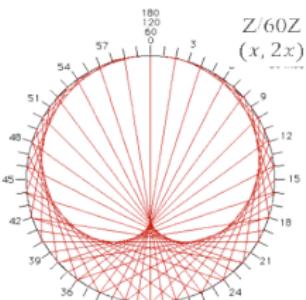


WEEK 8: COMMUTATIVE GROUPS

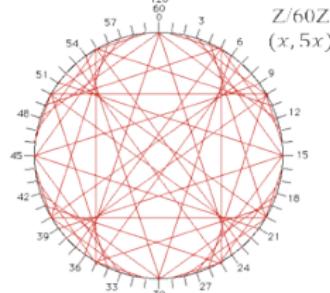
(TEXTBOOK CHAPTER 9)



Prof. Michael Gastpar

Slides by Prof. M. Gastpar and Prof. em. B. Rimoldi

Spring Semester 2025



LAST WEEK

- MULTIPLICATIVE INVERSE
IN $\mathbb{Z}/m\mathbb{Z}$

a has inverse $\Leftrightarrow \gcd(m, a) = 1$
 $\Leftrightarrow ax = b$ has unique
solution

FIND INVERSE VIA
EXTENDED EUCLID.

OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

One-Time Pad, Perfect Secrecy, Public-Key (Diffie-Hellman)

Rudiments of Number Theory

Modular Arithmetic

Commutative Groups

Public-Key Cryptography

Summary of Chapter 2

CHANNEL CODING

After $\mathbb{Z}/m\mathbb{Z}$ we could proceed in two directions:

- ▶ focus on finite groups, which are finite sets with one operation, like $(\mathbb{Z}/m\mathbb{Z}, +)$. We do so now because we need them for cryptography.
- ▶ focus on finite fields, which are finite sets with two operations, like $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$, with the extra property that every non-zero element has a multiplicative inverse. We do so later as we need finite fields for channel coding.

We care about commutative groups because:

- ▶ they lead to exponentiation and logarithms
- ▶ which are the building blocks of various cryptographic algorithms, including DH, RSA, and ElGamal's encryption scheme.

DEFINITION (COMMUTATIVE GROUP)

A **commutative group** (also called Abelian group) is a set G endowed with a binary operation \star that combines any two elements a and b to form another element denoted $a \star b$. The group operation \star must satisfy the following five axioms:

- ▶ (Closure:) For all $a, b \in G$, the result of the operation $a \star b$ is also in G .
- ▶ (Associativity:) For all $a, b \in G$, $a \star (b \star c) = (a \star b) \star c$.
- ▶ (Identity element:) There exists an element $e \in G$, such that for all $a \in G$, $a \star e = e \star a = a$.
- ▶ (Inverse element:) For all $a \in G$, there exists $b \in G$, such that $a \star b = b \star a = e$.
- ▶ (Commutativity:) For all $a, b \in G$, $a \star b = b \star a$.

EXERCISE

Which are commutative groups?

1. $(\mathbb{R}, +)$ YES
2. (\mathbb{R}, \cdot) NO because 0 has no inverse!
3. $(\mathbb{R} \setminus \{0\}, \cdot)$ YES
4. $(\mathbb{C}, +)$ YES
5. $(\mathbb{Z}/m\mathbb{Z}, +)$ YES
6. $(\mathbb{Z}/m\mathbb{Z}, \cdot)$ NO
7. $(\mathbb{Z}/m\mathbb{Z} \setminus \{[0]_m\}, \cdot)$ If m is prime ✓
otherwise NO!
8. $(\mathbb{N}, +)$
9. $(\mathbb{Z}, +)$
10. $(\mathbb{Z} \setminus \{0\}, \cdot)$

SOLUTION

Which are commutative groups?

1. $(\mathbb{R}, +)$: Yes.
2. (\mathbb{R}, \cdot) : No, 0 has no inverse.
3. $(\mathbb{R} \setminus \{0\}, \cdot)$: Yes.
4. $(\mathbb{C}, +)$: Yes.
5. $(\mathbb{Z}/m\mathbb{Z}, +)$: Yes.
6. $(\mathbb{Z}/m\mathbb{Z}, \cdot)$: No, $[0]_m$ has no inverse.
7. $(\mathbb{Z}/m\mathbb{Z} \setminus \{[0]_m\}, \cdot)$: Only if m is prime.
8. $(\mathbb{N}, +)$: No.
9. $(\mathbb{Z}, +)$: Yes.
10. $(\mathbb{Z} \setminus \{0\}, \cdot)$: No, only 1 is invertible.

$$(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$$

To obtain a commutative group with the modulo multiplication, we take only the elements of $\mathbb{Z}/m\mathbb{Z}$ that have a multiplicative inverse. The resulting set is denoted $\mathbb{Z}/m\mathbb{Z}^*$.

THEOREM (TEXTBOOK THM 9.1)

For every integer $m > 1$, $(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$ is a commutative group.

PROOF

Check the axioms: **closure**, associativity, identity element, inverse element, commutativity.

EXAMPLE: $(\mathbb{Z}/10\mathbb{Z}^+, \cdot)$

$$\mathbb{Z}/10\mathbb{Z}^+ = \{1, 3, 7, 9\}$$

$$3 \cdot 9 = 27 = 7 \quad \checkmark$$

$$7 \cdot 9 = 63 = 3 \quad \checkmark$$

$$\mathbb{Z}/15\mathbb{Z}^+ = \{1, 2, 4, 7, 8, 11, 13, 14\}$$

CLOSURE ?

Let $a, b \in \mathbb{Z}/m\mathbb{Z}^+$.

→ is $ab \in \mathbb{Z}/m\mathbb{Z}^+ \text{ ?}$

ANSWER: YES!

PROOF BY CONSTRUCTION:

CONSTRUCT THE INVERSE OF ab .

↳ $b^{-1}a^{-1}$

WORKS BECAUSE

$$\begin{aligned} b^{-1}a^{-1}ab &= b^{-1} = 1 \\ ab b^{-1}a^{-1} &= 1 \quad \checkmark \end{aligned}$$

DEFINITION (TEXTBOOK DEF. 8.5)

Euler's $\phi(n)$ function (also called **Euler's totient function**) is the number of positive integers in $\{1, \dots, n\}$ that are relatively prime to n .

Observations:

- ▶ Recall that two integers a and b are relatively prime iff $\gcd(a, b) = 1$.
- ▶ Hence 1 is relatively prime with every integer.
- ▶ $\phi(m)$ is the cardinality of $\mathbb{Z}/m\mathbb{Z}^*$.
- ▶ If p is prime, $\phi(p) = p - 1$.

EXAMPLE

- ▶ $\phi(1) = 1$
- ▶ $\phi(2) = 1, \quad \mathbb{Z}/2\mathbb{Z}^* = \{1\}$
- ▶ $\phi(3) = 2, \quad \mathbb{Z}/3\mathbb{Z}^* = \{1, 2\}$
- ▶ $\phi(4) = 2, \quad \mathbb{Z}/4\mathbb{Z}^* = \{1, 3\}$
- ▶ $\phi(5) = 4, \quad \mathbb{Z}/5\mathbb{Z}^* = \{1, 2, 3, 4\}$
- ▶ $\phi(6) = 2, \quad \mathbb{Z}/6\mathbb{Z}^* = \{1, 5\}$
- ▶ $\phi(7) = 6, \quad \mathbb{Z}/7\mathbb{Z}^* = \{1, 2, 3, 4, 5, 6\}$

EXERCISE

Prove the following:

- ▶ If p is prime and k is a positive integer, $\phi(p^k) = p^k - p^{k-1}$.
- ▶ If p and q are distinct primes, $\phi(pq) = \phi(p)\phi(q) = (p - 1)(q - 1)$.

p (prime)

$$f(p^k) = p^k - p^{k-1}$$

$\{1, 2, 3, \dots, p, p+1, p+2, \dots, 2p, 2p+1, \dots, 3p, \dots\}$

\dots, p^2, p^2+1, \dots

$\vdash \vdash \vdash \vdash$

$p^k \}$

p (prime)

$$f(p^k) = p^k - p^{k-1}$$

$\{1, 2, 3, \dots, p-1, p, p+1, p+2, \dots, 2p-1, 2p, \dots$

$\dots, 3p, 3p+1, \dots, 4p, \dots$

$\dots, p^{k-1}, p\}$

p, q : primes
(distinct)
($p < q$)

$$\phi(pq) = (p-1)(q-1)$$

$\{ 1, 2, 3, \dots, p, p+1, \dots 2p, \dots q, \dots 2q$

\dots

$p, q \}$

$$pq - q - p + 1$$

SOLUTION (OUTLINE)

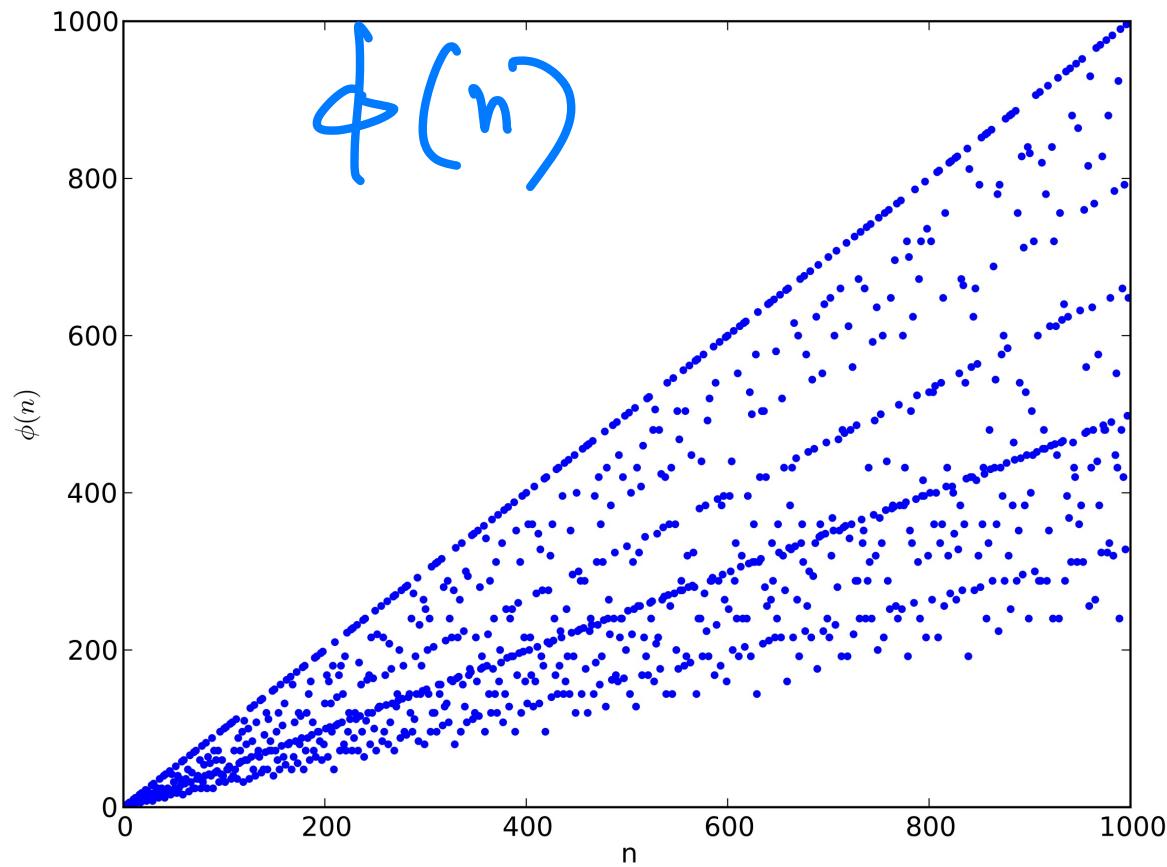
- ▶ In $\{1, 2, \dots, p^k\}$, only the numbers $p, 2p, 3p, \dots, p^{k-1}p$ are divisible by p .

Hence $p^k - p^{k-1}$ elements of $\{1, 2, \dots, p^k\}$ are not divisible by p .

- ▶ In $\{1, 2, \dots, pq\}$, only pq is divisible by both, p and q .

Hence, there are q elements that are divisible by p , p elements that are divisible by q , and one which is divisible by both.

$pq - p - q + 1 = (p - 1)(q - 1)$ elements are divisible by neither.



EXERCISE

Below is the multiplication table of $(\mathbb{Z}/5\mathbb{Z}^*, \cdot)$. Every element of $\mathbb{Z}/5\mathbb{Z}^*$ shows up exactly once in every row. Is it surprising?

$\mathbb{Z}/5\mathbb{Z}^*$	\times	1	2	4	3
1		1	2	4	3
2		2	4	3	1
4		4	3	1	2
3		3	1	2	4

SOLUTION

We have seen that in $\mathbb{Z}/m\mathbb{Z}$, when a^{-1} exists, the map $\mathbb{Z}/m\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$

$$x \rightarrow ax$$

is a bijection.

Each row of the above table is such a map. (The same is true for each column.)

Nota Bene:

- ▶ In $(\mathbb{Z}/m\mathbb{Z}, +)$, the identity element is $[0]_m$.
- ▶ In $(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$, the identity element is $[1]_m$.

CARTESIAN PRODUCTS

Recall that if \mathcal{A}_1 and \mathcal{A}_2 are sets, the cartesian product $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ is the set

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 = \{(a_1, a_2) : a_1 \in \mathcal{A}_1, a_2 \in \mathcal{A}_2\}.$$

Similarly, $(G, \star) = (G_1, \star_1) \times (G_2, \star_2)$ is the set $G = G_1 \times G_2$ endowed with the binary operation \star defined by

$$(a_1, a_2) \star (b_1, b_2) = (a_1 \star_1 b_1, a_2 \star_2 b_2).$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$

$$= \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$$

+	00	01	02	10	11	12
00	00					
01		01				
02			02			
10				10		
11					11	
12						12

$\mathbb{Z}/2\mathbb{Z}$		+	0	1
			0	1
			0	1
			1	0

$\mathbb{Z}/3\mathbb{Z}$		+	0	1	2
			0	1	2
			0	1	2
			1	2	0
			2	0	1

$\mathbb{Z}/2\mathbb{Z}$		+	0	1
		0	0	1
		1	1	0

$\mathbb{Z}/3\mathbb{Z}$		+	0	1	2
		0	0	1	2
		1	1	2	0

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$$

+	00	01	02	10	11	12
00	00					
01		01				
02			02			
10				10		
11					11	
12						12

EXAMPLE $((\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/3\mathbb{Z}, +))$

$\mathbb{Z}/2\mathbb{Z}$	+	0	1
0		0	1
1		1	0

$\mathbb{Z}/3\mathbb{Z}$	+	0	1	2
0		0	1	2
1		1	2	0
2		2	0	1

+	00	01	02	10	11	12
00	00	01	02	10	11	12
01	01	02	00	11	12	10
02	02	00	01	12	10	11
10	10	11	12	00	01	02
11	11	12	10	01	02	00
12	12	10	11	02	00	01

THE CARTESIAN PRODUCT OF COMMUTATIVE GROUPS IS A COMMUTATIVE GROUP

Recall the axioms of a commutative group:

- ▶ (Closure:) For all $a, b \in G$, the result of the operation $a \star b$ is also in G .
- ▶ (Associativity:) For all $a, b \in G$, $a \star (b \star c) = (a \star b) \star c$.
- ▶ (Identity element:) There exists an element $e \in G$, such that for all $a \in G$, $a \star e = e \star a = a$.
- ▶ (Inverse element:) For all $a \in G$, there exists $b \in G$, such that $a \star b = b \star a = e$.
- ▶ (Commutativity:) For all $a, b \in G$, $a \star b = b \star a$.

and check that they apply to elements of the form

$$(a_1, a_2) \in (G_1, \star_1) \times (G_2, \star_2).$$

$(G_1, \star_1) \times (G_2, \star_2)$ is called the **product group**.

EXERCISE

Consider $(G, \star) = (G_1, \star_1) \times (G_2, \star_2)$, where $(G_1, \star_1) = (\mathbb{Z}/4\mathbb{Z}, +)$ and $(G_2, \star_2) = (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$:

- ▶ evaluate $(3, 2) \star (1, 2)$;
- ▶ find the identity element;
- ▶ find the inverse element of $(3, 2)$.

$$\longrightarrow (0, 1)$$

$$(3, 2) \star (1, 2) = (0, 1)$$

$$(\mathbb{Z}/4\mathbb{Z}, +) \times (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$$

$\mathcal{C}(0, 1)$

SOLUTION

In $(\mathbb{Z}/4\mathbb{Z}, +) \times (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$:

- ▶ $(3, 2) \star (1, 2) = (0, 1)$;
- ▶ $e = (0, 1)$;
- ▶ the inverse of $(3, 2)$ is $(1, 2)$.

The operation \star of a product group is called **product operation**.

NB: The product operation can be a component-wise addition, as in

EXAMPLE $((\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/3\mathbb{Z}, +))$

$\mathbb{Z}/2\mathbb{Z}$	+	0	1
0		0	1
1		1	0

$\mathbb{Z}/3\mathbb{Z}$	+	0	1	2
0		0	1	2
1		1	2	0
2		2	0	1

+	00	01	02	10	11	12
00	00	01	02	10	11	12
01	01	02	00	11	12	10
02	02	00	01	12	10	11
10	10	11	12	00	01	02
11	11	12	10	01	02	00
12	12	10	11	02	00	01

EXERCISE

Which of the following are product groups?

- ▶ $(\mathbb{Z}/2\mathbb{Z}, \cdot) \times (\mathbb{Z}/3\mathbb{Z}, \cdot)$.
- ▶ $(\mathbb{Z}/2\mathbb{Z}^*, \cdot) \times (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$.

EXERCISE

Which of the following are product groups?

- ▶ $(\mathbb{Z}/2\mathbb{Z}, \cdot) \times (\mathbb{Z}/3\mathbb{Z}, \cdot)$.
- ▶ $(\mathbb{Z}/2\mathbb{Z}^*, \cdot) \times (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$.

SOLUTION

- ▶ $(\mathbb{Z}/2\mathbb{Z}, \cdot) \times (\mathbb{Z}/3\mathbb{Z}, \cdot)$: Not a commutative group, because $(0, 0)$ has no inverse.
- ▶ $(\mathbb{Z}/2\mathbb{Z}^*, \cdot) \times (\mathbb{Z}/3\mathbb{Z}^*, \cdot)$: Indeed a commutative group.

EXERCISE

Let m and n be integers greater than 1.

- ▶ Is it true that the subset of $(\mathbb{Z}/m\mathbb{Z}, \cdot) \times (\mathbb{Z}/n\mathbb{Z}, \cdot)$ that consists of elements that have an inverse is a commutative group?
- ▶ If yes, is it the same commutative group as $(\mathbb{Z}/m\mathbb{Z}^*, \cdot) \times (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$?

SOLUTION

Yes to both questions.

In fact, $(G_1, \star_1) \times (G_1, \star_1)$ is a group iff both (G_1, \star_1) and (G_1, \star_1) are groups.

The subset of $(\mathbb{Z}/m\mathbb{Z}, \cdot)$ that contains all the elements of $(\mathbb{Z}/m\mathbb{Z}, \cdot)$ that have an inverse is a group, denoted $(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$.

Similarly, ... (same argument with n instead of m).

GROUP ISOMORPHISM

G	0	1	2
*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

H	0	1	2
*	0	2	1
0	0	2	1
1	2	0	1
2	1	1	0

ARE G AND H DIFFERENT?

YES AND NO!
THEY ARE ISOMORPHIC.

GROUP ISOMORPHISM

G	0	1	2
*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

H	2	0	1
*	2	0	1
2	2	0	1
0	0	1	2
1	1	2	0

ARE G AND H DIFFERENT?

ANSWER: YES AND NO.

↳ THEY ARE ISOMORPHIC

GROUP ISOMORPHISM

G	0	1	2
*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

H	2	0	1
*	2	0	1
2	2	0	1
0	0	1	2
1	1	2	0

G AND H ARE ISOMORPHIC:

$$\varphi(0) = 2$$

$$\varphi^{-1}(0) = 1$$

$$\varphi(1) = 0$$

$$\varphi^{-1}(1) = 2$$

$$\varphi(2) = 1$$

$$\varphi^{-1}(2) = 0$$

ISOMORPHISM

Some sets endowed with an operation might look different, but they are actually the same once their elements are re-labeled.

DEFINITION

Let (G, \star) and (H, \otimes) be sets, each endowed with a binary operation.

An **isomorphism** from (G, \star) to (H, \otimes) is a bijection $\psi : G \rightarrow H$ such that

$$\psi(a \star b) = \psi(a) \otimes \psi(b)$$

holds for all $a, b \in G$.

We say that (G, \star) and (H, \otimes) are **isomorphic** if there exists an isomorphism between them.

Suppose that ψ is an isomorphism from (G, \star) to (H, \otimes) . The following properties hold:

- ▶ If (G, \star) is a commutative group, so is (H, \otimes) .
- ▶ If e is the identity element of (G, \star) , then $\psi(e)$ is the identity element of (H, \otimes) .
- ▶ If a, b are inverse of one another in (G, \star) , then $\psi(a), \psi(b)$ are inverse of one-another in (H, \otimes) .

From a group-theoretic viewpoint, isomorphic groups are the same object.

Proofs: For the first point, we show that if (G, \star) is a commutative group, so is (H, \otimes) . To do so, each element of H is written as $\psi(x)$ for some $x \in G$.

- ▶ Closure: $\psi(a) \otimes \psi(b) = \psi(a \star b) \in H$;
- ▶ Associativity: No matter in which order we perform the operations on the LHS (left-hand side), $\psi(a) \otimes \psi(b) \otimes \psi(c) = \psi(a \star b \star c)$;
- ▶ Identity Element: $\psi(e) \otimes \psi(a) = \psi(e \star a) = \psi(a)$, proving that $\psi(e)$ is the identity element in (H, \otimes) ;
- ▶ Inverse Element: $\psi(a) \otimes \psi(a^{-1}) = \psi(a \star a^{-1}) = \psi(e)$, showing that the inverse of $\psi(a)$ is $\psi(a^{-1})$;
- ▶ Commutativity: $\psi(a) \otimes \psi(b) = \psi(a \star b) = \psi(b \star a) = \psi(b) \otimes \psi(a)$.

We have also proved the other two points of the previous slide.

EXAMPLE

$(\mathbb{Z}/2\mathbb{Z}, +)$ and $(\mathbb{Z}/4\mathbb{Z}^*, \cdot)$ are isomorphic.

$\mathbb{Z}/2\mathbb{Z}$		+	
		0	1
0		0	1
1		1	0

$\mathbb{Z}/4\mathbb{Z}^*$		x	
		1	3
1		1	3
3		3	1

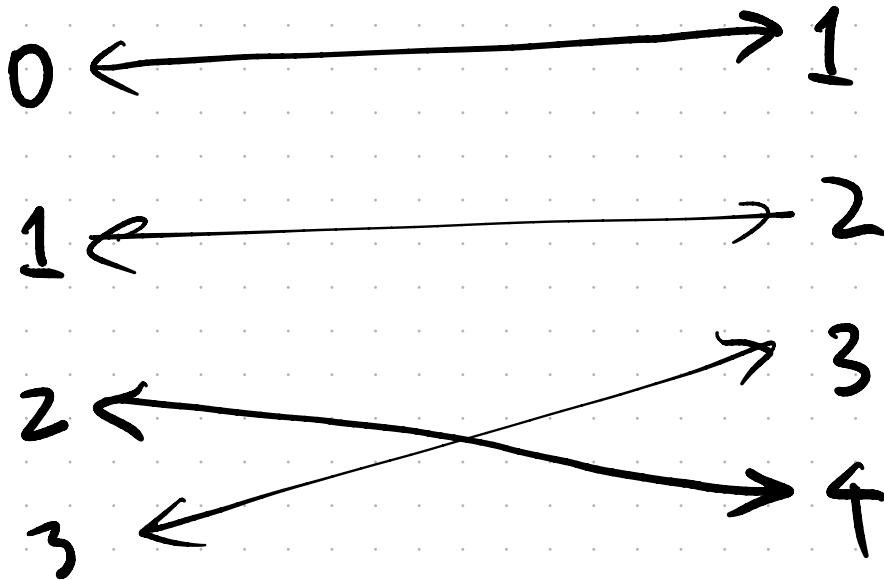
$$\begin{aligned}\psi : \mathbb{Z}/2\mathbb{Z} &\rightarrow \mathbb{Z}/4\mathbb{Z}^* \\ 0 &\rightarrow 1 \\ 1 &\rightarrow 3\end{aligned}$$

- ▶ Check that $\psi([0]_2)$ is the identity element in $(\mathbb{Z}/4\mathbb{Z}^*, \cdot)$.
- ▶ Check that $\psi(-[1]_2)$ is the (multiplicative) inverse of $\psi([1]_2)$ in $(\mathbb{Z}/4\mathbb{Z}^*, \cdot)$.

$\mathbb{Z}/4\mathbb{Z}$	+	0	1	2	3
0		0	1	2	3
1		1	2	3	0
2		2	3	0	1
3		3	0	1	2

ISO-
MORPHIC
?

$\mathbb{Z}/5\mathbb{Z}^*$	\times	1	2	3	4
1		1	2	3	4
2		2	4	1	3
3		3	1	4	2
4		4	3	2	1



EXERCISE

Are $(\mathbb{Z}/4\mathbb{Z}, +)$ and $(\mathbb{Z}/5\mathbb{Z}^*, \cdot)$ isomorphic?

$\mathbb{Z}/4\mathbb{Z}$	+	0	1	2	3
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	

$\mathbb{Z}/5\mathbb{Z}^*$	\times	1	2	3	4
	1	1	2	3	4
	2	2	4	1	3
	3	3	1	4	2
	4	4	3	2	1

- ▶ Hint 1: match up identity elements.
- ▶ Hint 2: $[2]_4$ is the inverse of itself in $(\mathbb{Z}/4\mathbb{Z}, +)$.

SOLUTION

The following correspondence is not negotiable:

- ▶ $0 \rightarrow 1$ (identity elements must match);
- ▶ $2 \rightarrow 4$ (inverses must match).

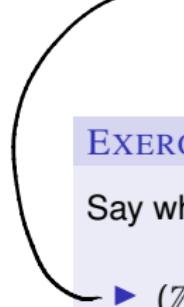
There are two ways to complete:

- ▶ $1 \rightarrow 2$ and $3 \rightarrow 3$

or

- ▶ $1 \rightarrow 3$ and $3 \rightarrow 2$.

Both form an isomorphism.


$$\{(0,0), (0,1), (1,0), (1,1)\}$$

EXERCISE

Say why the following cannot be isomorphic:

- ▶ $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$ and $(\mathbb{Z}/3\mathbb{Z}, +)$;
- ▶ $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$ and $(\mathbb{Z}/4\mathbb{Z}, +)$.

$$\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$$

SOLUTION

- ▶ $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$ and $(\mathbb{Z}/3\mathbb{Z}, +)$:
They do not have the same cardinality.
- ▶ $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$ and $(\mathbb{Z}/4\mathbb{Z}, +)$:
They do have the same cardinality.
In $(\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$, the inverse of x is x .
Not the case for $(\mathbb{Z}/4\mathbb{Z}, +)$.

EXERCISE

Find an isomorphism from $((0, +\infty), \cdot)$ to $(\mathbb{R}, +)$.

EXERCISE

Find an isomorphism from $((0, +\infty), \cdot)$ to $(\mathbb{R}, +)$.

SOLUTION

An isomorphism from $((0, +\infty), \cdot)$ to $(\mathbb{R}, +)$ is:

$$\psi : (0, +\infty) \rightarrow \mathbb{R}$$

$$x \mapsto \log(x)$$

$$\psi : (x \cdot y) \mapsto \log(x) + \log(y).$$

THEOREM (TEXTBOOK THM 9.4)

Let (G, \star) be a finite commutative group with identity element e .

For every $a \in G$, there exists an integer $k \geq 1$, such that

$$\underbrace{a \star a \star \cdots \star a}_{k \text{ terms}} = e.$$

PROOF: (G, \star) , G FINITE

LET $a \in G$:

$$a, a^2, a^3, a^4, a^5, a^6, a^7, \dots$$

BEC AUSE G IS FINITE,

THERE MUST BE $i < j$

SUCH

$$\begin{aligned} a^i &= a^j \underbrace{a^{j-i}}_{\substack{i-i \\ \dots}} \\ &= (a \star a \star a \dots) \star a^i \end{aligned}$$

For the proof, we use the notation $a^k := \underbrace{a * a * \cdots * a}_{k \text{ terms}}$.

For instance, in $(\mathbb{Z}, +)$, $a^3 = a + a + a$.

Proof:

- ▶ The commutative group is finite, hence the sequence

$$a, a^2, a^3, a^4, \dots$$

must contain repetitions.

- ▶ Suppose $a^i = a^j$ with $i < j$.
- ▶ By multiplying both sides by $(a^{-1})^i$ we obtain $e = a^{j-i}$.

□

THE ORDER OF A GROUP ELEMENT

DEFINITION (TEXTBOOK DEFINITION 9.4)

Let (G, \star) be a finite commutative group with identity element e , and let $a \in G$.

The smallest positive integer k such that

$$\underbrace{a \star a \star \cdots \star a}_{k \text{ terms}} = e$$

is called the **order** of a .

Sometimes it is called the **period** of a . ("Période de a " in French.)

EXAMPLE

The order of $[a]_{12} \in (\mathbb{Z}/12\mathbb{Z}, +)$ is the smallest k such that

$$\underbrace{[a]_{12} + [a]_{12} + \cdots + [a]_{12}}_{k \text{ terms}} = [0]_{12}.$$

- ▶ For $a = 3$, the order is 4.
- ▶ For $a = 4$, the order is 3.
- ▶ For $a = 5$, the order is 12.

EXAMPLE

The order of $[a]_8 \in (\mathbb{Z}/8\mathbb{Z}^*, \cdot)$ is the smallest k such that

$$\underbrace{[a]_8 \cdot [a]_8 \cdots [a]_8}_{k \text{ terms}} = [1]_8.$$

Mind that $\mathbb{Z}/8\mathbb{Z}^* = \{[1]_8, [3]_8, [5]_8, [7]_8\}$.

- ▶ For $a = 1$, the order is 1.
- ▶ For $a = 3$, the order is 2.
- ▶ For $a = 5$, the order is 2.
- ▶ For $a = 7$, the order is 2.

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 \quad \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$$

EXERCISE

Find the order of every element in $((\mathbb{Z}/2\mathbb{Z})^2, +)$.

$$\begin{aligned} & \uparrow \\ & = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \\ & = (\mathbb{Z}/2\mathbb{Z}, +) \times (\mathbb{Z}/2\mathbb{Z}, +) \end{aligned}$$

$$\text{order}((0, 0)) = 1$$

$$\text{order}((0, 1)) = 2$$

$$\text{order}((1, 0)) = 2$$

$$\text{order}((1, 1)) = 2$$

EXERCISE

Find the order of every element in $((\mathbb{Z}/2\mathbb{Z})^2, +)$.

SOLUTION

In $((\mathbb{Z}/2\mathbb{Z})^2, +)$, the identity is $([0]_2, [0]_2)$.

- ▶ $([0]_2, [0]_2)$ has order 1.
- ▶ $([0]_2, [1]_2)$ has order 2.
- ▶ idem for $([1]_2, [0]_2)$.
- ▶ idem for $([1]_2, [1]_2)$.

EXAMPLE

$\mathbb{Z}/10\mathbb{Z}^* = \{1, 3, 7, 9\}$. Find the order of each element in $(\mathbb{Z}/10\mathbb{Z}^*, \cdot)$.

Hint: it is recommended to reduce intermediate results.

$$\text{order}(1) = 1$$

$$3^2 = 9 \quad 3^3 = 3^2 \cdot 3 = 9 \cdot 3 = 7$$

$$3^4 = 3^3 \cdot 3 = 7 \cdot 3 = 21 = 1$$

EXAMPLE

$\mathbb{Z}/10\mathbb{Z}^* = \{1, 3, 7, 9\}$. Find the order of each element in $(\mathbb{Z}/10\mathbb{Z}^*, \cdot)$.

Hint: it is recommended to reduce intermediate results.

SOLUTION

x	x^2	x^3	x^4	order	x	x^2	x^3	x^4	order
1				1	1				1
3	9	7	1	4	3	-1	-3	1	4
7	9	3	1	4	7	-1	3	1	4
9	1			2	9	1			2

or, for instance,

- ▶ Recall: An isomorphism ψ from (G, \star) to (H, \otimes) maps the identity element of (G, \star) to the identity element of (H, \otimes) .
- ▶ This implies that the order of $g \in (G, \star)$ is the same as the order of $\psi(g) \in (H, \otimes)$.

EXAMPLE

- ▶ In $(\mathbb{Z}/2\mathbb{Z}^2, +)$, the orders are 1, 2, 2, 2.
- ▶ In $(\mathbb{Z}/10\mathbb{Z}^*, \cdot)$, the orders are 1, 4, 4, 2.
- ▶ Hence the two commutative groups cannot be isomorphic.

The following result is given without proof:

THEOREM

Two finite commutative groups are isomorphic iff they have the same set of orders.

Let e be the identity element of a commutative group (G, \star) and let $a \in G$.

Find the integers k such that $\underbrace{a \star a \star \cdots \star a}_{k \text{ terms}} = e$.

EXAMPLE (ADDITION)

$$(G, \star) = (\mathbb{Z}/12\mathbb{Z}, +), e = [0]_{12}, a = [2]_{12}$$

k	1	2	3	4	5	6	7	8	9	...
$([2]_{12})^k = k[2]_{12}$	2	4	6	8	10	0	2	4	6	...

The values of k are the integer multiples of the order of a , which is 6.

EXAMPLE (MULTIPLICATION)

$$(G, \star) = (\mathbb{Z}/10\mathbb{Z}^*, \cdot), e = [1]_{10}, a = [3]_{10}$$

k	1	2	3	4	5	6	7	8	9	\dots
$([3]_{10})^k$	3	9	7	1	3	9	7	1	3	\dots

The values of k are the integer multiples of the order of a , which is 4.

It is always like that: For $a \in (G, \star)$, $a^k = e$ when k is an integer multiple of the order of a .

This is not surprising: if q is the order of a and $k = qn$, we can write $a^k = (a^q)^n = e^n = e$. The following theorem states an even stronger result.

THEOREM

Let (G, \star) be a commutative group and $a \in G$.

An integer k satisfies $\underbrace{a \star a \star \cdots \star a}_{k \text{ terms}} = e$ iff the order of a divides k .

PROOF

Recall the notation: a^k means $\underbrace{a \star a \star \cdots \star a}_{k \text{ terms}}$.

- ▶ Let p be the order of a and write $k = pq + r$, $0 \leq r < p$.
- ▶ $e = a^k = a^{pq+r} = (a^p)^q \star a^r = a^r$.
- ▶ $r = 0$, because p is the smallest positive integer such that $a^p = e$.
- ▶ Hence k is a multiple of p .

YESTERDAY

- GROUP (G, \star)
- $(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$: $\phi(m)$ ELEMENTS
- PRODUCT GROUP:
 (a, b) with: $a \in (G_1, \star_1)$
 $b \in (G_2, \star_2)$
- ISOMORPHISM

- CURIOUS PROPERTY IN
FINITE GROUPS:

$$a^k = \underbrace{a * a * a \dots * a}_{k \text{ TERMS}} = e$$

- SMALLEST such k IS CALLED
ORDER OF a .

- $a^k = e \Leftrightarrow k$ IS A MULTIPLE
OF THE ORDER
OF a .

EXAMPLE

- ▶ the order of $[2]_{12} \in (\mathbb{Z}/12\mathbb{Z}, +)$ is 6:

I	1	2	3	4	5	6	7	8	...
$I[2]_{12}$	2	4	6	8	10	0	2	4	...

- ▶ the order of $[3]_{10} \in (\mathbb{Z}/10\mathbb{Z}^*, \cdot)$ is 4:

I	1	2	3	4	5	6	...
$([3]_{10})'$	3	9	7	1	3	9	...

$\mathbb{Z}/12\mathbb{Z}$ has cardinality 12 and the cardinality of $\mathbb{Z}/10\mathbb{Z}^* = \{1, 3, 7, 9\}$ is 4.

In both cases, the order divides the cardinality of the commutative group. A coincidence?

THEOREM (LAGRANGE, TEXTBOOK THM 9.3)

Let (G, \star) be a finite commutative group of cardinality n . The order of each of its elements divides n .

EQUIVALENCE RELATION AND EQUIVALENCE CLASSES

To be ready for the elegant proof of Lagrange's theorem, we review the concept and the implication of an **equivalence relation** .

Relationships occur in many contexts in life. In math, they are represented by the structure called a **binary relation**.

EXAMPLE

To relate people to their car, we can define

- ▶ a set A of all people;
- ▶ a set B of all cars;
- ▶ a set $R \subset A \times B$ that contains (a, b) iff person a owns car b .

The set R is called **a binary relation from A to B** .

The shorthand notations $a \sim b$ and $a R b$ mean the same as $(a, b) \in R$.

If the sets A and B are the same, then we speak of a **relation on A** .

An equivalence relation is a special case of a relation on a set. It is used to relate objects that are similar in some way, like in \mathbb{Z} , we may relate a and b if, for a specified m , $[a]_m = [b]_m$.

DEFINITION

A relation on a set A is called an **equivalence relation** if it is *reflexive, symmetric, and transitive*.

EXAMPLE

Let A be the set of all EPFL students.

Define $R = \{(a, b) \in A \times A : a \text{ and } b \text{ graduated from the same high school}\}$

R is an equivalence relation. In fact

- ▶ $a \sim a$ (reflexive);
- ▶ if $a \sim b$ then $b \sim a$ (symmetric);
- ▶ if $a \sim b$ and $b \sim c$ then $a \sim c$ (transitive).

EXERCISE

Let A be a set of people.

Define $R = \{(a, b) \in A \times A : a \text{ trusts } b\}.$,

Is this an equivalence relation?

EXERCISE

Let A be a set of people.

Define $R = \{(a, b) \in A \times A : a \text{ trusts } b\}.$,

Is this an equivalence relation?

SOLUTION

No, this relation on A is not symmetric.

EXERCISE

Let A be the students of AICC-II.

Define

$$R = \{(a, b) \in A \times A : a \text{ and } b \text{ got the same score in AICC-I or AICC-II}\}.$$

Is this an equivalence relation?

EXERCISE

Let A be the students of AICC-II.

Define

$$R = \{(a, b) \in A \times A : a \text{ and } b \text{ got the same score in AICC-I or AICC-II}\}.$$

Is this an equivalence relation?

SOLUTION

No, this relation on A is not transitive.

Let R be an equivalence relation on A and $a \in A$.

By $[a]$ we denote the **equivalence class of a** :

$$[a] = \{b \in A : b \sim a\}.$$

Any element of an equivalence class can be used to represent the class: if $b \in [a]$ then $[b]$ and $[a]$ are the same class.

Every $a \in A$ is in one and only one equivalence class. In fact, if $a \in [b]$ and $a \in [c]$ then $[b] = [a] = [c]$.

To say it in a different way, an equivalence relation on A partitions A into equivalence classes: they are disjoint subsets of A and their union is A .

EXAMPLE (CONTINUATION)

Let A be the set of all EPFL students.

Define $R = \{(a, b) \in A \times A : a \text{ and } b \text{ graduated from the same high school}\}.$

We can partition A into sets of students that graduated from the same high school. Each student is in exactly one such subset.

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Equivaleunce relation:

1) Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Equivalece relation:

1) Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

2) $a \sim b$ means $ah^i = b$ for some $i \geq 1$.

Is this really an equivalence relation?

1) reflexivity \checkmark

2) symmetry: $b \sim a$ or $bh^j = a$

3) transitivity: $a \sim b \text{ or } ah^i = b \quad \} \exists a \sim c$
 $b \sim c \text{ or } bh^k = c \quad \} \exists b \sim c$

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Equivalence relation:

1) Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

2) $a \sim b$ means $ah^i = b$ for some i .

Equivalence relation?

2) symmetry $a \sim b \Rightarrow b \sim a$

$$\begin{array}{ccc} a h^i = b & & b h^j = a \\ \uparrow & & \uparrow \\ a h^{i+k} & = & b h^{j+k} \end{array}$$

$$a h^{i+k} = b h^k$$

FOR 3)

We know

$$a \sim b \Leftrightarrow ah^i = b$$
$$a \sim c \Leftrightarrow ah^k = c$$

Question

$$b \sim c \Leftrightarrow b h^m = c ?$$

$$ah^i h^m \xrightarrow{?} = ah^k$$

$$h^{i+m} \xrightarrow{?} = h^k$$

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

Ex.: $h = 7$

$$\begin{aligned}[1] &= \{ a \in G : a = 1 \cdot h^i \\ &\quad \text{for some } i \} \\ &= \{ 7, 9, 3, 1 \} \end{aligned}$$

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

Ex.: $h = 7$

$$[1] = \{1, 7, 9, 3\}$$

$$[3] = \{ \quad \quad \quad \}$$

$$[11] = \{11, 17, 19, 13\}$$

$$= \{a \in G : a = 11 \cdot h^i \text{ for } i\}$$

KEY OBSERVATION

- ALL EQUIVALENCE CLASSES MUST HAVE THE SAME CARDINALITY (I.E., NUMBER OF ELEMENTS)
- AND THIS CARDINALITY IS PRECISELY ORDER (h) .

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

Ex.: $h = 19$

$$\begin{aligned}[1] &= \{ a \in G : a = 1 \cdot h^i \text{ for} \\ &\quad \text{all } i \in \mathbb{Z}_+ \} \\ &= \{ 19, 1 \} \end{aligned}$$

$$(\mathbb{Z}/20\mathbb{Z}^*, \cdot) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \cdot)$$

Select arbitrary $h \in \mathbb{Z}/20\mathbb{Z}^*$.

Ex.: h = 19

$$[1] = \{1, 19\}$$

$$[3] = \{3, 17\}$$

$$[7] = \{7, 13\}$$

$$[9] = \{9, 11\}$$

The following example is a special case of the construction used in the proof of Lagrange's Theorem.

EXAMPLE

Let (G, \star) be the group $(\mathbb{Z}/20\mathbb{Z}^*, \times) = (\{1, 3, 7, 9, 11, 13, 17, 19\}, \times)$.

Pick an arbitrary group element, e.g., $h = 7$.

Let $H = \{7, 9, 3, 1\}$ be the set that consists of all the powers of h .

We use H to define an equivalence relation on $G = \{1, 3, 7, 9, 11, 13, 17, 19\}$:

$$a \sim b \text{ if } ah^i = b \text{ for some } h^i \in H.$$

(This is an equivalence relation. We prove it later.) Let us construct the equivalence classes:

- ▶ $[1] = H = \{7, 9, 3, 1\}$;
- ▶ $[11] = \{17, 19, 13, 11\}$.

$G = [1] \cup [11]$. It is not a coincidence that all equivalence classes have the same cardinality. The cardinality of G must be a multiple of the cardinality of H .

Proof of Lagrange's Theorem:

- ▶ Let (G, \star) be a finite commutative group of cardinality n .
- ▶ Let p be the order of $h \in G$.
- ▶ Let $H = \{h, h^2, h^3, \dots, h^p = e\}$. (Note that (H, \star) is itself a group, and is called a subgroup of G of cardinality p .)
- ▶ Define a relation on G :

$$a \sim b \iff \exists h^i \in H \text{ such that } a \star h^i = b.$$

- ▶ It is reflexive (H contains the identity element), symmetric (H contains the inverse of each of its elements), and transitive (the product of elements of H is in H) — hence \sim is an equivalence relation.
- ▶ An equivalence relation splits G into equivalence classes.
- ▶ H is one such equivalence class.

- ▶ It suffices to show that each equivalence class has the same cardinality p . Then p must divide n .
- ▶ We show that there is a one-to-one map between H and each equivalence class.
- ▶ The equivalence class of b is $[b] = \{b \star h, b \star h^2, \dots, b \star h^p\}$.
- ▶ Clearly the cardinality of $[b]$ is at most p .
- ▶ It is p because the map $f : H \rightarrow [b]$ that sends h^i to $b \star h^i$ is one-to-one.
- ▶ Proof by contradiction: $b \star h^i = b \star h^k$ implies $h^i = h^k$ (b has an inverse). But for $1 \leq i, k \leq p$, $h^i = h^k$ holds if and only if $i = k$.
- ▶ Hence all equivalence classes have the same cardinality p , which must divide n .

EXAMPLE (SOMETHING OLD)

- ▶ The cardinality of $(\mathbb{Z}/m\mathbb{Z}, +)$, is m .
- ▶ For each element $[a]_m \in \mathbb{Z}/m\mathbb{Z}$, $m[a]_m = [0]_m$.
- ▶ Hence the period of each element of $(\mathbb{Z}/m\mathbb{Z}, +)$ divides m .

In $(\mathbb{Z}/m\mathbb{Z}, +)$, Lagrange's Theorem says nothing new to us.

In $(\mathbb{Z}/m\mathbb{Z}^*, \cdot)$, Lagrange's Theorem is non-trivial.

Using the fact that the cardinality of $\mathbb{Z}/m\mathbb{Z}^*$ is Euler's $\phi(m)$, we obtain:

COROLLARY (EULER'S THEOREM, TEXTBOOK COROLLARY 9.4)

Let $m \geq 2$ be an integer. For all $a \in (\mathbb{Z}/m\mathbb{Z}^*, \cdot)$

$$a^{\phi(m)} = [1]_m.$$

Equivalently, for all integers a that are relatively prime with m ,

$$a^{\phi(m)} \equiv 1 \pmod{m}.$$

The above theorem underlies the cryptographic method studied in the next chapter.

PROOF :

1) FROM THM ON p. 464, WE KNOW

$$a^k = [1]_m$$

IF AND ONLY IF k IS A MULTIPLE
OF ORDER (a).

2) FROM LAGRANGE, WE KNOW THAT
 $\phi(m)$ IS A MULTIPLE OF ORDER (a).

COROLLARY (FERMAT'S THEOREM, TEXTBOOK COROLLARY 9.5)

Let p be prime. For all $a \in (\mathbb{Z}/p\mathbb{Z}, \cdot)$

$$a^p = a.$$

Equivalently, for all integers a ,

$$a^p \equiv a \pmod{p}.$$

Proof: It follows from Euler's Theorem, and $\phi(p) = p - 1$, that

$$a^{(p-1)} = [1]_p$$

holds for all $a \in (\mathbb{Z}/p\mathbb{Z}, \cdot)$, except for $a = [0]_p$.

By multiplying both sides by a we obtain

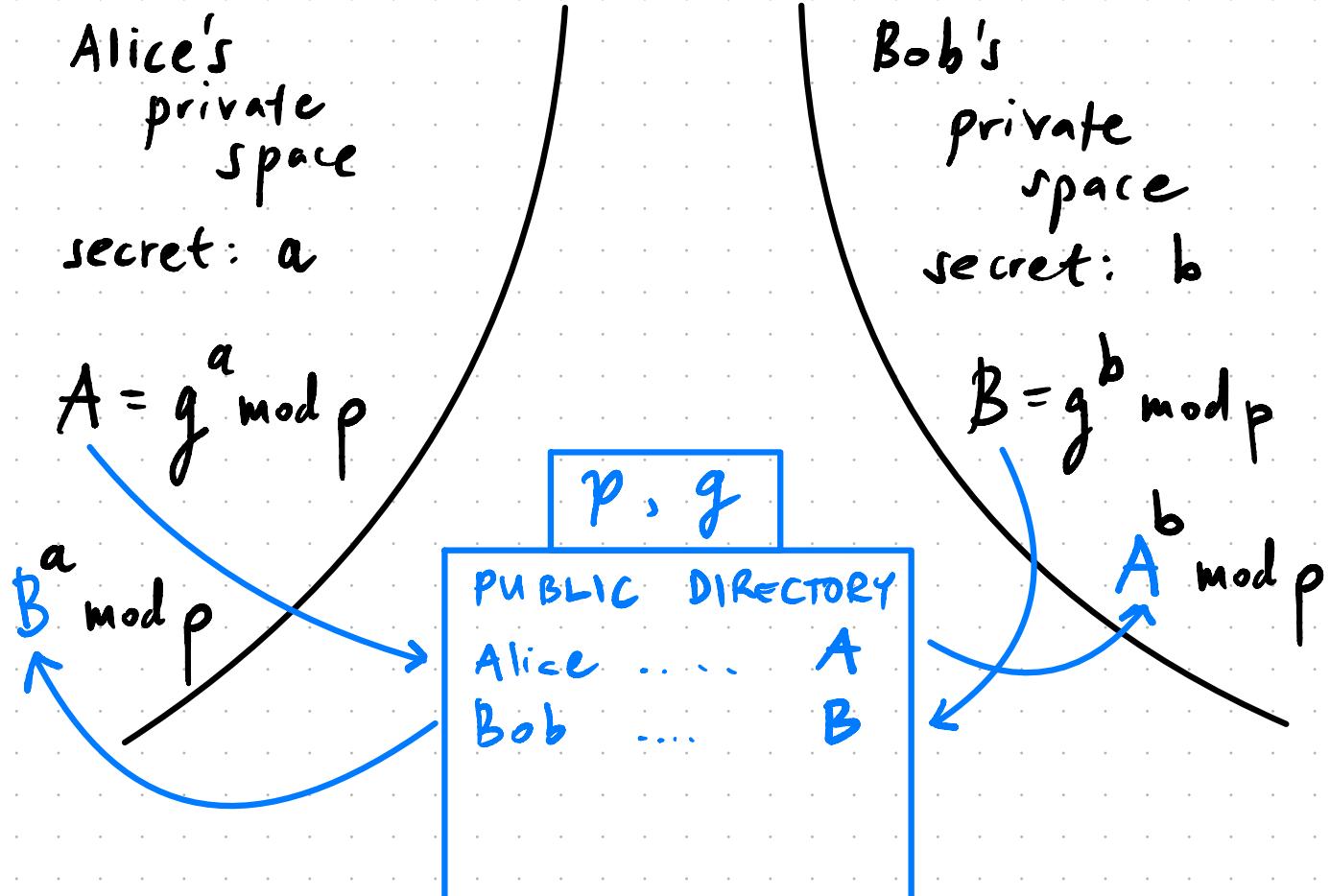
$$a^p = a,$$

which holds also for $a = [0]_p$. □

EXAMPLE

- ▶ $2^3 \equiv 2 \pmod{3}$
- ▶ $4^3 \equiv 4 \pmod{3}$
- ▶ $5^3 \equiv 5 \pmod{3}$
- ▶ etc.

RECALL DIFFIE-HELLMAN



RECALL THE DIFFIE-HELLMAN SETUP

- ▶ Fix a large prime number p . Hereafter all the numbers are in $\{0, 1, \dots, p - 1\}$ and arithmetic is modulo p (more on it later).
- ▶ Pick a generator g . A generator has the property that g^i generates all elements in $\{1, 2, \dots, p - 1\}$ when $i = 0, 1, \dots, p - 2$.
- ▶ Note: Towards the end of this chapter, after introducing all of the algebra necessary, we will see that a generator always exists since we are in what is called a *cyclic group*.

EXAMPLE

$p = 5$. The numbers are $\{0, 1, 2, 3, 4\}$.

$g = 2$ is a generator. Indeed:

i	g^i
0	1
1	2
2	4
3	3

We are now in a position to deliver on this.

Specifically: Exponentiation can be defined on any finite group, but its inverse, the logarithm, is well-defined only for cyclic groups.

Next, we define cyclic groups and study their properties.

CYCLIC GROUPS

Given a finite commutative group (G, \star) , we can take any of its elements, say $g \in G$, and compute g^2, g^3, \dots , until for some n (the order of g), $g^n = e$, where e is the identity in G .

The result is the group $H = \{e, g, g^2, \dots, g^{n-1}\}$.

H is the cycle of a single element, g . Any finite group of cardinality n , that consists of the cycle of a group element g is called a **cyclic group of order n** , and g is called a **generator**. A generator is not necessarily unique.

Note: even if (G, \star) is infinite and non-commutative, (H, \star) is finite (by construction) and commutative. Indeed, $g^i \star g^k = g^{i+k} = g^k \star g^i$.

EXAMPLE (CYCLIC GROUP)

(\mathbb{C}, \cdot) is an infinite group that contains $j = \sqrt{-1}$.

$$\left(H = \left\{ j, j^2, j^3, j^4 = 1 \right\}, \cdot \right)$$

is a cyclic group, and j as well as $-j$ are generators.

EXAMPLE (CYCLIC GROUP)

$(\mathbb{Z}/m\mathbb{Z}, +)$ is a cyclic group of order m and $g = 1$ is one of its generators.

$$g=1, g^2=2, g^3=3, \dots g^m=m=0$$

EXAMPLE (CYCLIC GROUP)

$(\mathbb{Z}/5\mathbb{Z}^*, \times)$ is a finite commutative group. Its elements are $\{1, 2, 3, 4\}$. The group can be generated by the powers of 2. Hence the group is a cyclic group of order $n = 4$ and $g = 2$ is one of its generators.

$$g=2 : \quad g^2 = 4, \quad g^3 = 3$$

$$g^4 = 1, \quad g^5 = 2$$

All cyclic groups that have the same order are isomorphic.

Proof: Let (G, \star) and $(H, *)$ be cyclic groups of order n generated by g and h , respectively.

The map

$$\begin{aligned}\psi : \quad G &\rightarrow H \\ g^i &\mapsto \quad h^i.\end{aligned}$$

is an isomorphism: In fact

- ▶ it is a bijection and
- ▶ for $a = g^i$ and $b = g^j$ we have

$$\psi(a \star b) = \psi(g^i \star g^j) = \psi(g^{i+j}) = h^{i+j} = h^i * h^j = \psi(a) * \psi(b).$$

Let (G, \star) be a cyclic group of order n generated by g .

Let $b = g^i$ be one of its elements, $1 \leq i \leq n$.

The order of b is the smallest k such that $b^k = g^{ik}$ equals e .

ik is the smallest multiple of n and i , i.e.,

$$k = \frac{\text{lcm}(i, n)}{i} = \frac{n}{\text{gcd}(i, n)}.$$

EXAMPLE

$(\mathbb{Z}/5\mathbb{Z}^*, \times)$ is a cyclic group of order $n = 4$, and $g = 2$ is a generator.

Let $i = 2$ and consider the group element $b = g^i = 4$. The order of b is

$$\frac{n}{\gcd(i, n)} = \frac{4}{\gcd(2, 4)} = 2.$$

(Let us verify: $b^2 = (2^2)^2 = 1$, as it should.)

g^i is another generator iff it has order n , i.e. iff $\gcd(i, n) = 1$.

The number of such i in $\{1, \dots, n\}$ is Euler's $\phi(n)$.

EXAMPLE

The elements of $(\mathbb{Z}/5\mathbb{Z}^*, \times)$ are $\{1, 2, 3, 4\}$, and $g_1 = 2$ is a generator.

Hence $(\mathbb{Z}/5\mathbb{Z}^*, \times)$ is a cyclic group of order 4.

There are $\phi(4) = 2$ generators, one for each i such that $\gcd(i, 4) = 1$. Those i are $i = 1$ and $i = 3$. The other generator is $g_2 = g_1^3 = 3$.

Recall that we have proved the following: a cyclic group of order n has $\phi(n)$ generators.

However, not all groups are cyclic.

EXAMPLE (A NON-CYCLIC GROUP)

The elements of the group $(\mathbb{Z}/24\mathbb{Z}^*, \times)$ are $\{1, 5, 7, 11, 13, 17, 19, 23\}$.

The cardinality of this group is $n = 8$. However, it would be a mistake to conclude that the group has $\phi(8) = 4$ generators.

All we can say is that if it has a generator (in this case the group is a cyclic group of order 8), then it has 4 generators.

But in fact, this group has no generator: except for 1, all the elements have order 2.

For any element h of a finite commutative group (G, \star) , the discrete exponentiation h^i is well-defined for any integer i . (Note that i is an integer, not an element of (G, \star) .)

The discrete logarithm to the base $b \in G$ of $h \in G$ is the integer i such that $b^i = h$. This is well-defined (for every $h \in G$) iff (G, \star) is a **cyclic group, and b is one of its generators**.

Let (G, \star) be a cyclic group of order n generated by b . The discrete exponentiation to the base b is the map

$$\begin{aligned} f : \mathbb{Z}/n\mathbb{Z} &\rightarrow G \\ [i]_n &\mapsto b^i. \end{aligned}$$

We prove that it is well-defined and that it is an isomorphism from $(\mathbb{Z}/n\mathbb{Z}, +)$ to (G, \star) .

Proofs:

We show that the map is well-defined: suppose that $[i]_n = [j]_n$, then $j = i + nk$ for some integer k , and

$$f([j]_n) = g^{i+nk} = g^i \star g^{nk} = g^i = f([i]_n).$$

Next we show that the map is one-to-one: If $f([i]_n) = f([j]_n)$, then:

- ▶ $g^i = g^j$;
- ▶ $g^{i-j} = e$;
- ▶ $i - j \in \{0, n, 2n, \dots\}$;
- ▶ $[i]_n = [j]_n$.

By the pigeonhole principle, the map is also onto, hence it is a bijection.

Finally we prove that $f : \mathbb{Z}/n\mathbb{Z} \rightarrow G$ is an isomorphism:

$$f([i]_n + [j]_n) = g^{i+j} = g^i \star g^j = f([i]_n) \star f([j]_n).$$

□

The inverse map

$$\begin{aligned} f^{-1} : \quad G &\rightarrow \mathbb{Z}/n\mathbb{Z} \\ a = b^i &\mapsto [i]_n, \end{aligned}$$

is called the **discrete logarithm to the base b** . Naturally, we write

$$[i]_n = \log_b a.$$

Note that the usual rules for \exp and \log apply: Specifically, for any group generator b of order n , we have:

- ▶ $(a^i)^j = a^{ij};$
- ▶ $a^i a^j = a^{i+j};$
- ▶ $\log_b(c \star d) = \log_b c + \log_b d;$
Mind that on the RHS we have elements of $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$;
- ▶ $\log_b a^k = [k]_n \log_b a.$

COMPLEXITY OF THE DISCRETE EXPONENTIATION

For an element of a group of order n , discrete exponentiation requires at most $2 \log_2 n$ operations. Let us count them:

- ▶ to compute a^k , $1 < k < n$, we write k in binary form using $L = \log_2 n$ bits:

$$k = \sum_{i=0}^{L-1} b_i 2^i, \text{ with } b_i \in \{0, 1\};$$

- ▶ now

$$a^k = a^{\sum_{i=0}^{L-1} b_i 2^i} = \prod_{i=0}^{L-1} a^{b_i 2^i}$$

$$= \prod_{i=0}^{L-1} (a^{2^i})^{b_i}$$

$$= \prod_{i=0}^{L-1} a_i^{b_i},$$

where $a_i = a^{2^i}$ is computed as follows:

$$a_0 = a$$

$$a_1 = a_0^2$$

$$a_2 = a_0^4 = a_1^2$$

$$a_3 = a_0^8 = a_2^2$$

⋮

$$a_{L-1} = a_0^{2^{L-1}} = a_{L-2}^2.$$

- ▶ It takes $L - 1$ operations to compute a_1, \dots, a_{L-1} . It takes at most $L - 1$ operations to compute $\prod_{i=0}^{L-1} a_i^{b_i}$. (No computation required to perform $a_i^{b_i}$.)
- ▶ The total number of operations is at most $2(L - 1) < 2 \log_2 n$. □

FINDING THE INVERSE

Recall that in ElGamal's scheme, to invert the function we compute the inverse of g^{yx} . To compute the multiplicative inverse of a number $[b]_m \in (\mathbb{Z}/m\mathbb{Z}^*, \cdot)$, we can proceed two ways:

1. we use Bézout to write $1 = \gcd(b, m) = bu + mv$, hence $[u]_m$ is the inverse;
2. we use the fact that $[b]_m^{\phi(m)} = 1$, hence $[b]_m^{\phi(m)-1}$ is the inverse.

Often Bézout is more efficient, but if m is prime, we know that $\phi(m) = m - 1$. Exponentiation can be done efficiently.

If we are in a cyclic group of order n , then we know that $b^n = 1$. Hence the inverse of b is b^{n-1} .

SNEAK PEAK OF RSA

Alice

Plaintext

t

Bob

(m, d)

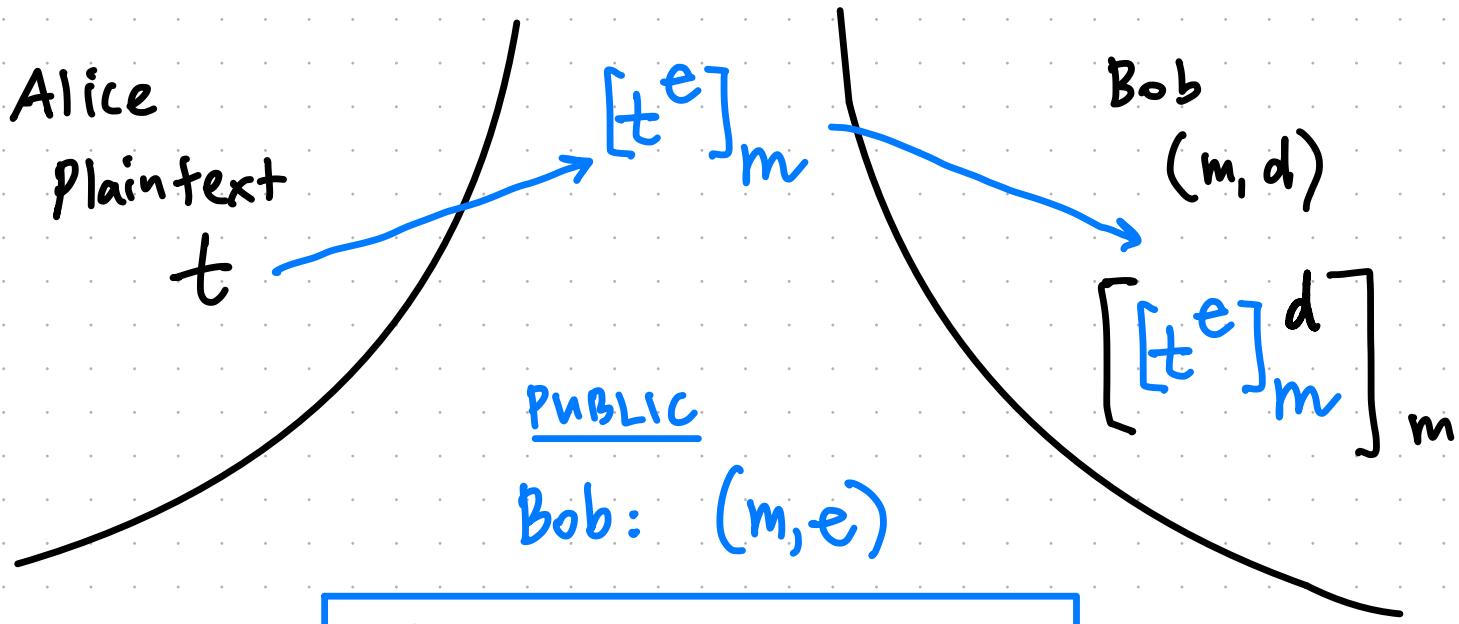
PUBLIC

Bob: (m, e)

all operations are in

$(\mathbb{Z}/n\mathbb{Z}, \cdot)$

SNEAK PEAK OF RSA



all operations are in
 $(\mathbb{Z}/m\mathbb{Z}, \cdot)$

$$\left[[t^e]_m^d \right]_m = [t^{ed}]_m$$

Let us select $m = p$, a prime.

Consider $(\mathbb{Z}/p\mathbb{Z}^*, \cdot)$.

cardinality $\phi(p) = p - 1$.

Let us select $m = p$, a prime.

Consider $(\mathbb{Z}/p\mathbb{Z}^*, \cdot)$.

cardinality $\phi(p) = p - 1$.

We have seen that

$$[t^{k\phi(p)}]_p = [1]_p$$

holds for all $t \in \mathbb{Z}/p\mathbb{Z}^*$.

Let us select $m = p$, a prime.

Consider $(\mathbb{Z}/p\mathbb{Z}^*, \cdot)$.

cardinality $\phi(p) = p - 1$.

We have seen that

$$[t^{k\phi(p)}]_p = [1]_p$$

holds for all $t \in \mathbb{Z}/p\mathbb{Z}^*$.

Hence

$$[t^{k\phi(p)+1}]_p = [t]_p$$

Let us select $m = p$, a prime.

Moreover, for $t = [0]$, we also have

$$[t^{k\phi(p)+1}]_p = [t]_p.$$

Hence, for $\underline{\forall} t \in \mathbb{Z}/p\mathbb{Z}$:

$$[t^{k\phi(p)+1}]_p = [t]_p$$

no star!

Let us select $m = p$, a prime.

We want

$$[t^{ed}]_p = [t]_p.$$

Hence, select e, d such that

$$ed = k\phi(p) + 1$$

$$ed + \overbrace{k\phi(p)} = 1$$

Let us select $m = p$, a prime.

We want

$$[t^{ed}]_p = [t]_p.$$

Hence, select e, d such that

$$ed = k\phi(p) + 1$$

By Bézout, if e and $\phi(p)$ are coprime, then d and k exist to satisfy this!