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After Z/mZ we could proceed in two directions:

» focus on finite groups, which are finite sets with one operation, like
(zZ/mz,+). We do so now because we need them for cryptography.

» focus on finite fields, which are finite sets with two operations, like
(Z/mzZ,+, -), with the extra property that every non-zero element has a
multiplicative inverse. We do so later as we need finite fields for channel
coding.
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We care about commutative groups because:

> they lead to exponentiation and logarithms

» which are the building blocks of various cryptographic algorithms,
including DH, RSA, and ElGamal’s encryption scheme.
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DEFINITION (COMMUTATIVE GROUP)

A commutative group (also called Abelian group) is a set G endowed with a
binary operation x that combines any two elements a and b to form another
element denoted a x b. The group operation x must satisfy the following five
axioms:

» (Closure:) For all a, b € G, the result of the operation ax b is also in G.
> (Associativity:) Foralla,b e G, ax(bxc) = (axb)*c.

> (ldentity element:) There exists an element e € G, such that for all
ac @G axe=exa=a.

> (Inverse element:) For all a € G, there exists b € G, such that
axb=bxa=e.

» (Commutativity:) Foralla,be€ G, axb=bxa.
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EXERCISE

Which are commutative groups?

(R, +) YG’
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SOLUTION

Which are commutative groups?

10.

R, +): Yes.
-): No, 0 has no inverse.
R\{0},-): Yes.
C,+): Yes.
Z/mZ,+): Yes.

Z/mZ\{[0]m}, -): Only if mis prime.

N, +): No.

(

(R,

(

(

(

(z/mZ,-): No, [0]m has no inverse.
(

(

(Z,+): Yes.

(

Z\{0}, -): No, only 1 is invertible.
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(Z/mZ*,)

To obtain a commutative group with the modulo multiplication, we take only
the elements of Z/mZ that have a multiplicative inverse. The resulting set is
denoted Z/mZ*.

THEOREM (TEXTBOOK THM 9.1)

For every integer m > 1, (Z/mZ*, -) is a commutative group.

PROOF

Check the axioms: closure, associativity, identity element, inverse element,
commutativity.
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DEFINITION (TEXTBOOK DEF. 8.5)

Euler’s ¢(n) function (also called Euler’s totient function) is the number of
positive integers in {1,. .., n} that are relatively prime to n.

Observations:

> Recall that two integers a and b are relatively prime iff gcd(a, b) = 1.
» Hence 1 is relatively prime with every integer.

> ¢(m) is the cardinality of Z/mZ~.

> If pis prime, ¢(p) =p — 1.
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EXAMPLE

>

>

¢(1) =1

. Z/2z* = {1}
, Z/3Z* ={1,2}
. Z/4z* = {1,3}

, Z/5Z* = {1,2,3,4}

, Z/6Z" ={1,5}

, Z)77° ={1,2,3,4,5,6}
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EXERCISE

Prove the following:

> If pis prime and k is a positive integer, ¢(p*) = p* — p*=".

» If pand q are distinct primes, ¢(pq) = é(p)¢(q) = (p— 1)(g —1).
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SOLUTION (OUTLINE)
> In{1,2,...,p"}, only the numbers p,2p, 3p, ..., p*~" p are divisible by p.

Hence p* — p*~' elements of {1,2, ..., p"} are not divisible by p.

> In{1,2,...,pqg}, only pq is divisible by both, p and q.

Hence, there are q elements that are divisible by p, p elements that are
divisible by g, and one which is divisible by both.

pg—p—qg+1=(p—1)(g— 1) elements are divisible by neither.
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EXERCISE

Below is the multiplication table of (Z/5Z*, -). Every element of Z/5Z* shows
up exactly once in every row. Is it surprising?

z/5zF x ;1 2 4 3
111 2 4 3
212 4 3 1
414 3 1 2
3(3 1 2 4
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SOLUTION

We have seen that in Z/mZ, when a~" exists, the map Z/mZ — 7./ mZ
X — ax
is a bijection.

Each row of the above table is such a map. (The same is true for each
column.) O
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Nota Bene:

» In(Z/mZ,+), the identity element is [0] .

> In(Z/mZ",-), the identity element is [1]m.
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CARTESIAN PRODUCTS

Recall that if A and A, are sets, the cartesian product A = Ay x A is the

set
A=A1 ><.A2 = {(31,32) L ay E.A1,32 E.Ag}.

Similarly, (G, x) = (Gi,*1) x (Gz, *2) is the set G = Gy x Gz endowed with
the binary operation x defined by

(a1, @) x (b1, b2) = (@1 x1 by, @ *2 bp).
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EXAMPLE ((Z/2Z,+) x (Z/37Z,+))

00

01

02

10

11

12

7/27. + 1

0 1

1 0

Z/3Z + 0 2
0|0 2

1] 1 0

2|2 1

00
01
02
10
11
12

00
01
02
10
11
12

01
02
00
11
12
10

02
00
01
12
10
11

10
11
12
00
01
02

11
12
10
01
02
00

12
10
11
02
00
01
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THE CARTESIAN PRODUCT OF COMMUTATIVE GROUPS IS A
COMMUTATIVE GROUP

Recall the axioms of a commutative group:

v

(Closure:) For all a, b € G, the result of the operation ax b is also in G.

v

(Associativity:) Foralla,b € G, ax(bxc)=(axb)xc.

v

(Identity element:) There exists an element e € G, such that for all
ace@G, axe=exa=a.

v

(Inverse element:) For all a € G, there exists b € G, such that
axb=bxa=e.

» (Commutativity:) Foralla,be G, axb=bxa.

and check that they apply to elements of the form
(a1,a2) c (G1,*1) X (Gg,*g).

(G1,%1) x (Gz,*2) is called the product group.
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EXERCISE

Consider (G, *) = (G1,*1) X (Gz, x2), where (Gi,*1) = (Z/4Z,+) and
(G27*2) = (2/32*7 )

> evaluate (3,2) x (1,2);
> find the identity element; — ) (O‘ j’>

> find the inverse element of (3, 2).

(32)+(\2) = (2, 1)
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SOLUTION
In(Z/AZ,+) x (Z/3Z,"):

> (3,2)x(1,2) = (0,1);
> e=(0,1);
> the inverse of (3,2) is (1,2).
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The operation x of a product group is called product operation.

NB: The product operation can be a component-wise addition, as in

EXAMPLE ((Z/2Z,+) x (Z/37Z,+))

7/27. + 1

0 1

1 0

Z/3Z + 0 2
010 2

1|1 0

2|2 1

+ ,00 01 02 10 11 12
060 (00 O1 02 10 11 12
01 (01 02 00 11 12 10
0202 00 O1 12 10 11
10 | 10 11 12 00 01 02
11111 12 10 01 02 00
12|12 10 11 02 00 Of
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EXERCISE

Which of the following are product groups?

> (Z/2Z,-) x (Z/3L,").
> (Z/22,") x (Z/3Z*,").
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EXERCISE

Which of the following are product groups?

> (Z/2Z,-) x (Z/3L,").
> (Z/22,") x (Z/3Z*,").

SOLUTION

> (Z/2Z,-) x (Z/3Z,-): Not a commutative group, because (0, 0) has no
inverse.

» (Z/2Z*,-) x (z/3Z",-): Indeed a commutative group.
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EXERCISE

Let m and n be integers greater than 1.

> |s it true that the subset of (Z/mZ,-) x (Z/nZ,-) that consists of
elements that have an inverse is a commutative group?

> If yes, is it the same commutative group as (Z/mZ*,-) x (Z/nZ",-)?
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SOLUTION

Yes to both questions.
In fact, (Gi,*1) x (Gi,*1) is a group iff both (Gi, x1) and (G, x1) are groups.

The subset of (Z/mZ, -) that contains all the elements of (Z/mZ, -) that have
an inverse is a group, denoted (Z/mZzZ*, -).

Similarly, ... (same argument with n instead of m).
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ISOMORPHISM

Some sets endowed with an operation might look different, but they are
actually the same once their elements are re-labeled.

DEFINITION

Let (G, x) and (H, ®) be sets, each endowed with a binary operation.

An isomorphism from (G, ) to (H, ®) is a bijection ¢ : G — H such that
P(axb) = v(a) @ y(b)

holds for all a,b € G.

We say that (G, x) and (H, ®) are isomorphic if there exists an isomorphism
between them.
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Suppose that ¢ is an isomorphism from (G, %) to (H, ®). The following
properties hold:

> If (G, %) is a commutative group, so is (H, ®).

> If eis the identity element of (G, x), then ¢ (e) is the identity element of
(H,®).

> If a, b are inverse of one another in (G, x), then ¥(a), ¢(b) are inverse of

one-another in (H, ®).

From a group-theoretic viewpoint, isomorphic groups are the same object.
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Proofs: For the first point, we show that if (G, x) is a commutative group, so
is (H, ®). To do so, each element of H is written as (x) for some x € G.

» Closure: ¥(a) @ ¥(b) = y(axb) € H;

» Associativity: No matter in which order we perform the operations on the
LHS (left-hand side), ¥(a) ® ¥(b) ® ¥(c) = Y(ax bx c);

> Identity Element: ¢(e) ® ¥(a) = (e x a) = y(a), proving that ¥(e) is
the identity element in (H, ®);

> Inverse Element: ¢(a) @ w(a ') = (axa ') = y(e), showing that the
inverse of ¥(a) is (a ');

» Commutativity: ¥ (a) ® ¥(b) = ¥(axb) = (b a) = ¢(b) ® ¥(a).

We have also proved the other two points of the previous slide.
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EXAMPLE

(z/2Z,+) and (Z/4Z*, -) are isomorphic.

z/2Z2 + ;0 A Z/47* x 1 3 Y 2/27 — L/AZ"
00 1 111 3 0—1
111 0 3|13 1 1—3

» Check that ¢([0]2) is the identity element in (Z/4Z*, -).
> Check that ¢»(—[1]2) is the (multiplicative) inverse of ¢ ([1]2) in (Z/4Z", -).
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EXERCISE
Are (Z/4Z,+) and (Z/5Z", -) isomorphic?

Z/AZ +,0 1 2 3 Z/52F x 1 2 3 4
0ojlo 1 2 3 101 2 3 4
111 2 3 0 2|2 4 1 3
2|2 3 0 1 3/3 1 4 2
3|3 0 1 2 414 3 2 1

> Hint 1: match up identity elements.
> Hint 2: [2], is the inverse of itself in (Z/4Z, +).
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SOLUTION

The following correspondence is not negotiable:

» 0 — 1 (identity elements must match);

» 2 — 4 (inverses must match).
There are two ways to complete:
» 1 —-2and3 — 3
or
» 1 —»3and3 — 2.

Both form an isomorphism.
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EXERCISE

Say why the following cannot be isomorphic:

> (Z/2Z,+) x (Z/2Z,+) and (Z/3Z, +);
> (Z/2Z,+) x (Z/2Z,+) and (Z/4Z,+).

Zfszdo (L%
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SOLUTION

> (Z/2Z,+) x (Z/2Z,+) and (Z/3Z,+):
They do not have the same cardinality.

> (Z/2Z,+) x (Z/2Z,+) and (Z/4Z, +):
They do have the same cardinality.
In(Z/2Z,+) x (Z/2Z,+), the inverse of x is x.
Not the case for (Z/4Z, +).
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EXERCISE

Find an isomorphism from ((0, +00), -) to (R, +).
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EXERCISE

Find an isomorphism from ((0, +00), -) to (R, +).

SOLUTION
An isomorphism from ((0, +c0), -) to (R, +) is:

¥ :(0,+00) > R

X — log(x)

Y (x-y) = log(x) + log(y).
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THEOREM (TEXTBOOK THM 9.4)

Let (G, x) be a finite commutative group with identity element e.
For every a € G, there exists an integer k > 1, such that

axax---xa—=e.
———

k terms
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For the proof, we use the notation & := axax---*a.
N

k terms
For instance, in (Z,+), & =a+a+a.
Proof:
» The commutative group is finite, hence the sequence
ad, a a,...
must contain repetitions.
> Suppose @ = & with i < j.

» By multiplying both sides by (a—')’ we obtain e = &~ O
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THE ORDER OF A GROUP ELEMENT

DEFINITION (TEXTBOOK DEFINITION 9.4)

Let (G, x) be a finite commutative group with identity element e, and let
ae G.

The smallest positive integer k such that

axax---xa—=e
N’
k terms

is called the order of a.

Sometimes it is called the period of a. ("Période de a" in French.)
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EXAMPLE

The order of [a]12 € (Z/12Z,+) is the smallest k such that

[al12 + [a]12 + -

-+ [a]12 = [0]12.

k terms

» For a = 3, the order is 4.
» For a = 4, the order is 3.

» For a =5, the order is 12.
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EXAMPLE

The order of [a]s € (Z/8Z", ) is the smallest k such that

[@]s - [als - - [a]s = [1]s-
—_—

k terms
Mind that Z/8Z"* = {[1]s, [3]s, [5]s, [7]s})-
» For a=1, the orderis 1.
» For a = 3, the order is 2.
» For a =5, the order is 2.

» For a =7, the order is 2.
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Rk =R> R?-Rrrxr
EXERCISE

Find the order of every element in ((Z/2Z)?, +).

/I\: (/24 % 7A/2)L>
= (e, % (2 fex,y)

ﬁroqv( o}> =
A((0)) = T

(C\,0)> -t
cA(C1) ) = 2
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EXERCISE
Find the order of every element in ((Z/2Z)?, +).

SOLUTION
In ((Z/27)?,+), the identity is ([0]2, [0]2).

> ([0]2, [0]2) has order 1.
> ([0]2, [1]2) has order 2.
> idem for ([1]2, [0]2).

> idem for ([1]2, [1]2).
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EXAMPLE

z/10Z* = {1,8,7,9}. Find the order of each element in (Z/10Z", -).

Hint: it is recommended to reduce intermediate results.
olar (1) = L
3729 3 =%"3-93-3
372 3= 2320 =
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EXAMPLE

z/10Z* = {1,8,7,9}. Find the order of each element in (Z/10Z", -).

Hint: it is recommended to reduce intermediate results.

SOLUTION
x x*2 x® x* | order x x2 x* x* | order
1 1 1 1
3 9 7 1 4 or, for instance, 3 -1 3 1 4
7 9 3 1 4 7 -1 3 1 4
9 1 2 9 1 2
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» Recall: An isomorphism ¢ from (G, x) to (H, ®) maps the identity
element of (G, x) to the identity element of (H, ®).

» This implies that the order of g € (G, x) is the same as the order of
¥(9) € (H,®).

EXAMPLE

> In(Z/2Z2,+), the orders are 1,2,2, 2.
» In (Z/10Z*,-), the orders are 1,4, 4, 2.

» Hence the two commutative groups cannot be isomorphic.
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The following result is given without proof:

THEOREM

Two finite commutative groups are isomorphic iff they have the same set of
orders.
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Let e be the identity element of a commutative group (G, x) and let a € G.

Find the integers k suchthataxax---xa=-e.
N————

k terms

EXAMPLE (ADDITION)

(G,*) =(Z/12Z,+), e = [0]12, @ = [2]12

k |1 2 3 4 5 6 7 8 9
(Rl =kl [2 4 6 8 10 0 2 4 6

The values of k are the integer multiples of the order of a, which is 6.
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EXAMPLE (MULTIPLICATION)

(G,*) = (Z/1OZ*,~), e= [1]10, a—= [3]10

k |1 2 3 45 86 7 8 9
Blo)}[3 9 7 1 3 9 7 1 3

The values of k are the integer multiples of the order of a, which is 4.

It is always like that: For a € (G, +), & = e when k is an integer multiple of
the order of a.

This is not surprising: if g is the order of a and k = gn, we can write

& = (a%)" = e" = e. The following theorem states an even stronger result.
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THEOREM

Let (G, x) be a commutative group and a € G.

An integer k satisfies ax ax - - - x @ = e iff the order of a divides k.
N————

k terms
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PROOF

Recall the notation: a* means axax - - -  a.
—_—————

k terms

> Let p be the order of aand write k =pg+r, 0 <r <p.
> e=a=a"""=(a")"«xa =4.
> r =0, because p is the smallest positive integer such that a° = e.

» Hence k is a multiple of p.
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EXAMPLE

» the order of [2]12 € (Z/12Z,+) is 6:

I|1 2 3 4 5 6 7 8
2. |2 4 6 8 10 0 2 4

» the order of [3]1o € (Z/10Z",) is 4:
1|1 2 3 4
(Blo) [3 9 7 1

(&)
»

w
©

Z/12Z has cardinality 12 and the cardinality of Z/10Z* = {1,3,7,9} is 4.

In both cases, the order divides the cardinality of the commutative group. A
coincidence?
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THEOREM (LAGRANGE, TEXTBOOK THM 9.3)

Let (G, x) be a finite commutative group of cardinality n. The order of each of
its elements divides n.
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EQUIVALENCE RELATION AND EQUIVALENCE CLASSES

To be ready for the elegant proof of Lagrange’s theorem, we review the
concept and the implication of an equivalence relation .

Relationships occur in many contexts in life. In math, they are represented by
the structure called a binary relation.

EXAMPLE

To relate people to their car, we can define

» a set A of all people;
» aset B of all cars;

> aset R C A x Bthat contains (a, b) iff person a owns car b.

The set R is called a binary relation from A to B.

The shorthand notations a ~ b and a R b mean the same as (a, b) € R.
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If the sets A and B are the same, then we speak of a relation on A.

An equivalence relation is a special case of a relation on a set. It is used to
relate objects that are similar in some way, like in Z, we may relate a and b if,
for a specified m, [a]m = [b]m.

DEFINITION

A relation on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive.
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EXAMPLE
Let A be the set of all EPFL students.

Define R = {(a,b) € Ax A: aand b graduated from the same high school }

R is an equivalence relation. In fact

> a ~ a (reflexive);
» ifa ~ bthen b ~ a (symmetric);

» ifa~ band b ~ cthena ~ ¢ (transitive).
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EXERCISE

Let A be a set of people.
Define R = {(a,b) € Ax A: atrusts b}.,

Is this an equivalence relation?
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EXERCISE

Let A be a set of people.
Define R = {(a,b) € Ax A: atrusts b}.,

Is this an equivalence relation?

SOLUTION

No, this relation on A is not symmetric.
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EXERCISE
Let A be the students of AICC-II.

Define
R = {(a,b) € Ax A: aand b got the same score in AICC-I or AICC-II}.

Is this an equivalence relation?
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EXERCISE
Let A be the students of AICC-II.

Define
R = {(a,b) € Ax A: aand b got the same score in AICC-I or AICC-II}.

Is this an equivalence relation?

SOLUTION

No, this relation on A is not transitive.
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Let R be an equivalence relation on Aand a € A.
By [a] we denote the equivalence class of a:

[a={becA:b~ a}.

Any element of an equivalence class can be used to represent the class: if
b € [g] then [b] and [4] are the same class.

Every a € Ais in one and only one equivalence class. In fact, if a € [b] and
a € [c] then [b] = [a] = [c].

To say it in a different way, an equivalence relation on A partitions A into
equivalence classes: they are disjoint subsets of A and their union is A.
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EXAMPLE (CONTINUATION)
Let A be the set of all EPFL students.
Define R = {(a,b) € Ax A: aand b graduated from the same high school}.

We can partition A into sets of students that graduated from the same high
school. Each student is in exactly one such subset.
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Equivalecce relation:
s fele ot av\vi”nv‘) L e Z/1074’.

2y a~b  mean a,lé ’L +" Jone ’0?.1

Is 4has Yca“\a A Cé,h.!VA\lw-c rc‘.:‘-;ov\ ?

noreflexiviy, V0 .
2 Sye—hy - han o L\r\‘,)-:—u

“Wsi v . a‘VL of D«\i fb A
‘5) -“ W "'l "2 . L’\'C ) Lk& ’Lgao‘ ¢



(Z/Z 07‘*) '> =(§1);r})9)11) 1;;1}119€, .>
Equ}vakkcc re [ation:
1) felect avti”nv‘) L € Z/7'024"
2y a~b  meas wl{,i ’L +.- Jone V.
Eavivalbw Vel o 7
2) Symvely A Ll o lra
t 1
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(Z/Z 07‘*1 ’> =(§1);' }) 9)11’ 1%31?—119{: .>

felect  acbitme 'n € Z/zol*.
Ex-. h=2




(Z/Z 07‘*9 '> =(§1);v 7'» 9)11)“:1?3‘”{: .>

felect avl.{h—.w, l; € Z/zol*,

Ex. |h=%
m"'%i #, 9, 3]
[2]) = [f 5

[11] = g 11, 1+, 19, {33
—;?2 we&: = 11- )" ﬁ“ﬁ
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(Z/Z 07‘*1 ’> =(§1);' }) 9)11’ 1%31?—119€: .>

felect  acbitme 'n € Z/zol*.
Ex, | h=19

[1% S acG: oa=z LW
=S 13,19 ! en]




(Z/Z 07‘*1 ’> =(§1);' }) 9)11’ 1%)1?—119{: .>

felect aclbidmvy h e Z/20x*.
Ex. | h=19

‘='

[1)=%1, 193
[3)-= ‘53, 13
[#F)- C}?" 135

(9)= 53, 113



The following example is a special case of the construction used in the proof
of Lagrange’s Theorem.

EXAMPLE
Let (G, *) be the group (Z/20Z*, x) = ({1,3,7,9,11,13,17,19}, x).

Pick an arbitrary group element, e.g., h=7.

Let H={7,9,3, 1} be the set that consists of all the powers of h.

We use H to define an equivalence relationon G = {1,3,7,9,11,13,17,19}:
a ~ bif ah’ = bfor some h' € H.

(This is an equivalence relation. We prove it later.) Let us construct the
equivalence classes:

> [11=H={7,9,3,1}
> [11] = {17,19,13,11}.

G =[1]U[11]. ltis not a coincidence that all equivalence classes have the
same cardinality. The cardinality of G must be a multiple of the cardinality of
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Proof of Lagrange’s Theorem:

>

>

Let (G, x) be a finite commutative group of cardinality n.
Let p be the order of h € G.

Let H={h,h* K, ..., H° = e}. (Note that (H, ) is itself a group, and is
called a subgroup of G of cardinality p.)

Define a relation on G:
a~b <« 30 eHsuchthataxh = b.

It is reflexive (H contains the identity element), symmetric (H contains
the inverse of each of its elements), and transitive (the product of
elements of H is in H) — hence ~ is an equivalence relation.

An equivalence relation splits G into equivalence classes.

H is one such equivalence class.
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It suffices to show that each equivalence class has the same cardinality
p. Then p must divide n.

We show that there is a one-to-one map between H and each
equivalence class.

The equivalence class of bis [b] = {bx h,bx H?, ..., bx AP},
Clearly the cardinality of [b] is at most p.
Itis p because the map f : H — [b] that sends h' to b« h' is one-to-one.

Proof by contradiction: b+ h' = b« h* implies h' = h* (b has an inverse).
Butfor 1 < i k < p, H = h* holds if and only if i = k.

Hence all equivalence classes have the same cardinality p, which must
divide n.
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EXAMPLE (SOMETHING OLD)
» The cardinality of (Z/mZ, +), is m.

» For each element [a]n € Z/mZ, m[a]lm = [0]m.

> Hence the period of each element of (Z/mZ, +) divides m.

In (Z/mZ,+), Lagrange’s Theorem says nothing new to us.
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In (z/mZ*,-), Lagrange’s Theorem is non-trivial.

Using the fact that the cardinality of Z/mZ" is Euler’s ¢(m), we obtain:

COROLLARY (EULER’S THEOREM, TEXTBOOK COROLLARY 9.4)
Let m > 2 be an integer. For all a € (Z/mZ",-)

at A=

Equivalently, for all integers a that are relatively prime with m,

a®™ =1 (mod m).

The above theorem underlies the cryptographic method studied in the next
chapter.
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COROLLARY (FERMAT’S THEOREM, TEXTBOOK COROLLARY 9.5)
Let p be prime. For all a € (Z/pZ, -)
a=a

Equivalently, for all integers a,

a=a (modp).
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Proof: It follows from Euler's Theorem, and ¢(p) = p — 1, that
a(P*U _ [1]p

holds for all a € (Z/pZ, -), except for a = [0]p.

By multiplying both sides by a we obtain
& =a,

which holds also for a = [0]. O
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EXAMPLE
> 23 =2 (mod 3)
> 4% =4 (mod 3)
» 53 =5 (mod 3)

> etc.
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RECALL THE DIFFIE-HELLMAN SETUP

» Fix a large prime number p. Hereafter all the numbers are in
{0,1,...,p— 1} and arithmetic is modulo p (more on it later).

> Pick a generator g. A generator has the property that g’ generates all
elementsin {1,2,...,p—1}wheni=0,1,...,p—2.

» Note: Towards the end of this chapter, after introducing all of the algebra
necessary, we will see that a generator always exists since we are in

what is called a cyclic group.

EXAMPLE

p = 5. The numbers are {0,1,2,3,4}.

g = 2 is a generator. Indeed:

W N = o~
W BN =|Q

483/798



DISCRETE LOGARITHMS AND CYCLIC GROUPS

We are now in a position to deliver on this.

Specifically: Exponentiation can be defined on any finite group, but its
inverse, the logarithm, is well-defined only for cyclic groups.

Next, we define cyclic groups and study their properties.
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CycLic GROUPS

Given a finite commutative group (G, ), we can take any of its elements, say
g € G, and compute g?, g%, ..., until for some n (the order of g), g" = e,
where e is the identity in G.

The result is the group H = {e, g, e 9"71}-

H is the cycle of a single element, g. Any finite group of cardinality n, that
consists of the cycle of a group element g is called a cyclic group of order
n, and g is called a generator. A generator is not necessarily unique.

Note: even if (G, %) is infinite and non-commutative, (H, x) is finite (by
construction) and commutative. Indeed, g' x g = g"™* = g¥ x g¢'.
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EXAMPLE (CYCLIC GROUP)

(C,-) is an infinite group that contains j = v/—1.

(=i =11)

is a cyclic group, and j as well as —j are generators.
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EXAMPLE (CYCLIC GROUP)

(Z/mZ, +) is a cyclic group of order mand g = 1 is one of its generators.

j"—..L’ jz‘= 2—’ 75‘: },.. 7“: m< O
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EXAMPLE (CYCLIC GROUP)

(Z/SZ*, ><) is a finite commutative group. Its elements are {1,2,3,4}. The
group can be generated by the powers of 2. Hence the group is a cyclic
group of order n = 4 and g = 2 is one of its generators.

j:Z: ﬁb‘r‘f ﬁi—e::%

2

4= L 5=
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All cyclic groups that have the same order are isomorphic.

Proof: Let (G, x) and (H, %) be cyclic groups of order n generated by g and
h, respectively.

The map
Yv: G —H
g = H.

is an isomorphism: In fact

» it is a bijection and

> fora= g and b= ¢’ we have

Y(axb) = (g »g) = w(g™) = N7 = h' « W = ¢(a) x ¥ (b).
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Let (G, x) be a cyclic group of order n generated by g.

Let b = g’ be one of its elements, 1 < i < n.

The order of b is the smallest k such that b = g equals e.

ik is the smallest multiple of nand i, i.e.,

_lem(i,n) n

K i ged(i,n)’
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EXAMPLE

(Z/SZ*, x) is a cyclic group of order n = 4, and g = 2 is a generator.

Let i = 2 and consider the group element b = g' = 4. The order of b is

n 4

= =2.
ged(i,n)  ged(2,4)

(Let us verify: b? = (22)® = 1, as it should.)

491/798



g’ is another generator iff it has order n, i.e. iff gcd(i, n) = 1.

The number of such i in {1,...,n} is Euler's ¢(n).

EXAMPLE
The elements of (Z/SZ’Z ><) are {1,2,3,4}, and g; = 2 is a generator.
Hence (Z/SZ*, ><) is a cyclic group of order 4.

There are ¢(4) = 2 generators, one for each i such that gcd(i,4) = 1. Those
iare i =1and i = 3. The other generator is g» = g5 = 3.
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Recall that we have proved the following: a cyclic group of order n has ¢(n)
generators.

However, not all groups are cyclic.

EXAMPLE (A NON-CYCLIC GROUP)
The elements of the group (Z/24Z*, ><> are {1,5,7,11,13,17,19,23}.

The cardinality of this group is n = 8. However, it would be a mistake to
conclude that the group has ¢(8) = 4 generators.

All we can say is that if it has a generator (in this case the group is a cyclic
group of order 8), then it has 4 generators.

But in fact, this group has no generator: except for 1, all the elements have
order 2.
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DISCRETE LOGARITHMS

For any element h of a finite commutative group (G, x), the discrete
exponentiation h' is well-defined for any integer i. (Note that i is an integer,
not an element of (G, x).)

The discrete logarithm to the base b € G of h € G is the integer i such that
b’ = h. This is well-defined (for every h € G) iff (G, %) is a cyclic group, and
b is one of its generators.
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Let (G, x) be a cyclic group of order n generated by b. The discrete
exponentiation to the base b is the map

f: Z/nZz — G
[1n +~— b

We prove that it is well-defined and that it is an isomorphism from (Z/nZ, +)
to (G, x).
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Proofs:

We show that the map is well-defined: suppose that [i], = [j]s, then
j = i+ nk for some integer k, and

f([ln) = g™ = g' x g™ = g' = 1([iln).

Next we show tha the map is one-to-one: If f([i],) = f([j]n), then:
> g =g
> g =
» i—je{0,n2n,...};

> [1ln = [

By the pigeonhole principle, the map is also onto, hence it is a bijection.
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Finally we prove that f : Z/nZ — G is an isomorphism:

f([iln + [/1n) = 9" = g x @' = £([i1n) % f([j]n)-

The inverse map
' G = Z/nZ
a=b — i

is called the discrete logarithm to the base b. Naturally, we write

[n = log, a.
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Note that the usual rules for exp and log apply: Specifically, for any group
generator b of order n, we have:

> () = o
> ad = a;

> log,(c*d) = log, Cc + log, d;
Mind that on the RHS we have elements of (Z/nZ, +, -);

> log, @ = [k]nlog, a.
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COMPLEXITY OF THE DISCRETE EXPONENTIATION

For an element of a group of order n, discrete exponentiation requires at
most 2 log, n operations. Let us count them:

> to compute &, 1 < k < n, we write k in binary form using L = log, n bits:

L—1
k=Y b2’ with b € {0,1};

i=0

> now

) L—1 .
a4 — azfgo‘ b2 _ H 272
i=0

I
~/~
m’\l.
~—
Ky

Il
©
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U
where g; = & is computed as follows:

a = a
a=a
»=a =a
as=a = a
L—1 >
ai—1= 3(2) =a.»
> |t takes L — 1 operations to compute ay,...,a,—1 It takes at most L — 1
operations to compute H,.L:‘01 af”'. (No computation required to perform

a‘?’.)

1

» The total number of operations is at most 2(L — 1) < 2log, n. O
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FINDING THE INVERSE

Recall that in EIGamal’s scheme, to invert the function we compute the
inverse of g**. To compute the multiplicative inverse of a number
[b]m € (Z/mZ",-), we can proceed two ways:

1. we use Bézout to write 1 = ged(b, m) = bu + mv, hence [u]n is the
inverse;

2. we use the fact that [b]2™ = 1, hence [b]5{™ " is the inverse.

Often Bézout is more efficient, but if m is prime, we know that ¢(m) = m — 1.

Exponentiation can be done efficiently.

If we are in a cyclic group of order n, then we know that b” = 1. Hence the
inverse of bis b"~".
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