 symboles. En d’autres termes, pour pouvoir décoder
le message original (qui comporte 3 symboles), il faut recevoir jusqu’à 5
symboles.

Supposons maintenant que nous utilisions un code qui atteigne la
borne de Singleton, et pour fixer les idées, supposons toujours que k = 3 et
n = 7. Le rendement du code est r = k/n et la distance minimale du code
est donc dmin(C) = n− k + 1 = 5. Le code est donc capable de corriger
4 effacements, et il suffit de recevoir 3 symboles pour décoder. Anne pourra
toujours dira STOP après avoir reçu 3 symboles, quels qu’ils soient.

En d’autre termes, pour un code C sur un alphabet A qui atteint la
borne de Singleton, et si k = logcard(A) card(C) est entier, il suffit de
recevoir k symboles quelconques pour reconstruire le message original (qui
est de longueur k symboles).

Q. 92. Que donne la borne de Sin-
gleton pour le code code obtenu en
rajoutant à une suite de k chiffres déci-
maux les deux chiffres de contrôle de
la procédure MOD 97-10 ?

12
Corps Finis et Espaces Vectoriels

Nous avons vu dans le chapitre précédent qu’il est important
pour un code d’avoir une distance minimale aussi grande que pos-
sible, mais qu’en même temps, il peut être difficile de concevoir de
tels codes, et même plus simplement de calculer la distance mini-
male d’un code. Pour résoudre ce problème, nous allons utiliser
des codes linéaires sur des corps finis. Mais avant cela, il nous faut
apprendre ce que ces termes recouvrent.

12.1 Corps Finis

Un corps commutatif est un ensemble dans lequel les 4 opé-
rations d’addition, multiplication, soustraction et division fonc-
tionnent comme nous en avons l’habitude quand nous utilisons les
nombres réels (R) ou complexes (C). Plus précisément :

Définition 12.1 Soit (K,+, ·) un ensemble muni de deux opérations
binaires notées + et ·. Nous disons que c’est un corps commutatif (Ang.
field) si

1. L’addition fait de K un groupe commutatif. Son élément neutre est noté
0.

2. La multiplication fait de l’ensemble K privé de 0 un groupe commuta-
tif. En particulier, tous les éléments sauf 0 sont inversibles. L’élément
neutre de la multiplication est noté 1.

3. La multiplication est distributive par rapport à l’addition : a · (x +

y) = a · x + a · y pour tous a, x, y ∈ K.
(K,+, ·) est un corps non commutatif
s’il vérifie toutes les propriétés de
corps commutatif sauf une : la mul-
tiplication n’est pas commutative.
Tous les corps finis sont commutatifs,
donc il n’est pas nécessaire de préciser
“commutatif" quand nous parlons
d’un corps fini.

Par contre il existe des corps infinis
non commutatifs, par exemple le corps
des quaternions utilisé en infographie.

Les corps finis sont aussi appelés
corps de Galois, en l’honneur d’Eva-
riste Galois, qui a lancé les bases de la
théorie des corps finis (et bien plus)
durant les deux semaines avant le duel
qui a mis fin à sa vie à l’âge de 21 ans
(elle s’appelait Stéphanie).

Les ensembles R et C sont des corps commutatifs infinis. Nous
nous intéressons aux corps commutatifs finis, qui peuvent être
utilisés comme alphabet par un code correcteur ou détecteur.

Exemple 12.1 (Z/pZ) Nous savons (Théorème 8.6) que si p est un
nombre premier, tous les éléments de Z/pZ sauf [0]p sont inversibles. Il
est facile de voir que cela entraîne que (Z/pZ,+, ·) est un corps commu-
tatif. C’est notre premier exemple de corps fini.

Exemple 12.2 (Des Non-Corps) (Z/mZ,+, ·) n’est pas un corps si m
n’est pas un nombre premier. En effet, il existe alors des éléments non nuls
qui n’ont pas d’inverse (les diviseurs de m). Par exemple dans Z/6Z, [3]6

corps finis et espaces vectoriels 101

n’a pas d’inverse alors que [3]6 6= [0]6. (Z,+, ·) n’est pas un corps car
Q. 93. (Q,+, ·) est-il un corps com-
mutatif ? (Q, ensemble des nombres
rationels, est l’ensemble des nombres
réels qui peuvent s’écrire comme frac-
tion de deux nombres entiers, positifs
ou négatifs.

les entiers non nuls autres que 1 et −1 n’ont pas d’inverse dans Z.

Tout ce que vous avez étudié en algèbre linéaire sur la résolution
de systèmes d’équations linéaire reste valable si on utilise un corps
fini au lieu de R ou C. Illustrons ceci sur un exemple :

Exemple 12.3 (Système d’équations dans Z/7Z) Considérons le
système d’équations {

[5]7x1 + [4]7x2 = [2]7
x1 + [2]7x2 = [0]7

où les inconnues x1 et x2 sont dans Z/7Z. Il est fastidieux de traîner
une notation telle que [3]7, aussi nous supprimons les crochets (il faudra
simplement se rappeler dans quel corps nous sommes en train de faire des
calculs). Nous écrivons donc le système ainsi :{

5x1 + 4x2 = 2
x1 + 2x2 = 0

Pour le résoudre, nous procédons comme d’habitude. Par exemple, nous
pouvons éliminer x2 par combinaisons :

5x1 + 4x2 = 2 | · 1
x1 + 2x2 = 0 | · (−2)

3x1 = 2

D’où
x1 = 2 · 3−1 = 2 · 5 = 10 = 3

où nous avons utilisé le fait que 3−1 = 5 (c’est à dire que l’inverse de [3]7
est [5]7). Nous obtenons x2 à partir de la deuxième équation :

2x2 = −x1 = −3 = 4

x2 = 4 · 2−1 = 4 · 4 = 16 = 2

Vérification : {
5x1 + 4x2 = 15 + 8 = 1 + 1 = 2 - OK
x1 + 2x2 = 3 + 4 = 7 = 0 - OK

Nous avons vu que les calculs algébriques dans un corps fini sont
semblables aux calculs usuels. Il y a quand même une différence,
c’est le fait que, par exemple, 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 dans
Z/7Z. En général, cela est lié au concept de caractéristique :

Théorème et Définition 12.2 Dans un corps fini, il existe un plus petit
entier p > 0 tel que p · 1 = 0, c’est à dire tel que

p fois︷ ︸︸ ︷
1 + 1 + ... + 1= 0

Ce nombre est un nombre premier. Il est appelé la caractéristique du corps.

102 sciences de l’information

,Preuve : Ce nombre existe car il est la période de 1 dans le
groupe (K,+) (Théorème 9.4). Montrons par l’absurde qu’il est pre-
mier. En effet, sinon, nous pouvons factoriser p = p1 p2 avec p1, p2

entiers et 1 < p1 < p et 1 < p2 < p. Soit x1 = p1 · 1 =

p1 fois︷ ︸︸ ︷
1 + 1 + ... + 1

et idem pour x2. Alors x1 6= 0 car p est la période et p1 < p ; donc
l’inverse x−1

1 de x1 existe ; de même x2 6= 0. Or x1x2 = p1 = 0,
donc en multipliant x−1

1 nous obtenons : x2 = 0, ce qui est une
contradiction. ,2

Enfin, citons sans démonstration le théorème suivant :

Théorème 12.1 (1) Le cardinal d’un corps fini est une puissance de sa
caractéristique.

(2) Tous les corps finis de même cardinal sont isomorphes.
(3) Pour tout nombre premier p et tout entier m ≥ 1 il existe un corps

fini de cardinal pm.

Q. 94. Tous les groupes finis com-
mutatifs de même cardinal sont-ils
isomorphes ?

Ce théorème implique que le cardinal d’un corps fini est de la
forme pm où p est un nombre premier et m un entier. Par ailleurs,
pour p premier et m entier donnés, il n’y a essentiellement qu’un
seul corps fini, tous les autres s’en déduisent par re-nommage des
éléments. Nous notons Fpm le corps fini à pm éléments. En particu-
lier, pour m = 1, Fp = Z/pZ. Q. 95. Le corps (F4,+, ·) est-il iso-

morphe à (Z/4Z,+, ·) ?
Q. 96. Existe-t-il un corps fini à 15
éléments ?Exemple 12.4 (F2) Le corps binaire, F2, est égal à Z/2Z, qui contient

contient seulement deux éléments, 0 et 1. L’addition et la multiplication
sont les opérations modulo 2.

Il joue un rôle très important car nous pouvons interpréter les deux
éléments 0 et 1 comme des valeurs logiques. L’addition correspond à l’opé-
ration xor, tandis que la multiplication correspond à and.

+ ou xor 0 1 · ou and 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Le corps F2 a aussi une propriété intéressante. Si a ∈ F2, alors a + a = 0
et a = −a. L’addition et la soustraction sont les mêmes et donc les signes
ne jouent pas d’importance. Dans F2, les erreurs de signe n’existent pas !

Exemple 12.5 (F4) Le corps F4 existe car 4 = 22 a un seul facteur pre-
mier ; il est constitué de 4 éléments, dont l’élément neutre pour l’addition
(noté 0) et l’élément neutre pour la multiplication (noté 1). Soient a et b
les deux autres éléments.

Nous savons que ce corps existe, et nous pouvons en déduire ses tables
d’addition et de multiplication. La caractéristique de F4 est 2 donc 1 +

1 = 0 donc plus généralement 2x = 0 pour tout x ∈ F4 (en effet
x + x = 1 · x + 1 · x = (1 + 1) · x = 0x = 0). Donc la table d’addition

corps finis et espaces vectoriels 103

d’addition de F4 est de la forme

+ 0 1 a b

0 0 1 a b
1 1 0
a a 0
b b 0

Pour boucher les trous, observons que chaque élément doit se trouver

Q. 97. Prouvez que dans la table d’un
groupe commutatif (G, ?) chaque
élément doit se trouver une fois et
une seule dans chaque ligne et chaque
colonne.

une fois et une seule sur chaque ligne et chaque colonne de la table. En
considérant la colonne de a, il vient que a + 1 vaut 1 ou b ; mais 1 n’est
pas possible à cause de la ligne de 1. Donc a + 1 = b. En continuant
de la sorte on obtient la table d’addition de F4. La table de multiplication
s’obient avec le même raisonnement (appliqué au groupe F∗4 = {1, a, b}
muni de la multiplication) et en remarquant que 0x = 0 pour tout x. On
obtient ainsi les tables de F4 :

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

C’est l’unique corps à 4 éléments, à isomorphisme près. Une représentation
alternative s’obtient par la correspondance 0 7→ 00,1 7→ 11, a 7→ 01,
b 7→ 10, ce qui donne les tables suivantes :

+ 00 11 01 10

00 00 11 01 10
11 11 00 10 01
01 01 10 00 11
10 10 01 11 00

· 00 11 01 10

00 00 00 00 00
11 00 11 01 10
01 00 01 10 11
10 00 10 11 01

ou encore par la correspondance 0 7→ 00,1 7→ 01, a 7→ 10, b 7→ 11, ce qui
donne les tables suivantes :

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

· 00 01 10 11

00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Nous avons ainsi obtenu trois représentations différentes du corps F4 ;
bien sûr, elles sont toutes trois isomorphes.

Sous les deux dernières formes, on voit que l’addition dans F4 est
identique à l’opération xor sur 2 bits. Par contre, la multiplication est
entièrement nouvelle.

La dernière représentation est celle
qui est le plus ouvent utilisée car
elle correspond à la construction de
F4 avec des polynômes, comme en
Section 14.3.

12.2 Espaces Vectoriels

Définition 12.3 Soit K un corps commutatif et (V ,+) un groupe com-
mutatif, muni d’une opération binaire notée +. Supposons qu’une opé-

ration externe est définie sur K et V , c’est à dire une application qui à

104 sciences de l’information

λ ∈ K et ~x ∈ V associe un élément, noté λ~x de V . Les éléments du
corps commutatif sont appelés scalaires et les éléments de V sont appelés
vecteurs. L’opération externe est appelée multiplication scalaire ou encore
produit d’un vecteur par un scalaire. Nous disons que V muni de ces
deux opérations est est un espace vectoriel sur le corps K si les propriétés
suivantes sont vraies : pour tous scalaires λ, µ et vecteurs ~u,~v,

– associativité pour la multiplication scalaire : λ(µ~v) = (λµ)~v
– identité : 1 ·~v = ~v
– distributivité : λ(~u +~v) = λ~u + λ~v et (a + b)~u = a~u + b~u

L’exemple le plus connu d’espace vectoriel est l’ensemble Rn des
suites de n réels. De manière générale, si K est un corps commu- Dans le contexte d’espace vectoriel,

nous mettons en général une flèche
sur les vecteurs et utilisons la notation
en ligne ~x = (x1, ..., xn) (il existe
aussi la notation en colonne, que nous
n’utilisons pas ici).

L’élément neutre de l’addition est
noté~0 ; ainsi dans Kn,~0 = (0, ..., 0).

Les règles habituelles de manipula-
tion de signes jouent dans tout espace
vectoriel. En particulier :

0~x =~0
(−λ)~x = −(λ~x)

et enfin il n’y a pas de “diviseur de
zéro", c’est à dire que

λ~x =~0⇒ (λ = 0 ou ~x =~0)

tatif, l’ensemble Kn des suites de n éléments de K (aussi appelés
mots de longueur n) est un espace vectoriel pour les opérations

(x1, ..., xn) + (y1, ..., yn) = (x1 + y2, ..., xn + yn)

λ(x1, ..., xn) = (λx1, ..., λxn)

Dans ce module, nous allons utiliser les espaces vectoriels V = Kn

où K est un corps fini.
Un sous-ensemble S de V est un sous-espace vectoriel, s’il est

aussi un espace vectoriel sur K. Il est facile de voir que cela est
équivalent à dire que S est stable pour les deux opérations, c’est à
dire que

λ~u ∈ S et ~u +~v ∈ S pour tous λ ∈ K et ~u,~v ∈ S

Exemple 12.6 Dans l’espace vectoriel F3
7, considérons l’ensemble S

des vecteurs de la forme (u, 3u, 6u) avec u ∈ F7. S est un sous-espace
vectoriel car, pour tous λ, u, v ∈ F7 :

λ(u, 3u, 6u) = (λu, 3(λu), 6(λu)) ∈ S
(u, 3u, 6u) + (v, 3v, 6v) = (u + v, 3(u + v), 6(u + v)) ∈ S

Considérons aussi l’ensemble S ′ des vecteurs ~x = (x1, x2, x3) qui
satisfont la condition

x1 + 4x2 + 3x3 = 0 (12.1)

S ′ est aussi un sous-espace vectoriel car, si ~x = (x1, x2, x3),~y =

(y1, y2, y3) sont dans S ′ alors

(x1 + y1) + 4(x2 + y2) + 3(x3 + y3) = 0

donc ~x + ~y = (x1 + y1, x2 + y2, x3 + y3) ∈ S ′. De même, pour tout
λ ∈ F7 :

(λx1) + 4(λx2) + 3(λx3) = 0

donc λ~x = (λx1, λx2, λx3) ∈ S ′.

Une combinaison linéaire de vecteurs ~vi ∈ V , i = 1...m est une
somme de la forme

~u =
m

∑
i=1

λi~vi (12.2)

corps finis et espaces vectoriels 105

où les coefficients λi sont des scalaires. On peut montrer que l’en-
semble des vecteurs ~u engendrés par toutes les combinaisons li-
néaires de m vecteurs vi forme un sous-espace vectoriel. On appelle
ce sous-espace vectoriel l’espace engendré par les ~vi. Q. 98. La suite formée d’un seul

vecteur~a est-elle linéairement indépen-
dante ?

Les vecteurs ~vi sont linéairement indépendants si et seulement si
∑m

i=1 λi~vi =~0 entraîne que tous les coefficients λi sont nuls. Dans ce
cas, une représentation telle que (12.2) est unique : il n’y a qu’une
seule suite de coefficients (λi) qui permette d’écrire le vecteur ~u
sous cette forme.

La suite de vecteurs ~vi, i = 1, ..., m est une base de l’espace vecto-
riel V si les vecteurs sont linéairement indépendants et engendrent
l’espace vectoriel V . Cela est équivalent à dire que tout vecteur de V
s’écrit de manière unique comme combinaison linéaire des ~vi. Les
coefficients d’une telle combinaison s’appellent les coordonnées du
vecteur relativement à cette base.

12.3 Propriétés de la Dimension

Si V = Kn ou si V est un sous-espace vectoriel de Kn, il possède
des bases finies, et toutes les bases ont le même cardinal, appelé la
dimension de l’espace vectoriel, notée dim(V). La dimension de Kn est n.

Si V est de dimension n, tout sous-
espace vectoriel S a une dimension
k ≤ n, et si k = n, alors S = V . Le
sous-espace vectoriel S =

{
~0
}

est de
dimension k = 0.

Le concept de dimension possède quelques propriétés intéres-
santes qui permettent de jongler entre les propriétés d’indépen-
dance linéaire et de génération. Dans un espace vectoriel V de
dimension n :

1. Si une suite de n = dim(V) vecteurs est linéairement indépen-
dante, elle engendre V (donc c’est une base de V) ;

2. si une suite de n = dim(V) vecteurs engendre V , elle est linéai-
rement indépendante (donc c’est une base de V).

3. Une suite de m > n vecteurs de V est nécessairement linéaire-
ment dépendante, et une suite de m < n vecteurs ne peut pas
engendrer V .

4. Si S et S ′ sont des sous-espaces vectoriels de V , et si S ⊂ S ′
alors dim(S) ≤ dim(S ′).

5. Si S et S ′ sont des sous-espaces vectoriels de V , si S ⊂ S ′ et
dim(S) = dim(S ′) alors S = S ′.

Exemple 12.7 Dans V = F3
7, la suite de vecteurs ((1, 0, 0), (0, 1, 0), (0, 0, 1))

est linéairement indépendante, car toute combinaison linéaire est de la
forme

(λ1 +λ2 · 0+λ3 · 0, λ1 · 0+λ2 +λ3 · 0, λ1 · 0+λ2 · 0+λ3) = (λ1, λ2, λ3)

et les composantes ne peuvent être nulles que si λ1 = λ2 = λ3 = 0.
Nous pouvons voir que ces trois vecteurs engendrent F3

7 car n’importe
quel vecteur ~u = (u1, u2, u3) peut être écrit comme leur combinaison
linéaire en choisissant λ1 = u1, λ2 = u2 et λ3 = u3. Cette suite de
vecteurs est donc une base de F3

7, ce qui signifie que R3 est de dimension
3.

106 sciences de l’information

Nous pouvons facilement voir que le rajout d’un quatrième vecteur à
cette suite la rendrait linéairement dépendante, car ce quatrième vecteur
peut toujours être écrit comme une combinaison linéaire des trois premiers.
Par exemple,

(3, 2, 0) = 3 · (1, 0, 0) + 2 · (0, 1, 0).

Le sous-espace S de l’Exemple 12.6 est engendré par ~x = (1, 3, 6) car
tout vecteur de S peut s’écrire (u, 3u, 6u) = u~v avec u ∈ F3. la suite
constituée du vecteur ~v tout seul est une suite linéairement indépendante
car ~v 6=~0. Donc dim(S) = 1 (on dit que c’est une droite vectorielle).

Q. 99. Quel est le cardinal de l’espace
vectoriel S de l’Exemple 12.6 ?

Théorème 12.2 Si V est un espace vectoriel de dimension n sur un corps
fini K, alors V est fini et card(V) = [card(K)]n.

,Preuve : Soit ~v1, ...,~vn une base de V . Tout élément ~x de V s’écrit
de manière unique ~x = λ1~v1 + ... + λn~vn donc l’application

Kn → V
(λ1, ..., λn) 7→ λ1~v1 + ... + λn~vn

est une bijection. Par le principe des boîtiers : card(V) = card(Kn) =

[card(K)]n. ,2

12.4 Equations Linéaire et Rang d’une Matrice

Dans V = Kn, nous appelons équation linéaire une équation de la
forme

a1x1 + ... + anxn = 0 (12.3)

où l’inconnue est ~x = (x1, ..., xn). Les scalaires a1, ..., an sont les
coefficients de l’équation, et le vecteur~a = (a1, ..., an) est le vecteur

de coefficients de l’équation. Nous donnons sans démonstration le
résultat suivant :

Théorème 12.3 (Equations d’un Sous-Espace Vectoriel) L’ensemble
S des solutions dans V = Kn de m équations linéaires est un sous-espace
vectoriel. Soit r la dimension de l’espace vectoriel engendré par les vecteurs
de coefficients. Alors la dimension de S est n− r.

En particulier, si les vecteurs de coefficients sont linéairement indépen-
dants, la dimension de S est n−m. Le Théorème 12.3 est bien connu en

géométrie classique : une droite (k = 1)
du plan R2 est défini par 2− 1 = 1
équation. Une droite de l’espace R3

est défini par 3− 1 = 2 équations. Un
plan (k = 1) de l’espace est défini par
3− 2 = 1 équation.

Réciproquement, soit S un sous-espace vectoriel de V = Kn, avec
dim(S) = k. Il existe une suite de (n − k) équations linéaires dont
l’ensemble des solutions est S , et dont les vecteurs de coefficients sont
linéairement indépendants.

Le rang d’une matrice rectangulaire A à coefficients dans un corps
commutatif est par définition la dimension du sous-espace vectoriel
engendré par les lignes de A. Le nombre r du théorème précédent
est donc le rang de la matrice obtenue en écrivant les coefficients
des équations. Nous rappelons les résultats suivants d’algèbre
linéaire. Pour une matrice rectangulaire A à coefficients dans un
corps commutatif :

corps finis et espaces vectoriels 107

1. Le rang de A est égal à la dimension du sous-espace vectoriel
engendré par les lignes de A ; il est aussi égal à la dimension du
sous-espace vectoriel engendré par les colonnes de A.

2. Le rang de A est le maximum des rangs des matrices carrées
extraites de A.

Une matrice extraite de A est obtenue
en supprimant certaines lignes et
certaines colonnes. Par exemple dans
F7 avec

A =

(
4 1 0
1 0 1

)
la matrice

A′ =
(

4 0
1 1

)
est une matrice extraite, obtenue en
supprimant la deuxième colonne. B est
de rang 2 (item 3), donc A est de rang
≥ 2 (item 2). Or A est de rang ≤ 2
(item 4). Donc le rang de A est 2. A est
de rang maximal.

3. Le rang d’une matrice carrée triangulaire n × n dont tous les
termes diagonaux sont non nuls est n.

4. Le rang r d’une matrice m × n est tel que r ≤ m et r ≤ n. Si
r = m ou r = n la matrice est dite de rang maximal.

Le rang peut être calculé par exemple en appliquant la méthode du
pivot de Gauss.

Exemple 12.8 Le sous-espace S de l’Exemple 12.6 est de dimension 1
dans V = F3

7, donc nous pouvons trouver un système de 3 − 1 = 2
équations linéaires dont l’ensemble des solutions est S . Trouvons de telles
équations. Par définition de S , un vecteur (x1, x2, x3) est élément de S si
et seulement si il existe u ∈ F7 tel que Le système d’équations (12.4) est ap-

pelé système d’équations paramétriques
de S .


x1 = u
x2 = 3u
x3 = 6u

(12.4)

Eliminons le paramètre u : d’une part, si Eq.(12.4) est satisfaite alors :{
x2 = 3x1

x3 = 6x1
(12.5)

Réciproquement, si Eq.(12.5) est satisfaite, posons u = x1 et Eq.(12.4) est
satisfaite. Donc Eq.(12.5) est satisfaite si et seulement si (x1, x2, x3) ∈ S ,
en d’autres termes, S est l’ensemble des solutions du système d’équa-
tions (12.5), que nous pouvons écrire aussi (car les calculs sont dans F7) :{

4x1 + x2 = 0
x1 + x3 = 0

(12.6)

La matrice des coefficients du système est

A =

(
4 1 0
1 0 1

)

Puisque la dimension de S est 2, le rang de A doit être 2, ce que nous

pouvons facilement vérifier en observant que la sous-matrice

(
1 0
0 1

)
est de rang 2 (car triangulaire de termes diagonaux non nuls).

Exemple 12.9 Le sous-espace S ′ de l’Exemple 12.6 est défini par une
équation (Eq.(12.1)), dont le vecteur de coefficients est~a = (1, 4, 3).
Ce vecteur est non nul donc (Question 98) la suite constituée de~a est
linéairement indépendante, donc la dimension de S ′ est k = 2.

Q. 100. Combien y a-t’il de solutions à
l’équation x1 + [4]7x2 + [3]7x3 = [0]7,
où l’inconnue est la suite (x1, x2, x3)
d’éléments de Z/7Z ?Nous allons maintenant trouver une base de S ′. Nous savons que S ′

est de dimension 2, donc il suffit de trouver 2 vecteurs qui l’engendrent.

108 sciences de l’information

Nous en obtenons 2 en fixant d’abord x2 = 1, x3 = 0 puis x2 = 0, x3 = 1.
Nous obtenons ainsi par exemple :

~a = (3, 1, 0)
~b = (4, 0, 1)

Montrons qu’ils engendrent S ′. La matrice dont ces vecteurs sont les
lignes est

B =

(
3 1 0
4 0 1

)

Elle est de rang 2 car la sous-matrice

(
1 0
0 1

)
est de rang 2 (car tri-

angulaire de termes diagonaux non nuls). Donc la dimension de l’espace
vectoriel engendré par les lignes de B, c’est-à-dire par~a et~b, est 2. Cet es-
pace vectoriel est inclus dans S ′ (car~a et~b sont dans S ′), donc il est égal
S ′ (car il est de même dimension que S ′. Donc~a et~b forment une base de
S ′.

13
Codes Linéaires

Nous pouvons maintenant introduire les codes correcteurs ou
détecteurs linéaires, qui sont les codes utilisés dans les systèmes
informatiques.

13.1 Code Linéaire

Définition 13.1 Soit C un code en bloc de longueur n. Nous disons que
C est un code linéaire si

1. L’alphabet du code est un corps fini K.
2. Le code est un sous-espace vectoriel de Kn.

Puisqu’un code linéaire est un sous-espace vectoriel, il a une di-
mension, que nous noterons souvent k. Le nombre de mots de code
est card(K)k (Théorème 12.2), donc le rendement d’un code linéaire
de dimension k est k

n .

Pour un code linéaire, la borne
de Singleton prend donc la forme
dmin(C) ≤ n− k + 1.

Exemple 13.1 (Petit Code de la Figure 11.1 en page 91) L’alphabet
est A = K = F2 qui est un corps. Le code comporte huit mots de code,
donnés dans la colonne de droite de la Figure 11.1. Soient ~v0 = ~0,~v1 =

(0, 0, 1, 1, 1, 0, 0), ...,~v7 = (1, 0, 1, 0, 0, 1, 1) les huit mots de code. Nous
avons Selon le contexte, nous notons un élé-

ment de Fn
2 soit sous la forme 0011100,

soit sous la forme (0, 0, 1, 1, 1, 0, 0). Les
deux notations sont synonymes.

~v4 = ~v1 +~v2

~v5 = ~v1 +~v3

~v6 = ~v2 +~v3

~v7 = ~v1 +~v2 +~v3

Il s’en suit que le code C est l’ensemble de toutes les combinaisons linéaires
de et ~v1,~v2 et ~v3 (en effet, une telle combinaison est de la forme λ1~v1 +

λ2~v2 + λ3~v3 avec λi = 0 ou 1). Donc C est un sous-espace vectoriel,
engendré par (~v1,~v2,~v3). Donc C est un code linéaire, de dimension Q. 101. Quelle est la dimension de C ?

Q. 102. Le code obtenu en rajoutant
à une suite de k chiffres décimaux
les deux chiffres de contrôle de la
procédure MOD 97-10 (Exemple 7.2,
page 63) est-il liéaire ?

k = 3.

La première simplification importante qu’apporte un code li-
néaire est que sa distance minimale peut être calculée d’une façon
plus efficace.

Théorème et Définition 13.2 Si K est un corps fini, le poids de Ham-

ming de ~x ∈ Kn est le nombre de composantes non nulles, c’est à dire aussi

w(~x) def
= d(~0,~x).

110 sciences de l’information

La distance minimale d’un code linéaire C est égale à

dmin(C) = min
~x∈C;~x 6=~0

w(~x) (13.1)

En d’autres termes, la distance minimale est le plus petit poids de
Hamming d’un mot de code non nul.

Preuve : Soit d∗ = min~x∈C;~x 6=~0 w(~x) la valeur donnée dans le

théorème ; d∗ est la distance de~0 à un certain mot de code (un de
ceux qui atteignent le minimum dans la formule (13.1)). Comme~0
est un mot de code, dmin(C) ≤ d∗.

Réciproquement, soient ~x∗ et ~y∗ deux mots de code qui at-
teignent le minimum dans la définition de dmin(C), c’est à dire
dmin(C) = d(~x∗,~y∗). Comme le code est linéaire, −~y∗ = (−1) ·~y∗
est aussi un mot de code, et donc ~x∗ −~y∗ est aussi un mot de code.
Or d(~x∗,~y∗) = w(~y∗ − ~x∗), donc dmin(C) ≥ d∗. Donc finalement
d∗ = dmin(C). 2

Exemple 13.2 (Petit Code de la Figure 11.1) En inspectant les 7
mots de code non nuls de la colonne de droite de la Figure 11.1, nous
voyons que les poids de Hamming sont 3, 5, 4, 4, 3, 5 et 4, donc la distance
minimale du code est 3.

Voici deux autres exemples de codes parfois utilisés en pratique.

Exemple 13.3 Code de parité (n, n− 1). L’alphabet est F2, les messages
sont des suites de n − 1 bits. Les mots de code sont obtenus en ajoutant Nous appelons ici “bit" un élément de

F2.aux messages un seul bit de contrôle, qui est tel que le nombre de 1 dans
le mot de code soit pair. Par exemple, ~x = (1, 0, 1, 1, 0, 0, 1) devient
~y = (1, 0, 1, 1, 0, 0, 1, 0). Les mots de codes sont donc des suites de bits
(y1, ..., yn) tels que

y1 + ... + yn = 0 (13.2)

(où l’addition est dans F2, c’est à dire c’est l’opération xor). Le code est
donc un sous-espace vectoriel de Fn

2 , c’est le sous-espace défini par l’équa-
tion (13.2). Il est donc de dimension k = n− 1. Q. 103. Que donne la borne de Single-

ton pour ce code ?Sa distance minimale vaut 2, donc il peut détecter (mais pas corriger)
les erreurs portant sur un bit. (En fait, ce code détecte tout nombre impair
d’erreurs mais ne détecte aucune erreur portant sur un nombre pair de
bits.)

Exemple 13.4 Code à répétition (n, 1). Ici, par contre, il n’y a qu’un
seul bit d’information et n− 1 bits de contrôle qui sont obtenus par répé-
tition du bit d’information. Les mots de codes sont donc des suites de bits
(y1, ..., yn) tels que 

y2 = y1

...
yn = y1

(13.3)

C’est donc un code linéaire, de dimension k = 1.

codes linéaires 111

Il n’y a en fait que deux mots de code,~0 et (1, 1, ..., 1). La Figure 11.2
montre les codes à répétition pour n = 2 et n = 3.

La distance de ce code vaut donc dmin = n, ce qui permet de détecter Q. 104. Que donne la borne de Single-
ton pour ce code ?toute erreur portant sur n− 1 bits ou moins, et de corriger erreur portant

sur moins de (n− 1)/2 bits. La capacité correctrice/détectrice de ce code
est très élevée, mais son rendement, 1

n , est très faible.

13.2 Matrice Génératrice d’un Code Linéaire

Comme un code linéaire est un sous-espace vectoriel, un mot de
code ~x ∈ C peut être écrit d’une manière unique comme combinai-
son linéaire des vecteurs d’une base de C. Nous allons écrire cela en
termes matriciels.

13.2.1 Matrice Génératrice et Encodage

Définition 13.3 Soit C un code linéaire sur le corps K, de longueur
n et dimension k. Soit (~v1, ...,~vk) une base de C. La matrice obtenue en
écrivant à la i−ième ligne le vecteur ~vi est appelée une matrice génératrice

du code.

Exemple 13.5 (Petit Code de la Figure 11.1) Nous avons vu dans
l’Exemple 13.1 que les trois premiers vecteurs non nuls ~v1 = (0, 0, 1, 1, 1, 0, 0),
~v2 = (0, 1, 1, 1, 0, 1, 1) et ~v3 = (1, 1, 1, 0, 1, 0, 0) constituent une base du
code. Donc une matrice génératrice du code est

G =

 0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0

 ~v1

~v2

~v3

(13.4)

Notons que nous pourrions aussi bien prendre comme base (~v3,~v2,~v1), ce

Les noms des vecteurs ~v1 etc écrits à
droite de la matrice sont placés là dans
un souci d’illustration ; ils ne font pas
partie de la matrice.

qui donne une autre matrice génératrice :

G′ =

 1 1 1 0 1 0 0
0 1 1 1 0 1 1
0 0 1 1 1 0 0

 ~v3

~v2

~v1

(13.5)

qui diffère de G par une permutation des lignes. Il est facile de voir que Q. 105. Prouvez que (~e1,~e2,~e3), avec
~e1 = ~v3 +~v2, ~e2 = ~v2 +~v1 et ~e3 = ~v1,
constitue une base de C.

(~v3 +~v2,~v2 +~v1,~v1) constitue aussi une base de C. Une troisième matrice
génératrice du code C est donc

G′′ =

 1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 0 0

 ~v3 +~v2

~v2 +~v1

~v1

(13.6) Ici le corps est F2 et les additions de
vecteurs se font donc modulo 2.

Puisqu’un code linéaire de dimension k possède card(K)k mots
de code, il peut être utilisé pour encoder des suites de k symboles
de K. Chaque choix d’une matrice génératrice correspond à une
méthode d’encodage, définie comme suit. Considérons la suite
~ei = (0, .., 0, 1, 0, ..., 0) (où le vecteur est de longueur k et le symbole
1 est dans la i−ième position). Cette suite est souvent appelée la

112 sciences de l’information

base canonique de Kk. La méthode d’encodage encode ~ei par la
iième ligne de la matrice génératrice. Ensuite, si ~u = (u1, ..., uk) est
un mot quelconque à encoder, le mot de code correspondant ~x est
obtenu par la formule

~x = ~u G (13.7)

Exemple 13.6 (Encodage, Petit Code de la Figure 11.1) Supposons
que nous utilisions la matrice G de l’Eq.(13.4) et calculons les encodages
de quelques message. Pour le message 100, nous prenons ~u = (1, 0, 0) et
obtenons le mot de code

~x = (1, 0, 0)

 0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0

 = (0, 0, 1, 1, 1, 0, 0)

correspondant au message 0011100. Nous avons obtenu la première
ligne de la matrice, ce qui est normal puisque c’est ainsi que nous avons
construit notre méthode d’encodage. Si le message à encoder est 101, nous
mettons ~u = (1, 0, 1) et

~x = (1, 0, 1)

 0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0

 = (1, 1, 0, 1, 0, 0, 0)

donc le mot de code est 1101000. En faisant cela pour les 6 autres mes-
sages possibles, nous obtenons la même table d’encodage que dans la Fi-
gure 11.1. Q. 106. Existe-t-il un mot à encoder qui

soit toujours encodé de la même façon,
quelle que soit la matrice génératrice
choisie ?

Par contre, si nous utilisons la matrice G′ de l’Eq.(13.5), nous obtenons
une table d’encodage différente. Par exemple, le mot 100 est encodé par
1110100 au lieu de 0011100 précédemment.

La correction d’effacement peut se faire à l’aide de la matrice gé-
nératrice, en résolvant un système d’équations linéaires, comme
illustré sur l’exemple suivant.

Exemple 13.7 (Correction d’Effacement, Petit Code de la Figure 11.1)
Supposons que nous ayons reçu le mot ~y = (0, ?, 1, 1, ?, 0, 0). La distance
minimale du code est 3, donc nous savons que nous pouvons corriger cet
effacement. Pour cela, nous écrivons l’équation ~uG = ~y en supprimant les
lignes correspondant aux effacements. Nous obtenons le système

u3 = 0

u1 + u2 + u3 = 1

u1 + u2 = 1

u2 = 0

u2 = 0

C’est un système à 5 équations et 3 inconnues ; il peut ne pas admettre
de solution (cela arrive quand il y a eu à la fois des effacements et des er-
reurs). Ici il y a une solution unique : (u1, u2, u3) = (1, 0, 0). Le décodeur
corrige l’effacement en déclarant que le mot transmis est 100.

codes linéaires 113

13.2.2 ? Forme Systématique

Le sous-espace vectoriel engendré par les lignes de G reste in-
changé si l’on permute ces lignes ou si l’on ajoute une ligne à une
autre. Aussi, nous pouvons appliquer les opérations élémentaires
sur les lignes de G dans le but de mettre G sous une forme plus
simple à utiliser, par exemple comme la matrice G′′ de l’Eq.(13.6).

Définition 13.4 Une matrice G à k lignes et n > k colonnes est dite sous
forme systématique si

G = [Ik P] (13.8)

où Ik est la matrice identité d’ordre k (une matrice dont les éléments de
la diagonale sont égaux à 1 et tous les autres à 0) et P est une matrice de
dimensions k× (n− k).

La matrice G′′ de l’Eq.(13.6) est sous forme systématique. Cette
forme présente des avantages pratiques. En effet, le mot de code ~x
correspondant au message ~u est alors de la forme

~x = (u1, u2, ..., uk, r1, ..., rn−k)

c’est à dire que les symboles porteurs d’information u1, ..., uk sont
inchangés. L’encodage consiste donc à ajouter les symboles restant
r1, ..., rn−k (appelés symboles de contrôle), calculés à partir de la
matrice P.

Exemple 13.8 (Forme Systématique, Petit Code de la Figure 11.1)
Supposons que nous utilisions la matrice génératrice G′′ de l’Eq.(13.6).
L’encodage consiste à ajouter au message ~u = (u1, u2, u3) quatre bits de
contrôle contrôle donnés par

Ici le corps est F2 et les additions sont
donc modulo 2.

r1 = u1 + u3

r2 = u1 + u2 + u3

r3 = u1 + u2

r4 = u1 + u2

En général, la théorie de l’élimination de Gauss montre qu’il est La matrice génératrice d’un code li-
néaire de dimension k est forcément de
rang k, puisque le rang est la dimen-
sion de l’espace vectoriel engendré par
les colonnes.

possible de mettre toute matrice G de rank k sous forme systéma-
tique par des opérations élémentaires consistant soit à permuter
des lignes, soit des colonnes, soit à ajouter à une ligne un multiple
d’une autre ligne, soit à multiplier une ligne par un élément non
nul du corps.

Un code linéaire systématique présente
l’avantage d’être facile à réaliser
à l’aide de circuits logiques et de
registres à décalages, car il ne faut
stocker que la matrice P, qui est dans
certains cas beaucoup plus petite que
G.

Notons que toutes ces opérations sauf les permutations de co-
lonnes ne changent pas le sous-espace vectoriel engendré par les
lignes de la matrice, donc ne changent pas le code. Par contre, les
permutations de colonnes changent le code (le changement cor-
respond à permuter les composantes du mot de code). Mais le
code reste essentiellement le même, seul l’ordre des symboles est
éventuellement modifié ; en particulier le rendement et la distance
minimale restent les mêmes. En résumé, quitte à modifier l’ordre
des symboles du code, tout code linéaire peut être mis sous forme
systématique.

114 sciences de l’information

13.3 Matrice de Contrôle et Syndrome

13.3.1 Matrice de Contrôle

Puisque un code linéaire est un sous-espace vectoriel de Kn de
dimension k, il est possible, d’après le Théorème 12.3 de définir les
mots de codes par n− k équations linéaires :

Définition 13.5 Soit C un code linéaire sur le corps K, de longueur n
et dimension k. Une matrice de contrôle du code est une matrice à n− k
lignes et n colonnes, dont les lignes sont les vecteurs de coefficients de
n − k équations linéaires qui définissent le sous-espace vectoriel C dans
Kn. Ces n− k lignes sont nécessairement indépendantes.

En écriture matricielle, H est une matrice de contrôle du code si l’équa-
tion La notation HT signifie la transposée

de H. C’est la matrice obtenue en
permutant lignes et colonnes.~x HT =~0 (13.9)

définit les mots de code ~x.

Pour trouver une matrice de contrôle, il faut mettre le sous-espace
vectoriel en équations.

Exemple 13.9 (Matrice de Contrôle, Petit Code de la Figure 11.1)
Supposons que nous utilisions la matrice G de l’Eq.(13.4). Il nous fait
trouver 4 équations du sous-espace vectoriel C. Soit a1x1 + a2x2 +

... + a7x7 = 0 une telle équation. Nous voulons trouver les coefficients
a1, ..., a7. Pour cela nous exprimons que l’équation doit être vérifiée par les
trois lignes de G, ce qui donne les conditions :

a3 + a4 + a5 = 0

a2 + a3 + a4 + a6 + a7 = 0

a1 + a2 + a3 + a5 = 0

Rappelons nous que nous sommes dans F2 donc

a3 = a4 + a5

a2 = a3 + a4 + a6 + a7

a1 = a2 + a3 + a5

et nous avons un système sous forme triangulaire, qui permet de calculer
a1, a2 et a3 à partir de a4, a5, a6, a7. Nous faisons d’abord (a4, a5, a6, a7) =

(1, 0, 0, 0) et obtenons un premier vecteur de coefficients~a = (1, 0, 1, 1, 0, 0, 0).
Ensuite nous faisons : (a4, a5, a6, a7) = (0, 1, 0, 0), puis (a4, a5, a6, a7) =

(0, 0, 1, 0), et finalement (a4, a5, a6, a7) = (0, 0, 0, 1,). Nous obtenons
ainsi quatre vecteurs de coefficients, qui sont nécessairement linéairement
indépendants. Finalement, nous obtenons la matrice

H =


1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1

 (13.10)

codes linéaires 115

En d’autres termes, ~x est un mot de code si et seulement si

x1 + x3 + x4 = 0

x1 + x2 + x3 + x5 = 0

x1 + x2 + x6 = 0

x1 + x2 + x7 = 0

Ces équations sont appelées des équations de contrôle de parité.

13.3.2 Syndrome

La matrice de contrôle permet de détecter simplement des er-
reurs. Soit ~x le mot de code transmis et ~y le mot de code reçu. Le
syndrome est par définition

~s = ~y HT

S’il n’y a pas d’erreur, le syndrome est égal à~0. Une méthode
simple de détection d’erreur consiste donc à déclarer une erreur
si le syndrome est non nul. Quelles sont les erreurs non détectées
par cette méthode ?

Soit ~e = ~y − ~x l’erreur. Notons que ~x est un mot de code donc
~e HT = ~y HT . L’erreur ~e est non détectée par cette méthode si
~e HT = ~0, c’est à dire si ~e ∈ C. Les erreurs non détectées sont donc
celles qui correspondent à l’addition d’un mot de code lors de la
transmission.

Comme tous les mots de code non nuls ont un poids de Ham-
ming au moins égal à dmin(C), toutes les erreurs de poids inférieur
à dmin(C) sont détectées, comme nous nous y attendons. Q. 107. Est-il possible que cette mé-

thode de détection d’erreur déclare
une erreur alors qu’il n’y en a pas ?Exemple 13.10 (Petit Code de la Figure 11.1) Supposons que nous

recevions le mot ~y = (1, 0, 1, 0, 1, 1, 1). En appliquant par exemple la
matrice de contrôle H de l’Eq.(13.10), nous obtenons le syndrome~s =

(1, 1, 0, 0), qui est non nul donc il y a une erreur.

La correction d’erreur est plus compliquée, sauf exception. Une
méthode générale, basée sur le Théorème 11.4, consiste à chercher
une erreur ~e de poids inférieur à dmin(C)

2 , telle que ~y−~e soit un mot
de code, c’est à dire telle que ~e HT = ~y HT . Le Théorème 11.4
garantit que si un tel vecteur d’erreur existe, il est unique. Quand
dmin(C) est très petit, une recherche exhaustive est possible.

Exemple 13.11 (Correction d’erreur pour le code a répétition (n, 1))
Rappelons que ce code répète le même bit n fois et que sa distance mini-
male est dmin(C) = n. Supposons par exemple que n = 6 et que le mot de
code reçu est ~y = (1, 0, 1, 1, 0, 1) ; un vecteur d’erreur possible est obtenu
en supposant que les symboles 0, qui sont en minorité sont erronés. Cela
donne~e = (0, 1, 0, 0, 1, 0), qui est de poids 2 < dmin(C)

2 = 2.5. Donc c’est
l’unique vecteur d’erreur possible de poids inférieur à 2.5 et c’est celui
que calcule la méthode de correction d’erreur proposée plus haut. Le mot
de code original obtenu est ~x = (1, 1, 1, 1, 1, 1) et le bit encodé est donc
u = 1.

116 sciences de l’information

De manière générale : pour corriger les erreurs dans un code à répéti-
tion il suffit de déterminer le bit qui se trouve en majorité. Cette méthode
de décodage corrige toutes les erreurs de poids < dmin(C)

2 . Elle ne permet
pas de corriger les erreurs de poids supérieur. Par exemple si le mot reçu
est ~y = (1, 0, 0, 0, 0, 0) et que le vecteur d’erreur est (0, 1, 1, 1, 1, 1), ce
décodeur déclare que le bit encodé est u = 0, ce qui est faux, mais il est
impossible de le savoir.

Il peut même arriver que ce décodeur ne fournisse pas de résultat,
quand il n’y a pas de majorité, ce qui arrive quand n est pair et qu’il y a
exactement n

2 erreurs, par exemple si le mot de code reçu est (1, 0, 1, 0, 1, 0).

13.3.3 ? Matrice de Contrôle et Forme Systématique

Le calcul d’une matrice de contrôle est très facile si nous dispo-
sons d’une matrice génératrice sous forme systématique.

Théorème 13.1 Si la matrice génératrice G est sous la forme systéma-
tique G = [Ik P] alors une matrice de contrôle est

H = [−PT In−k]. (13.11)

,Preuve : Il nous fait montrer que l’ensemble S des solutions de
~x HT = ~0, où ~x ∈ Kn, est le code C. Pour cela nous montrons que
(1) S contient C et (2) S et C ont même dimension. D’après la note
de marge de la page 105, cela prouvera en effet que S = C.

(1) Soit ~x un mot de code quelconque ; il peut se mettre sous la
forme ~x = ~uG pour un certain ~u ∈ Kk. Notons que

GHT = [Ik P]

[
−P
In−k

]
= −P + P = 0.

Donc ~xHT = ~uGHT = ~u0 =~0. Donc ~x ∈ S .
(2) La dimension de C est k (par définition de k). Les lignes de la

matrice H sont linéairement indépendantes à cause du bloc In−k.
D’après le Théorème 12.3, la dimension de S est donc n− (n− k) =
k. ,2

Exemple 13.12 (Petit Code de la Figure 11.1) Supposons que nous
utilisions la matrice G′′ de l’Eq.(13.6). Elle est sous forme systématique
avec

P =

 1 1 1 1
0 1 1 1
1 1 0 0


La matrice de contrôle correspondante est

1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1


Notons que c’est la même matrice
que celle que nous avons trouvé en
Eq.(13.10) ; ceci est par hasard. En
effet, en général, une matrice de
contrôle n’est pas unique et différentes
méthodes de calcul donnent des
matrices de contrôle différentes. Par
contre, bien sûr, si on obtient un
syndrome nul avec une matrice de
contrôle, il sera nul avec toute autre
matrice de contrôle.

14
Codes de Reed-Solomon

A l’exception du code de répétition dont le rendement est très
faible, les meilleurs codes que nous ayons vu dans ce module ont
une distance minimale de 3. C’est assez bon pour montrer l’idée
principale du codage mais n’est pas suffisant dans beaucoup d’ap-
plications réelles. Sur un disque, par exemple, nous pouvons faire
un trou de 1mm de diamètre et le code utilisé est encore assez puis-
sant pour retrouver l’information. Comme un bit occupe a peu près
10−6 mètre sur le disque, un tel trou couvre des milliers de bits sur
chaque piste. Comment pouvons nous construire des codes ayant
une grande distance minimale ?

Le problème est difficile pour les codes binaires, c’est-à-dire,
pour les codes sur F2. Mais si nous considérons un alphabet plus
grand, une solution optimale a été proposée dans les années 1950

par Irvine Reed et Gus Solomon. Ces codes sont appelés les codes
de Reed-Solomon en leur honneur et jusqu’à aujourd’hui ce sont
les codes les plus utilisés. Chaque seconde, il y a des centaines de
millions des codes Reed-Solomon en fonctionnement, et ils assurent
que la plupart de nos communications soient essentiellement sans
erreurs.

Même si les codes Reed-Solomon sont puissants, leur définition
est simple ; elle est basée sur des évaluations de polynômes.

14.1 Définition

Rappelons d’abord ce qu’est un polynôme, puis nous allons
introduire une notation très utile pour la suite.

Définition 14.1 (Polynômes) Soit K un corps fini. Un polynôme P à
coefficients dans K est une application K → K de la forme

X 7→ P(X) = a1 + a2X + ... + am+1Xm

où a1, ..., am+1 sont des éléments de K.
Le degré du polynôme est la plus grande puissance affectée d’un coeffi-

cient non nul. Le polynôme 0 est de degré indéfini.

Pour toute suite ~u = (u1, ..., uk) ∈ Kk de k éléments de K nous
appelons P~u le polynôme dont les coefficients sont u1, ..., uk, par
ordre de puissances croissantes. En d’autre termes Par exemple, avec K = F5, P243(X) =

2 + 4X + 3X2 et P0000432(X) = 4X4 +
3X5 + 2X6.

118 sciences de l’information

P~u(X)
def
= u1 + u2X + u3X2 + ... + ukXk−1 (14.1)

et donc P~u est un polynôme de degré k− 1. Nous pouvons mainte-
nant définir les codes de Reed-Solomon.

Définition 14.2 (Reed-Solomon) Soient n et k des entiers avec 1 ≤
k ≤ n. Un code de Reed Solomon de paramètres (n, k) est défini comme
suit :

1. L’alphabet est un corps fini K de cardinal ≥ n.
2. Choisissons n éléments distincts de K, a1, a2..., an. Une suite de k

symboles ~u = (u1, ..., uk) ∈ Kk est encodée en la suite de n symboles
~x = (x1, ..., xn) ∈ Kn définie par

xi = P~u(ai) pour i = 1...n (14.2)

Le code de Reed-Solomon C est l’ensemble de tous les encodages ~x pos-
sibles, pour tous les ~u ∈ Kk. C’est donc un code en bloc de longueur
n.

Exemple 14.1 (Code de Reed-Solomon sur F5) Construisons un code
de Reed-Solomon sur F5. Nous pouvons choisir n’importe quelle longueur
n entre 1 et 5 = card(F5). Choisissons le maximum possible, n = 5.
Il nous faut aussi choisir 5 éléments de F5, mais ici nous n’avons pas le
choix, il faut les prendre tous : a1 = 0, a2 = 1, a3 = 2, a4 = 3 et a5 = 4.

~u P~u(X) ~x

00 0 00000
01 X 01234
02 2X 02413
03 3X 03142
04 4X 04321
10 1 11111
11 1 + X 12340
12 1 + 2X 13024
13 1 + 3X 14203
14 1 + 4X 10432
20 2 22222
21 2 + X 23401
22 2 + 2X 24130
23 2 + 3X 20314
24 2 + 4X 21043
30 3 33333
31 3 + X 34012
32 3 + 2X 30241
33 3 + 3X 31420
34 3 + 4X 32104
40 4 44444
41 4 + X 40123
42 4 + 2X 41302
43 4 + 3X 42031
44 4 + 4X 43210

Figure 14.1: Table d’encodage ~u 7→
~x d’un code de Reed-Solomon de
longueur n = 5 et de dimension k = 2.

Calculons les encodages. Par exemple, si le message est ~u = (0, 0), le
polynôme à évaluer est P~0 = 0 donc P~0(a1) = ... = P~0(a5) = 0, et le mot
de code correspondant est ~x = (0, 0, 0, 0, 0).

Si ~u = (3, 2), alors P~u(X) = P32(X) = 3 + 2X et donc

P~u(a1) = P~u(0) = 3
P~u(a2) = P~u(1) = 0
P~u(a3) = P~u(2) = 2
P~u(a4) = P~u(3) = 4
P~u(a5) = P~u(4) = 1

donc ~x = (3, 0, 2, 4, 1). En faisant cela pour les 25 suites de k = 2
éléments de F5 nous obtenons la table d’encodage de la Figure 14.1.

14.2 Propriétés

Nous allons maintenant voir que les codes de Reed-Solomon
jouissent de propriétés remarquables. Pour cela nous avons besoin
d’un résultat fondamental sur les polynômes, qui dit qu’un poly-
nôme a un nombre de racines inférieur ou égal à son degré.

Théorème 14.1 (Racines d’un Polynôme) Soit ~u ∈ Kk où K est un
corps commutatif. Le polynôme P~u est de degré k− 1. S’il existe k éléments
tous distincts a1, ..., ak de K tels que P~u(ai) = 0, alors ~u =~0.

,Preuve : Nous faisons la preuve quand K est un corps fini, ce
qui suffit à notre propos (mais le théorème est vrai même si le
corps commutatif K est infini). Soit ψ l’application Kk → Kk qui à ψ est en fait l’encodage d’un code de

Reed-Solomon de paramètres (k, k).

codes de reed-solomon 119

~v ∈ Kk quelconque associe (P~v(a1), ..., P~v(ak)). L’hypothèse est que
ψ(~u) =~0 et nous voulons montrer que ~u =~0.

Pour cela nous allons montrer que ψ est injective. Par le principe
des tiroirs, comme les ensembles d’arrivée et de départ de ψ sont
finis et ont même cardinal, il suffit de montrer que ψ est surjective,
ce que nous faisons maintenant.

Soit (x1, ..., xk) ∈ Kk quelconque. Cherchons un polynôme P
de degré ≤ k − 1 tel que (P(a1) = x1, ..., P(ak) = xk). Un tel
problème est connu sous le nom d’“interpolation" : les valeurs
xi et les points d’évaluation ai sont connus et il faut trouver un
polynôme qui donne ces valeurs. Sa solution est connue, il suffit
d’utiliser le polynôme d’interpolation de Lagrange. Soit Qi, i =

1, ...k, le polynôme défini par

Qi(X) =
(X− a1)...(X− ai−1)(X− ai+1)...(X− ak)

(ai − a1)...(ai − ai−1)(ai − ai+1)...(ai − ak)
(14.3)

C’est un polynôme de degré ≤ k − 1 (produit de k − 1 termes de Le degré ici est par rapport à la va-
riable Xdegré 1) et il a la propriété que Qi(ai) = 1 et Qi(aj) = 0 pour i 6= j.

Soit maintenant P le polynôme défini par

P(X) = x1Q1(X) + ... + xkQk(X)

de sorte que P est un polynôme de degré ≤ k − 1 (comme somme
de k polynômes de degré -̨1) et P(ai) = xi pour i = 1...k. C’est donc
une solution à notre problème d’interpolation.

Soit alors v1 = le coefficient de degré 0 de P, etc..., vk = le coef-
ficient de degré k− 1 de P, de sorte que P = P~v et donc ψ(~v) = ~x.
Nous avons donc montré que ψ est surjective.

Donc ψ est injective. Or ψ(~0) =~0. Donc ~u et~0 ont la même image
par ψ, donc ~u =~0. ,2

14.2.1 Linéarité

Les codes de Reed-Solomon sont en fait des codes linéaires :

Théorème 14.2 Un code de Reed Solomon de paramètres (n, k) est un
code en bloc linéaire de taille n et de dimension k.

Preuve : (1) Montrons d’abord la linéarité. Soient ~x et ~x′ deux mots
de codes. Donc il existe ~u,~u′ tels que

P~u(aj) = xj

P~u′(aj) = x′j

pour j = 1, ..., n. Il est immédiat de voir que P~u+~u′(X) = P~u(X) +

P~u′(X) donc P~u+~u′(aj) = P~u(aj) + P~u′(aj), en d’autres termes

xj + x′j = P~u+~u′(aj)

donc le mot ~x + ~x′, dont le terme générique est xj + x′j, est un mot
de code (correspondant à ~u + ~u′). De la même façon, pour tout

120 sciences de l’information

λ ∈ K, le mot λ~x est un mot de code (correspondant à λ~u). Donc C
est un sous-espace vectoriel de Kn.
(2) Il nous reste à montrer que dim(C) = k. Pour cela nous allons
trouver une base de C de cardinal k. Soit (~ei), i = 1...k la base
canonique de Kk et ~xi le mot de code correspondant à ~ei. Montrons
que (~xi), i = 1...k est une base de C. Tout message ~u peut s’écrire Rappelons que ~ei = (0, .., 0, 1, 0, ..., 0)

où le vecteur est de longueur k et le
symbole 1 est dans la iième position.
Le polynôme correspondant à ~ei est
Xi−1 donc ~xi

j = ai−1
j .

~u = u1~e1 + ... + uk~ek et le mot de code correspondant est ~x =

u1~x1 + ... + uk~xk, donc (~xi), i = 1...k engendre de C.
Montrons qu’elle est linéairement indépendante. Supposons

qu’une combinaison linéaire soit nulle, c’est-à-dire u1~x1 + ... +
uk~xk = ~0. Donc le polynôme P~u vérifie P~u(aj) = 0 pour tous j, c’est
à dire qu’il possède n racines distinctes. Comme n > k, P~u possède
k racines distinctes. D’après le Théorème 14.1, ~u = ~0, ce qui montre
que (~xi), i = 1...k est linéairement indépendante. 2

Exemple 14.2 (Code de la Figure 14.1) Une matrice génératrice de
ce code de Reed-Solomon sur F5 est obtenue en considérant les encodages
de la base canonique de F2

5. La première ligne est obtenue est obtenue en
prenant ~u = (1, 0), ce qui correspond au polynôme P10 = 1 ; la deuxième
ligne est obtenue est obtenue en prenant ~u = (0, 1), ce qui correspond au
polynôme P01 = X. Donc

G =

(
1 1 1 1 1
a0 a1 a2 a3 a4

)
=

(
1 1 1 1 1
0 1 2 3 4

)
(14.4)

Le mot de code correspondant au message ~u = (u1, u2) est

~x = (u1, u2)G

Une matrice de contrôle peut facilement être obtenue à l’aide
des polynômes d’interpolation de Lagrange. En effet, soit ~x un mot
de code. Le message ~u peut être obtenu comme la suite des coeffi-
cients du polynôme d’interpolation sur les k premières valeurs :

P~u(X) = x1Q1(X) + ... + xkQk(X)

où Qi est défini en Eq.(14.3). Donc nécessairement, xj pour j > k est
la valeur de ce polynôme en aj, c’est à dire que

x1Q1(aj) + ... + xkQk(aj) = xj pour j = k + 1, ..., n (14.5)

ce qui donne un système de n− k équations linéaires en ~x. Récipro-
quement, si un vecteur ~x satisfait ces n − k équations, il est néces-
sairement le mot de code correspondant au message ~u. En d’autres
termes, ces équations définissent le code C et nous pouvons les
prendre pour obtenir une matrice de contrôle.

Exemple 14.3 (Code de la Figure 14.1) Nous allons obtenir une ma-
trice de contrôle en écrivant les équations (14.5). Les polynômes Q1 et Q2

sont
Q1(X) = X−1

−1 = 4(X− 1)
Q2(X) = X

1 = X

codes de reed-solomon 121

et les équations (14.5) sont

x1Q1(2) + x2Q2(2) = x3

x1Q1(3) + x2Q2(3) = x4

x1Q1(4) + x2Q2(4) = x5

donc une matrice de contrôle est Q. 108. Comment pouvez vous vérifier
que H est bien une matrice de contrôle
compatible avec la matrice génératrice
de l’Eq.(14.4) ?H =

 −Q1(2) −Q2(2) 1 0 0
−Q1(3) −Q2(3) 0 1 0
−Q1(4) −Q2(4) 0 0 1


=

 1 3 1 0 0
2 2 0 1 0
3 1 0 0 1


14.2.2 Optimalité

Théorème 14.3 Un code de Reed Solomon de paramètres (n, k) a pour
distance minimale dmin = n − k + 1. En d’autres termes, il atteint la
borne de Singleton, et sa distance minimale est la plus grande possible
pour un code en bloc de longueur n et de dimension k.

,Preuve : (1) Montrons par l’absurde que tout mot de code non
nul a un poids de Hamming > n− k. Soit donc un mot de code ~x
tel que w(~x) ≤ n− k. Cela veut dire qu’au moins k des composantes
de ~x sont nulles. Soit ~u le message correspondant au mot de code ~x.
Si la jième composante de ~x est nulle, cela signifie que P~u(aj) = 0,
donc le polynôme P~u possède au moins k racines. Ceci contredit le
Théorème 14.1.
(2) Donc, d’après le Théorème 13.2, dmin(C) > n− k donc dmin(C) ≥
n− k + 1. Par la borne de Singleton, dmin(C) ≤ n− k + 1, donc il y a
égalité. ,2

Q. 109. Dans l’Exemple 11.3, nous
supposons avoir à disposition un code
de longueur 7 et de dimension 3 et qui
atteigne la borne de Singleton. Pouvez
vous proposer un tel code ?

Exemple 14.4 (Correction d’Effacements) Avec le code de la Fi-
gure 14.1, supposons que nous recevions le mot ~y = (??2?1). Il y a trois
effacements. Comme 3 ≤ dmin(C)− 1 = n− k = 3, nous savons que nous
pouvons reconstruire le mot transmis de façon unique. Soit ~x le mot trans-
mis et ~u le message. Nous savons que ~x = ~uG. De plus, ~x et ~y coincident
dans les positions 3 et 5. Nous avons donc le système d’équations{

u1 + 2u2 = 2
u1 + 4u2 = 1

que nous pouvons facilement résoudre dans F5 pour obtenir u1 = 3,
u2 = 2. Le message est donc 32. Nous pouvons aussi calculer le mot de
code complet. Nous obtenons ~x = ~uG = 30241.

Le choix des éléments aj du corps K est en théorie sans im-
portance, car les propriétés que nous avons vues du code de Reed
Solomon en sont indépendantes.

En pratique, cependant, il existe des choix qui rendent les calculs
plus rapides. Le choix standard consiste à trouver tout d’abord un

122 sciences de l’information

élément spécial g du corps K tel que tout élément non nul de K soit
une puissance de g (la période de g dans le groupe (K∗, ·) est donc
égale à card(K)− 1). Un tel élément existe toujours dans un corps
fini, et est appelé un générateur de K. Soit m = card(K)− 1. L’appli-
cation (Z/mZ,+) → (K∗, ·), [`]m 7→ g` est alors un isomorphisme
de groupes, dont l’application inverse est appelé un logarithme
discret. Un logarithme discret transforme les multiplications et di-
visions dans le corps fini K en additions et soustractions modulo
m. Par exemple, dans K = F5, g = 2 est

un générateur car ses puissances sont
{2, 4, 3, 1} ; la période de g est 4 donc
l’ensemble des puissances de g est
l’ensemble des 4 éléments non nuls de
F5.
Q. 110. Le corps F5 possède-t-il un
autre générateur ?

Q. 111. Prouver que l’application
[k]4 7→ gk avec g = [2]5 est un
isomorphisme des groupes (F∗5 , ·) et
(Z/4Z,+).

On choisit alors aj = gj−1, pour j = 1...n. Le terme générique de
la matrice génératrice est alors Gi,j = g(i−1)(j−1). Il existe des algo-
rithmes très rapides, en particulier utilisant le logarithme discret,
pour le calcul de l’encodage et de la correction d’effacement avec de
telles matrices.

14.3 ? Le Corps F256

Les codes de Reed-Solomon utilisent comme alphabet un corps
fini. Il serait très pratique de pouvoir prendre comme alphabet
K = Z/256Z, car alors il y a un symbole par octet, ce qui est la
quantité d’information fondamentale des systèmes numériques.
Mais nous savons que Z/256Z n’est pas un corps car 256 n’est
pas un nombre premier. Heureusement, nous savons aussi qu’il
existe un corps F256 à 256 éléments, car 256 est une puissance du
nombre premier 2. Dans cette section nous allons décrire comment
est construit ce corps.

Pour cela il nous faut définir la division des polynômes à co-
efficients dans un corps fini, qui est très semblable à la division
euclidienne des entiers. Soient a(X) et b(X) deux polynômes à
coefficients dans un corps commutatif, et supposons que les coeffi-
cients de b(X) ne sont pas tous nuls. La division selon les puissances

décroissantes, aussi appelée division longue, est définie de manière
semblable à celle des entiers. Nous pouvons trouver des polynômes
q(X) et r(X), uniques, appelés quotient et reste, tels que

a(X) = q(X)b(X) + r(X) avec deg r(X) < deg b(X)

Nous ne prouvons pas ce fait, mais remarquons seulement que deg r(X) est le degré du polynôme
r(X).la condition importante est que les coefficients des polynômes

appartiennent à un corps commutatif, par exemple F2. Illustrons
ceci sur un exemple.

Exemple 14.5 (Division) Effectuons la division de a(X) = X11 + X9 +

X8 + X7 + X6 + X4 par b(X) = X8 + X4 + X3 + X2 + 1. Ce sont des
polynômes à coefficients dans F2 (donc − = + !).

codes de reed-solomon 123

X11 + X9 + X8 + X7 + X6 + X4 X8 + X4 + X3 + X2 + 1
X11 + X7 + X6 + X5 + X3 X3

X9 + X8 + X5 + X4 + X3

X9 + X8 + X5 + X4 + X3 + X
X9 + X5 + X4 + X3 + X

X8 + X
X8 + X + 1

X8 + X4 + X3 + X2 + 1
+X4 + X3 + X2 + X + 1

X4 + X3 + X2 + X + 1

Le quotient est q(X) = X3 + X + 1 et le reste est r(X) = X4 + X3 +

X2 + X + 1.

L’analogie avec les nombres entiers va plus loin. Nous disons que
b(X) divise a(X), ou encore que a(X) est multiple de b(X) si le
reste de a(X) dans la division par b(X) est nul ; cela équivaut à dire
qu’il existe un polynôme q(X) tel que a(X) = b(X)q(X). Un poly-
nôme est dit irréductible si les seuls polynômes qui le divisent sont
de degré 0 (c’est à dire les constantes) Nous pouvons maintenant Le concept de polynôme irréductible

est l’équivalent du concept de nombre
premier.

définir F256 :

Définition 14.3 (Construction de F256) Le corps F256 est constitué des
256 polynômes binaires distincts de degré au plus 7 à coefficients dans F2,
c’est-à-dire tous les polynômes {0, 1, X, X + 1, X2, X2 + 1, X2 + X, X2 +

X + 1, · · · , X7 + X6 + X5 + X4 + X3 + X2 + X + 1}.
L’addition est l’addition des polynômes usuelle, où les composantes

binaires sont additionnées dans le corps F2.
Pour la multiplication, considérons d’abord un polynôme fixé f (X) =

X8 + X4 + X3 + X2 + 1, qui est irréductible. Le produit de deux poly-
nômes a(X) et b(X) est défini comme le reste dans la division par f (X)

du produit usuel de a(X) et b(X).

Cela signifie que pour multiplier deux polynômes a(X), b(X) ∈
F256, nous faisons d’abord la multiplication usuelle des deux po-
lynômes . Ceci donne, disons, le polynôme c̃(X) qui peut avoir
un degré au plus égal à 14. Calculons le reste dans la division par
f (X), c’est-à-dire, écrivons c̃(X) comme c̃(X) = f (X)α(X) + c(X),
où c(X) est un polynôme de degré 7 au maximum. Notons qu’il y a
une façon unique d’écrire c̃(X). Le produit dans F256 de a(X) et de
b(X) est alors, par définition, égal à c(X).

Exemple 14.6 Soit a(X) = X4 + X2 + 1, b(X) = X7 + X4. Alors,

a(X) + b(X) = X7 + X2 + 1

Notons que chaque fois que nous additionnons deux polynômes de degré
7 au maximum, nous obtenons un polynôme de degré au plus 7, qui est
aussi un élément de F256.

La multiplication est un peu plus complexe. Notons a(X) · b(X) cette
multiplication, où les deux polynômes sont considérés comme les éléments

124 sciences de l’information

du corps F256. Nous calculons d’abord le produit usuel des polynômes, que
nous notons dans ce contexte a(X) ∗ b(X) :

a(X) ∗ b(X) = (X4 +X2 + 1) ∗ (X7 +X4) = X11 +X9 +X8 +X7 +X6 +X4

La partie droite n’est pas un élément du F256 parce que son degré est 11.
Nous avons besoin de le “réduire", c’est à dire calculer son reste dans la
division par f (X) :

X11 + X9 + X8 + X7 + X6 + X4 =

(X8 + X4 + X3 + X2 + 1)(X3 + X + 1) + (X4 + X3 + X2 + X + 1).

donc

X11 +X9 +X8 +X7 +X6 +X4 ≡ X4 +X3 +X2 +X+ 1 (mod f (X))

donc finalement le produit dans F256 de a(X) et b(X) est a(X) · b(X) =

X4 + X3 + X2 + X + 1.

Pour montrer que notre définition donne bien un corps, le seul
point non évident est que tout polynôme possède un inverse. Cela
est vrai parce que le polynôme f (X) (le module) est irréductible.
Nous ne montrons pas ce fait, mais signalons que c’est l’analogue
du fait que Z/pZ est un corps si p est un nombre premier. Mentionnons aussi que l’algorithme

d’Euclide de la Section 8.4 s’étend
de manière immédiate au cas des
polynômes et peut être utilisé pour
calculer l’inverse dans F256.

Pour calculer efficacement dans F256, nous utilisons un élé-
ment générateur, c’est à dire un élément g(X) ∈ F256 tel que tous
les éléments non nuls de F256 soient une puissance de g(X). Nous
savons qu’un tel élément existe dans tout corps fini. De plus, il est
possible de s’arranger (par le choix du module f (X)) pour que
g(X) = X soit un générateur. Cela permet de simplifier considéra-
blement les calculs, ce qui revient à utiliser le le logarithme discret.
Nous expliquons ceci sur un exemple.

Exemple 14.7 Par simplicité, nous choisisson un corps plus petit F16

(notons que 16 = 24). Ce corps contient tous les polynômes binaires
de degré ≤ 3 {0, 1, X, X2, X3, X + 1, X2 + 1, ...X3 + X2 + X + 1},
où l’addition est l’addition usuelle des polynômes et la multiplication
est définie modulo le polynôme irréductible f (X) = X4 + X3 + 1. Ce
polynôme est irréductible et est tel que X est un générateur.

En effet, comme nous travaillons modulo X4 + X3 + 1, nous avons

X4 = −X3 − 1 = X3 + 1
X5 = X.(X3 + 1) = X4 + X = X3 + X + 1
X6 = X4 + X2 + X = X3 + X2 + X + 1
X7 = X4 + X3 + X2 + X = 2X3 + X2 + X + 1 = X2 + X + 1

etc.

X15 = 1

donc la période de X pour la multiplication est 15, qui est le cardinal du
groupe multiplicatif, et donc g(X) = X est un générateur.

Nous pouvons représenter un élément de F16 par la suite des coeffi-
cients (usuellement représentée par ordre de puissances décroissantes),

codes de reed-solomon 125

comme dans la colonne (c) de la Figure 14.2. L’addition est alors très facile
à faire car nous additionnons les polynômes comme d’habitude, en ajoutant
les coefficients modulo 2, et c’est donc l’opération xor bit à bit.

Par contre, pour la multiplication, il est plus simple d’utiliser la re-
présentation par une puissance de X, comme dans la colonne (a) de la
Figure 14.2. Par exemple,

(1110).(0101) = X8.X9 = X17 = X2 = (0100)
(0111)−1 = X−7 = X−7.X15 = X8 = (1110)

(a) (b) (c)

0 0 0000
1 1 0001

X X 0010
X2 X2 0100
X3 X3 1000
X4 X3 + 1 1001
X5 X3 + X + 1 1011
X6 X3 + X2 + X + 1 1111
X7 X2 + X + 1 0111
X8 X3 + X2 + X 1110
X9 X2 + 1 0101

X10 X3 + X 1010
X11 X3 + X2 + 1 1101
X12 X + 1 0011
X13 X2 + X 0110
X14 X3 + X2 1100
X15 1 0001

Figure 14.2: Le corps F16. Les élé-
ments de F16 peuvent être vus comme
des polynômes de degré ≤ 3 à co-
efficients dans F2 (colonne (b)). Ils
peuvent aussi être représentés comme
nombres binaire (colonne (c)), ou
comme puissance du générateur
g(X) = X (colonne (a)).

Exemple 14.8 (Le corps F4 revisité) Dans l’Exemple 12.5 nous avons
obtenu des représentations de F4 par déduction directe. Regardons main-
tenant, à titre de comparaison, ce que donne la construction à partir de
polynômes. Avec cette construction, les éléments du corps F4 sont les
polynômes binaires de degré ≤ 1, {0, 1, X, X + 1}. L’addition est l’ad-
dition usuelle des polynômes et la multiplication est modulo le polynôme
f (X) = X2 + X + 1, dont on peut vérifier qu’il est irréductible.

Q. 112. Démontrez que le polynôme
binaire f (X) = X2 + X + 1 est
irréductible.

Construisons la table de multiplication. On a bien sûr 0 · P(X) = 0 et
1 · P(X) = P(X). De plus

X · X = X2 = 1 + X + f (X) ≡ X + 1 (mod f (X))

(X + 1) · (X + 1) = X2 + 1 = X + f (X) ≡ X (mod f (X))

X · (X + 1) = X2 + X = 1 + f (X) ≡ 1 (mod f (X))

Nous obtenons donc les tables suivantes :

+ 0 1 X X + 1

0 0 1 X X + 1
1 1 0 X + 1 X
X X X + 1 0 1

X + 1 X + 1 X 1 0

· 0 1 X X + 1

0 0 0 0 0
1 0 1 X X + 1
X 0 X X + 1 1

X + 1 0 X + 1 1 X

Si nous représentons les polynômes par leurs deux coefficients (par
puissance décroissante) nous obtenons les tables suivantes :

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

· 00 01 10 11

00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

qui sont les mêmes qu’à la fin de l’Exemple 12.5.

14.4 Codes Correcteurs et Détecteurs en Pratique

Nous avons vu que les codes linéaires permettent de résoudre
efficacement le problème de la correction ou détection d’erreur. Les
codes linéaires sont facile à stocker (par leur matrice génératrice
ou de contrôle). De plus, l’encodage, la détection d’erreur et la cor-
rection d’effacement sont faciles. Les codes de Reed-Solomon sont

126 sciences de l’information

optimaux en terme de distance minimale, et sont utilisés sur un
très grand nombre de systèmes. Par exemple, les lecteurs de CDs
utilise plusieurs codes de Reed-Solomon imbriqués. La correction
d’erreur est une tâche plus difficile. Ici, la linéarité aide beaucoup et
il faut aussi des structures supplémentaires. Mais ceci est une autre
histoire...

Bibliographie

Y. Biollay, A. Chaabouni, and J. Stubbe. Savoir-faire en maths :
bien commencer ses études scientifiques. Presses polytechniques et
universitaires romandes, 2008. ISBN 2880747791.

Alexis Fabre-Ringborg and Sébastien Saunier. Entropie du
français. http://cb.sogedis.fr/files/entropie/Entropie_

Francais_FabreRingoborg_Saunier.pdf, 2003.

H. Gharavi and R. Steele. Conditional entropy encoding of LOG-
PCM speech. Electronics Letters, 21(11) :475–476, 2007. ISSN 0013-
5194.

G. Michaud-Brière, Y. Pearson, S. Perreault, and L.-O. Roof.
La cryptographie. http://nomis80.org/cryptographie/

cryptographie.html, 2002.

C.E. Shannon. The mathematical theory of communication. Bell
Syst. Tech. J, 27 :379–423, 1948.

C.E. Shannon. Prediction and entropy of printed English. Bell
System Technical Journal, 30(1) :50–64, 1951.

R. Singleton. Maximum distance q-nary codes. Information Theory,
IEEE Transactions on, 10(2) :116–118, 1964.

Livres

T. Cover and J. Thomas, Elements of Information Theory. Wiley &
Sons, New York, 1991.
R. W. Hamming, Coding and information theory. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.
R. B. Ash, Information Theory. Dover Publications Inc, New York,
1990.
Gérard Battail, Théorie de l’Information. Ed Masson, 1997.
David MacKay, Information Theory, Inference and Learning Algorithms,
Cambridge University Press, 2003

S. Lin and D. J. Costello, Jr., Error Control Coding : Fundamentals and
Applications. Prentice Hall, 1983.
R. E. Blahut, Theory and Practice of Error-Control Codes. Addison-
Wesley, 1983.
W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes.
Cambridge University Press, 2003

R. J. McEliece, The Theory of Information and Coding. Cambridge
University Press

http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://cb.sogedis.fr/files/entropie/Entropie_Francais_FabreRingoborg_Saunier.pdf
http://nomis80.org/cryptographie/cryptographie.html
http://nomis80.org/cryptographie/cryptographie.html

Réponses aux Questions en Marge

Q.1. (p. 3). Bravo, vous avez trouvé, c’est bien ici.

Q.2. (p. 10). La même que pour S1, pS2(j) = 1/6 pour j = 1, ..., 6.

Q.3. (p. 11). Non, car par exemple on a pL(0, 0) = 0 6= pL1(0)pL2(0) =
5
6

3
36 .

Q.4. (p. 12). Oui, d’après la remarque précédente. L’hypothèse
entraîne que S1 et S2 sont indépendantes, donc la densité condition-
nelle de S2 sachant que S1 = s1 ne dépend pas de la valeur de s1,
pour tout s1 tel que pS1(s1) > 0.

Q.5. (p. 13). pS1|S2
(i|j) = 1/6 = pS1(i). La densité condition-

nelle sachant que S2 = j est la même pour tous les j. S1 et S2 sont
indépendantes.

Q.6. (p. 15). Si une information, correspondant à une probabilité
p, vaut 1 ban, c’est qu’on a log10(1/p) = 1. Si elle vaut 1 déciban,
c’est qu’on a log10(1/p) = 0.1. L’information mesurée en bits est

B = log2(1/p). On a log2(1/p) =
log10(1/p)
log10(2)

donc B = 0.1
log10(2)

= 0.332.
Un déciban vaut environ un tiers de bit.

Q.7. (p. 16). Le maximum vaut 1 bit et est obtenu pour q = 0.5
(les symboles sont équiprobables). Le minimum vaut 0 et est obtenu
pour q = 0 ou q = 1 (la source est certaine).

Q.8. (p. 16). Il y égalité, comme on le voit par la définition.

Q.9. (p. 19). S est une source composée dont les n composantes
S1, S2, ... sont indépendantes, donc H(S) = H(S1) + H(S2) + ... =
n log2(6).

Q.10. (p. 21). Non, car −2 et 2 ont la même image, donc on ne
peut pas dire qu’à tout élément de l’ensemble d’arrivée correspond
un seul élément de l’ensemble de départ.

Q.11. (p. 21). Le dictionnaire C est un sous-ensemble de D ×
...×D = DL, dont le cardinal est DL. Le cardinal de C est M donc
M ≤ DL.

réponses aux questions en marge 129

Q.12. (p. 22). f n’est pas injective car par exemple f (−1) = f (1).
Elle n’est pas surjective car −1 n’a pas d’antécédent. g n’est pas
injective pour la même raison mais est surjective car pour tout
y ∈ [0,+∞) l’équation en x : y = x2 a au moins une solution. h est
bijective car pour tout y ∈ [0,+∞) l’équation en x : y = x2 a une
solution unique dans [0,+∞).

Q.13. (p. 23). Oui, car d’abord il est à décodage unique, et en-
suite, quand on connaît la longueur commune L de tous les mots
de code, il suffit de compter les symboles de code reçus. Quand on
a reçu une suite de L symboles, on peut la décoder sans attendre.

Q.14. (p. 24). Oui, car si tous les mots de code ont même lon-
gueur, aucun mot de code ne peut être préfixe d’un autre.

Q.15. (p. 24). Contraposée : (P2) : (n n’est pas divisible par 4)⇒
(n est impair).

Réciproque : (P3) : (n est divisible par 4)⇒ (n est pair).
Contraposée de la réciproque : (P4) : (n est impair)⇒ (n n’est

pas divisible par 4).
(P3) et (P4) sont vraies pour tout n, mais (P1) et (P2) ne le sont

pas.

Q.16. (p. 25).

1. faux ; par exemple C est à décodage unique mais n’est pas ins-
tantané

2. vrai, c’est le Théorème 2.1
3. vrai, c’est la contraposée de l’item précédent
4. faux, c’est la contraposée de l’item 1

Q.17. (p. 25). Notons d’abord que O est de longueur constante,
donc instantané, donc son arbre de décodage est bien défini. Son
arbre de décodage est égal à son arbre complet (voir Figure 2.1).

Q.18. (p. 25). Ce sont les codes D-aires de longueur constante
Lmax et dont le nombre de mots de code est DLmax , tel le code O.

Q.19. (p. 26). Si la suite de symboles X est reçue sans erreur il
n’y aura pas d’erreur de décodage. Par contre si certains symboles
de code reçus sont faux ou manquant, l ’algorithme pourrait être
conduit à descendre l’arbre en suivant des branches absentes. Par
exemple, avec le code B, si on reçoit X = 1111, l’algorithme re-
tourne une erreur.

Q.20. (p. 29). Elle dit que MD−L ≤ 1, c’est à dire M ≤ DL. Le
théorème de Kraft-McMillan est évident dans ce cas : un code de
longueur constante est à décodage unique donc doit satisfaire cette

130 sciences de l’information

inégalité, ce que l’on sait déjà puisque tous les mots de code sont
distincts et on peut former au maximum DL mots de longueur L ;
réciproquement, si M ≤ DL on peut trouver un code de longueur
constante égale à L, il suffit de considérer toutes les suites de L
éléments de X (il y en a DL ≥ M), et de n’en conserver que M.

Q.21. (p. 30).

1. vrai. Γ est à décodage unique (Théorème 2.1) donc satisfait l’in-
égalité de Kraft.

2. vrai d’après le théorème de Kraft-McMillan.
3. faux. Le code C vérifie l’inégalité de Kraft mais n’est pas instan-

tané.
4. faux : voir Exemple 2.5.
5. = 2. (La proposition 5. est équivalente à la proposition 2., donc

elle est vraie.)
6. = 4., faux
7. = 1., vrai
8. = 3., faux.

Q.22. (p. 31). Un code binaire de longueur constante L comporte
au plus 2L mots de code, comme le code doit comporter 4 mots
de code, il faut que L ≥ 2. Donc la longueur moyenne d’un code
constant est L ≥ 2 > 1.35, qui est la longueur de B′ et B′ est donc
plus efficace.

Q.23. (p. 35). Oui, en utilisant la méthode de la Section 2.7.

Q.24. (p. 35). En général non. Pour les exemples que nous avons
vu, ΓH est un code de Huffman et L(ΓH) = 1.30 qui est supérieur à
la borne inférieure 1.022.

Q.25. (p. 37). Soit S1 la source qui donne une lettre (sans préciser
majuscule ou minuscule), et S2 une deuxième source qui précise
si le caractère est minuscule ou majuscule. L’entropie du nouveau
robot-page est H(S1, S2) ≥ H(S1) d’après Eq.(4.1). Nous pouvons
même dire plus, car S2 est une source binaire donc H(S2|S1 = s1) ≤
1 bit pour tout s1 et donc aussi H(S2|S1) ≤ 1 bit. Or

H(S1, S2) = H(S1) + H(S2|S1) ≤ H(S1) + 1

donc finalement l’entropie du nouveau robot-page est supérieure à
celle de l’ancien, et la dépasse d’au maximum 1 bit.

Q.26. (p. 38).

H(L1|L2) = H(L)− H(L2) = 0.0055556 ≈ 0.05 bit

Q.27. (p. 39).

réponses aux questions en marge 131

1. Si H(S2|S1) = H(S2) alors S1 et S2 sont indépendantes.
2. H(S2|S1) = H(S1) : on ne peut rien conclure de particulier.

Q.28. (p. 39). Par récurrence.
(Etape d’Initialisation) La propriété est vraie pour n = 2 (pre-

mière égalité du Théorème 4.1).
(Etape de Récurrence) Supposons que la propriété soit vraie jus-

qu’à n et appliquons le Théorème 4.4 à la source ((S1, ..., Sn), Sn+1) :

H(S1, ..., Sn, Sn+1) = H(Sn+1|S1, ..., Sn) + H(S1, ..., Sn)

= H(Sn+1|S1, ..., Sn) + H(Sn|S1, S2, ..., Sn−1) + H(Sn−1|S1, S2, ..., Sn−2)

+... + H(S3|S1, S2) + H(S2|S1) + H(S1)

donc la formule est vraie aussi pour n + 1.

Q.29. (p. 39).

1. H(S1, S2) = H(S1) + H(S2|S1) VRAI
2. H(S1, S2) = H(S2) + H(S2|S1) FAUX en général
3. H(S1) ≥ H(S1, S2) FAUX en général
4. H(S1, S2) = H(S1) + H(S2) FAUX en général (vrai si S1 et S2

sont indépendantes)
5. H(S2|S1) ≥ 0 VRAI
6. H(S1, S2) ≥ H(S1) + H(S2) FAUX en général (mais vrai avec

égalité si S1 et S2 sont indépendantes)
7. H(S1|S2) ≤ H(S1) VRAI
8. H(S1, S2) = H(S1) + H(S1|S2) FAUX en général
9. H(S1) ≤ H(S1, S2) VRAI
10. H(S1|S2) ≤ H(S2) FAUX en général
11. H(S2) ≤ H(S1, S2) VRAI
12. H(S2|S1) ≤ H(S2) VRAI
13. H(S2) ≥ H(S1, S2) FAUX en général
14. H(S1, S2) ≤ H(S1) + H(S2) VRAI
15. H(S1, S2) = H(S2) + H(S1|S2) VRAI

Q.30. (p. 40). D’après le Théorème 4.6, H(S2) ≤ H(S1) et
H(S1) ≤ H(S2). Donc H(S1) = H(S2).

Q.31. (p. 41). Si on veut y parvenir, il faut maximiser l’informa-
tion reçue à chaque question, donc essayer d’obtenir une entropie
conditionnelle aussi proche que possible de 1bit, donc essayer de
poser des questions dont les réponses sont équiprobables.

Cela amène à la méthode de dichotomie : à chaque étape, Bernard
divise par 2 l’intervalle des réponses possibles. Une façon simple
de décrire cela est d’utiliser la représentation binaire du numéro
inconnu (c’est à dire de l’écrire en base 2). Tout nombre entier peut
s’écrire en base 2, c’est à dire en utilisant seulement les chiffres 0 et
1. Par exemple la représentation binaire du nombre décimal 23 est

132 sciences de l’information

10111 car

23 = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20

Le plus grand nombre entier qu’on peut écrire avec 14 chiffres
binaires est x = 11 1111 1111 1111, si on lui ajoute 1 on obtient
100 0000 0000 0000, donc

x = 214 − 1 = 16383

Donc on peut écrire tous les numéros de cadenas sur 14 chiffres
binaires.

Imaginons que Bernard demande pour chaque chiffre binaire du
cadenas s’il vaut 0. Cela fait 14 questions, et Bernard obtiendra le
numéro tant convoité à coup sûr. Donc la réponse est oui.

Q.32. (p. 41).

1. Si H(S1, S2) = H(S1) alors S2 est fonction de S1.
2. Si H(S2|S1) = 0 alors S2 est fonction de S1.

Q.33. (p. 45). Soit S = (S1, ...Sn, ...) une source stationnaire.
(1) H(Sn) est indépendant de n puisque la densité de probabilité

de Sn est indépendante de n. Donc l’entropie d’un symbole existe.
(2) Soit pour n ≥ 2 :

un
def
= H(Sn|S1, S2, ..., Sn−1) (14.6)

Par le Théorème 4.3 (“conditionner réduit l’entropie") :

un = H(Sn|S1, S2, ..., Sn−1) ≤ H(Sn|S2, ..., Sn−1)

D’autre part, puisque la source est stationnaire, la densité de pro-
babilité de (S2, ..., Sn) est la même que celle de (S1, ..., Sn−1). Il s’en
suit que

H(Sn|S2, ..., Sn−1) = H(Sn−1|S1, ..., Sn−2) = un−1

puisque ces quantités sont entièrement calculées à partir de la den-
sité de probabilité. Donc

un ≤ un−1

ce qui exprime que la suite un est décroissante au sens large. Or
un ≥ 0 puisque c’est une entropie conditionnelle. Un théorème
classique de l’analyse des nombres réels dit qu’une suite ≥ 0 dé-
croissante au sens large ne peut pas faire autrement que converger
vers une limite finie, donc l’entropie par symbole existe.

Les deux conditions de la Définition 5.2 sont satisfaites donc la
source étendue S est régulière.

Q.34. (p. 46). Que les sources marginales S1, S2, ... ne sont pas
indépendantes.

réponses aux questions en marge 133

Q.35. (p. 46). Posons u1 = H(S1) = H(S) et un = H(Sn|S1, ..., Sn−1).
Nous savons que S est régulière et que limn→∞ un = H∗(S). Nous
savons aussi (Question 33) que

H(S) = u1 ≥ u2 ≥ ... ≥ un... ≥ H∗(S)

Or H(S) = H∗(S) par hypothèse donc il y a égalité partout :

H(S) = u1 = u2 = ... = un... = H∗(S)

en particulier un = u1 c’est à dire H(Sn|S1, ..., Sn−1) = H(S1) =

H(Sn) ; par le Théorème 1.4, Sn et S1, ..., Sn−1 sont indépendantes,
et cela est vrai pour tout n. Cela exprime que toutes les sources
marginales sont indépendantes.

Q.36. (p. 46). Si l’entropie par symbole est nulle on ne peut rien
conclure de très précis, mais on peut dire qu’une très longue suite
de symboles a tendance à ne pas apporter beaucoup plus d’in-
formation qu’une suite moins longue ; on peut qualifier une telle
source de “bavarde", comme un locuteur qui a tendance à se répé-
ter.

Q.37. (p. 49). Pile ou Face. Le code de Huffman est le code 0/1,
nous utilisons 1 bit de code par symbole de source, donc la lon-
gueur est 60 bits, ce qui fait un bit de code par symbole de source.

Beau ou Mauvais. Ici c’est plus compliqué, il nous faut encoder
la suite de la Figure 5.1 en utilisant le code de la Table 5.3. Nous
obtenons une suite de 10 mots de code dont les longueurs sont
2, 5, 5, 2, 5, 2, 2, 2, 5, 5. La longueur totale est 35, ce qui fait 0.583 bit
de code par symbole de source.

Vert ou Bleu. Il faut 1 bit pour coder toute la suite de 60 sym-
boles, ce qui fait 0.0167 bit de code par symbole de source.

Q.38. (p. 51). Oui, car la suite des “B" et “N" dans la colonne du
milieu est alternée, il suffit donc de connaître le premier. On peut
même éviter totalement d’indiquer “B" ou “N en convenant par
exemple que la première plage est blanche (si le premier pixel est
noir, on considère alors que la longueur de la première plage est 0).
Cela permet de supprimer 1 bit de la suite des symboles à encoder,
et donc de réduire la longueur moyenne du code de Huffman.

Q.39. (p. 54). Essayons une recherche exhaustive, qui n’est pas
trop compliquée puisqu’il n’y a que 26 clés. Le texte clair est sans
doute “IBM" et la clé est K = 25.

k
0 H A L

25 I B M
24 J C N
23 K D O
22 L E P
21 M F Q
20 N G R
19 O H S
18 P I T
17 Q J U
16 R K V
15 S L W
14 T M X
13 U N Y
12 V O Z
11 W P A
10 X Q B
9 Y R C
8 Z S D
7 A T E
6 B U F
5 C V G
4 D W H
3 E X I
2 F Y J
1 G Z K

Q.40. (p. 57). La clé est choisie uniformément parmi les 2n clés
possibles, donc H(K) = log2(2

n) = n bits.
La densité de probabilité du texte chiffré est aussi uniforme. En

effet, d’après l’Eq.(6.1) et le Théorème 0.1, la densité de probabilité
de la clé est pC(C) = 1

2n . Donc H(C) = n bits aussi.

134 sciences de l’information

Le texte clair comporte au plus n bits, donc H(P) ≤ log2(2
n) =

n. Les deux inégalités des théorèmes sont bien vérifiées.

Q.41. (p. 59). 23 = 4× 5 + 3 donc q = 4 et r = 3.
−23 = −5× 5 + 2 donc q = −5 et r = 2. Attention, le reste dans

la division de −23 n’est pas −3, car, par définition de la division
euclidienne, un reste est toujours ≥ 0.

Q.42. (p. 59).
13 mod 10 = 3
(−13) mod 10 = 7
13 mod (−10) = 3
(−13) mod (−10) = 7

13 mod 0 n’est pas défini.

Q.43. (p. 59). On a

24163584354 = 10× 2416358435 + 4

donc le reste de 24163584354 dans la division par 10 est 4. D’une
manière générale, le reste d’un nombre entier positif dans la divi-
sion par 10 est son dernier chiffre.

Q.44. (p. 59). Nous faisons la preuve seulement pour b ≥ 2.
(Existence :) Pour un nombre réel quelconque x soit bxc la partie

entière par défaut, c’est à dire que bxc ∈ Z et x− 1 < bxc ≤ x. Soit
q = b a

b c et r = a− bq, de sorte que a = bq + r. Nous avons 0 ≤ r < b
donc, comme r et b sont entiers, 0 ≤ r ≤ b − 1. Donc il existe un
couple d’entiers (q, r) qui satisfait les conditions demandées.

(Unicité :) Supposons que a = bq + r avec q, r entiers satisfaisant
les conditions demandées. Nous avons alors q = a

b −
r
b donc a

b −
b−1

b ≤ q ≤ a
b donc a

b < q ≤ a
b . Comme q est entier, q = b a

b c, d’où
r = a− bb a

b c donc q et r sont uniquement définis.

Q.45. (p. 59). 27 et 255 sont divisibles par 3, 256 est divisible par
2 donc aucun de ces nombres n’est premier.

Q.46. (p. 60). 12 = 22 × 3, 100 = 22 × 52 et 256 = 28.

Q.47. (p. 60). Soit p1 le plus petit facteur premier. On peut écrire
a = p1b avec b = pα1−1

1 ...pαk
k . Comme p2 > p1 et b ≥ p2 il s’en suit

que b > p1. Donc
a > p2

1

donc p1 <
√

a.

Q.48. (p. 60). Pour le savoir, nous testons si les éléments de la
suite des nombres premiers divisent 257 ; il suffit même de s’arrê-
ter à

√
257 ≈ 16 car si a n’est pas premier son plus petit facteur

réponses aux questions en marge 135

premier est < 17 (Question 47). Nous testons donc 2, 3, 5, 7, 11, 13 :
aucun de ces nombres ne divise 257 donc c’est un nombre premier.

Q.49. (p. 61). Nous avons les décompositions 12 = 22 × 3 et
100 = 22 × 52 donc pgcd(12, 100) = 22 = 4.

Q.50. (p. 61). 12 = 22 × 3 et 20 = 22 × 5, le facteur premier 2 est
commun, donc ils ne sont pas premiers entre eux.

12 = 22 × 3 et 35 = 5 × 7 donc 12 et 35 n’ont aucun facteur
premier en commun, donc sont premiers entre eux.

257 est un nombre premier et 234 < 257 donc 234 et 257 sont
premiers entre eux.

Q.51. (p. 61).

1. C’est une conséquence de l’item 2 (il suffit d’appeler a le plus
petit des deux nombres premiers et p l’autre).

2. La décomposition en facteurs premiers de a ne peut pas compor-
ter p car sinon on aurait a ≥ p, et la décomposition en facteurs
premiers de p est p ; donc les deux décompositions n’ont aucun
facteur commun. Donc (Théorème 50) a et p sont premiers entre
eux.

3. Soit a = pα1
1 ...pαk

k et b = qβ1
1 ...qβ`

` les décompositions en facteurs
premiers. Comme a et b sont premiers entre eux, pi 6= qj pour
tous i et j. Comme a divise c, la décomposition en facteurs pre-
miers de c comporte pi avec un exposant ≥ αi, pour tout i, et
aussi qj avec un exposant ≥ β j. Donc

c = pα′1
1 ...p

α′k
k qβ′1

1 ...q
β′`
` rγ1

1 ...rγm
m

avec α′i ≥ αi et β′j ≥ β j, et où les rm sont les autres facteurs
premiers de c, s’il y en a. Donc

c = ab
[

p(α
′
1−α1)

1 ...p
(α′k−αk)

k q(β′1−β1)
1 ...q

(β′`−β`)

` rγ1
1 ...rγm

m

]
et c est divisible par ab.

Q.52. (p. 61). 257 est un nombre premier donc tous les nombres
de 1 à 256 sont premiers avec 257. Il y en a 256.

Q.53. (p. 61). Oui :
(⇒) Supposons a divisible par 12, donc a

12 est entier, donc aussi
a
3 = 4 a

12 donc a divisible par 3, de même par 4. (⇐) Supposons
que a est divisible par 3 et par 4. Par l’item 3 du Théorème 7.6, a est
divisible par 12 car 3 et 4 sont premiers entre eux.

Q.54. (p. 61). Non, par exemple 6 est divisible par 2 et 6 mais pas
par 12. On ne peut pas appliquer le Théorème 7.6 car 2 et 6 ne sont
pas premiers entre eux.

136 sciences de l’information

Q.55. (p. 61). Elles sont toutes vraies sauf −23 ≡ 3 (mod 5).

Q.56. (p. 62).

1. FAUX ; par exemple 4 ≡ 0 (mod 2) mais 4 ne divise pas 2.
2. VRAI ; (⇒) : si a ≡ 0 (mod m) ⇔ m alors a = mq où q est le

quotient dans la division par m donc a
m = q et donc m divise a.

(⇐) : supposons que m divise a ; donc a = mx pour un certain
x ∈ Z. Donc a = mx + 0 et donc par le Théorème 7.1, le reste est
r = 0, donc a ≡ 0 (mod m).

3. FAUX : par exemple 4 ≡ 0 (mod 2) mais 4 et 2 ne sont pas
premiers entre eux (leur PGCD est 2).

Q.57. (p. 62).

1. Oui.
2. Non (la transitivité n’est pas vraie : 0R21 et 1R22 mais on n’a

pas 0R22).

Q.58. (p. 63). Division par 10 : on a

100 ≡ 1 (mod 10)
10 ≡ 0 (mod 10)
10k ≡ 0 (mod 10), k ≥ 1

donc

a = dk × 10k + dk−1 × 10k−1 + ... + d1 × 101 + d0 × 100

≡ dk × 0 + dk−1 × 0 + ... + d1 × 0 + d0 × 1 (mod 10)
≡ d0 (mod 10)

donc tout nombre entier est congru modulo 10 à son dernier chiffre
décimal.

Division par 3 : on a

10 ≡ 1 (mod 3)

comme pour m = 9 donc tout nombre entier est congru modulo 3 à
la somme de ses chiffres décimaux.

Division par 4 : on a

100 ≡ 1 (mod 4)
101 ≡ 1 (mod 4)
102 ≡ 0 (mod 4)
10k ≡ 0 (mod 4), k ≥ 2

donc

a = dk × 10k + dk−1 × 10k−1 + ... + d1 × 101 + d0 × 100

≡ dk × 0 + dk−1 × 0 + ... + d2 × 0 + d1 × 10 + d0 × 1 (mod 10)
≡ d1 × 10 + d0 × 1 (mod 10)

réponses aux questions en marge 137

donc tout nombre entier est congru modulo 4 au nombre constitué
par ses deux derniers chiffres décimaux.

Les restes de a sont :
– division par 10 : a ≡ 0 (mod 10) donc le reste est 0 ; (a est

divisible par 10)
– division par 3 : a ≡ (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)× 3 ≡

135 ≡ 9 ≡ 0 donc le reste est 0 (a est divisible par 3) ;
– division par 4 : a ≡ 10 ≡ 2 donc le reste est 2 ;

Q.59. (p. 65). Toutes les erreurs simples sauf l’erreur qui consiste
à remplacer un chiffre 0 par 9 ou vice versa sont détectées.

Les erreurs de permutation ne sont pas détectées.

Q.60. (p. 67). Les classes sont c0 = {0, 1, ..., 9}, c1 = {10, 11, ..., 99},
c2 = {100, 101, ..., 999}..., ck =

{
10k, ..., 10k+1 − 1

}
...

Q.61. (p. 68). Il suffit de consulter les tables d’addition et de
multiplication dans Z/3Z puis Z/4Z. Pour m = 3 :

1. [x]23 = [1]3 a deux solutions : x = [1]3 et x = [2]3.
2. [2]3[x]3 = [0]3 a une solution x = [0]3.
3. [x]3 + [x]3 = [0]3 est la même équation que en 2.

Pour m = 4 :

1. [x]23 = [1]4 a deux solutions : x = [1]4 et x = [3]4.
2. [2]4[x]4 = [0]4 a deux solution x = [0]4 et x = [2]4..
3. [x]4 + [x]4 = [0]4 est la même équation que en 2.

Q.62. (p. 69).

1. ([−5]7)
2 + [−4]7 [−3]7 = ([2]7)

2 + [12]7 = [4]27 + [5]7 = [9]7 = [2]7
2. 2 ([3]4 + [5]4)− 5 ([3]4)

2 = 2[8]4 − 5[9]4 = 2[0]4 − 5[1]4 = [−5]4 =

[3]4
3. ([298242]9)

1000 = ([0]9)
1000 = [0]9 car 298242 ≡ 0 (mod 9) (voir

Exemple 7.1).

Q.63. (p. 69). Une erreur. Dans notre contexte, elle n’a pas de
sens, car la somme (comme le produit) est définie uniquement pour
des classes de congruence modulo le même m. Nous ne pouvons
donc pas additionner [3]4 et[4]3.

Q.64. (p. 69). Il suffit de regarder les tables de multiplication
(Table 8.1). Il n’y a pas de diviseur de zéro dans Z/3Z car il n’y
a pas de 0 dans la table de multiplication sauf dans les lignes ou
colonnes de 0.

Par contre, il y a des diviseurs de 0 dans Z/4Z : [2]4 est un
diviseur de zéro.

138 sciences de l’information

Q.65. (p. 70). Il n’y a guère d’autre moyen que la force brute,
c’est à dire un recherche exhaustive (nous laissons tomber les cro-
chets, les calculs sont dans Z/13Z :) :

20 = 1

21 = 2

22 = 4

23 = 8

24 = 3

Donc x = 4 est une solution.

Q.66. (p. 70). [0]ma′ = [0]m pour tout m ≥ 2 donc il est impos-
sible de trouver a′ tel que [0]ma′ = [1]m.

C’est vrai, car [1]m[1]m = [1]m pour tout m ≥ 2.

Q.67. (p. 72). Appliquer le Théorème 8.5 et remarquer que la
relation “être premiers entre eux" est symétrique.

Q.68. (p. 73).
– VRAI : [a]m est inversible donc si [a]m[b]m = [0]m, en multi-

pliant par l’inverse de [a]m on obtient [b]m = 0 donc [a]m ne
peut pas être un diviseur de 0.

– VRAI : c’est la contraposition de 1.

Q.69. (p. 73). Utilisons le même raisonnement que dans l’Exemple 8.2.
Soit x le numéro original, x′ le numéro erroné, et k la position où il
y a une erreur. Alors

x− x′ = (ck − c′k)10k

Si x′ était un numéro valable, nous aurions [x]97 − [x′]97 = [0]97

donc ([10]97)
k ([ck]97 − [c′k]97

)
= [0]97 or [10]97 est inversible donc

[ck]97 = [c′k]97 donc ck = c′k ce qui est exclus.

Q.70. (p. 73). 257 est un nombre premier (voir Q.48) donc ϕ(257) =
256 ; il y a 256 éléments inversibles dans Z/257Z (tous les éléments
sauf [0]257).

Q.71. (p. 74). Oui et l’inverse est [21]122.

Q.72. (p. 74). La forme réduite de [143]122 est [143]122 = [21]122

donc [143]122 est inversible et ([143]122)
−1 = ([21]122)

−1 = [93]122.

Q.73. (p. 74). Si x est solution, en multipliant par l’inverse de
[93]122 il vient :

x = [21]122 · [40]122 = [21 · 40]122 = [108]122

Réciproquement, les mêmes calculs montrent que [108]122 est
solution.

réponses aux questions en marge 139

Donc il y a une solution et une seule : x = [108]122.

Q.74. (p. 76). Dans le premier cas 0, dans le deuxième 1.

Q.75. (p. 76). Chaque élément est son propre symétrique.

Q.76. (p. 76). Dans (Z/5Z × Z/7Z,+) : 35 éléments ; dans
(Z/5Z∗ ×Z/7Z∗, ·) : ϕ(5)ϕ(7) = 4 ∗ 6 = 24.

Q.77. (p. 78). f est l’application réciproque de ψ de l’Exemple 9.5
donc f est un isomorphisme donc f (a · b) = f (a) + f (b).

Q.78. (p. 78). (Z/4Z,+) et (Z/5Z∗, ·) sont isomorphes.
(Z/5Z,+) a 5 éléments et tous les autres 4, donc (Z/5Z,+)

n’est isomorphe à aucun des autres.
(Z/8Z∗, ·) et (Z/2Z2,+) sont isomorphes

Q.79. (p. 80). Dans (Z/mZ,+) c’est le plus petit entier k ≥ 1 tel
que [k]m = [0]m, la période est donc k = m.

Dans (Z/mZ∗, ·) c’est le plus petit entier k ≥ 1 tel que [1]km =

[1]m, la période est donc k = 1.

Q.80. (p. 81). Les nombres de 1 à 9 premiers avec 10 sont 1, 3, 7 et
9 donc ϕ(10) = 4. Nous pouvons appliquer le théorème d’Euler car
7 est premier avec 10. Calculons ([7]10)

4 :

([7]10)
2 = [49]10 = [9]10

([7]10)
4 = ([9]10)

2 = [81]10 = [1]10

Q.81. (p. 82). Le nombre p = 7 est premier donc nous pouvons
appliquer le thèorème de Fermat. Calculons ([10]7)

7 (nous laissons
tomber les crochets ; ainsi 10 = 3 signifie [10]7 = [3]7) :

10 = 3
32 = 2
34 = 22 = 4
33 = 32 · 3 = 2 · 3 = 6
107 = 37 = 4 · 6 = 24 = 3 = 10

donc nous avons bien ([10]7)
7 = [10]7.

Q.82. (p. 85). Non. Il suffit de trouver un contre-exemple. Soit
f : N→ N, x 7→ 2x. L’application f est injective mais pas surjective
(seuls les entiers pairs ont un antécédent).

La réciproque est aussi fausse. Considérons par exemple g : N→
N, x 7→ bx/2c. L’application g est surjective, mais pas injective.

Q.83. (p. 85). ϕ(35) = ϕ(5)ϕ(7) = 4 · 6 = 24.

140 sciences de l’information

Q.84. (p. 88). Ce sont bien trois nombres premiers ; 17 n’est pas
sûr car 17 = 2× 8 + 1 et 8 n’est pas premier. Par contre 83 et 107
sont sûrs car p = 41× 2 + 1, q = 2× 53 + 1 et 41 et 53 sont des
nombres premiers.

Q.85. (p. 88). Soient p = 1 + 2p′, q = 1 + 2q′ avec p′, q′ premiers ;
donc ppcm(p− 1, q− 1) = 2p′q′. Les facteurs premiers de e ne sont
pas 2 (car e est impair) ni p′ (car p′ > e) ni q′ (car q′ > e) ; e et 2p′q′

n’ont aucun facteur premier en commun et sont donc premiers
entre eux.

Q.86. (p. 92). C’est un code en bloc si nous considérons k comme
fixé. Les mots de code sont constitués de k chiffres arbitraires et
de 2 chiffres de contrôle, donc n = k + 2. Il y a 10k mots de code
possibles. Le rendement est donc

r =
1

k + 2
log10(10k) =

k
k + 2

Q.87. (p. 93). Le code peut détecter toutes les erreurs simples
(Question 69), donc deux mots de code distincts ne peuvent pas
différer d’un seul bit et la distance minimale est ≥ 2.

Par ailleurs, il existe des mots de code dont la distance de Ham-
ming est 2. Il suffit de prendre pour x un mot de code commençant
par 00 et pour y le mot obtenu en remplaçant les deux premiers
chiffres 00 par 97. Alors [x]97 = [y]97, donc puisque x est un mot de
code, y l’est aussi.

Donc la distance minimale de ce code est 2.

Q.88. (p. 95). Par définition du canal à effacement, tous les effa-
cements sont détectables, quel que soit leur poids.

Q.89. (p. 95). La distance minimale est 2 donc on peut corriger
tous les effacements simples.

Les effacements doubles ne peuvent pas tous être corrigés, par
exemple si l’effacement a agi sur deux positions contiguës et si les
chiffres originaux étaient 00, on ne peut pas savoir si les chiffres
originaux étaient 00 ou 97.

Q.90. (p. 96). La distance minimale est 2 donc on peut détecter
toutes les erreurs simples.

Par contre, on ne peut pas être assuré de pouvoir corriger les
erreurs, même simples.

Cependant, nous avons vu que l’on peut détecter certaines er-
reurs doubles, par exemple celles qui consistent à intervertir deux
chiffre contigus.

Q.91. (p. 98). Toutes les erreurs simples, c’est à dire de poids 1.

réponses aux questions en marge 141

Q.92. (p. 99). n− rn = 2 donc la borne donne dmin(C) ≤ 3 ; nous
savons que dmin(C) = 2, donc la borne n’est pas atteinte.

Q.93. (p. 101). Oui, en particulier tout nombre rationnel sauf 0 a
un inverse qui est aussi un nombre rationnel.

Q.94. (p. 102). Non, nous avons vu par exemple que (Z/4Z,+)

et (Z/2Z2,+) ont tous deux 4 éléments et ne sont pas isomorphes.

Q.95. (p. 102). Non, bien qu’ils aient le même nombre d’élé-
ments, car Z/4Z n’est pas un corps. En effet [2]4 n’est pas inver-
sible alors qu’il est non nul.

Q.96. (p. 102). Non, car 15 n’est pas une puissance d’un nombre
premier (il a deux facteurs premiers, 3 et 5).

Q.97. (p. 103). Soit une colonne de la table du groupe, correspon-
dant à l’élément a. L’application G → G, x 7→ a ? x est une bijection
car l’équation en x : a ? x = y possède toujours une solution unique
x = y ? x′ où x′ est le symétrique de x. Les éléments de la colonne
de a sont les images de cette application, donc chaque élément de G
s’y trouve une fois et une seule. Idem pour les lignes.

Q.98. (p. 105). Une combinaison linéaire se réduit ici à λ~a = ~0.
Si~a 6= ~0 alors il faut que λ = 0 ; donc si~a 6= ~0 la suite formée d’un
seul vecteur~a est linéairement indépendante.

Par contre si~a = ~0, la combinaison linéaire 1~a est nulle alors que
le coefficient est non nul, donc la suite formée du seul vecteur~0 est
linéairement dépendante.

Q.99. (p. 106). C’est un espace vectoriel de dimension 1 sur un
corps de cardinal 7, donc le cardinal de S est 71 = 7.

Q.100. (p. 107). Notons que Z/7Z = F7 et que cette équation
est l’équation (12.1) qui définit S ′. Donc le nombre de solutions est
le nombre d’éléments de S ′. Comme c’est un espace vectoriel de
dimension 2, son cardinal est 72 = 49. Il y a 49 solutions.

Q.101. (p. 109). C comporte 8 éléments donc (Théorème 12.2) sa
dimension est 3. Ou bien : les vecteurs ((~v1,~v2,~v3) sont linéairement
indépendants donc ils constituent une base de C, donc dim(C) = 3.

Q.102. (p. 109). L’alphabet est l’ensemble des 10 chiffres déci-
maux, qui ne peut pas être un corps car il n’existe pas de corps à 10
éléments.

Q.103. (p. 110). dmin(C) ≤ 2 donc la borne de Singleton est
atteinte.

142 sciences de l’information

Q.104. (p. 111). dmin(C) ≤ n donc la borne de Singleton est
atteinte.

Q.105. (p. 111). C est de dimension 3 puisqu’il possède une base
de 3 vecteurs, (~v1,~v2,~v3). Notons que ~e1,~e2 et ~e3 sont dans C car ils
sont combinaisons linéaires d’éléments de C.

Comme (~e1,~e2,~e3) est aussi constituée de 3 vecteurs, il suffit de
montrer, au choix, soit que ces vecteurs sont linéairement indépen-
dants, soit qu’ils engendrent C. Montrons qu’ils engendrent C.

Comme C est engendré par (~v1,~v2,~v3), il suffit de montrer que
~vi, pour i = 1, 2, 3, est combinaison linéaire de ~e1,~e2 et ~e3. Or, par un
peu de calcul nous obtenons facilement :

~v1 = ~e3

~v2 = ~e2 +~e3

~v3 = ~e1 +~v2 = ~e1 +~e2 +~e3

Q.106. (p. 112). Le mot 000 est toujours encodé par 0000000.

Q.107. (p. 115). Non, car s’il n’y a pas d’erreur le syndrome est
nul.

Q.108. (p. 121). Il faut vérifier que les lignes de H sont orthogo-
nales aux lignes de G.

Q.109. (p. 121). Par exemple : un code de Reed-Solomon sur F7

de longueur n = 7 et de dimension k = 3.

Q.110. (p. 122). Oui, g = 3 est aussi un générateur car ses puis-
sances sont {3, 4, 2, 1}.

Q.111. (p. 122). Vérifions tout d’abord que la définition a un
sens, c’est à dire que gk ne dépend que de [k]4. Cela vient du fait
que g est de période 4, donc si [k′]4 = [k]4 alors k = k′ + 4λ avec
λ ∈ Z donc

gk = gk′+4λ =
[
g4]λ gk′ = 1 · gk′ = gk′

Ensuite, cette application est surjective car les puissances de g
donnent tous les éléments non nuls de F5, donc elle est bijective.

Enfin, gk+k′ = gkgk′ donc c’est un isormorphisme.

Q.112. (p. 125). Supposons que f (X) = X2 + X + 1 ne soit
pas irréductible. Alors on peut le factoriser en deux polynômes
de degré ≥ 1 ; comme la somme des degrés des facteurs vaut 2
(le degré de f (X)), ces deux facteurs sont de degré 1, donc sont
soit X soit 1 + X ; dans tous les cas, f (X) aurait une racine. Or

réponses aux questions en marge 143

f (0) = f (1) = 1 donc f n’a pas de racine : contradiction. Donc f (X)

est irréductible.

Index

N, 62

Fpm , 102

Z/mZ, 68

Z/mZ∗, 76

équations paramétriques, 107

équation linéaire, 106

équiprobables, 8

équivalentes, 24

étrangers, 61

événements, 9

à décodage unique, 22

“plaintext”, 53

alphabet, 8

alphabet du code, 20

anneau commutatif, 68

antécédent, 21

application, 8

arbre de décodage, 25

arithmétique, 59

arithmétique modulaire, 67

asymétrique, 53

authentification, 53

Bézout, 71

base, 105

base canonique, 112

bijection, 21

bijective, 21

binaire, 20, 102

binaires, 8

bit, 15

bloc, 42

César, 54

Canal à Effacements, 94

Canal à Erreurs, 94

caractéristique, 101

cardinal, 8

checksum IP, 65

chiffres de contrôle modulo 97, 63

ciphertext, 53

clé, 53

classe d’équivalence, 67

classe de congruence, 67

codage par longueur de plage, 50

code, 91

code correcteur ou détecteur, 91

code de source, 20

Code en Bloc, 92

code linéaire, 109

code optimal, 34

codebook, 20

codes de Huffman, 34

coefficients, 106

combinaison linéaire, 104

complément à 1, 65

concave, 16

Concavité de log, 16

confidentialité, 53

confidentialité parfaite, 56

congru à, 61

congruence, 61

contrôle de parité, 115

contraposée, 24

convexe, 16

coordonnées, 105

corps commutatif, 100

couple, 8

critère des deux gendarmes, 48

cryptanalyse, 53

cryptogramme, 53

cryptographie, 53

débit, 92

décodage, 21

déduit de manière déterministe, 39

déterministe, 40

densité conditionnelle, 11

densité de probabilité, 8

dichotomie, 131

dictionnaire, 20

dimension, 105

distance de Hamming, 92

Distance minimale, 93

divise, 59

diviseur, 59

diviseurs de zéro, 69

division longue, 122

division selon les puissances décrois-

santes, 122

droite vectorielle, 106

encodage, 20

engendré, 105

entropie, 15

entropie conditionnelle, 36

entropie d’un symbole, 44

entropie par symbole, 44

espace métrique, 92

espace vectoriel, 104

Euclide, 70, 74

facteurs premiers, 60

field, 100

fonction, 8

fonction de, 39

forme réduite, 68

forme systématique, 113

générateur, 122

Galois, 100

groupe abélien, 75

groupe commutatif, 75

groupe non commutatif, 75

groupe produit, 76

Hamming, 92

IBAN, 64

il existe, 10

image, 8

implication réciproque, 24

inégalité de Kraft, 26

indépendants, 9

Indicatrice d’Euler, 73

information, 15

injection, 22

injective, 22

instantané, 23

intégrité, 53

inverse, 70, 75

inversible, 70

irréductible, 123

isomorphes, 77

index 145

isomorphisme, 77

Jensen, 16

Kerckhoffs, 53

l’arbre complet du code, 21

Lagrange, 80, 119

linéairement indépendants, 105

logarithme discret, 70

longueur, 21

longueur constante, 21

longueur moyenne, 31

longueur variable, 21

masque à usage unique, 56

matrice de contrôle, 114

matrice extraite, 107

matrice génératrice, 111

messages non cachés, 87

mod, 59

MOD 97-10, 63

module, 61

modulo, 61

mot de code, 20

multiple, 59

multiplication scalaire, 104

one time pad, 56

one to one, 22

onto, 22

opération binaire, 75

opération externe, 103

opération produit, 76

opposé, 75

ou exclusif, 56

période, 79

paire, 93

partition, 67

PGCD, 60

pigeon holes, 84, 98

plus grand commun diviseur, 60

poids d’un effacement, 94

poids d’une erreur, 94

poids de Hamming, 109

polynôme, 117

préfixe, 24

premier, 59

premier avec, 61

premiers entre eux, 61

principe des boîtiers, 84, 98

principe des tiroirs, 84, 98

probabilité, 9

probabilité conditionnelle, 9

produit cartésien, 8, 76

quel que soit, 10

quotient, 59

régulière, 44

récurrence, 43

récursif, 71

réflexive, 62

règle d’enchaînement, 39

raisonnement par l’absurde, 27

rang, 106

rang maximal, 107

rate, 92

redondance, 91

relation, 62

relation d’équivalence, 62

rendement, 92

représentant, 67

reste, 59

sûr, 88

sans préfixe, 24

scalaires, 104

sens unique, 60

shannon, 15

Shannon-Fano, 33

si et seulement si, 24

Singleton, 98

somme en complément à 1 sur 16

bits, 66

source, 8

source binaire, 15

source composée, 10

Source Etendue, 42

sources indépendantes, 11

sources marginales, 10

sous-espace vectoriel, 104

ssi, 24

stationnaire, 44

substitution monoalphabétique, 54

substitution polyalphabétique, 55

surjection, 22

surjective, 22

symétrique, 53, 62, 75

symboles, 8

symboles de code, 20

syndrome, 115

texte chiffré, 53

texte clair, 53

Théorème de Cesàro, 47

Traitement de l’Information, 40

transitive, 62

transposée, 114

uniforme, 8

variable aléatoire, 8

vecteur de coefficients, 106

vecteurs, 104

Vernam, 56

Vigenère, 55

	I Codage de Source
	Préliminaires de Probabilités
	Source et Probabilité
	Probabilité d'un Evénement, Indépendance, Probabilités Conditionnelles
	Sources Composées, Source Indépendantes

	Information et Entropie
	Comment Mesurer l'Information
	Entropie d'une Source
	Propriétés de l'Entropie
	Entropie d'une Source Composée

	Codage de Source
	Définition d'un Code de Source
	Représentation d'un Code par son Arbre Complet
	Décodage Unique
	Code Instantané, Code Sans Préfixe
	Arbre de Décodage d'un Code Instantané
	Théorème de Kraft-McMillan
	Construire un Code Instantané dont les Longueurs de Mots sont Données.

	Efficacité d'un Code de Source
	Première Inégalité de l'Entropie
	Code de Shannon-Fano et Deuxième Inégalité de l'Entropie
	Code Optimal ou Code de Huffman

	Entropie Conditionnelle
	Entropie Conditionnelle
	Propriétés de l'Entropie Conditionnelle
	 Traitement de l'Information

	Théorème du Codage de Source
	Sources Etendues
	Entropie par Symbole d'une Source Etendue Régulière
	Théorème du Codage de Source
	Compression et codage de source en pratique

	II Cryptographie
	La Cryptographie
	Eléments d'un Système Cryptographique
	 Confidentialité Parfaite

	Arithmétique
	Les Entiers
	Congruences

	Arithmétique Modulaire
	Les Ensembles Z/mZ
	Opérations dans Z/mZ
	Eléments Inversibles de Z/mZ
	Calcul de l'Inverse

	Eléments d'Algèbre Abstraite
	Groupes Commutatifs
	Isomorphisme
	Période d'un Elément

	Cryptographie Asymétrique
	Le Théorème des Restes Chinois
	Cryptographie à Clé Publique
	L'Algorithme de Rivest-Shamir-Adleman (RSA)
	Choix des Paramètres du Cryptosystème RSA: Nombres Premiers Sûrs

	III Codes Correcteurs
	Les Codes Correcteurs ou Détecteurs
	Codes Correcteurs ou Détecteurs
	Distance de Hamming
	Modèles de canal
	Les Théorèmes de la Distance Minimale

	Corps Finis et Espaces Vectoriels
	Corps Finis
	Espaces Vectoriels
	Propriétés de la Dimension
	Equations Linéaire et Rang d'une Matrice

	Codes Linéaires
	Code Linéaire
	Matrice Génératrice d'un Code Linéaire
	Matrice de Contrôle et Syndrome

	Codes de Reed-Solomon
	Définition
	Propriétés
	 Le Corps F256
	Codes Correcteurs et Détecteurs en Pratique

	Bibliographie
	Réponses aux Questions en Marge
	Index

