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LAST WEEK

(/m7],) : commutative group
with f(m) elements.

· order (a) must divide $(m)
f(m)

=> A = C

&(n)+1
=> a - a

f(m) - 1
=> inverse of a is a



SPECIAL GROUP :

G = 39 , 929..., g43
CALLED CYCLIC GROUP.



SNEAK PEAK OF RSA

Alice Bob

plain text (m , d)
t

PUBLIC

Bob : (m ,e)

all operations are in

(x/mTL , ·)



SNEAK PEAK OF RSA
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Plaintext
#-]
m (md)
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all operations are in
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The]d] = Item It
can we

maketha



Let us select m = p ,
a prime.

Consider /p**,
p() = p

- =
.cardinality

We have seen that

It ef(p)) = [1]P P

holds for + +</pi*
Hence

It (a(p)
+1) = [ +>pP



Let us select m = p ,
a prime.

Moreover
, for te[O) ,

we also have

It
ex(p) +=)p = [t]p= no star !

Here
, forI to X/pk :

[ + (d(p(
+z) = [ +)p↑



Let us select m = p ,
a prime.

We want

[ +
e

]p = [t)p
Hence

,
select e

,

d such that

ed = 1f(p) + 1

# ab - n,v : an+ bu =gad(a,b)



Let us select m = p ,
a prime.

We want

[ +
e
j = [t)pP

Hence
,
select e

,

d such that

ed = 1f(p) + 1

By Bezont
, if e and (p)

are coprime , then
d and

b exist to satisfy this !



But : Is this a good cryptosystem?

Bob publishes (p , e)
↓
f(p) =p-1



But : Is this a good cryptosystem?

At the cost of
Extended Enclid,

anyone can findd
-> not secure at all !



[f
(d(mi+ ]n = [ +im

-> Dream :

Even if I tell you
mi

you can't find
↓ (m).



k(n)

CLIFFORD

COCKS

1973

-> RSA, 1978



PROPOSAL :

m = pq , p , 9 two primes.

4) (m) = (p - 1)(q - 1)
CANNOT FIND f(m)
UNLESS You know par q !
> PRIME FACTORIZATION

IS HARD.



So : WE NEED TO UNDERSTAND

-no star !

(7/m>, ·)
WHEN m = pq .



p = 3. 9 = 5 => pq = 15

O I 23 4

O or 612 310 9

110 17 13 4

251127814

[0+(2, 3) [07= 2 [8],



OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

One-Time Pad, Perfect Secrecy, Public-Key (Diffie-Hellman)

Rudiments of Number Theory

Modular Arithmetic

Commutative Groups

Public-Key Cryptography

Summary of Chapter 2

CHANNEL CODING
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THE CHINESE REMAINDERS THEOREM

↭ Consider filling a table, going down diagonals, following the "torus rule"

↭ i.e., you start on the main diagonal . . .

↭ and when you drop off from an edge, you re-enter from the opposite
edge.
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EXAMPLE (FILLED TABLE)

Consider filling the table with the integers 0, 1, 2, . . . , 23, . . .

0,12 4,16 8,20
9,21 1,13 5,17
6,18 10,22 2,14
3,15 7,19 11,23
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EXAMPLE (UNFILLED TABLE)

Consider filling the table with the integers 0, 1, 2, . . . , 7, . . .

0,4 2,6
1,5 3,7

In this case, the table will never be filled.

Question: under which conditions will the table eventually fill?
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Mathematical formulation:

↭ we have m1m2 numbers to be placed in m1 → m2 drawers
(m1 rows and m2 columns, matrix convention);

↭ we can see the numbers as elements of Z/m1m2Z;

↭ and we can index the drawers with the elements of Z/m1Z → Z/m2Z.

The placing
[k ]m1m2 ↑↓

(
[k ]m1 , [k ]m2

)

can be seen as the action of a map

ω : Z/m1m2Z ↓ Z/m1Z → Z/m2Z.

Is this map onto? (In which case it is a bijection).
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EXAMPLE (m1 = 3, m2 = 4)

[0]4 [1]4 [2]4 [3]4
[0]3 [0]12 [9]12 [6]12 [3]12

[1]3 [4]12 [1]12 [10]12 [7]12

[2]3 [8]12 [5]12 [2]12 [11]12

map ω

[0]12 ↑↓ ([0]3, [0]4)

[1]12 ↑↓ ([1]3, [1]4)

[2]12 ↑↓ ([2]3, [2]4)

[3]12 ↑↓ ([3]3, [3]4) = ([0]3, [3]4)
...

[7]12 ↑↓ ([7]3, [7]4) = ([1]3, [3]4)

[8]12 ↑↓ ([8]3, [8]4) = ([2]3, [0]4)
...
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THEOREM (CHINESE REMAINDERS)

If m1 and m2 are relatively prime, the map ω defined by

ω : Z/m1m2Z ↓ Z/m1Z → Z/m2Z

[k ]m1m2 ↑↓ ([k ]m1 , [k ]m2)

is

1. bijective

2. an isomorphism with respect to "+" and with respect to "·".

If m1 and m2 are not relatively prime, ω is neither onto nor one-to-one.
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EXAMPLE (BIJECTIVE YES/NO)

gcd(m1,m2) = gcd(4, 3) = 1
↔ bijective ω

gcd(m1,m2) = gcd(2, 4) ↗= 1
↔ ω is neither surjective nor injective

0 1 2
0 0 4 8
1 9 1 5
2 6 10 2
3 3 7 11

0 1 2 3
0 0,4 2,6
1 1,5 3,7
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EXAMPLE (BIJECTION → ISOMORPHISM)

0 1 2 3 4 5 6 7 8 9 10 11

Z/12Z
0 1 2

0 0 4 8
1 9 1 5
2 6 10 2
3 3 7 11

Z/4Z → Z/3Z

isomorphism w.r.t. "+":

[8]12 + [10]12 = [6]12

([0]4, [2]3) + ([2]4, [1]3) = ([2]4, [0]3)

isomorphism w.r.t. "·":

[8]12 · [2]12 = [4]12

([0]4, [2]3) · ([2]4, [2]3) = ([0]4, [1]3)
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Proof that: m1 and m2 coprime ↔ ω is bijective.

First we prove that ω is one-to-one:

↭ suppose [k ]m1 = [k →]m1 and [k ]m2 = [k →]m2 ;

↭ ↘ m1 and m2 divide (k ≃ k →);

↭ because m1 and m2 have no common factors, m1m2 divides (k ≃ k →);

↭ hence [k ]m1m2 = [k →]m1m2 ;

↭ the map is one-to-one.

The function is bijective because it is one-to-one and the co-domain has the
same cardinality as the domain.
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PROOF OF ISOMORPHISM W. R . T.

Claim : For all b
,
k' /m ,

mu :

4(k + k) = y(k) + y(f)
Y
in7/m ,

mu
↑
in 7/m, x 7/m2]

Proof :
p/t+ +) =([k+k In, [R+ R1]mz]

= ([R]n
,
+ER-, [h)u rERne)

+(2)
= ([kIm

,,
[k]un]

↑(t) = /Ek Im
,
[k'Tmr]



Proof that: m1 and m2 coprime → Isomorphism w.r.t. "+"

By the definition of ω and the modulo arithmetic,

[k + l]m1m2 ↑↓ ([k + l]m1 , [k + l]m2)

([k ]m1 + [l]m1 , [k ]m2 + [l]m2)

([k ]m1 , [k ]m2) + ([l]m1 , [l]m2)
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Proof that: m1 and m2 coprime → Isomorphism w.r.t. "·"

By the definition of ω and the modulo arithmetic,

[k · l]m1m2 ↑↓ ([k · l]m1 , [k · l]m2)

([k ]m1 · [l]m1 , [k ]m2 · [l]m2)

([k ]m1 , [k ]m2) · ([l]m1 , [l]m2).
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Proof that: gcd(m1,m2) ↔= 1 → neither One-To-One nor Onto

We show that if m1 = aq and m2 = bq, the map is not one-to-one.

↭ Consider k = abq

↭ Properties of k : 0 < k < m1m2 = abq2; k = m1b; k = m2a

↭ Hence ω maps [k ]m1m2 ↑↓ ([0]m1 , [0]m2)

↭ But it maps also [0]m1m2 ↑↓ ([0]m1 , [0]m2)

↭ ω is not one-to-one

Since the co-domain has the same cardinality as the domain, the map is not
onto either.
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EXAMPLE

Find all solutions of x3 = [7]12, x ↗ Z/12Z.

516 / 798

12 = 3 . 4

I
(x, x 2)" = (3

,
1)X ,67/47

II X 74/3
(xi

,
xz)xi = 3

X = 1



SOLUTION

Since 12 = 3 ↘ 4 and gcd(3, 4) = 1, ω : Z/12Z ↓ Z/3Z ↘ Z/4Z is an
isomorphism w.r.t. + and ↘.

Instead of solving x3 = [7]12, we can work in Z/3Z ↘ Z/4Z and solve

(x1, x2)
3 = ([7]3, [7]4).

Same as solving 



x3

1 = [1]3 x ↗ Z/3Z
x3

2 = [3]4 x ↗ Z/4Z.

The solution (by inspection) is




x1 = [1]3

x2 = [3]4
→ x = [7]12.
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EXAMPLE (RECALLING SOME OLD STUFF)

Recall the following: ([x ]96)
2 = [0]96 ↔→ [x ]96 = [0]96.

Reason:
↭ 96 = 25

· 3

↭ We can find a number, such as k = 23
· 3, which fulfills k < 96 and k2 is

a multiple of 96.

↭ Hence [k ]96 ↔= [0]96 and [k2]96 = [0]96.

However, for a prime modulus, like 97: ([x ]97)
2 = [0]97 → [x ]97 = [0]97.

Reason:

↭ If [x ]97 = 0 we are done. Otherwise, → [x ]97 has an inverse;

↭ → [x ]97 · [x ]97 = [0]97 implies [x ]97 = [0]97.
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EXAMPLE (HOW ABOUT THIS ONE)

([x ]77)
2 = [0]77 implies [x ]77 = [0]77?

519 / 798

77 = 7 . 11
.



SOLUTION

↭ 77 = 7 · 11

↭ (Z/77Z, ·) is isomorphic to (Z/7Z, ·) ↘ (Z/11Z, ·)

↭ Hence [x ]77 · [x ]77 = [0]77

≃ ([x ]7, [x ]11) · ([x ]7, [x ]11) = ([0]7, [0]11)

≃ ([x ]7 · [x ]7, [x ]11 · [x ]11) = ([0]7, [0]11)

↭ We are back to the prime modulus case

which implies [x ]7 = [0]7 and [x ]11 = [0]11

which implies [x ]77 = [0]77.
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CONCLUSION

If gcd(m1,m2) = 1,

the Chinese remainders theorem says that

we can calculate in Z/m1m2Z

or in Z/m1Z ↘ Z/m2Z

whichever is more convenient.
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THE INVERSE MAP

The map to

ω : Z/m1m2Z ↓ Z/m1Z ↘ Z/m2Z

[k ]m1m2 ↑↓ ([k ]m1 , [k ]m2),

is easy to compute.

How about the inverse map?

ω→1 : Z/m1Z ↘ Z/m2Z ↓ Z/m1m2Z.
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We use the extended Euclid’s algorithm to find integers u and v such that

1 = gcd(m1,m2) = m1u + m2v .

Let

a = m2v ,

b = m1u.

Notice that

[a]m2 = [m2v ]m2 = [0]m2 ,

[a]m1 = [m2v ]m1 = [1 ⇐ m1u]m1 = [1]m1 .

Similarly,

[b]m1 = [m1u]m1 = [0]m1 ,

[b]m2 = [m1u]m2 = [1 ⇐ m2v ]m2 = [1]m2 .
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Hence, for any integers k1 and k2,

ω
(
[ak1 + bk2]m1m2

)
= ([k1]m1 , [k2]m2),

implying that

ω→1 : Z/m1Z ↘ Z/m2Z ↓ Z/m1m2Z

([k1]m1 , [k2]m2) ↑↓ ([ak1 + bk2]m1m2)

is the inverse map.
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my= 3 , mz= 5 => M
=Mz
= 15

O 1234

O 06123 9
INVERSE MAP :

Q 1 = 3 . n+5-v
110 17 134 n=3

,
v= 2

② a= 10

251128 14 b =-9

③

Ex : k,=2, kz=
= [20 - 27]

,
= [-77

,5
= [87

15



my= 3 , mz= 5 => M
=Mz
= 15

O 1234

O 061239
INVERSE MAP :

Q1 = 3u +5
110 17 134 CAN CHOOSE

u = -3
,
v= 2

251128142a= 10

b = - 9

③ k= [10k=- 9k2]15
k
,
= 2
,
m
=
=3 -> F20-277 = [87it



BACKtO RSA

Alice Bob

Plaintext-
#-]
m (md)

EYL/mi
PUBLIC [E]]

m

Bob : (m ,e)

all operations are in

(x/mTL , ·)



BACKtO RSA

[Geyd] = [t]mEI
CAN WE SELECT

e
,
d

SUCH THAT THIS HOLDS
FOR ALL -Y



BACKtO RSA

[Geyd] = [t]mI
· WORKS IF M = P , A PRIME.

> BUT NOT SECURE AT ALL !
· Now : m= pq



BACKtO RSA

[Geyd] = Itedy ② It]
P9 P9 P9

# (CRT)

(ited] , [ted])(tt)p , It]g)



So
,
IF WE CAN SELECT

e, d

Such THAT :

S [tedyp = [tjp[ted]g = It)g
WE ARE DONE .

> CAN WE ?



So
,
IF WE CAN SELECT WHENEVER
e, d HOLDp

-
1

Such THAT :- WHATEVERL
-
1+
1

S [ted] P = [t]p HoLPe19
-ed=
[

[ted]g = It)g
WE ARE DONE .

> CAN WE ?



=> WE NEED TO SELECT

e
,
d Such THAT

ed = h(p-1) + 1
= Ted]p-1=[17. p - 1

ed = (2(q- 1)+ 1
- [ed]q -1= [17q -1



RECIPE :

↳ Select R A MULTIPLE OF

BOTH p-1 AND q-1
Ex . k = f(pq) = (p -1)(q - 1)
k = (cm(p-1, q- 1)

2 Select e : gcd(k,e)=1

3) SELECT d : ed = 1k+1



YESTERDAY

Alice

PlaintextCT]mBomid)
t

EYL/mi
PUBLIC [E]]

m

Bob : (m ,e)

all operations are in

(x/mTL , ·)



1) SELECT M A PRIME
,
m=P.

> SELECT e s .T. gcd(e,p - 1) = 1

> SELECT d S .T. [ed]p-1 =[1]p-
WORKS BUT IS NOT SECRET

.



1) SELECT M A PRIME
,
m=P.

> SELECT e s .T. gcd(e,p - 1) = 1

> SELECT d S .T. [ed]p- = 1

WORKS BUT IS NOT SECRET
.

2) SELECT M= pq (Two DISTINCT PRIME)
> SELECT & S .

T

. gcd(e, p - 1) = 1

gcd(e, q - 1) = 1

> SELECT & S.T. [ed]p+ =
[ed]g-p =

WORKS AND IS SECRET,



CRT : TC/mmeX ,
m
,Mr

are coprime

[KJmms1 (Thin, [RJm2)
[0]man (0Tn

, , 507me)
has no multiplicative

inverse.[m ,Sumz - ([0Jn
,
[m.Tne)

his no multiplicativemerce



&T with p
and (two

9 distinct

prives)

/197 :
&Whatwedentht

d

a
1: [h3

,
+ ([0]

p , [b]q)
OR

-- (TRTp . [07g)



FERMAT + CHINESE REMAINDERS

↭ Let p and q be distinct primes

↭ let k be a multiple of both (p → 1) and (q → 1)

↭ for all non-negative integers l ,

([a]p)
lk+1 = [a]p

([a]q)
lk+1 = [a]q

↭ using the Chinese remainders theorem, we combine into

([a]pq)
lk+1 = [a]pq .
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We have proved the following result:

THEOREM (TEXTBOOK THM 10.3)

Let p and q be distinct prime numbers and let k be a multiple of both (p → 1)

and (q → 1).

For every integer a, and every non-negative integer l ,

([a]pq)
lk+1 = [a]pq .
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BACK TO CRYPTOGRAPHY

↭ RSA: Rivest, Shamir, Adleman, 1977 (first public-key cryptosystem).

Encryption
algorithm

Plaintext t

kA

Alice

EkA (t)

Decryption
algorithm

t

kB

Bob

DkB (EkA (t))

Trudy

Ciphertext c
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RSA HIGH-LEVEL: THE VERY ESSENCE OF IT

Suppose that we can find:

↭ integer m (modulus),

↭ integer e (encoding exponent),

↭ integer d (decoding exponent),

such that, for all integers t ↑ Z/mZ (plaintext),

[(te)d ]m = [t ]m.
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Then:

↭ the receiver generates m, e, d (we will see how).

↭ (m, e) is the public encoding key — announced in a phone-like public
directory.

↭ (m, d) is the private decoding key — d never leaves the receiver.

↭ To send the plaintext t ↑ Z/mZ,

↭ the encoder forms the cryptogram c = te mod m. Exponentiation is
easy.

↭ The intended decoder performs cd mod m and obtains the plaintext t .
Again, this is easy.
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EXAMPLE

m = 33, e = 7, d = 3

↭ suppose that the plaintext is t = 2

↭ encryption: c = te mod m = 27 mod 33 = 128 mod 33 = 29

↭ decryption: cd mod m = 293 mod 33 = · · · = 2, as expected.

It works similarly with any t ↑ {0, . . . , 32}.

NB: we may want to exclude t = 0, because from c = 0 we immediately infer
t = 0.
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RSA: KEYS GENERATION (AT THE RECEIVER)

↭ generate large primes p and q at random

↭ m = pq is the modulus used for encoding and decoding

↭ let k be a multiple of (p → 1) and (q → 1), to be kept secret

↭ for instance, k = ω(pq) or k = lcm(p → 1, q → 1)

↭ produce the public (encoding) exponent e such that gcd(e, k) = 1

↭ (a common choice is e = 65537 = 216 + 1 which is a prime number. No
need for e to be distinct for each recipient)

↭ the public key is (m, e)

↭ k is kept secret. Using Bézout, the receiver produces the positive
decoding exponent d such that

de + kl = 1.

↭ (m, d) is the private key.
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↭ produce the public (encoding) exponent e such that gcd(e, k) = 1
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RSA: HOW DECODING WORKS

[t ]m ↑ Z/mZ, with m = pq. Hence
(
[t ]em

)d
= [t ]ed

m

= [t ]1→kl
pq

= [t ]pq Fermat + CRs

= [t ]m.
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EXAMPLE (“TOY-KEY” GENERATION)

↭ p = 3, q = 11, m = 33, k = lcm(2, 10) = 10

↭ e = 7 which is relatively prime with k

↭ d = 3 (check that ed mod k = 1)

↭ the public key is (m, e) = (33, 7)

↭ the private key is (m, d) = (33, 3)
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EXAMPLE (ENCRYPTING AND DECRYPTING WITH THE “TOY KEY”)

↭ Each letter of the alphabet is converted into a number in
{1, 2, . . . ,m → 1 = 32} (we avoid 0, to avoid c = 0 = t).

↭ we use the natural order: a ↓↔ 1, b ↓↔ 2, etc.

↭ suppose we want to send the letter “b”

↭ the encoder maps it into the plaintext t = 2

↭ and encrypts: c = te mod 33 = 29

↭ the decoder decrypts: t = cd mod m = 2

↭ and maps back t = 2 to the letter b.

In practice, m is very large, and the mapping

text ↓↔ Z/mZ

is done in blocks of letters.

534 / 798



RSA: POSSIBLE ATTACKS

How to decrypt not knowing d? Here the possibilities (that we know of):

↭ factor m to find p and q. Very hard to do if m is large (say ↗ 2500).

↭ in Z/mZ, solve c = xe for x . Very hard to do if m is large.

↭ guess k (good luck!)

↭ guess t (good luck!)

↭ guess d (good luck!)

535 / 798



THE TRAPDOOR ONE-WAY FUNCTION BEHIND RSA

↭ The trapdoor one-way function is

t ↓↔ c = te mod m,

where e is called the encoding exponent.

↭ Instead of publishing the function, it suffices to publish (m, e). This is
called the public key.

↭ Someone that knows (m, d) can perform

c ↓↔ t = cd mod m,

where d is called the decoding exponent.

↭ Hence the trapdoor information is (m, d). It is called the private key.
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We have used trapdoor one-way functions for privacy.

In conjunction with hash functions, they are equally suited for authenticity.
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DIGITAL SIGNATURE

ISSUE : PUBLIC RECEIVES A MESSAGE FROM

ALICE .

BUT IS THE MESSAGE REALLY FROMALICE?

ALICE
> (t , [+*A]m)t

da RSA PUBLIC DIRECTORY

ALICE -. (MA)



HOW DOES THE PUBLIC CHECK ?

=: [([+]m]
&
-

EP2: IF t = t

THEN Accept !



FOLLOW-UP QUESTION

· WITH THIS SCHEME
,
WE SEND The

MESSAGE TWICE... SEEMS A BIT

EXPENSIVE !

> IDEA : "HASHING"
.

t 1 >



DIGITAL SIGNATURE

ALICE -(t, [s]m)
t
,
s =h(t)

da RSA PUBLIC DIRECTORY

ALICE-MuTAcl



HOW DOES THE PUBLIC CHECK ?

Sip1 : [Its]n)]=
STEP 2: +-> ha(t) = s

3: IF S = 5
,

ACCEPT.



HASH FUNCTION

A hash function is a many-to-one function, used to map a sequence of
arbitrary length to a fixed-length bit sequence of, say, 200 bits.

What we expect from a hash function, is that even the smallest change in the
input produces a different output.

Ideally it should be so that one has to try about 2200 alternative inputs to hope
to find a sequence that produces a given output.
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DIGITAL SIGNATURE

To sign a document, we append to the document a hash function of the
document in such a way that only the signee could have done it. This is done
using a trapdoor one-way function as follows:

↭ let t be Alice’s plaintext that she wants to sign;

↭ let fA be Alice’s trapdoor one-way function (publicly available);

↭ let h be a hash function (publicly available, the same function for
everyone);

↭ the digital signature is s = f→1
A (h(t));

↭ the signed document is (t , s).
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Alice sends t and signature:(
t , s = f→1

A

(
h(t)

))
(t , s)

Bob verifies:
h(t) ?

= fA(s)

If h(t) equals fA(s), Bob trusts that the plaintext t is authentic, since for
anybody other than Alice, it is nearly impossible to compute s.

Note 1: For privacy, Alice can encrypt (t , s) using Bob’s trapdoor one-way
function fB .

Note 2: Privacy relies on fB ; authenticity relies on fA.
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TRUSTED AGENCY

How do we know that the directory storing all the public keys has not been
tampered with?

EXAMPLE

Alice queries the public directory for Bob’s public key.

The directory sends the message "Bob’s public key is k".

Eve, who is sitting on the wire, substitutes "Bob’s public key is k" with "Bob’s
public key is k̃", where k̃ is her own public key.

By using k̃ to encrypt, Alice believes that only Bob will be able to decrypt.

But in fact, Eve is the only person that can decrypt.

How to prevent this from happening?
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The directory information is signed by a trusted agency, say Symantec. Here
is how:

↭ Symantec’s public key is distributed once and for all via a channel that
cannot be tampered with (e.g. hard-coded into the crypto hardware).

↭ Each directory entry is digitally signed by Symantec. We call the result a
certificate.

↭ Anybody that has Symantec’s public key can verify that the information
received from the directory is authentic.

↭ Once verified, Alice can be confident that she is using Bob’s public key.
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STANDARDS

Here are examples of widely-used standards:

↭ SHA-1 through SHA-3 (Secure Hash Algorithm) family: cryptographic
hash functions.

↭ DSA (Digital Signature Algorithm), ECDSA (Elliptic Curve DSA):
standards for digital signature.

↭ DES (Data Encryption Standard), AES (Advanced Encryption Standard):
symmetric-key encryption standards. They are faster than RSA and
require less memory.

↭ RSA (Rivest Shamir Adleman): public-key crypto.
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WHY NOT JUST RSA?

With RSA we can encrypt (provide privacy) and sign (verify authenticity).
Why do we need other cryptographic standards?

↭ DSA is faster than RSA in signing (and ECDSA a more recent standard
than DSA). When keys have the same length, DSA leads to a shorter
signature. RSA 512 bits has been cracked, only a DSA 280 bits has
been cracked.

↭ The symmetric-key standards (DES, AES) are faster than RSA and
require less memory. Most CPUs now include hardware that makes AES
very fast.

Cryptographic implementations, such as PGP (Pretty Good Privacy),
available as a computer program, use symmetric-key and public-key
cryptography, as well as digital-signature algorithms.
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A COMPREHENSIVE EXAMPLE: HOW APPLE SENDS IMESSAGES

Apple uses all of the four standards mentioned above (SHA-1, ECDSA, AES,
RSA). Let’s see how.

To send an iMessage, Apple uses three services:

↭ IDS (Apple’s directory service): It is here that public keys and device
addresses are stored.

↭ APNs (Apple’s Push Notification Service): outgoing messages are sent
to this service. It is designed for short messages (like SMS).

↭ iCloud: to temporarily store what exceeds a maximum length. (Typically
the case for a photo attachment.)
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User 2User 1

IDS

Public key
and APNs token

for user 1

Public key
and APNs token

for user 2

Attachment
encrypted with

random key

Signed and encrypted
message for user 2 with

universal resource identifier (URI)
and key for attachment
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When the iMessage service is enabled on an Apple device (iPhone, iPad,
Mac):

↭ The device produces the RSA keys (public, private, each 1280 bits) and
the ECDSA keys (public, private, each 256 bits).

↭ The two public keys are sent to the IDS.

↭ IDS associates the keys to the device’s APN address, and lists the APN
address(es) under the user’s email address (or phone number).
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We can think that Bob’s IDS entry looks like this:

bob.cryptoexpert@epfl.ch APN addr. (iMac) RSA pub k
ECDSA pub k

APN addr. (iPhone) RSA pub k
ECDSA pub k

APN addr. (iPad) RSA pub k,
ECDSA pub k

APN addr. (MacBook Pro) RSA pub k
ECDSA pub k
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When Alice sends a message to Bob using her Apple device, the following
happens:

↭ The app looks in her contacts to find Bob’s email address (or phone
number),

↭ The app sends a request to the IDS, asking for Bob’s APN addresses
and corresponding RSA public keys.
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For each of Bob’s APN addresses, the following is done:

↭ The text, say t , is AES-encrypted with a randomly-generated symmetric
key k to produce the cryptogram ct ;

↭ the key k is RSA-encrypted using Bob’s public key, producing ck ;

↭ (ct , ck ) are SHA-1-hashed and the result ECDSA-signed using Alice’s
private key, producing s;

↭ (ct , ck , s) is dispatched to the APN for delivery to the intended device.
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Upon reception of (ct , ck , s), Bob’s device does the following:

↭ Using Alice’s public ECDSA key, the integrity of (ct , ck ) is verified;

↭ using Bob’s private RSA key, the cryptogram ck is decrypted to obtain
the AES symmetric key k ;

↭ the cryptogram ct is AES-decrypted to obtain the message t .
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The APN can only relay messages up to a certain size (4 KB or 16 KB,
depending on iOS).

What exceeds this length, (e.g. a photo attachment), is AES-encrypted with a
randomly-generated symmetric key, and the cryptogram is uploaded to
iCloud.

The key, the URL, and the SHA-1 hash of the cryptogram are part of an
iMessage sent to the recipient.

For further details, see the document: iOS Security, iOS 9.0 or later, Sept.
2015.
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ANOTHER EXAMPLE: HTTPS

https (Hyper Text Transfer Protocol Secure) is the protocol used to exchange
data between a browser and a web server. Sample transaction:

Browser Web Serverservice request

algorithm negotiation

certificate
(check the lock icon on your browser)

symmetric key
(encrypted using the server’s public key)

secure channel

identification

offer

payment
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OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

One-Time Pad, Perfect Secrecy, Public-Key (Diffie-Hellman)

Rudiments of Number Theory

Modular Arithmetic

Commutative Groups

Public-Key Cryptography

Summary of Chapter 2

CHANNEL CODING
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SUMMARY OF CHAPTER 2

Perfect secrecy is possible, but requires long keys.

↭ One-time pad

Cryptogram = PlainText → SharedKey

↭ If the SharedKey is perfectly (uniformly) random and shared between
encrypter and decrypter ahead of time

↭ and the SharedKey is kept secret from anyone else,
↭ then the One-time Pad offers perfect secrecy.
↭ Hence: It is expensive to implement. Only worth it for spies and such.
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SUMMARY OF CHAPTER 2

↭ Practical cryptography is based on algorithmic/computational complexity.
↭ Public-key cryptography. Most public-key cryptographic algorithms fall

into one of the following two categories:
↭ those that are based on the belief that discrete exponentiation (in a

multiplicative cyclic group) is a one-way function (e.g. Diffie-Hellman and
ElGamal);

↭ those that are based on the difficulty of factoring (e.g. RSA).

↭ To understand RSA and Diffie-Hellman, we need Number Theory and
Algebra.
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SUMMARY OF CHAPTER 2
Number Theory and Algebra

↭ Modulo operation, Euclid’s algorithm
↭ Groups.

↭ Z/mZ with addition is always a group.
↭ Z/mZ with multiplication: need to retain only those elements that have a

multiplicative inverse: Z/mZ→

↭ Finding multiplicative inverses in Z/mZ : Bézout’s identity; Extended Euclid
algorithm.

↭ How many elements in Z/mZ have a multiplicative inverse? Euler’s totient
function.

↭ Group isomorphism.
↭ Order of group elements. Lagrange’s theorem: Order of any group element

must divide the cardinality of the group.
↭ Product Groups. Main theorem: Cartesian product of groups is again a

group.
↭ The special isomorphism between Z/m1m2Z and Z/m1Z ↑ Z/m2Z when

m1 and m2 are coprime.
↭ Holds for both addition and multiplication, including for elements that do not

have a multiplicative inverse.
↭ Hence, this is more than just a group isomorphim.
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SUMMARY OF CHAPTER 2

Computationally hard problem 1: Discrete logarithm.

↭ leads to Diffie Hellman (and, by slight extension, El Gamal)

↭ Encryption: A = ga,B = gb.

↭ Leads to a shared key: C = Ab = Ba.

↭ To understand that it works, we need cyclic groups.
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SUMMARY OF CHAPTER 2

Computationally hard problem 2: Factorization of large integers.

↭ leads to Cocks/RSA

↭ Encryption: te mod m, where t is the plaintext and m = pq, where p and q
are primes.

↭ Decryption: (te)d mod m

↭ To understand that it works (meaning that (te)d mod m = t for all plaintexts
t), we need to understand Z/pZ→ Z/qZ.

559 / 798



SUMMARY OF CHAPTER 2

↭ Authenticity: Digital Signatures.
↭ Can be done with the same algorithm!

↭ In practice, so-called symmetric-key cryptosystems are important. The
common secret key is typically only a few hundred bits, distributed e.g.
via Diffie-Hellman. Encryption/decryption can be implemented more
efficiently (faster algorithms, smaller hardware). Think: one-time pad, but
with an imperfect key. There is no proof that the resulting algorithm is
secure.
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