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WHY MODULAR ARITHMETIC

Modular arithmetic is a foundation of number theory.

We need number theory for cryptography and for channel coding.
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INTRODUCING Z/mZ

Instead of considering integers and congruences (mod m), and write
“equations” like

at+b=c (mod m)
a-b=d (mod m),

we would like to write the “usual” kind of equations like

at+tb=c
a-b=4d,

even when the operations are  mod m.
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INTRODUCING Z/mZ

Instead of considering integers and congruences (mod m), and write
“equations” like

at+b=c (mod m)
a-b=d (mod m),

we would like to write the “usual” kind of equations like

at+tb=c
a-b=4d,

even when the operations are  mod m.

This can be done, if we give new meaning to a, b, ¢ and d, namely we make
them the congruence classes [a]m, [b]m, [c]m and [d]m.
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DEFINITION (CONGRUENCE CLASSES)

Let m > 1 be an integer, called the modulus.

The set of all integers congruent to a (mod m) is called the congruence
class of a modulo m.

It is denoted by [a]n.
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CONGRUENCE BY (dLOR
Let M=% for —QXA\urLe.




EXAMPLE

> [24], is the set of even integers. Same as [0]», [2]2, etc.
> [23]; is the set of odd integers. Same as [1]z, [3]2, etc.
> [a]lm = [b]miff a= b (mod m).
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DEFINITION (Z/mZ)
The set of all congruence classes modulo m is denoted by Z/mZ (which is

read “Z mod m”) .

Note: Some authors use the notation Z,.

EXAMPLE

> 7./27 = {[0]2, [1]2}-
> 7/3Z = {[0]s, [1]s, [2]s}-
> etc.
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NB: An element of Z/mZ can be written in many ways

[@m=[a+ mlm =[a+2m]p =

In particular:
» ifa=mqg+r,with0 <r<m-—1,then
[@lm = [r]m.

We say that [r]m is in reduced form.
> every element of Z/mZ has a unique representation in reduced form;

» [b]m is in reduced formiff 0 < b < m—1.
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EXAMPLE

Which statements are correct?

1. [713]9 = [5]9

2. [13]9 = [75]9
3. [13]9 = [5]9
4. [713]9 = [75]9
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SOLUTION
1. [-13]e = [5]¢ is correct: 9 | —18
2. [18]g = [—5]s is correct: 9 | 18
3. [13]e = [5]¢ is incorrect: 9 does not divide 8

4. [-18]s = [-5]e is incorrect: 9 does not divide —8
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In Z/mZ we define the sum and the product as follows:
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> [a]m + [b]m S [a + b]m
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In Z/mZ we define the sum and the product as follows:
> [a]m + [b]m S [a + b]m

> [a]m[b]m = [ab]m

The result is the same regardless the choice of representatives. In fact:

> If we choose [a + km]nx instead of [a]m
» and [b+ Im] instead of [b]m

> then we obtain [a + km]m + [b + IM]m = [@a+ km + b+ Im], which is the
same as [a + b]m.
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In Z/mZ we define the sum and the product as follows:
> [a]m + [b]m S [a + b]m

> [a]m[b]m = [ab]m

The result is the same regardless the choice of representatives. In fact:

> If we choose [a + km]nx instead of [a]m
» and [b+ Im] instead of [b]m

> then we obtain [a + km]m + [b + IM]m = [@a+ km + b+ Im], which is the
same as [a + b]m.

Idem for multiplication.
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/3Z)
If the value of mis implicit, e.g. m = 3, then we may write a instead of [a]s.

The addition and multiplication tables are:

z/3z  + ([0],[1), 2 Z/3 x 0 1 2
oo [1}12, 0([0 0 0
111 20 10 1 2
2|2 0 1 210 2 1
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/47)

Z/4Z + ,0 1 2 3
olo 1 2 3
111 2 3 0
2|2 3 0 1
3(3 0 1 2

7./4Z

X

W N = O

O O O o | o

W N = O

DO NN oD

- N W o | Ww
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

» associativity:

[@m + ([b]m + [€]m) = ([&lm + [E]m) + [C]m;
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

> there exists an additive identity, namely [0]m:

[a]m + [O]m = [O]m + [a]m = [a]m;
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

> there exists an inverse with respect to addition: every [a], has an
inverse, denoted (—[a]m), such that

[&m + (=[a]m) = (—[a]m) + [&]m = [O]m;

the inverse of [a]m is [—a]m;
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

» commutativity:
[a]m + [b]m = [b]m + [a]m;
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

» associativity:

[@m + ([b]m + [€]m) = ([&lm + [E]m) + [C]m;

> there exists an additive identity, namely [0]m:

[a]m + [O]m = [O]m + [a]m = [a]m;

> there exists an inverse with respect to addition: every [a], has an
inverse, denoted (—[a]m), such that

[&m + (=[a]m) = (—[a]m) + [&]m = [O]m;

the inverse of [a]m is [—a]m;
» commutativity:
[@lm + [b]lm = [b]lm + [a]m;
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PROPERTIES OF X IN Z/mZ

The multiplication has the following properties:
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PROPERTIES OF X IN Z/mZ

The multiplication has the following properties:

» associativity:
[@]m([b]m[c]m) = ([a]m[b]m)[C]m;
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PROPERTIES OF X IN Z/mZ

The multiplication has the following properties:

» multiplicative identity, namely [1]m:

[@lm[1]m = [1]ml[alm = [a]m;
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PROPERTIES OF X IN Z/mZ

The multiplication has the following properties:

> commutativity:
[@]m[b]m = [b]m[a]m;
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PROPERTIES OF X IN Z/mZ

The multiplication has the following properties:

» associativity:

[@lm([b]m[c]m) = ([&]m[b]m)[C]m;

» multiplicative identity, namely [1]m:

[@lm[1]m = [1]ml[alm = [a]m;

> commutativity:
[@]m[b]m = [b]m[a]m;

378/798



MIXED PROPERTY IN Z/mZ

The two operations have the following property:
» distributivity:

[a]m([b]m + [C]m) = [a]m[b]m + [a]m[C]m;
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THE NOTATION K[a]m IN Z/mZ

For an arbitrary positive integer k, k[a]n is a short hand for
[a]m + [a]m + -+ [a]m .

k times

We can easily verify that

k[a]m = [ka]m = [K]m[&]m-
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THE MULTIPLICATIVE INVERSE

Some elements of Z/mZ have the multiplicative inverse.

The multiplicative inverse of [a]m, if it exists, is an element [b], such that

[@]m[b]m = [b]m[@]m = [1]m.

The multiplicative inverse, if it exists it is unique, and it is denoted by ([a]m)~".

Furthermore (([alm)™") ™" = [a]m.
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Proof that the inverse, if it exists, is unique:

» Suppose ab=1and ac = 1.
» Then ab = ac. Multiplying both sides by b yields
» bab = bac. But ba=ab = 1. Hence b = c. O

Proof that if b is the inverse of a, then the inverse of b is a.

If bis the inverse of a, then ab = ba = 1, which implies that a is the inverse
of b. O
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EXERCISE (Z/47)

Which elements of Z/4Z have the 7./47
multiplicative inverse? What is it?

X

w N =+ O
O O O o o
w N =+ O
N O NN oD
- N W o | Ww
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EXERCISE (Z/47)

Which elements of Z/4Z have the 7/47 x 0 1 2 3
multiplicative inverse? What is it?
0|0 0 O O
110 1 2 3
2|10 2 0 2
3|0 3 2 1

SOLUTION

We see that

» [1]4 and [3]4 have the inverse ([1]4 and [3]4, respectively).
> [2]4 has no inverse.

» [0]m has no inverse, regardless of m.
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POWERS IN Z/mZ

For any positive integer k,

> ([a]m)" is a short hand for [a]m[a]m - - - [@]m;
N———

k times
> ([a]m)° = [1]m (empty product).

> Note that we do not consider negative exponents ([a]m) ¥ because it is
problematic in general, with the exception of ([a]m) ™", if course, which is
simply the multiplicative inverse of [a]» whenever it exists.
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EXAMPLE

(I317)'2 = ((131)%)° = ([217)® = (([2]7)%)° = ([1]7)? = [1]s-
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SOLVING EQUATIONS

An equation of the form
[@lmx = [b]m

has a unique solution iff [a]» has the inverse. In this case,

x = ([@m) ' [blm-

We prove a more general statement.

First a brief terminology review.
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TERMINOLOGY REVIEW

Recall that for a function f: £ — F

» £ is the domain
» F is the codomain
> f(&)is the image

» (the word range is sometimes used for the codomain, and sometimes for
the image)
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PIGEONHOLE PRINCIPLE

= = =
[ D
injective surjective bijective
(one-to-one) (onto) (one-to-one and onto)

Let f: £ — F, where £ and F are finite sets.

> finjective = |€] < |F|
> f surjective = |£| > | F|

> f bijective = |&] = |F|
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THEOREM

w

In Z/mZ, the following statements are equivalent: «€ocf a ¢ Uh('L Yo\]

(1) [a]m has the inverse;
(2) For all [b]m, [a]lmx = [b]m has a unique solution;

(3) There exists a [b]m, such that [a]nx = [b]m has a unique solution.
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Proof:

: We multiply both sides of [a]mx = [b]m by [a],,' and obtain the equivalent

equation x = [a];,'[b]m, showing that there is a solution and the solution
is unique.

: For [b]m = [1]m we obtain [a]mXx = [1]m, which has a solution by

assumption. The solution is the inverse of a.

. True since (3) is a weaker statement than (2).

390/798



Proor  oF () = (2).
(Lﬂ‘\: g b s.& \A\M'c]w_ $~|. = V'L \a\u’«'he sa'.



B B O Vb wiiue sol.
CGLAME T b ot either wo sol o wulbple sol
D F b st wppesl



CGLAME T b ot either wo sol o wulbple sol
B B e o
LA, FIRSTHALE : F b st wulbiple o)




Proor  oF (3 = (2).
(l_ﬂ‘\: -; b s-&. \Am'TaL s~|. = VL hMP‘,kC ro’.

, EIRST HALF : F b st. wmulbple <ol
= 3 b st uuigue ro.

PRooF : Let [a] Lx\ =11 ]
[2 ) [x X2)w= [b*).

([x)F [%1)




-l
= Exljn

]h -

[ X

Jce'mc

Now N

(f

w

s
Yo =

X4

o). .U

uy fese

e

= [
)+

e )

L. (T

\ SQ
(

e

%



Proor  oF () = (2).
(Lﬂ‘\: - b s.& \A\M'TAL s~'. = V'L \«\J«,\.g se’.

CLAM: J b oc.t. eithe Wo sol or mulhple sof
=5 éa b ¢t \»w'?]\-.c ss|.
CLam’ FIRSTHAALE : I b st wulbiple o

= 3 b s-t. uuigue £ol.
(LAM 'l Second) WALFE : JF b s.t. no se\

= 3 b st uuigue £ol.



PRooOF :

tet [L], ve ¢t [4] IxT. # bl
FoR ALL

[xJue ZA2






.. [ x]
m ™M T"!u, t7 Ul'?uv Lv /CJ

0 @
[
0
y ‘H\Lr(, vt 2xel L.'.
L 1Th sk,
2 .
N . § hv\\"'i'\b colatiovr.
"ENLE:
bY
h"l‘ . , FIRST HALF
. WE (AN (dUP\ETE

The Y RooF




(3) = (2): We prove the contrapositive, i.e., we assume that there is a [b]» such
that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

>
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(3) = (2): We prove the contrapositive, i.e., we assume that there is a [b]» such
that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.
>

391/798



(3) = (2): We prove the contrapositive, i.e., we assume that there is a [b]» such
that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

» By the pigeonhole principle, the map x — ax is neither injective nor
surjective.

>
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: We prove the contrapositive, i.e., we assume that there is a [B]m such

that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

> By the pigeonhole principle, the map x — ax is neither injective nor

surjective.

We can find a [b*]» such that [a]lmXx = [b*]» has multiple solutions, say
X1 and Xo. Define X3 = X1 — X2 75 [O]m
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: We prove the contrapositive, i.e., we assume that there is a [B]m such

that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

> By the pigeonhole principle, the map x — ax is neither injective nor

surjective.

We can find a [b*]» such that [a]lmXx = [b*]» has multiple solutions, say
X1 and Xo. Define X3 = X1 — X2 75 [O]m

> Hence, [a]lmXs = [@lmX1 — [@]mX2 = [b"]m — [D"]m = [O]m.
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: We prove the contrapositive, i.e., we assume that there is a [B]m such

that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

> By the pigeonhole principle, the map x — ax is neither injective nor

surjective.

We can find a [b*]» such that [a]lmXx = [b*]» has multiple solutions, say
X1 and Xo. Define X3 = X1 — X2 75 [O]m

> Hence, [a]lmXs = [@lmX1 — [@]mX2 = [b"]m — [D"]m = [O]m.

» So the equation [a]mx = [0]m has at least two solutions, xs and [0] .
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: We prove the contrapositive, i.e., we assume that there is a [B]m such

that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

> By the pigeonhole principle, the map x — ax is neither injective nor

vV v.v Yy

surjective.

We can find a [b*]» such that [a]lmXx = [b*]» has multiple solutions, say
X1 and Xo. Define X3 = X1 — X2 75 [O]m

Hence, [a]mXxs = [a@]mX1 — [@lmXe = [0 ]m — [D*]m = [0]m.
So the equation [a]nx = [0]m has at least two solutions, x; and [0]x.

If [a]mx = [b]m has a solution, say xs, then x4 + x3 is also a solution.
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: We prove the contrapositive, i.e., we assume that there is a [B]m such

that [a]mx = [b]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mX = [b]m has a unique solution.

> So suppose that [a]mx = [b]» has no solution or multiple solutions.

> By the pigeonhole principle, the map x — ax is neither injective nor

vV v.v Yy

surjective.

We can find a [b*]» such that [a]lmXx = [b*]» has multiple solutions, say
X1 and Xo. Define X3 = X1 — X2 75 [O]m

Hence, [a]mXxs = [a@]mX1 — [@lmXe = [0 ]m — [D*]m = [0]m.
So the equation [a]nx = [0]m has at least two solutions, x; and [0]x.
If [a]mx = [b]m has a solution, say xs, then x4 + x3 is also a solution.

We conclude that for no [b]m, [@]lmX = [b]m has a unique solution. O
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EXERCISE (Z/9Z)

If it exists, find the solution of [4]gx = [3]e

392/798



EXERCISE (Z/9Z)

If it exists, find the solution of [4]ox = [3]e

SOLUTION

x‘012345678
Mx |0 4 8 3 7 2 6 1 5

Pedestrian solution: From the above table we see that the solution is [3]s.
This approach requires having the above [4]ox table.

Preferable solution (when possible): If it exists, we find the inverse of [4]y. For
now, we use the table to find ([4]o) ™" = [7]s. Hence

x = [7]o[3]s = [3]e.

We will see how to find the inverse without constructing the table.
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. & [2]7x =[1]7 + (—[3]7) (adding on both sides the negative of [3]; — always exists)
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. & [2]7x =[1]7 + (—[3]7) (adding on both sides the negative of [3]; — always exists)
2. & [2]7X = [—2]7
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. & [2]7x =[1]7 + (—[3]7) (adding on both sides the negative of [3]; — always exists)
2. & [2]7X = [—2]7

3. & x=([2]7)'[5)- (multiplying both sides by the inverse of [2]7, which exists)
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1.

< [2]7x = [1]7 + (=[3]7) (adding on both sides the negative of [3]; — always exists)

2. & [2]7X = [—2]7
3.
4

< x = ([2]7)7"[5]7 (multiplying both sides by the inverse of [2],, which exists)

. & x = [4]7[5]7 (127~ = [4])
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. & [2]7x =[1]7 + (—[3]7) (adding on both sides the negative of [3]; — always exists)

2. & [2lrx =[-2)7

3. & x=([2]7)'[5)- (multiplying both sides by the inverse of [2]7, which exists)
4. & x = [l[Blr ([217)~" = 1417
5. & x = [20]7
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1.

2
3
4.
5
6

< [2]7x = [1]7 + (=[3]7) (adding on both sides the negative of [3]; — always exists)

= [2]7X = [—2]7

. e x=(2l7) "5 (multiplying both sides by the inverse of [2]7, which exists)
= x = [4][5]7 (121) 7" = [41)
. & x =[20]

5 <:>X=[6]7
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EXAMPLE

If it exists, find the solution of [3]gx + [2]9 = [5]s

L. < [3lex = [5]o + [—2]e
2. & [3lex = [3lo

([8]o)~" does not exist (see table below).

x |01 2 3 45 6 7 8
[3]gx\036036036

Yet, from the above table, we see that there are three solutions, namely

X = [1]9, X = [4]9, X = [7]9
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THEOREM

Let m > 1 be integer.

The element [a]m € Z/mZ has a multiplicative inverse iff gcd(a, m) = 1.

The proof is postponed (see Bézout’s identity).
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EXAMPLE (MULTIPLICATIVE INVERSES IN Z/47)

7.)AZ

W N =+ O | X
O O O o | o
W N = O

N O N O
- D W o |w

gced(a,4) =1fora=1,3.
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THEOREM (Z/pZ WITH p PRIME)

If pis prime, all elements of Z/pZ except [0], have a multiplicative inverse.

Proof:

ged(a,p)=1fora=1,2,...,p—1
ged(0, p) = p.
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RECALL THE MoD 97 — 10 PROCEDURE

1. Append 00 (i.e., multiply the number by 100)

2. Let r be the remainder after division by 97

3. The check digits are ¢ = 98 — r (written as a 2-digit number)
4. Replace 00 with ¢

5. Check: the resulting number mod 97 equals 1
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Recall the example

1. n=212351234

2. n+— 21235123400 + 98 — 91 = 21235123407

3. Check: 21235123407 mod 97 = 1. Check passed

4. If we transpose: 21253123407

5. Check: 21253123407 mod 97 = 2. Check not passed
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WHY IT DETECTS TRANSPOSITIONS

Let us use the new notation to remind ourselves why an unmodified number
passes the check:

Recall that n — 100n 4 98 — (100n mod 97).

The test is passed if [number with check digits]e7 = [1]e7

This is the case:

[100n+98—(100n mod 97)]e7 = [[100n]e7+98—[100n]97]e7 = [98]e7 = [1]o7.
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Two consecutive digits ba of a decimal number are worth 10%(a + 10b) for
some nonnegative integer k.

After we transpose them they are worth 10%(b + 10a).
The check detects the transposition, unless
[10%(b + 10a) — 10%(a + 10b)]e7 = [0]e7

& [10%(9a — 9b)]s7 = [0]o7

& [10%9(a — b)]e7 = [0]e7

& ([10]97)*[9)e7[a — ble7 = [0]o7

< [a— ble7 = [0]e7 (all non-zero elements of Z/97Z have an inverse)
We conclude that the transposition is not detected iff a = b, i.e., if there is no

transposition.
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EUCLID AND BEZOUT

What for?

> Recall that [a]» has an inverse (in Z/mZ) iff gcd(a, m) = 1.

» The Euclidean algorithm is a technique for quickly finding the gcd of two
integers. (Much faster than via the prime factor decomposition, which is
hard to do for large numbers.)

» When gcd(a, m) = 1, Bézout’s identity gives us the inverse of [a]m.
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3) ?cd(a, ¥) = 9“1 (a—&l,) L)

PRodF:
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3) ?Col(a, \v) = guj(a—&% L)

M: For ‘W} 0{ é Z_ .
d divides bth a2 b
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A divides baf6 5 Kb oA L



3) ?cd(a, \) = 9&'(&—".% L)

4) | et aQa = Lq +r. Vs re %0)1‘,_}.&

9cd(a \o) Jcal(L Y)



4) lLet a = Lﬂ,jq.
9“1(0‘\:) = 3QA(L, g)
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EXAMPLE:
ged (150, 2%) ISo= 222§ + ¢
= 4d(27217) 2Rl T2

-=?¢A (\Q“ \7/) \$= |12 + 3

77CA (3,57 = Qc.ol((folzg-)
= %



GCx27++ 1§
[ x5 + ‘-



EXAWPR\€:
ged (123 4563090C, 123¢5C 78901 )

= jcd(\Z?QS‘LH?oJ_) §'>
— jcﬂ( (g. ) L )
= ged (L, 9




E XAWP\€:
gcA ( 123 456399 04) 123656 7890 1)

= ged( 12745436901, §)
= g4 (5, L
= gco((l_’ o) =1




EUCLIDEAN ALGORITHM

THEOREM (EUCLID, TEXTBOOK THM 8.3)

Let a and b be integers, not both zero. Then, for any integer k

ged(a, b) = ged(b, a — kb)

403/798



EUCLIDEAN ALGORITHM

THEOREM (EUCLID, TEXTBOOK THM 8.3)

Let a and b be integers, not both zero. Then, for any integer k

ged(a, b) = ged(b, a — kb)

Proof:
If d divides a and b, then it divides b and a — kb.
Similarly, if d divides both b and a — kb, then it divides b and a— kb + kb = a.

Since the set of divisors of a and b is the same as the set of divisors of b and
a — kb, the greatest divisor is the same in both cases. O
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BASIC INGREDIENTS TO COMPUTE THE ng
> gcd(a, b) = ged(+a, £b) = ged(b, a).

> Hence we can focus on the computation of ged(a, b) with
0<b<a

> If a= gb + ris the Euclidean division, then
ged(a, b) = ged(b, a — gb) = ged(b, ),

with 0 < r < b. This is progress.

> Hence gcd(a, b) = ged(b, r1) = ged(r1, r2) = - - - = ged(ra, 0) = rp, where

a=bgi+n, 0<n<b
b:f'~1(72-i-f'27 0§r2<f1

li = riy1Qive + five, 0 < rije < rigq.
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EXAMPLE

ged(a, b) a=bg+r
= gcd(b, r)
= ged(122,22) 122 =22 x 5+ 12
= ged(22,12) 22=12x1+10
= gcd(12,10) 12=10x1+2
= gcd(10,2) 10=2x5+0
= gcd(2,0)

=2
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EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 1 gcd(a, b : positive integers)

1: if a < bthen
return ged(b, a)

2: else if b = 0 then
return a

3: else
return gcd(b, a% b)

4: end if
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EXERCISE
Compute gecd(12345678906, 12345678901)
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EXERCISE
Compute gecd(12345678906, 12345678901)

SOLUTION

ged (12345678906, 12345678901) = ged(12345678901, 5)
Y ged(5,1)
= gcd(1,0)
= 17

where in () we use the fact that a number xxxxxxx0 is divisible by 5.
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BEzouT

THEOREM (BEZOUT’S IDENTITY (TEXTBOOK THEOREM 8.4))

Let aand b be integers, not both zero.
There exist integers u and v, such that

ged(a, b) = au + bv

ged(40)=2=Fusbv
h=-4., v==4,
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We prove Bézout’s identity by means of the extended Euclidean algorithm,
which finds solutions to Bézout’s identity

ged(a, b) = au + bv,

where a and b are given, and u, v and gcd(a, b) are returned by the algorithm.

Note: if gcd(a, b) = au + bv, then ged(—a, b) = au + bv and
ged(a, —b) = au + bv.

Hence it suffices that we consider nonnegative numbers a, b, not both zero.
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EXTENOED EBEwcLIDp ALGORITHM

08s:  ged(0,b) = gcd (byr) | a=Lq+r
¢

SurPNe, we, have ’\‘;,'\‘I’ Sw.[\ ‘E‘wt
gColO:,r) = bﬁ + r'\‘l'
J
ged (bye) = b+ (a-be) ¥
= a¥+b (¥-%)

gcd(a)) = av+b (F-¥)

USe THC Recurdivelry )




ged(ab)| azbgrr| q | & | V| usV
TV
Iso = e 2
(150, %) | s3:4413 | 4 2| —3
(3318 | 27°
| B
18\1""( ‘i L -’L 2
(8,15) | 2% . | ¢
‘s*l“'? 1— -3— 1 —1—
) | |4 o
( (") 3,“-*0 ; O d—“ O ‘\-\j—
Pl
("',0) 04 o/




]ca'(a,b)

u:Lq+r

s

<?

n

<?

ee (6-19)




Proof:

> lteration step: Suppose a > b.
> gcd(a, b) = ged(b, r), where a= bq +r;
> suppose we have found & and v such that ged(b, r) = b + rv;

> use r = (a— bq) to rewrite
!

ged(a, b) = ged(b, r) = blU+rv = bi+(a — bq)v = av+b(i—qV) = au+bv;

» comparing terms: u = 7 and v = (U — qV).

> Final step: ged(a,0) =a=0=1,V=0.
Note: in this last step, v is not unique.

» Via successive applications of the above iteration, eventually we reach
the form ged(a, b) = au + bv. O
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EXAMPLE

ged(a, b) a=bg+r u
ged(122,22) | 122 =22 x5+ 12
ged(22,12) 22=12x1+10
ged(12,10) 12=10x1+2
ged(10,2) 10=2x5+0
ged(2,0) =2

Il
<
<
Il
—_~
[t
|
Q
<
SN
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EXAMPLE (CONT.)

ged(a, b) a=bqg-+r u
ged(122,22) | 122 =22 x5+ 12
gcd(22,12) 22=12x1+10
ged(12,10) 12=10x1+2
ged(10,2) 10=2x5+0 0 1
ged(2,0) =2 1 0

Il
<
<
Il
—_~
[t
|
Q
<
SN—
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EXAMPLE (CONT.)

ged(a, b) a=bqg-+r u
ged(122,22) | 122 =22 x5+ 12
gcd(22,12) 22=12x1+10
ged(12,10) 12=10x1+2
ged(10,2) 10=2x5+0 0 1
ged(2,0) =2 1 0

Il
<t
<
Il
—_~
[t
|
Q
<
SN—

N
—
o
[
-
X
-
=
Il
[
-
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EXAMPLE (CONT.)

ged(a, b) a=bg+r u

ged(122,22) | 122 =22 x5+ 12

ged(22,12) 2=12x14+10 | -1 | (1—-1(-1))=2
(

(

(

Il
<?
<
Il
—_~
[
|
Q
<
SN—

ged(12,10) 12=10x1+2
ged(10,2) 10=2x5+0 0 1

-
[
-
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EXAMPLE (CONT.)

| ged(a, b) \ a=bg+r | u=v | v=(i-qV) | sporadic checks
ged(122,22) 122 =22 x 5412 2 —1-5x2=-11
ged(22,12) 2=12x1+10 | —1 2 —22+12.2%2
ged(12,10) 12=10x1+2 1 1 12-10%2
gcd(10,2) 10=2x5+0 0 1
ged(2,0) = 2 1 0

ged(122,22) = 122 x 2 + 22 x (—11)
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EXTENDED EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 2 Euclid(a, b : nonnegative integers, not both zero)

1: if a < bthen
(u, v, d) = Euclid(b, a)
return (v, u, d)
2: else if b= 0 then
return (1,0, a)
3: else
(g,r) < quotient & remainder
(u, v, d) = Euclid(b, r)
return (v,u —vx*q,d)
4: end if
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Now we are in the position to prove the following result (stated earlier without
proof).

THEOREM

Let m > 1 be integer.

The element [a]m € Z/mZ has a multiplicative inverse iff gcd(a, m) = 1.

417/798



PROOF .
-1
Clam (2): 3&0{( a, M): 1 = @ﬂ],) 2xis 1.

3&0{(6\,\\4):1
= J ywy st. 1= au4myv

> [1. =[]~ V]
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PROOF .

Claim (2): Qja]m)-iuish = ged(a, n)- 1.
Let ws defe  [u], ([“] '>
5 [a], [wl =1
i [awd. = [

vhih weaws  qumy =1 Jvsome vez

\\
a_ ., _41 &7l
A\A.‘\-dY-T'[‘W"—"—‘vL

bt S Ppoe (/L,(— A divides beth a oA m.




Proof: gcd(a, m) = 1 implies the existence of integers u and v such that
1 = au + mv (Bézout). Hence

[1]m = [au + mV]m = [au]m = [&]m[u]m,

proving that [u]n is the inverse of [a]m in Z/mZ.

For the other direction, if [u]n is the inverse of [a]m in Z/mZ, then
[@lm[u]m = [1]m or, equivalently, [au]m = [1]m. This implies that

au+ mv =1

for some integer v. If d is a divisor of both a and m, then we can write

a, m, _1
d d ~— d

The left hand side is an integer, whereas the right hand side is an integer iff
d = +1. Hence 1 is the greatest integer that divides a and m. O
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COROLLARY

ged(a, m) = 1 iff there exist integers v and v such that 1 = au + mv.

Proof:

If gcd(a, m) = 1, by Bézout, there exist integers u and v such that
1=au+ mv.

For the other direction, suppose that 1 = au + mv, where u and v are
integers. Then [1]n = [au + mV]m = [au]m = [@]m[u]m, Showing that [u]m is
the inverse of [a]n in Z/mMZ.

By the theorem that we just proved, gcd(a, m) = 1. O
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