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After Z/mZ we could proceed in two directions:

↭ focus on finite groups, which are finite sets with one operation, like
(Z/mZ,+). We do so now because we need them for cryptography.

↭ focus on finite fields, which are finite sets with two operations, like
(Z/mZ,+, ·), with the extra property that every non-zero element has a
multiplicative inverse. We do so later as we need finite fields for channel
coding.
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We care about commutative groups because:

↭ they lead to exponentiation and logarithms

↭ which are the building blocks of various cryptographic algorithms,
including DH, RSA, and ElGamal’s encryption scheme.
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DEFINITION (COMMUTATIVE GROUP)

A commutative group (also called Abelian group) is a set G endowed with a
binary operation ω that combines any two elements a and b to form another
element denoted a ω b. The group operation ω must satisfy the following five
axioms:

↭ (Closure:) For all a, b → G, the result of the operation a ω b is also in G.

↭ (Associativity:) For all a, b → G, a ω (b ω c) = (a ω b) ω c.

↭ (Identity element:) There exists an element e → G, such that for all
a → G, a ω e = e ω a = a.

↭ (Inverse element:) For all a → G, there exists b → G, such that
a ω b = b ω a = e.

↭ (Commutativity:) For all a, b → G, a ω b = b ω a.
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EXERCISE

Which are commutative groups?

1. (R,+)

2. (R, ·)

3. (R\{0}, ·)

4. (C,+)

5. (Z/mZ,+)

6. (Z/mZ, ·)

7. (Z/mZ\{[0]m}, ·)

8. (N,+)

9. (Z,+)

10. (Z\{0}, ·)
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SOLUTION

Which are commutative groups?

1. (R,+): Yes.

2. (R, ·): No, 0 has no inverse.

3. (R\{0}, ·): Yes.

4. (C,+): Yes.

5. (Z/mZ,+): Yes.

6. (Z/mZ, ·): No, [0]m has no inverse.

7. (Z/mZ\{[0]m}, ·): Only if m is prime.

8. (N,+): No.

9. (Z,+): Yes.

10. (Z\{0}, ·): No, only 1 is invertible.
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(Z/mZ→, ·)

To obtain a commutative group with the modulo multiplication, we take only
the elements of Z/mZ that have a multiplicative inverse. The resulting set is
denoted Z/mZ→.

THEOREM (TEXTBOOK THM 9.1)

For every integer m > 1, (Z/mZ→, ·) is a commutative group.

PROOF

Check the axioms: closure, associativity, identity element, inverse element,
commutativity.
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EXAMPLE : (TL/10x*,)
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CLOSURE ?

let a
,
b e /m**

↳ is ab eX/m
ANSWER : YES !

PROOF BY CONSTRUCTION :

CONSTRUCT THE Inverse of ab.
↳ b-"a
WORKS BECALE ba ab =5 b = 1

abbat = 1 v



DEFINITION (TEXTBOOK DEF. 8.5)

Euler’s ω(n) function (also called Euler’s totient function) is the number of
positive integers in {1, . . . , n} that are relatively prime to n.

Observations:

↭ Recall that two integers a and b are relatively prime iff gcd(a, b) = 1.

↭ Hence 1 is relatively prime with every integer.

↭ ω(m) is the cardinality of Z/mZ→.

↭ If p is prime, ω(p) = p → 1.
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EXAMPLE

↭ ω(1) = 1

↭ ω(2) = 1, Z/2Z→ = {1}

↭ ω(3) = 2, Z/3Z→ = {1, 2}

↭ ω(4) = 2, Z/4Z→ = {1, 3}

↭ ω(5) = 4, Z/5Z→ = {1, 2, 3, 4}

↭ ω(6) = 2, Z/6Z→ = {1, 5}

↭ ω(7) = 6, Z/7Z→ = {1, 2, 3, 4, 5, 6}
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EXERCISE

Prove the following:

↭ If p is prime and k is a positive integer, ω(pk ) = pk
→ pk↑1.

↭ If p and q are distinct primes, ω(pq) = ω(p)ω(q) = (p → 1)(q → 1).
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p (prive) f(pk) = pk-pk-1

51 , 2, 3 ... p, p
+ 1
, p+2, -.2p , zp +1 ... 3p ...

- p2, p+,

---pk3



p (prive) f(pk) = pk-pk-1

31 , 2, 3 ... p
-1
, p , p+1 , p+2..., 2p-1, 2p. --

... 3 p , 3p+ 1, ... 4p ...

... pk-1 p3



p, g : prives ↑(pq) = (p-z)(q - 1)(distinct)
(p < q)
2 1, 2, 3, ... P , pt ... 2p ... 9 , 29
-- P93

pq -q
-

p + 1



SOLUTION (OUTLINE)

↭ In {1, 2, . . . , pk
}, only the numbers p, 2p, 3p, . . . , pk→1p are divisible by p.

Hence pk
→ pk→1 elements of {1, 2, . . . , pk

} are not divisible by p.

↭ In {1, 2, . . . , pq}, only pq is divisible by both, p and q.

Hence, there are q elements that are divisible by p, p elements that are
divisible by q, and one which is divisible by both.

pq → p → q + 1 = (p → 1)(q → 1) elements are divisible by neither.
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EXERCISE

Below is the multiplication table of (Z/5Z→, ·). Every element of Z/5Z→ shows
up exactly once in every row. Is it surprising?

Z/5Z→
→ 1 2 4 3

1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4
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SOLUTION

We have seen that in Z/mZ, when a↑1 exists, the map Z/mZ ↑ Z/mZ

x ↑ ax

is a bijection.

Each row of the above table is such a map. (The same is true for each
column.)
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Nota Bene:

↭ In (Z/mZ,+), the identity element is [0]m.

↭ In (Z/mZ→, ·), the identity element is [1]m.
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CARTESIAN PRODUCTS

Recall that if A1 and A2 are sets, the cartesian product A = A1 → A2 is the
set

A = A1 → A2 = {(a1, a2) : a1 ↓ A1, a2 ↓ A2}.

Similarly, (G, ω) = (G1, ω1) → (G2, ω2) is the set G = G1 → G2 endowed with
the binary operation ω defined by

(a1, a2) ω (b1, b2) = (a1 ω1 b1, a2 ω2 b2).
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EXAMPLE ((Z/2Z,+)→ (Z/3Z,+))

Z/2Z + 0 1

0 0 1
1 1 0

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

+ 00 01 02 10 11 12

00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01
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THE CARTESIAN PRODUCT OF COMMUTATIVE GROUPS IS A

COMMUTATIVE GROUP

Recall the axioms of a commutative group:

↭ (Closure:) For all a, b → G, the result of the operation a ω b is also in G.

↭ (Associativity:) For all a, b → G, a ω (b ω c) = (a ω b) ω c.

↭ (Identity element:) There exists an element e → G, such that for all
a → G, a ω e = e ω a = a.

↭ (Inverse element:) For all a → G, there exists b → G, such that
a ω b = b ω a = e.

↭ (Commutativity:) For all a, b → G, a ω b = b ω a.

and check that they apply to elements of the form
(a1, a2) → (G1, ω1) ↑ (G2, ω2).

(G1, ω1) ↑ (G2, ω2) is called the product group.
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EXERCISE

Consider (G, ω) = (G1, ω1) ↑ (G2, ω2), where (G1, ω1) = (Z/4Z,+) and
(G2, ω2) = (Z/3Z→, ·):

↭ evaluate (3, 2) ω (1, 2);

↭ find the identity element;

↭ find the inverse element of (3, 2).

438 / 798

-> (0 , 7)

(3
, 2) + (1 ,2) = (0, 1)



(*147
,
+) x(7/37)

x(0, 1)
01 02 11 12 21 223132

&------
i

!
12



SOLUTION

In (Z/4Z,+) → (Z/3Z→, ·):

↭ (3, 2) ω (1, 2) = (0, 1);

↭ e = (0, 1);

↭ the inverse of (3, 2) is (1, 2).

439 / 798



The operation ω of a product group is called product operation.

NB: The product operation can be a component-wise addition, as in

EXAMPLE ((Z/2Z,+)→ (Z/3Z,+))

Z/2Z + 0 1

0 0 1
1 1 0

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

+ 00 01 02 10 11 12

00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01
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EXERCISE

Which of the following are product groups?

↭ (Z/2Z, ·) → (Z/3Z, ·).
↭ (Z/2Z→, ·) → (Z/3Z→, ·).

SOLUTION

↭ (Z/2Z, ·) → (Z/3Z, ·): Not a commutative group, because (0, 0) has no
inverse.

↭ (Z/2Z→, ·) → (Z/3Z→, ·): Indeed a commutative group.
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EXERCISE

Which of the following are product groups?

↭ (Z/2Z, ·) → (Z/3Z, ·).
↭ (Z/2Z→, ·) → (Z/3Z→, ·).

SOLUTION

↭ (Z/2Z, ·) → (Z/3Z, ·): Not a commutative group, because (0, 0) has no
inverse.

↭ (Z/2Z→, ·) → (Z/3Z→, ·): Indeed a commutative group.
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EXERCISE

Let m and n be integers greater than 1.

↭ Is it true that the subset of (Z/mZ, ·) → (Z/nZ, ·) that consists of
elements that have an inverse is a commutative group?

↭ If yes, is it the same commutative group as (Z/mZ→, ·) → (Z/nZ→, ·)?
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SOLUTION

Yes to both questions.

In fact, (G1, ω1) → (G1, ω1) is a group iff both (G1, ω1) and (G1, ω1) are groups.

The subset of (Z/mZ, ·) that contains all the elements of (Z/mZ, ·) that have
an inverse is a group, denoted (Z/mZ→, ·).

Similarly, . . . (same argument with n instead of m).
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GROUP ISOMORPHISM

H 1 z0 12 ①x
0012 of Ro 02 12

1120 2 Q of X2 20
2201 2X x2 2001

ARE G AND H DIFFERENTY

YES AND NO !

THEY ARE ISOMORPHIC .



GROUP ISOMORPHISM

H
0 12 ① 201

0012 2201

1120 0012

2201 1120

ARE G AND H DIFFERENTY

ANSWER : YES AND NO

↳ THEY ARE ISOMORPHIC



GROUP ISOMORPHISM

H
0 12 ① 201

0012 2201

00122 1120

G AND I ARE Is OMORPHIC :

H(0) = 2 m(0) = 7

4 (1) = 0 4
-
(1) = 2

4(2) = 1 4"(2) = 0



ISOMORPHISM

Some sets endowed with an operation might look different, but they are
actually the same once their elements are re-labeled.

DEFINITION

Let (G, ω) and (H,→) be sets, each endowed with a binary operation.

An isomorphism from (G, ω) to (H,→) is a bijection ε : G ↑ H such that

ε(a ω b) = ε(a) → ε(b)

holds for all a, b ↓ G.

We say that (G, ω) and (H,→) are isomorphic if there exists an isomorphism
between them.
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Suppose that ε is an isomorphism from (G, ω) to (H,→). The following
properties hold:

↭ If (G, ω) is a commutative group, so is (H,→).

↭ If e is the identity element of (G, ω), then ε(e) is the identity element of
(H,→).

↭ If a, b are inverse of one another in (G, ω), then ε(a),ε(b) are inverse of
one-another in (H,→).

From a group-theoretic viewpoint, isomorphic groups are the same object.
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Proofs: For the first point, we show that if (G, ω) is a commutative group, so
is (H,→). To do so, each element of H is written as ε(x) for some x ↓ G.

↭ Closure: ε(a) → ε(b) = ε(a ω b) ↓ H;

↭ Associativity: No matter in which order we perform the operations on the
LHS (left-hand side), ε(a) → ε(b) → ε(c) = ε(a ω b ω c);

↭ Identity Element: ε(e) → ε(a) = ε(e ω a) = ε(a), proving that ε(e) is
the identity element in (H,→);

↭ Inverse Element: ε(a) → ε(a→1) = ε(a ω a→1) = ε(e), showing that the
inverse of ε(a) is ε(a→1);

↭ Commutativity: ε(a) → ε(b) = ε(a ω b) = ε(b ω a) = ε(b) → ε(a).

We have also proved the other two points of the previous slide.
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EXAMPLE

(Z/2Z,+) and (Z/4Z↑, ·) are isomorphic.

Z/2Z + 0 1

0 0 1
1 1 0

Z/4Z↑
↔ 1 3

1 1 3
3 3 1

ε : Z/2Z ↑ Z/4Z↑

0 ↑ 1

1 ↑ 3

↭ Check that ε([0]2) is the identity element in (Z/4Z↑, ·).

↭ Check that ε(↗[1]2) is the (multiplicative) inverse of ε([1]2) in (Z/4Z↑, ·).
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EXERCISE

Are (Z/4Z,+) and (Z/5Z→, ·) isomorphic?

Z/4Z + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z/5Z→
→ 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

↭ Hint 1: match up identity elements.

↭ Hint 2: [2]4 is the inverse of itself in (Z/4Z,+).
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SOLUTION

The following correspondence is not negotiable:

↭ 0 ↑ 1 (identity elements must match);

↭ 2 ↑ 4 (inverses must match).

There are two ways to complete:

↭ 1 ↑ 2 and 3 ↑ 3

or

↭ 1 ↑ 3 and 3 ↑ 2.

Both form an isomorphism.
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EXERCISE

Say why the following cannot be isomorphic:

↭ (Z/2Z,+) → (Z/2Z,+) and (Z/3Z,+);

↭ (Z/2Z,+) → (Z/2Z,+) and (Z/4Z,+).
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SOLUTION

↭ (Z/2Z,+) → (Z/2Z,+) and (Z/3Z,+):
They do not have the same cardinality.

↭ (Z/2Z,+) → (Z/2Z,+) and (Z/4Z,+):
They do have the same cardinality.
In (Z/2Z,+) → (Z/2Z,+), the inverse of x is x .
Not the case for (Z/4Z,+).
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EXERCISE

Find an isomorphism from ((0,+↓), ·) to (R,+).

SOLUTION

An isomorphism from ((0,+↓), ·) to (R,+) is:

ω : (0,+↓) ↑ R

x ↔↑ log(x)

ω : (x · y) ↔↑ log(x) + log(y).
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EXERCISE

Find an isomorphism from ((0,+↓), ·) to (R,+).

SOLUTION

An isomorphism from ((0,+↓), ·) to (R,+) is:

ω : (0,+↓) ↑ R

x ↔↑ log(x)

ω : (x · y) ↔↑ log(x) + log(y).
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THEOREM (TEXTBOOK THM 9.4)

Let (G, ε) be a finite commutative group with identity element e.

For every a ↗ G, there exists an integer k ↘ 1, such that

a ε a ε · · · ε a︸ ︷︷ ︸
k terms

= e.
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PROOF : (G , A) , G FINITE

LET a E G :

a a 2
,

a 3
, a t, 95

,
as
,
at

, ..

BECAUSE G IS FINITE
,

THERE MUST BE i j
Such

&

I ji- i
a

=a -)*ai



For the proof, we use the notation ak := a ω a ω · · · ω a︸ ︷︷ ︸
k terms

.

For instance, in (Z,+), a3 = a + a + a.

Proof:

↭ The commutative group is finite, hence the sequence

a, a2, a3, a4, . . .

must contain repetitions.

↭ Suppose ai = aj with i < j .

↭ By multiplying both sides by (a→1)i we obtain e = aj→i .
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THE ORDER OF A GROUP ELEMENT

DEFINITION (TEXTBOOK DEFINITION 9.4)

Let (G, ω) be a finite commutative group with identity element e, and let
a → G.

The smallest positive integer k such that

a ω a ω · · · ω a︸ ︷︷ ︸
k terms

= e

is called the order of a.

Sometimes it is called the period of a. ("Période de a" in French.)
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EXAMPLE

The order of [a]12 → (Z/12Z,+) is the smallest k such that

[a]12 + [a]12 + · · · + [a]12︸ ︷︷ ︸
k terms

= [0]12.

↭ For a = 3, the order is 4.

↭ For a = 4, the order is 3.

↭ For a = 5, the order is 12.
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EXAMPLE

The order of [a]8 → (Z/8Z↑, ·) is the smallest k such that

[a]8 · [a]8 · · · [a]8︸ ︷︷ ︸
k terms

= [1]8.

Mind that Z/8Z↑ = {[1]8, [3]8, [5]8, [7]8}).

↭ For a = 1, the order is 1.

↭ For a = 3, the order is 2.

↭ For a = 5, the order is 2.

↭ For a = 7, the order is 2.
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EXERCISE

Find the order of every element in ((Z/2Z)2,+).

SOLUTION

In ((Z/2Z)2,+), the identity is ([0]2, [0]2).

↭ ([0]2, [0]2) has order 1.

↭ ([0]2, [1]2) has order 2.

↭ idem for ([1]2, [0]2).

↭ idem for ([1]2, [1]2).
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EXERCISE

Find the order of every element in ((Z/2Z)2,+).

SOLUTION

In ((Z/2Z)2,+), the identity is ([0]2, [0]2).

↭ ([0]2, [0]2) has order 1.

↭ ([0]2, [1]2) has order 2.

↭ idem for ([1]2, [0]2).

↭ idem for ([1]2, [1]2).
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EXAMPLE

Z/10Z↑ = {1, 3, 7, 9}. Find the order of each element in (Z/10Z↑, ·).

Hint: it is recommended to reduce intermediate results.

SOLUTION

x x2 x3 x4 order
1 1
3 9 7 1 4
7 9 3 1 4
9 1 2

or, for instance,

x x2 x3 x4 order
1 1
3 -1 -3 1 4
7 -1 3 1 4
9 1 2

459 / 798

order (1) = 1

32 =93" = 323 = 9.3 = 7

34 = 32 . 3 = 7 . 3 = 21 = 1



EXAMPLE

Z/10Z↑ = {1, 3, 7, 9}. Find the order of each element in (Z/10Z↑, ·).

Hint: it is recommended to reduce intermediate results.

SOLUTION

x x2 x3 x4 order
1 1
3 9 7 1 4
7 9 3 1 4
9 1 2

or, for instance,

x x2 x3 x4 order
1 1
3 -1 -3 1 4
7 -1 3 1 4
9 1 2
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↭ Recall: An isomorphism ε from (G, ω) to (H,↑) maps the identity
element of (G, ω) to the identity element of (H,↑).

↭ This implies that the order of g → (G, ω) is the same as the order of
ε(g) → (H,↑).

EXAMPLE

↭ In (Z/2Z2,+), the orders are 1, 2, 2, 2.

↭ In (Z/10Z↑, ·), the orders are 1, 4, 4, 2.

↭ Hence the two commutative groups cannot be isomorphic.
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The following result is given without proof:

THEOREM

Two finite commutative groups are isomorphic iff they have the same set of
orders.
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Let e be the identity element of a commutative group (G, ω) and let a → G.

Find the integers k such that a ω a ω · · · ω a︸ ︷︷ ︸
k terms

= e.

EXAMPLE (ADDITION)

(G, ω) = (Z/12Z,+), e = [0]12, a = [2]12

k 1 2 3 4 5 6 7 8 9 · · ·

([2]12)
k = k [2]12 2 4 6 8 10 0 2 4 6 · · ·

The values of k are the integer multiples of the order of a, which is 6.
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EXAMPLE (MULTIPLICATION)

(G, ω) = (Z/10Z↑, ·), e = [1]10, a = [3]10

k 1 2 3 4 5 6 7 8 9 · · ·

([3]10)
k 3 9 7 1 3 9 7 1 3 · · ·

The values of k are the integer multiples of the order of a, which is 4.

It is always like that: For a → (G, ω), ak = e when k is an integer multiple of
the order of a.

This is not surprising: if q is the order of a and k = qn, we can write
ak = (aq)n = en = e. The following theorem states an even stronger result.
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THEOREM

Let (G, ω) be a commutative group and a → G.

An integer k satisfies a ω a ω · · · ω a︸ ︷︷ ︸
k terms

= e iff the order of a divides k .
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PROOF

Recall the notation: ak means a ω a ω · · · ω a︸ ︷︷ ︸
k terms

.

↭ Let p be the order of a and write k = pq + r , 0 ↓ r < p.

↭ e = ak = apq+r = (ap)q ω ar = ar .

↭ r = 0, because p is the smallest positive integer such that ap = e.

↭ Hence k is a multiple of p.
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YESTERDAY

· Group (G, 1)
· (x/m7(*, ·) : P(m) ELEMENTS

· PRODUCT GROUP :

(a
,
b) WITH : a

- (G
+ ,
*)

be (G2 , 12)
· ISOMORPHISM



· CURIOUS PROPERTY IN

FINITE GROUPS :

k
a = a * a * a ... a = e
-
& TERMS

·SMALLEST sucH & IS CALLED

ORDER OFa

· ak= e e k is A MULTIPLE
OF THE ORDER

OF a



EXAMPLE

↭ the order of [2]12 → (Z/12Z,+) is 6:

l 1 2 3 4 5 6 7 8 · · ·

l[2]12 2 4 6 8 10 0 2 4 · · ·

↭ the order of [3]10 → (Z/10Z→, ·) is 4:

l 1 2 3 4 5 6 · · ·

([3]10)
l 3 9 7 1 3 9 · · ·

Z/12Z has cardinality 12 and the cardinality of Z/10Z→ = {1, 3, 7, 9} is 4.

In both cases, the order divides the cardinality of the commutative group. A
coincidence?
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THEOREM (LAGRANGE, TEXTBOOK THM 9.3)

Let (G, ω) be a finite commutative group of cardinality n. The order of each of
its elements divides n.
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EQUIVALENCE RELATION AND EQUIVALENCE CLASSES

To be ready for the elegant proof of Lagrange’s theorem, we review the
concept and the implication of an equivalence relation .

Relationships occur in many contexts in life. In math, they are represented by
the structure called a binary relation.

EXAMPLE

To relate people to their car, we can define

↭ a set A of all people;

↭ a set B of all cars;

↭ a set R ↑ A ↓ B that contains (a, b) iff person a owns car b.

The set R is called a binary relation from A to B.

The shorthand notations a ↔ b and a R b mean the same as (a, b) → R.

468 / 798



If the sets A and B are the same, then we speak of a relation on A.

An equivalence relation is a special case of a relation on a set. It is used to
relate objects that are similar in some way, like in Z, we may relate a and b if,
for a specified m, [a]m = [b]m.

DEFINITION

A relation on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive.
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EXAMPLE

Let A be the set of all EPFL students.

Define R =
{
(a, b) → A ↓ A : a and b graduated from the same high school

}

R is an equivalence relation. In fact

↭ a ↔ a (reflexive);

↭ if a ↔ b then b ↔ a (symmetric);

↭ if a ↔ b and b ↔ c then a ↔ c (transitive).
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EXERCISE

Let A be a set of people.

Define R =
{
(a, b) → A ↓ A : a trusts b

}
.,

Is this an equivalence relation?

SOLUTION

No, this relation on A is not symmetric.
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EXERCISE

Let A be a set of people.

Define R =
{
(a, b) → A ↓ A : a trusts b

}
.,

Is this an equivalence relation?

SOLUTION

No, this relation on A is not symmetric.
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EXERCISE

Let A be the students of AICC-II.

Define
R =

{
(a, b) → A ↓ A : a and b got the same score in AICC-I or AICC-II

}
.

Is this an equivalence relation?

SOLUTION

No, this relation on A is not transitive.
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EXERCISE

Let A be the students of AICC-II.

Define
R =

{
(a, b) → A ↓ A : a and b got the same score in AICC-I or AICC-II

}
.

Is this an equivalence relation?

SOLUTION

No, this relation on A is not transitive.
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Let R be an equivalence relation on A and a → A.

By [a] we denote the equivalence class of a:

[a] =
{

b → A : b ↔ a
}
.

Any element of an equivalence class can be used to represent the class: if
b → [a] then [b] and [a] are the same class.

Every a → A is in one and only one equivalence class. In fact, if a → [b] and
a → [c] then [b] = [a] = [c].

To say it in a different way, an equivalence relation on A partitions A into
equivalence classes: they are disjoint subsets of A and their union is A.
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EXAMPLE (CONTINUATION)

Let A be the set of all EPFL students.

Define R =
{
(a, b) → A ↓ A : a and b graduated from the same high school

}
.

We can partition A into sets of students that graduated from the same high
school. Each student is in exactly one such subset.
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(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

Equivalence relation :

↳ Select arbitrary he /201*.



(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

Equivalence relation :

↳ Select arbitrary he /201*.

2) a -b means all =b for some 221.

Is this really an equivalence relation ?
I reflexivity
a symmetry : bea or bh = a
3) transitivity :arh or aha b c



(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

Equivalence relation :

↳ Select arbitrary he /201*.

2) a -b means all =b for some i.

Equivale relafiom ?
2) synrety and> be a
- # #

ah"=b bui = c
&

ahi
+k
=bhk



FOR 3)
We knowTrbah" = b
a-c aht =c

to 62m = c ?

#

ahhm =aht
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(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

select arbitrary h /201A.

Ex : h =7

[17 = SaeG : a = 1hi
for some :3

= 37, 9 , 3 , 73



(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

select arbitrary h /201A.

Ex : h =7

[17 = 3 1 ,
7
,
9

, 33
[3] = E 19 3

[11] = 311 , 17, 19, 133
=GaeG : a = 11 · 4 bei ?



KEY OBSERVATION

· ALL EQUIVALENCE CLASSES

MUST HAVE THE SAME

CARDINALITY (I.E, NUMBER OF

ELEMENTS)
· ANDHIS CARDINALITY IS

PRECISELY ORDE (k)



(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

select arbitrary h /201A.

E :
h =19

[1) = Ea + G : a = 1 .h for
all i<]

= [19 . 13



(7/207*, ) =(47, 3, 7, 9, 11, 13, 77, 797,)

select arbitrary h /201A.

E :
h =19

[17 = 31
,
193

[3] = 33
,
173

[7) = 37
,
137

197 = 39 , 113



The following example is a special case of the construction used in the proof
of Lagrange’s Theorem.

EXAMPLE

Let (G, ω) be the group
(
Z/20Z→,→

)
=

(
{1, 3, 7, 9, 11, 13, 17, 19},→

)
.

Pick an arbitrary group element, e.g., h = 7.

Let H = {7, 9, 3, 1} be the set that consists of all the powers of h.

We use H to define an equivalence relation on G = {1, 3, 7, 9, 11, 13, 17, 19}:

a ↑ b if ahi = b for some hi
↓ H.

(This is an equivalence relation. We prove it later.) Let us construct the
equivalence classes:

↭ [1] = H = {7, 9, 3, 1};

↭ [11] = {17, 19, 13, 11}.

G = [1] ↔ [11]. It is not a coincidence that all equivalence classes have the
same cardinality. The cardinality of G must be a multiple of the cardinality of
H. 475 / 798



Proof of Lagrange’s Theorem:

↭ Let (G, ω) be a finite commutative group of cardinality n.

↭ Let p be the order of h ↓ G.

↭ Let H = {h, h2, h3, . . . , hp = e}. (Note that (H, ω) is itself a group, and is
called a subgroup of G of cardinality p.)

↭ Define a relation on G:

a ↑ b ↗ ↘hi
↓ H such that a ω hi = b.

↭ It is reflexive (H contains the identity element), symmetric (H contains
the inverse of each of its elements), and transitive (the product of
elements of H is in H) — hence ↑ is an equivalence relation.

↭ An equivalence relation splits G into equivalence classes.

↭ H is one such equivalence class.
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↭ It suffices to show that each equivalence class has the same cardinality
p. Then p must divide n.

↭ We show that there is a one-to-one map between H and each
equivalence class.

↭ The equivalence class of b is [b] = {b ω h, b ω h2, . . . , b ω hp
}.

↭ Clearly the cardinality of [b] is at most p.

↭ It is p because the map f : H ≃ [b] that sends hi to b ω hi is one-to-one.

↭ Proof by contradiction: b ω hi = b ω hk implies hi = hk (b has an inverse).
But for 1 ⇐ i, k ⇐ p, hi = hk holds if and only if i = k .

↭ Hence all equivalence classes have the same cardinality p, which must
divide n.
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EXAMPLE (SOMETHING OLD)

↭ The cardinality of (Z/mZ,+), is m.

↭ For each element [a]m ↓ Z/mZ, m[a]m = [0]m.

↭ Hence the period of each element of (Z/mZ,+) divides m.

In (Z/mZ,+), Lagrange’s Theorem says nothing new to us.
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In (Z/mZ→, ·), Lagrange’s Theorem is non-trivial.

Using the fact that the cardinality of Z/mZ→ is Euler’s ε(m), we obtain:

COROLLARY (EULER’S THEOREM, TEXTBOOK COROLLARY 9.4)

Let m ⇒ 2 be an integer. For all a ↓ (Z/mZ→, ·)

aω(m) = [1]m.

Equivalently, for all integers a that are relatively prime with m,

aω(m)
⇑ 1 (mod m).

The above theorem underlies the cryptographic method studied in the next
chapter.
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PROOF :

1) FROM THM ON p . 464 , WE KNOW

ak = [1]m
IF AND ONLY If R IS A MULTIPLE

OF ORDER (a).
2) FROM LAGRANGE

,
WE KNOW THAT

& (m) IS A MULTIPLE OF ORDER (a) .



COROLLARY (FERMAT’S THEOREM, TEXTBOOK COROLLARY 9.5)

Let p be prime. For all a → (Z/pZ, ·)

ap = a.

Equivalently, for all integers a ,

ap
↑ a (mod p).
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Proof: It follows from Euler’s Theorem, and ω(p) = p ↓ 1, that

a(p→1) = [1]p

holds for all a → (Z/pZ, ·), except for a = [0]p.

By multiplying both sides by a we obtain

ap = a,

which holds also for a = [0]p.
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EXAMPLE

↭ 23
↑ 2 (mod 3)

↭ 43
↑ 4 (mod 3)

↭ 53
↑ 5 (mod 3)

↭ etc.
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RECALL DIFFlE-HELLMAN

Alice's Bob's
private private
space space

secret : a secret : b

A = gamodp B =gmodp
p, g b

Bamodp PUBLIC DIRECTORY A modp
> Alice .... A

Bob ....
BL



RECALL THE DIFFIE-HELLMAN SETUP

↭ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p → 1} and arithmetic is modulo p (more on it later).

↭ Pick a generator g. A generator has the property that gi generates all
elements in {1, 2, . . . , p → 1} when i = 0, 1, . . . , p → 2.

↭ Note: Towards the end of this chapter, after introducing all of the algebra
necessary, we will see that a generator always exists since we are in
what is called a cyclic group.

EXAMPLE

p = 5. The numbers are {0, 1, 2, 3, 4}.

g = 2 is a generator. Indeed:
i gi

0 1
1 2
2 4
3 3
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DISCRETE LOGARITHMS AND CYCLIC GROUPS

We are now in a position to deliver on this.

Specifically: Exponentiation can be defined on any finite group, but its
inverse, the logarithm, is well-defined only for cyclic groups.

Next, we define cyclic groups and study their properties.
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CYCLIC GROUPS

Given a finite commutative group (G, ω), we can take any of its elements, say
g ↑ G, and compute g2, g3, . . . , until for some n (the order of g), gn = e,
where e is the identity in G.

The result is the group H = {e, g, g2, . . . , gn→1
}.

H is the cycle of a single element, g. Any finite group of cardinality n, that
consists of the cycle of a group element g is called a cyclic group of order
n, and g is called a generator. A generator is not necessarily unique.

Note: even if (G, ω) is infinite and non-commutative, (H, ω) is finite (by
construction) and commutative. Indeed, gi ω gk = gi+k = gk ω gi .
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EXAMPLE (CYCLIC GROUP)

(C, ·) is an infinite group that contains j =
↓

→1.
(

H =
{

j, j2, j3, j4 = 1
}
, ·
)

is a cyclic group, and j as well as →j are generators.

486 / 798



EXAMPLE (CYCLIC GROUP)
(
Z/mZ,+

)
is a cyclic group of order m and g = 1 is one of its generators.
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EXAMPLE (CYCLIC GROUP)
(
Z/5Z↑,↔

)
is a finite commutative group. Its elements are {1, 2, 3, 4}. The

group can be generated by the powers of 2. Hence the group is a cyclic
group of order n = 4 and g = 2 is one of its generators.
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All cyclic groups that have the same order are isomorphic.

Proof: Let (G, ω) and (H, ↗) be cyclic groups of order n generated by g and
h, respectively.

The map
ε : G ↘ H

gi
≃↘ hi .

is an isomorphism: In fact

↭ it is a bijection and

↭ for a = gi and b = gj we have

ε(a ω b) = ε(gi ω gj) = ε(gi+j) = hi+j = hi
↗ hj = ε(a) ↗ ε(b).
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Let (G, ω) be a cyclic group of order n generated by g.

Let b = gi be one of its elements, 1 ⇐ i ⇐ n.

The order of b is the smallest k such that bk = gik equals e.

ik is the smallest multiple of n and i , i.e.,

k =
lcm(i, n)

i
=

n
gcd(i , n)

.
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EXAMPLE
(
Z/5Z↑,↔

)
is a cyclic group of order n = 4, and g = 2 is a generator.

Let i = 2 and consider the group element b = gi = 4. The order of b is

n
gcd(i, n)

=
4

gcd(2, 4)
= 2.

(Let us verify: b2 =
(
22)2

= 1, as it should.)
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gi is another generator iff it has order n, i.e. iff gcd(i, n) = 1.

The number of such i in {1, . . . , n} is Euler’s ϑ(n).

EXAMPLE

The elements of
(
Z/5Z↑,↔

)
are {1, 2, 3, 4}, and g1 = 2 is a generator.

Hence
(
Z/5Z↑,↔

)
is a cyclic group of order 4.

There are ϑ(4) = 2 generators, one for each i such that gcd(i , 4) = 1. Those
i are i = 1 and i = 3. The other generator is g2 = g3

1 = 3.
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Recall that we have proved the following: a cyclic group of order n has ϑ(n)

generators.

However, not all groups are cyclic.

EXAMPLE (A NON-CYCLIC GROUP)

The elements of the group
(
Z/24Z↑,↔

)
are {1, 5, 7, 11, 13, 17, 19, 23}.

The cardinality of this group is n = 8. However, it would be a mistake to
conclude that the group has ϑ(8) = 4 generators.

All we can say is that if it has a generator (in this case the group is a cyclic
group of order 8), then it has 4 generators.

But in fact, this group has no generator: except for 1, all the elements have
order 2.
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DISCRETE LOGARITHMS

For any element h of a finite commutative group (G, ω), the discrete
exponentiation hi is well-defined for any integer i . (Note that i is an integer,
not an element of (G, ω).)

The discrete logarithm to the base b ↑ G of h ↑ G is the integer i such that
bi = h. This is well-defined (for every h ↑ G) iff (G, ω) is a cyclic group, and
b is one of its generators.
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Let (G, ω) be a cyclic group of order n generated by b. The discrete
exponentiation to the base b is the map

f : Z/nZ ↘ G
[i]n ≃↘ bi .

We prove that it is well-defined and that it is an isomorphism from (Z/nZ,+)

to (G, ω).
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Proofs:

We show that the map is well-defined: suppose that [i]n = [j]n, then
j = i + nk for some integer k , and

f ([j]n) = gi+nk = gi ω gnk = gi = f ([i]n).

Next we show tha the map is one-to-one: If f ([i]n) = f ([j]n), then:

↭ gi = gj ;

↭ gi→j = e;

↭ i → j ↑ {0, n, 2n, . . . };

↭ [i]n = [j]n.

By the pigeonhole principle, the map is also onto, hence it is a bijection.
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Finally we prove that f : Z/nZ ↘ G is an isomorphism:

f ([i]n + [j]n) = gi+j = gi ω gj = f ([i]n) ω f ([j]n).

The inverse map
f→1 : G ↘ Z/nZ

a = bi
≃↘ [i]n,

is called the discrete logarithm to the base b. Naturally, we write

[i]n = logb a.
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Note that the usual rules for exp and log apply: Specifically, for any group
generator b of order n, we have:

↭ (
ai)j

= aij ;

↭ aiaj = ai+j ;

↭ logb(c ω d) = logb c + logb d ;
Mind that on the RHS we have elements of (Z/nZ,+, ·);

↭ logb ak = [k ]n logb a.
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COMPLEXITY OF THE DISCRETE EXPONENTIATION

For an element of a group of order n, discrete exponentiation requires at
most 2 log2 n operations. Let us count them:

↭ to compute ak , 1 < k < n, we write k in binary form using L = log2 n bits:

k =
L→1∑

i=0

bi2i , with bi ↑ {0, 1};

↭ now

ak = a
∑L→1

i=0 bi 2
i
=

L→1∏

i=0

abi 2
i

=
L→1∏

i=0

(
a2i)bi

=
L→1∏

i=0

abi
i ,
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where ai = a2i
is computed as follows:

a0 = a

a1 = a2
0

a2 = a4
0 = a2

1

a3 = a8
0 = a2

2

...

aL→1 = a2L→1

0 = a2
L→2.

↭ It takes L → 1 operations to compute a1, . . . , aL→1 It takes at most L → 1
operations to compute

∏L→1
i=0 abi

i . (No computation required to perform
abi

i .)

↭ The total number of operations is at most 2(L → 1) < 2 log2 n.
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FINDING THE INVERSE

Recall that in ElGamal’s scheme, to invert the function we compute the
inverse of gyx . To compute the multiplicative inverse of a number
[b]m ↑ (Z/mZ↑, ·), we can proceed two ways:

1. we use Bézout to write 1 = gcd(b,m) = bu + mv , hence [u]m is the
inverse;

2. we use the fact that [b]ω(m)
m = 1, hence [b]ω(m)→1

m is the inverse.

Often Bézout is more efficient, but if m is prime, we know that ϑ(m) = m → 1.
Exponentiation can be done efficiently.

If we are in a cyclic group of order n, then we know that bn = 1. Hence the
inverse of b is bn→1.
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all operations are in

(x/mTL , ·)
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all operations are in
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Let us select m = p ,
a prime.

Considerp*,).
cardinality (p) = p

- 1
.

We have seen that

[+
& + (p)) = [1]
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holds for + +</pi*
Hence
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Let us select m = p ,
a prime.

Moreover
, for te[O) ,

we also have

[ +
ha(p)+ )p = [ + 7p -

= no star !
Here

, forI to X/pk :

[ + ka(p)
+

z]) = [ +)p



Let us select m = p ,
a prime.

We want

[ +
e

]p = [t)p
Hence

,
select ad such that

ed = kf(p) + 1

ed++(p) = 1



Let us select m = p ,
a prime.

We want

[ +
e
j = [t)pP

Hence
,
select ad such that

ed = kf(p) + 1

By Bezont
, if e and (p)

are coprime , then
d and

to exist to satisfy this !


