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LAST WEEK

· MODULO RULES

(a + b) mode

= mod m) + (6 nodm) modm

Cab) mod m

= (nod m) (6 mod m)) mod m



CONGRUENCE BY COLOR

Let m = 4 for example.

XXXXXXXXXXX
- 4 = 0 = 4 = 8 . (mod 4)
- 3 = 159 .. (mod 4)
-2 = 26 10... (mda)
-1 = 3 = 7:11 .. (md4)



THIS WEEK

HOW TO FIND The

MULTIPLICATIE INVERSE ?

5x mod 13 = 1

5x = 1 (mod 13)



WHY MODULAR ARITHMETIC

Modular arithmetic is a foundation of number theory.

We need number theory for cryptography and for channel coding.
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INTRODUCING Z/mZ

Instead of considering integers and congruences (mod m), and write
“equations” like

a + b → c (mod m)

a · b → d (mod m),

we would like to write the “usual” kind of equations like

a + b = c

a · b = d ,

even when the operations are mod m.

This can be done, if we give new meaning to a, b, c and d , namely we make
them the congruence classes [a]m, [b]m, [c]m and [d ]m.
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DEFINITION (CONGRUENCE CLASSES)

Let m > 1 be an integer, called the modulus.

The set of all integers congruent to a (mod m) is called the congruence
class of a modulo m.

It is denoted by [a]m.
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CONGRUENCE BY COLOR

Let m = 4 for example.

XXXXXXXXXXX
- 4 = 0 = 4 = 0 .. (mod4)
- 3 = 159 .. (mod 4)
-2 = 26 10... (mda) [2]4
-1 = 3 = 7:11 .. (mod4)(374



EXAMPLE

↭ [24]2 is the set of even integers. Same as [0]2, [2]2, etc.

↭ [23]2 is the set of odd integers. Same as [1]2, [3]2, etc.

↭ [a]m = [b]m iff a → b (mod m).
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DEFINITION (Z/mZ)

The set of all congruence classes modulo m is denoted by Z/mZ (which is
read “Z mod m”) .

Note: Some authors use the notation Zm.

EXAMPLE

↭ Z/2Z = {[0]2, [1]2}.

↭ Z/3Z = {[0]3, [1]3, [2]3}.

↭ etc.
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NB: An element of Z/mZ can be written in many ways

[a]m = [a + m]m = [a + 2m]m = · · ·

In particular:

↭ if a = mq + r , with 0 ↑ r ↑ m ↓ 1, then

[a]m = [r ]m.

We say that [r ]m is in reduced form.

↭ every element of Z/mZ has a unique representation in reduced form;

↭ [b]m is in reduced form iff 0 ↑ b ↑ m ↓ 1.
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EXAMPLE

Which statements are correct?

1. [↓13]9 = [5]9

2. [13]9 = [↓5]9

3. [13]9 = [5]9

4. [↓13]9 = [↓5]9
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SOLUTION

1. [↓13]9 = [5]9 is correct: 9 | ↓18

2. [13]9 = [↓5]9 is correct: 9 | 18

3. [13]9 = [5]9 is incorrect: 9 does not divide 8

4. [↓13]9 = [↓5]9 is incorrect: 9 does not divide ↓8
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In Z/mZ we define the sum and the product as follows:

↭ [a]m + [b]m = [a + b]m

↭ [a]m[b]m = [ab]m

The result is the same regardless the choice of representatives. In fact:

↭ If we choose [a + km]m instead of [a]m

↭ and [b + lm] instead of [b]m

↭ then we obtain [a + km]m + [b + lm]m = [a + km + b + lm]m which is the
same as [a + b]m.

Idem for multiplication.
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/3Z)

If the value of m is implicit, e.g. m = 3, then we may write a instead of [a]3.

The addition and multiplication tables are:

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Z/3Z ↔ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/4Z)

Z/4Z + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z/4Z ↔ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

↭ associativity:

[a]m + ([b]m + [c]m) = ([a]m + [b]m) + [c]m;

↭ there exists an additive identity, namely [0]m:

[a]m + [0]m = [0]m + [a]m = [a]m;

↭ there exists an inverse with respect to addition: every [a]m has an
inverse, denoted (↓[a]m), such that

[a]m + (↓[a]m) = (↓[a]m) + [a]m = [0]m;

the inverse of [a]m is [↓a]m;
↭ commutativity:

[a]m + [b]m = [b]m + [a]m;
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PROPERTIES OF → IN Z/mZ

The multiplication has the following properties:

↭ associativity:
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↭ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

↭ commutativity:
[a]m[b]m = [b]m[a]m;

378 / 798



PROPERTIES OF → IN Z/mZ

The multiplication has the following properties:

↭ associativity:
[a]m([b]m[c]m) = ([a]m[b]m)[c]m;

↭ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

↭ commutativity:
[a]m[b]m = [b]m[a]m;

378 / 798



PROPERTIES OF → IN Z/mZ

The multiplication has the following properties:

↭ associativity:
[a]m([b]m[c]m) = ([a]m[b]m)[c]m;

↭ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

↭ commutativity:
[a]m[b]m = [b]m[a]m;

378 / 798



PROPERTIES OF → IN Z/mZ

The multiplication has the following properties:

↭ associativity:
[a]m([b]m[c]m) = ([a]m[b]m)[c]m;

↭ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

↭ commutativity:
[a]m[b]m = [b]m[a]m;

378 / 798



PROPERTIES OF → IN Z/mZ

The multiplication has the following properties:

↭ associativity:
[a]m([b]m[c]m) = ([a]m[b]m)[c]m;

↭ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

↭ commutativity:
[a]m[b]m = [b]m[a]m;

378 / 798



MIXED PROPERTY IN Z/mZ

The two operations have the following property:

↭ distributivity:

[a]m([b]m + [c]m) = [a]m[b]m + [a]m[c]m;
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THE NOTATION k [a]m IN Z/mZ

For an arbitrary positive integer k , k [a]m is a short hand for
[a]m + [a]m + · · · + [a]m︸ ︷︷ ︸

k times

.

We can easily verify that

k [a]m = [ka]m = [k ]m[a]m.
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THE MULTIPLICATIVE INVERSE

Some elements of Z/mZ have the multiplicative inverse.

The multiplicative inverse of [a]m, if it exists, is an element [b]m such that

[a]m[b]m = [b]m[a]m = [1]m.

The multiplicative inverse, if it exists it is unique, and it is denoted by ([a]m)→1.

Furthermore
(
([a]m)→1)→1

= [a]m.
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Proof that the inverse, if it exists, is unique:

↭ Suppose ab = 1 and ac = 1.

↭ Then ab = ac. Multiplying both sides by b yields

↭ bab = bac. But ba = ab = 1. Hence b = c.

Proof that if b is the inverse of a, then the inverse of b is a.

If b is the inverse of a, then ab = ba = 1, which implies that a is the inverse
of b.
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EXERCISE (Z/4Z)

Which elements of Z/4Z have the
multiplicative inverse? What is it?

Z/4Z ↔ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

SOLUTION

We see that

↭ [1]4 and [3]4 have the inverse ([1]4 and [3]4, respectively).

↭ [2]4 has no inverse.

↭ [0]m has no inverse, regardless of m.
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POWERS IN Z/mZ

For any positive integer k ,

↭ ([a]m)k is a short hand for [a]m[a]m · · · [a]m︸ ︷︷ ︸
k times

;

↭ ([a]m)0 = [1]m (empty product).

↭ Note that we do not consider negative exponents ([a]m)→k because it is
problematic in general, with the exception of ([a]m)→1, if course, which is
simply the multiplicative inverse of [a]m whenever it exists.

384 / 798



EXAMPLE

([3]7)12 =
(
([3]7)2)6

= ([2]7)6 =
(
([2]7)3)2

= ([1]7)2 = [1]7.
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EXERCISE :

suppose [a]m-TL/mT has multiplicative
inverse .

Question : Does there exist be such that

( ([n]n)k = 50]m0

1)Let b be the multiplicative inverse
of a

bkk = bk = 0
jk-1ak-1 = 0 = 1 =0x

=1



EXERCISE :

suppose [a]m-TL/mT has multiplicative
inverse .

Question : Does there exist be such that

( ([n]n)k = 50]m0
ANSWER : NO

DENOTE [bim = ([a).)
-7

.

C) IMPLIES :

([b]n]t(a]m)*= [0]m



But

(16)m)
** [Bm[a]m (FaJon) t+
u

= ([bnj)m+ ([a)n)k+
=. = [1)m#50]

HENCE (*) MUST BE WRONG .



SOLVING EQUATIONS

An equation of the form
[a]mx = [b]m

has a unique solution iff [a]m has the inverse. In this case,

x = ([a]m)→1[b]m.

We prove a more general statement.

First a brief terminology review.
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TERMINOLOGY REVIEW

Recall that for a function f : E → F

↭ E is the domain

↭ F is the codomain

↭ f (E) is the image

↭ (the word range is sometimes used for the codomain, and sometimes for
the image)
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PIGEONHOLE PRINCIPLE
PIGEONHOLE PRINCIPLE

injective
(one-to-one)

surjective
(onto)

bijective
(one-to-one and onto)

Let f : E ! F , where E and F are finite sets.

f injective ) |E|  |F|

f surjective ) |E| � |F|

f bijective ) |E| = |F|
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Let f : E → F , where E and F are finite sets.

↭ f injective ↑ |E| ↓ |F|

↭ f surjective ↑ |E| ↔ |F|

↭ f bijective ↑ |E| = |F|
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THEOREM

In Z/mZ, the following statements are equivalent:

(1) [a]m has the inverse;

(2) For all [b]m, [a]mx = [b]m has a unique solution;

(3) There exists a [b]m, such that [a]mx = [b]m has a unique solution.

389 / 798

for a certain taln:



Proof:

(1) ↑ (2): We multiply both sides of [a]mx = [b]m by [a]→1
m and obtain the equivalent

equation x = [a]→1
m [b]m, showing that there is a solution and the solution

is unique.

(2) ↑ (1): For [b]m = [1]m we obtain [a]mx = [1]m, which has a solution by
assumption. The solution is the inverse of a.

(2) ↑ (3): True since (3) is a weaker statement than (2).
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PROOF OF (3) = (2).

CLAIM : -b s.t, unique sol.
=> Vb unique sol.
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PROOF OF (3) = (2).

CLAIM : -b s.t, unique sol.
=> Vb unique sol.

CLAIM -b s . t . either no sol or multiple sol

=> # b s. t. unique sol.

CLAIM'
,
FIRSTHALF : 7 b s.t. multiple sol

=> b st, unique sol.

PROOF : Let [a]m[x]m = Ib
*

]
m

([x ,]mF [Xzin)
[a]m[X2]m= [b

*
]m



Now define [X3]m = [x ,]n-[X2]m
with this :

[a]m[X]m = [OJm
F[a]m

Now select F5]m ·

suppose [a)n[X4]m = [5]
m

But the

[a)- (EX, (n +Exim) = [5] m
So we have multiple solutions.



PROOF OF (3) = (2) .

CLAIM : -b s.t, unique sol.
=> Vb unique sol.

CLAIM -b s . t . either no sol or multiple sol

=> # b s. t. unique sol.

CLAIM'
,
FIRSTHALF : 7 b s.t. multiple sol

=> b st, unique sol.

CLAIM
,
SECONDHALF : 7 b s.t. no sol

=> b st, unique sol.



PROOF :

LET [57m BE S.T. [a]mIXTn # [5]m
FOR ALL

[x]m = x/mT)



[x]m [a]m[X]
m

000 v

I a ·b

...
3 a

·
m-1
·



[x]
m

[a]m[X]m Then
, by pigeon hole,

⑧ - On there must exist b
I a · 1

= b Sit .

ax = b
2· 3 · 2 has multiple solutions.

3 a

7
: 3 HENLE :

· · BY CLAIM', FIRST HALF

m-1 J
.
m-1 WE CAN COMPLETE

THE PROOF.



(3) → (2): We prove the contrapositive, i.e., we assume that there is a [b̃]m such
that [a]mx = [b̃]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mx = [b]m has a unique solution.

↭ So suppose that [a]mx = [b̃]m has no solution or multiple solutions.

↭ By the pigeonhole principle, the map x ↑ ax is neither injective nor
surjective.

↭ We can find a [b→]m such that [a]mx = [b→]m has multiple solutions, say
x1 and x2. Define x3 = x1 ↓ x2 ↔= [0]m.

↭ Hence, [a]mx3 = [a]mx1 ↓ [a]mx2 = [b→]m ↓ [b→]m = [0]m.

↭ So the equation [a]mx = [0]m has at least two solutions, x3 and [0]m.

↭ If [a]mx = [b]m has a solution, say x4, then x4 + x3 is also a solution.

↭ We conclude that for no [b]m, [a]mx = [b]m has a unique solution.
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x1 and x2. Define x3 = x1 ↓ x2 ↔= [0]m.

↭ Hence, [a]mx3 = [a]mx1 ↓ [a]mx2 = [b→]m ↓ [b→]m = [0]m.
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↭ If [a]mx = [b]m has a solution, say x4, then x4 + x3 is also a solution.

↭ We conclude that for no [b]m, [a]mx = [b]m has a unique solution.
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EXERCISE (Z/9Z)

If it exists, find the solution of [4]9x = [3]9

SOLUTION

x 0 1 2 3 4 5 6 7 8

[4]9x 0 4 8 3 7 2 6 1 5

Pedestrian solution: From the above table we see that the solution is [3]9.
This approach requires having the above [4]9x table.

Preferable solution (when possible): If it exists, we find the inverse of [4]9. For
now, we use the table to find ([4]9)

↑1 = [7]9. Hence

x = [7]9[3]9 = [3]9.

We will see how to find the inverse without constructing the table.
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. ↗ [2]7x = [1]7 + (↓[3]7) (adding on both sides the negative of [3]7 — always exists)

2. ↗ [2]7x = [↓2]7

3. ↗ x = ([2]7)↑1[5]7 (multiplying both sides by the inverse of [2]7, which exists)

4. ↗ x = [4]7[5]7 (([2]7)→1 = [4]7)

5. ↗ x = [20]7

6. ↗ x = [6]7
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EXAMPLE

If it exists, find the solution of [3]9x + [2]9 = [5]9

1. ↗ [3]9x = [5]9 + [↓2]9

2. ↗ [3]9x = [3]9

([3]9)
↑1 does not exist (see table below).

x 0 1 2 3 4 5 6 7 8

[3]9x 0 3 6 0 3 6 0 3 6

Yet, from the above table, we see that there are three solutions, namely

x = [1]9, x = [4]9, x = [7]9.
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THEOREM

Let m > 1 be integer.

The element [a]m ↘ Z/mZ has a multiplicative inverse iff gcd(a,m) = 1.

The proof is postponed (see Bézout’s identity).
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EXAMPLE (MULTIPLICATIVE INVERSES IN Z/4Z)

Z/4Z ≃ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

gcd(a, 4) = 1 for a = 1, 3.
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THEOREM (Z/pZ WITH p PRIME)

If p is prime, all elements of Z/pZ except [0]p have a multiplicative inverse.

Proof:

gcd(a, p) = 1 for a = 1, 2, . . . , p ↓ 1

gcd(0, p) = p.
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RECALL THE MOD 97 → 10 PROCEDURE

1. Append 00 (i.e., multiply the number by 100)

2. Let r be the remainder after division by 97

3. The check digits are c = 98 ↓ r (written as a 2-digit number)

4. Replace 00 with c

5. Check: the resulting number mod 97 equals 1
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Recall the example

1. n = 212351234

2. n ⇐↓↑ 21235123400 + 98 ↓ 91 = 21235123407

3. Check: 21235123407 mod 97 = 1. Check passed

4. If we transpose: 21253123407

5. Check: 21253123407 mod 97 = 2. Check not passed
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WHY IT DETECTS TRANSPOSITIONS

Let us use the new notation to remind ourselves why an unmodified number
passes the check:

Recall that n ↑ 100n + 98 ↓ (100n mod 97).

The test is passed if [number with check digits]97 = [1]97

This is the case:

[100n+98↓(100n mod 97)]97 = [[100n]97+98↓[100n]97]97 = [98]97 = [1]97.
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Now SUPPOSE WE SWAP Two
=

CONSECUTIVE DIGITS :

m = 212ba123407
↓
in = 212 ab 123407



Now SUPPOSE WE SAR Two

CONSECUTIVE DIGITS :

m = 212ba123407
to
m = 212ab123407

= m - 109(a + 10b) + 109(b + 10a)



Now SUPPOSE WE SAR Two

CONSECUTIVE DIGITS :

m = 212ba123407
to
m = 212ab123407

= m - 109(a + 10b) + 109(b + 10a)
WE ARE CHECKING

i mod 97 = 10



i mod 97

= [m-109(a + 10b) + 109(b + 10a) mod gt



i mod 97

= [m-109(a + 10b) + 109(b + 10a) mod gt

= 1=mod 97
+ ( - 109(a + 10b) + 109(b + 10a))m197

FOR THIS TO BE EQUAL TO I
,
WE MUST

HAVE 6

(- 10 (a + 10b) + 109(b + 10a))md97 =0



HENCE : CHECK Is PASSED TFF

& 109 (a + 10b) + 105(b + 10a)]g7=10797



HENCE : CHECK Is PASSED TFF

& 109 (a + 10b) + 105(b + 10a)]g7=10797
mu
[10 " [-a - 10b +b + 10a]]97
= [106 . 9 . (a - b) ]gz =[07a7



FOR THIS TO HAPPEN
,
WE NEED :

CANNOT
[10%

g7
=[07g7 < HAPPEN

r
[10k]97# 10797

19]g7 = [07g7<
Does Not

HOLD
⑧

THIS HAPPENS
[a- bJg7= [OJg7 IF And ONLY IF

a = b



Two consecutive digits ba of a decimal number are worth 10k (a + 10b) for
some nonnegative integer k .

After we transpose them they are worth 10k (b + 10a).

The check detects the transposition, unless

[10k (b + 10a) → 10k (a + 10b)]97 = [0]97

↑ [10k (9a → 9b)]97 = [0]97

↑ [10k 9(a → b)]97 = [0]97

↑ ([10]97)
k [9]97[a → b]97 = [0]97

↑ [a → b]97 = [0]97 (all non-zero elements of Z/97Z have an inverse)

We conclude that the transposition is not detected iff a = b, i.e., if there is no
transposition.
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Now SUPPOSE WE SAR Two

CONSECUTIVE DIGITS :

m = 212ba123407
to
m = 212ab123407

= m - 109(a + 10b) + 109(b + 10a)
WE ARE CHECKING

i mod 97 = 10



NOW SUPPOSE WE SWAP Two
=

NON-COMSECUTIVE DIGITS :

m = 21265123907
↓
in = 21295123607



Now SUPPOSE WE SWAP Two
=

NON-COMSECUTIVE DIGITS :

m = 21265123907
to
m = 21295123607

5

= m - 102(a + 10b) + 102(b + 10a)
WE ARE CHECKING

i mod 97 = 10



(102 (105 - 1) (a -b) mod 97 = 0
IN GENERAL :

(10k(104- 1) (a -b) mod 97 =0



(102 (105 - 1) (a -b) mod 97 = 0
IN GENERAL :

(10k(104- 1) (a -b) mod 97 =0
QUESTION : DOES THERE EXIST I

[I0
*
- 197 =[0797



YESTERDAY

· COMPUTATIONS WITH EQUIVALENCE

CLASSES.

[a] m

Ex : m= 3

[2]s = 3.57, -4 , % , 2 , 5, 8, 11
, .

[21
:
+ 1213 = 3 ,-2 , 1, 4 , 7 , 10, 13, ... 3

= [1]3



7/mTL
t TOSn --(n-1)n

FO]n [0]

[17n [0]n
2

[n -1)



· MULTIPLICATIVE INVERSE

ax = 1 (mod m)
[a]uX = [1]m

EXISTS IF AND ONLY IF

gcd(a, m) = 1 .

PROOF : To DAY .



EX : IF gcd(a,m) =1
THEN YOU CANNOT FIND

R =X
+
St [a] = TOT m

EX : If g(d(a, m) = 1& god (b,n)=1
THEN

: [a]n[b]m = [O]m
IF AND ONLY IF

[a)m FO)
n

OR [b]n=O)



EUCLID AND BÉZOUT

What for?

↭ Recall that [a]m has an inverse (in Z/mZ) iff gcd(a,m) = 1.

↭ The Euclidean algorithm is a technique for quickly finding the gcd of two
integers. (Much faster than via the prime factor decomposition, which is
hard to do for large numbers.)

↭ When gcd(a,m) = 1, Bézout’s identity gives us the inverse of [a]m.
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alb
a divides b

if I neTh st . an = b



a divides b

if I neTh st . an = b

Does a divide O ?

Y!



PROPERTIES OF THE GCD

0 gcd (a, 0) = a

- gcd(a , b) = g(d(b , a)
Hence : W. l . o .g assume a =b .

2)gcd(a ,b) = g(d(-a , b)



3) g(d(a , b) = g(d(a - kb , b)
PROOF :

If d DIVIDEs a AND b,
THEN & Also DIVIDEs a-kb And b

.

If & DIVIDES a-lb AND b

THE & Also DIVIDES a And b
BECAUSE IF & DIV. a-kb And I
THEN d DIVIDEs a-kb+ lb AorD b

.



3) g(d(a , b) = g(d(a - kb , b)

Proof : For any d ETL :

↓ divides bth a and b

if and only if
d dividesth a-kb and b



3) g(d(a , b) = g(d(a - kb , b)

4) Let a = bq + r . with we 50,+...,b -1)

gcd(a , b) = g(d(b , r)



4) Let a = bq+E
gcd(a , b) = g(d(b , v)

> EUCLIDEAN ALGORITHM

Let b = 192 +12

=> gad(a ,b) = g(d(b ,re) =g(d(vy,rz)



EXAMPLE :

gcd (150 , 27) 150 = 27x5 + 15

= g(d(27, 15) 27= 15+ 1 + 12

= g(d (15, 12) 15= 12+ 1 + 3

=gcd (12, 3)
12 = 3 +4 +0

= gcd (3 , 0) = gad. (150, 27)
= 3



EXAMPLE :

gcd (150 , 27) 5x27 + 15

= gcd(27 , 15) 1 x15 + 12

=gcd(15, 12)
= gad (12, 3)
= gad(3 , 0) =3



EXAMPLE :

g(d(12345678906 , 12345678907)
= g(d(127456+0907, 5)
= gcd(5 , 1)
= gcd (1 , 0)



EXAMPLE :

g(d(12345678906 , 12345678907)
= gad(12495678901, 5)
= gcd (5, 1)
= gcd(1

,
0) = 1



EUCLIDEAN ALGORITHM

THEOREM (EUCLID, TEXTBOOK THM 8.3)

Let a and b be integers, not both zero. Then, for any integer k

gcd(a, b) = gcd(b, a → kb)

Proof:

If d divides a and b, then it divides b and a → kb.

Similarly, if d divides both b and a → kb, then it divides b and a → kb + kb = a.

Since the set of divisors of a and b is the same as the set of divisors of b and
a → kb, the greatest divisor is the same in both cases.
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BASIC INGREDIENTS TO COMPUTE THE gcd

↭ gcd(a, b) = gcd(±a,±b) = gcd(b, a).

↭ Hence we can focus on the computation of gcd(a, b) with
0 ↑ b ↑ a.

↭ If a = qb + r is the Euclidean division, then

gcd(a, b) = gcd(b, a → qb) = gcd(b, r),

with 0 ↑ r < b. This is progress.

↭ Hence gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn, 0) = rn, where

a = bq1 + r1, 0 ↑ r1 < b

b = r1q2 + r2, 0 ↑ r2 < r1

ri = ri+1qi+2 + ri+2, 0 ↑ ri+2 < ri+1.
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EXAMPLE

gcd(a, b)

= gcd(b, r)

a = bq + r

= gcd(122, 22)

= gcd(22, 12)

= gcd(12, 10)

= gcd(10, 2)

= gcd(2, 0)

= 2

122 = 22 ↓ 5 + 12

22 = 12 ↓ 1 + 10

12 = 10 ↓ 1 + 2

10 = 2 ↓ 5 + 0
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EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 1 gcd(a, b : positive integers)

1: if a < b then
return gcd(b, a)

2: else if b = 0 then
return a

3: else
return gcd(b, a % b)

4: end if
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EXERCISE

Compute gcd(12345678906, 12345678901)

SOLUTION

gcd(12345678906, 12345678901) = gcd(12345678901, 5)

(→)
= gcd(5, 1)

= gcd(1, 0)

= 1,

where in (↔) we use the fact that a number xxxxxxx0 is divisible by 5.
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BÉZOUT

THEOREM (BÉZOUT’S IDENTITY (TEXTBOOK THEOREM 8.4))

Let a and b be integers, not both zero.

There exist integers u and v , such that

gcd(a, b) = au + bv

408 / 798

gcd(4, 6) = 2 + 4 . n +6 . v

n = - 1
,

v=1
-



UNIQUENESS ?

gcd(a , b) = an + b

= a(u +(b) + b(v -(a)
um u

I a u + br

=> n and r are not unique
(In fact, there are infinitely
many choices)



We prove Bézout’s identity by means of the extended Euclidean algorithm,
which finds solutions to Bézout’s identity

gcd(a, b) = au + bv ,

where a and b are given, and u, v and gcd(a, b) are returned by the algorithm.

Note: if gcd(a, b) = au + bv , then gcd(→a, b) = au + bv and
gcd(a,→b) = au + bv .

Hence it suffices that we consider nonnegative numbers a, b, not both zero.
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EXTENDED ENCLID ALGORITHM

OBs : gcd(a , b) = ged (b, r) ,
a = bq+

↓

suppose we have u such that

gcd(b ,r) = bu + ru
↓

gcd(b ,r) = bi + (a -bq)
X

= au + b(n- gv)
gcd(a,b) = an + b(n -qv)

USE THIS RECURSIVELY !



gcd(a ,b) a = bg+ qu= v =( - qv)

(150 , 33)50+184 2 -9

3) =
(33, 18) 18x1+ 15 1 -12

-12

(18 , 15) ,+3 11 -11 - 1

-- E- ----

(15, 3)
,=0 50 1 0 1

0 + ot(3 ,0)

gcd (150,33)= 3= 2x150-9x33



gcd(a ,b) a = bg+ qu= v =( - qv)



Proof:

↭ Iteration step: Suppose a → b.
↭ gcd(a, b) = gcd(b, r), where a = bq + r ;

↭ suppose we have found ũ and ṽ such that gcd(b, r) = bũ + r ṽ ;

↭ use r = (a → bq) to rewrite

gcd(a, b) = gcd(b, r) = bũ+r ṽ = bũ+(a → bq)ṽ = aṽ+b(ũ→qṽ) !
= au+bv ;

↭ comparing terms: u = ṽ and v = (ũ → qṽ).

↭ Final step: gcd(a, 0) = a ↑ ũ = 1, ṽ = 0.
Note: in this last step, ṽ is not unique.

↭ Via successive applications of the above iteration, eventually we reach
the form gcd(a, b) = au + bv .
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EXAMPLE

gcd(a, b) a = bq + r u = ṽ v = (ũ ↓ qṽ)

gcd(122, 22) 122 = 22 ↔ 5 + 12
gcd(22, 12) 22 = 12 ↔ 1 + 10
gcd(12, 10) 12 = 10 ↔ 1 + 2
gcd(10, 2) 10 = 2 ↔ 5 + 0
gcd(2, 0) = 2
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ ↓ qṽ)

gcd(122, 22) 122 = 22 ↔ 5 + 12
gcd(22, 12) 22 = 12 ↔ 1 + 10
gcd(12, 10) 12 = 10 ↔ 1 + 2
gcd(10, 2) 10 = 2 ↔ 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ ↓ qṽ)

gcd(122, 22) 122 = 22 ↔ 5 + 12
gcd(22, 12) 22 = 12 ↔ 1 + 10
gcd(12, 10) 12 = 10 ↔ 1 + 2 1 (0 ↓ 1 ↔ 1) = ↓1
gcd(10, 2) 10 = 2 ↔ 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ ↓ qṽ)

gcd(122, 22) 122 = 22 ↔ 5 + 12
gcd(22, 12) 22 = 12 ↔ 1 + 10 ↓1 (1 ↓ 1(↓1)) = 2
gcd(12, 10) 12 = 10 ↔ 1 + 2 1 ↓1
gcd(10, 2) 10 = 2 ↔ 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ → qṽ) sporadic checks
gcd(122, 22) 122 = 22 ↑ 5 + 12 2 →1 → 5 ↑ 2 = →11

gcd(22, 12) 22 = 12 ↑ 1 + 10 →1 2 →22 + 12 · 2 ↭
= 2

gcd(12, 10) 12 = 10 ↑ 1 + 2 1 →1 12 → 10 ↭
= 2

gcd(10, 2) 10 = 2 ↑ 5 + 0 0 1
gcd(2, 0) = 2 1 0

gcd(122, 22) = 122 ↑ 2 + 22 ↑ (→11)
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EXTENDED EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 2 Euclid(a, b : nonnegative integers, not both zero)

1: if a < b then
(u, v , d) = Euclid(b, a)

return (v , u, d)

2: else if b = 0 then
return (1, 0, a)

3: else
(q, r) ↗ quotient & remainder
(u, v , d) = Euclid(b, r)
return (v , u ↓ v ↘ q, d)

4: end if
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Now we are in the position to prove the following result (stated earlier without
proof).

THEOREM

Let m > 1 be integer.

The element [a]m ≃ Z/mZ has a multiplicative inverse iff gcd(a,m) = 1.
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PROOF :

Claim (1) : gcd(a , m) = 1 = ([a]m)exists.
gcd(a , m) = 1
=> 7 U

,
v s .t . 1 = au + mu

=> [1]m = [an]m + [mv]m
=> [17m = [a]m[n]m



PROOF :

Claim (2) : ([a]m)exists = gcd(a , m) = 1.
Let us define [n]m * ([a]n).
=> [a]n [nTm = [1]m
or [an]m = [1]m
which means an +mV = 1 forover

H

-n+ = for seve

But suppose thata divides both a and m



Proof: gcd(a,m) = 1 implies the existence of integers u and v such that
1 = au + mv (Bézout). Hence

[1]m = [au + mv ]m = [au]m = [a]m[u]m,

proving that [u]m is the inverse of [a]m in Z/mZ.

For the other direction, if [u]m is the inverse of [a]m in Z/mZ, then
[a]m[u]m = [1]m or, equivalently, [au]m = [1]m. This implies that

au + mv = 1

for some integer v . If d is a divisor of both a and m, then we can write

a
d

u →
m
d

v =
1
d
.

The left hand side is an integer, whereas the right hand side is an integer iff
d = ±1. Hence 1 is the greatest integer that divides a and m.
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COROLLARY

gcd(a,m) = 1 iff there exist integers u and v such that 1 = au + mv .

Proof:

If gcd(a,m) = 1, by Bézout, there exist integers u and v such that
1 = au + mv .

For the other direction, suppose that 1 = au + mv , where u and v are
integers. Then [1]m = [au + mv ]m = [au]m = [a]m[u]m, showing that [u]m is
the inverse of [a]m in Z/mZ.

By the theorem that we just proved, gcd(a,m) = 1.
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