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WHY NUMBER THEORY

Much of public-key cryptography is based on number theory.

More generally, in the digital world, the information is represented by the
elements of a finite set, and we should be able to do math with them. Which
means that the finite set should be a finite field. Our bigger goal of the next
few lectures is to develop the tools to understand when and how we can turn
a finite set into a finite field.
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OPERATIONS WITH INTEGERS

Within Z (the set of integers) we can

> add, subtract, multiply

> but not divide: Z is not an integer
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OPERATIONS WITH INTEGERS

Within Z (the set of integers) we can

> add, subtract, multiply
> but not divide: Z is not an integer

» what comes closest to the (regular) division is the Euclidean division
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EUCLIDEAN DIVISION

The Division Algorithm: Given integers a (the dividend) and m (the divisor),
there exist unique integers q (quotient) and r (remainder), such that

a=mqg+r, 0<r<|m|.

Note: The computation of g and r as above is called Euclidean division.
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In spite of its name, the above should be seen as a theorem. It's proof is
obvious from a drawing: find the mq to the left of a.
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» The Euclidean division of 8 by 3 yields

8=3x2+2
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» The Euclidean division of 8 by 3 yields

8=3x2+2

» The Euclidean division of —8 by 3 yields

[ —8=38x(-3)+1
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» The Euclidean division of 8 by 3 yields

8=3x2+2

» The Euclidean division of —8 by 3 yields

—8=3x(-3)+1

» The Euclidean division of 8 by —3 yields 8

8=-3x(-2)+2 [
\ ! [ SV,
A 1
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» The Euclidean division of 8 by 3 yields

8=3x2+2

» The Euclidean division of —8 by 3 yields

—8=3x(-3)+1

» The Euclidean division of 8 by —3 yields

8=-3x(-2)+2

» The Euclidean division of —8 by —3 yields

—-8=-3x3+1
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EUCLIDEAN DIVISION IN MAINSTREAM PROGRAMMING LANGUAGES

In c/c++/Java/Python we use the operator % to compute r as follows.

If aand m are both positive, then r = a% m.

If one or the other or both are negative, different languages behave
differently, but the general rule is:

» if a% m is nonnegative, then r = a% m;

> if a% mis negative, then r = a% m+m.
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More precisely about the value of a% m:

» c/c++/Java: a% m has the same sign as a.

» python: a% m has the same sign as m.

EXAMPLE
a m, a%minc/C++/Java a%minPython r
8 3 2 2 2
-8 3 -2 1 1
8 -3 2 —1 2
-8 -3 -2 -2 1
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USEFUL INTERNET TOOLS

» Wolfram Alpha: https://www.wolframalpha.com

EXAMPLE

5%3

» Python in browser: https://trinket.io/python

EXAMPLE

a= 5%3

print a

Both behave like Python, i.e., the sign of a% m is that of m.
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mod OPERATION

From now on, unless otherwise specified, the divisor will be a positive integer
m.

By
r=a mod m,

we denote the remainder r when the integer a is divided by m.
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EXAMPLE

A pie that has 7 slices has to be divided evenly among 3 people. Then 7
mod 3 is the number of slices left over.

EXAMPLE

The arrival time of a trip that starts at time 13 h and lasts 40 hours is
5=13+40 mod 24.
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CONGRUENCE

Sometimes we are interested in knowing if two numbers have the same
remainder when divided by m.

DEFINITION
Two integers a and b are said to be congruent modulo m, denoted

a=b (mod m),

ifm|a—b.
(Read m divides a — b.)

Note: do not confuse the relation a = b (mod m) and the function
a—a mod m.
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EXAMPLE

> 23 =21 (mod 2)
» 23 =3 (mod 5)

> x =0 (mod 5) means that x is a multiple of 5
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EXERCISE

Which of these are true statements?

1. If x =3 (mod 5), then x is not a multiple of 5.

2. If x =25 (mod 5), then x is not a multiple of 5.

3. If x =0 (mod 5), then x is a multiple of 5.
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SOLUTION

1. (true:) x =3 (mod 5) means that x — 3 is divisible by 5.
= x is not a multiple of 5.

2. (false:) x =25 (mod 5) means that x — 25 is divisible by 5.
= x is divisible by 5.

3. (true:) x =0 (mod 5) means that x is divisible by 5.

326/798



The following statements are equivalent:

> a=b (mod m)
» (a—b) mod m=0

» a mod m=b mod m
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CONGRUENCE IS AN EQUIVALENCE RELATION

A binary relation ~ on a set is an equivalence relation iff the following three
axioms are satisfied:

> a~ a (reflexivity)

» if a ~ bthen b ~ a (symmetry)

» if a~ band b~ cthen a ~ c (transitivity)

Substitute a ~ a with a = a (mod m) etc. to see that congruence is an
equivalence relation.

One of the consequences is that we can form equivalence classes and we
can work with one representative of each class. (This will become useful
later.)
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USEFUL RULES (THM 7.9 OF TEXTBOOK)

(mod m)

a
b (mod m)

T o
Ii

then

a+b=4a+b (modm)
ab=4ab (mod m)

a’=(a)" (mod m)
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In particular, if & = (a mod m)and b’ = (b mod m), then we obtain the
following facts (useful in  mod calculations)

> (a+b)=((a mod m)+ (b mod m)) (mod m)
> hence

> (a+b) mod m= ((a mod m)+ (b mod m)) mod m

» ab= ((a mod m)(b mod m)) (mod m)
> hence

> (ab) mod m= ((a mod m)(b mod m)) mod m

> a" = (a mod m)" (mod m)
» hence

» a" mod m= (a mod m)n mod m

Bottom line: If the final result is mod m, then intermediate results can be
reduced mod m.
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EXAMPLE

> 23 =3 (mod 5)
> 2 =2 (mod 5)

» Hence 23+2 =5 (mod 5)
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EXAMPLE

> (123+97) (mod 2) =(1+1) (mod 2) =0
> (123:97) (mod 2) = (1-1) (mod 2) =1

> ((1234-333) + 41(76 +5)) mod 2= ((0-1)+1(0+1)) mod 2 =1
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EXERCISE

Which of these is/are correct?

1. 23 =3 (mod 5)
2. —23 = —3 (mod 5)
3. —23 =2 (mod 5)
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EXERCISE

Which of these is/are correct?

1. 23 =3 (mod 5)
2. —23 = —3 (mod 5)
3. —23 =2 (mod 5)

SOLUTION

1. 23 =3 (mod 5) is correct: 23 — 3 is divisible by 5
2. —23 = —3 (mod 5) is correct: multiply the above on both sides by —1
3. —23 =2 (mod 5) is correct: use item 2 and 0 =5 (mod 5).
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EXAMPLE
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LESS TRIVIAL EXAMPLE

EXAMPLE (Is 2 4 219 pIvIsSIBLE BY 3?)

> 2=—1 (mod 3)
> 21000 = (_1)1000 = 1 (mod 3)

> 24200 =_141=0 (mod 3)

Hence 2 + 2% js divisible by 3.

Attention: we cannot reduce the exponent!

22 mod2=0+#2" mod2=1.
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EXERCISE
Is 91°% 1 9% Givisible by 5?
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(T () ) RS
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EXERCISE
Is 91°% 1 9% Givisible by 5?

SOLUTION

» 9= —1 (mod 5)
> 1000 4 g10° — (L 1)1000 4 (_1)10° — { 1\ 4 =2 (mod 5)

Hence 9% 4 9'%° is not divisible by 5.
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EVEN NUMBERS

> 10 =0 (mod 2)

> 10" =0" =0 (mod 2), n positive integer

1234 =1-10°4+2-10°+3-10' + 4
=1.042-043-0+4 (mod 2)
=4 (mod 2)
=0 (mod2)

Hence 1234 is divisible by 2.

We see that a decimal number is divisible by 2 iff the last digit is divisible by
2. (Not new to us, but the method generalizes.)
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REMAINDER AFTER DIVISION BY 9

> 10=1 (mod 9)

> 10" =1"=1 (mod 9), n positive integer

1234 =1-10°4+2-10°+3-10' + 4
=1-1+2-14+3-14+4 (mod?9)
=14+2+3+4 (mod?9)
=10 (mod 9)
=1 (mod9)

Hence the remainder after division of 1234 by 9 is 1.

To obtain the rest after division of a decimal number by 9, we can substitute
the number with the sum of its digits.
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EXAMPLE (MOD 9)

1234567890 =14+2+4+34+4+5+6+7+8+9+0 (mod9)
=45 (mod 9)
=0 (mod?9)
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CHECK DI1GITS MOoD 97
» Write down an integer in decimal notation, e.g.,

0212351234

» Compute its remainder after division by 97:

0212351234 mod 97 =95

» Append the remainder to the number, as a check digit:

021235123495

» A common mistake consists in transposing two digits:

021253123495

> The check digits are no longer consistent:

0212531234 mod 97 =63
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PROCEDURE MoD 97 — 10

It is a variant of the previous one:

1. Append 00 (i.e., multiply the number by 100)

2. Let r be the remainder after division by 97

3. The check digits are ¢ = 98 — r (written as a 2-digit number, e.g., 03)
4. Replace 00 with ¢

5. Check: the resulting number mod 97 equals 1
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PROCEDURE MOD 97 — 10: WHY THE CHECK IS AS STATED

Encoding:
n — 100n+98 — (100n mod 97)

check digits

Check: we compute the resulting number mod 97:

100n+98 — (100n mod 97) mod 97
100n+98 —100n mod 97

= 98 mod 97

= 1
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EXAMPLE (MOD 97 — 10)

1. n=212351234

2. n — 21235123400 + (98 — 91) = 21235123407
N—_——
check digits

3. Check: 21235123407 mod 97 = 1. Check passed
4. If we transpose: 21253123407

5. Check: 21253123407 mod 97 = 2. Check not passed

Next lecture we will see why Mod 97 — 10 always detects a transposition.
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IBAN (INTERNATIONAL BANK ACCOUNT NUMBER)
Main difference to MOD 97 — 10: The check digits are in position 3 and 4

Example:

bank, 5 digits account, 12 digits

—— ———
1. Account number: 00243 000123456789
2. Append CH (for a Swiss bank account): 00243 0001 2345 6789 CH

3. Convert into numbers according to: A+— 10,...,Z — 35:
00243 0001 23456789 1217
4. MOD 97 — 10 procedure:
00243 000123456789 121754

5. Reposition:
CH54 00243 0001 23456789

6. To verify, we undo the repositioning and do the MOD 97 — 10 check.
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IBAN CONSTRUCTION

00243 000123456789 CH

|

00243 0001 234567891217

MOD 97 — 10

|

00243 000123456789 121754

|

CH 54 00243 000123456789
—— N —

country check  bank account
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EXERCISE

Is the following statement correct?

24+x=2+y (mod12) = x=y (mod12)
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EXERCISE

Is the following statement correct?

24+x=2+y (mod12) = x=y (mod12)

SOLUTION

We are allowed to add and multiply on both sides as we do when we solve
equations over the reals.

By adding —2 on both sides:
2+x=2+y (mod12) = x=y (mod 12)

The statement is true.

(Which property of the "useful rules" have we used?)
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EXERCISE

Is the following statement correct?

2x=2y (mod12) =— x=y (mod 12)
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EXERCISE

Is the following statement correct?

2x=2y (mod12) =— x=y (mod 12)

SOLUTION

No. The multiplicative inverse of 2 does not exist (mod 12).

For instance
2x9=2x3 (mod12),

however
9#3 (mod 12)

(Why can’t we say that 7 = 1 (mod 12) and multiply both sides by 1?)
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PRIME NUMBERS

DEFINITION

A prime number (or a prime) is an integer > 1 that has no positive divisors
other than 1 and itself.

2,3,5,7,11,13,17,19,23,29, ... are prime numbers.

Non-primes are called composites.
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EXERCISE

Many people forget if 1 is prime or not. Why is it not?
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EXERCISE

Many people forget if 1 is prime or not. Why is it not?

SOLUTION

Because if we declare 1 to be a prime number, then the following
fundamental theorem is no longer valid.
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PRIME NUMBERS

THEOREM (PRIME FACTORIZATION: SHORT VERSION)

Every integer greater than 1 has a unique prime factorization (except for
order).

2 1 o o
12 = 2 -5 -5 -%F-
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EXAMPLE

=100=2x2x5x%x5
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PRIME FACTORIZATION: A DIFFICULT TASK

> a number as big as 279 (700 bits) can be factored
» a 1000 bits number cannot be factored (with today’s technology)

“Among the b-bit numbers, the most difficult to factor in practice us-
ing existing algorithms are those that are products of two primes of
similar size. For this reason, these are the integers used in crypto-
graphic applications. The largest such semiprime yet factored was
RSA-250, an 829-bit number with 250 decimal digits, in February
2020. The total computation time was roughly 2700 core-years of
computing using Intel Xeon Gold 6130 at 2.1 GHz. Like all recent
factorization records, this factorization was completed with a highly
optimized implementation of the general number field sieve run on
hundreds of machines.”

[Wikipedia, March 23, 2023]
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THEOREM (TEXTBOOK THM 7.3)

Let a and b be positive integers. a divides b iff all prime factors of a are
present in the prime factorization of b with an equal or greater exponent.

& P2 Ky W a
m] L /‘71 9(9/ "(77 X (qz’o
h = |74/ F?/ 17 7 Pn (,%20
2 pa LS

)9 Ya, '1/ Y'y - ?\A_
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EXAMPLE

168 =2%.3.7
12=22.3
Hence 12 divides 168.
EXAMPLE
30=2-3-5
12=22.3

Hence 12 does not divide 30.
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DEFINITION

Let a and b be integers, not both zero. The largest integer that divides both is
called the greatest common divisor of a and b. It is denoted by gcd(a, b).
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THEOREM (TEXTBOOK THM 7.4)

Let a and b be positive integers, not both zero, and let p1 < p> < --- < px be
the sequence of prime numbers that divide a or b. Write

a:p;)”...p;‘k
b=pi - pt,

with 0 < o and 0 < ;. Then
ged(a, b) = p{" - p¥,

with v = min(ai, 5i).
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EXAMPLE

12=22.3
30=2.3.5
ged(12,30)

22.3'.5°
2'.3". 5
2'.3'.5=¢
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It is an immediate consequence of the above theorem that gcd(a, b) = 1 iff a
and b have no common factor.

DEFINITION

When ged(a, b) = 1, we say that a and b are coprime (or relatively prime,
or mutually prime).
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EXAMPLE

9=232
100 = 2% .52
ged(9,100) = 1

9 and 100 are thus coprime.
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THEOREM (TEXTBOOK THM 7.6)

Let p be a prime number and let a be an integer such that 0 < a < p. Then

ged(p, @) =1

PROOF

The prime factorization of a cannot contain p.
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EXERCISE (TRUE OR FALSE?)

Ifab|c,thenalcandb|c.
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EXERCISE (TRUE OR FALSE?)

Ifab|c,thenalcandb|c.

SOLUTION

If ab | c, then we can write ¢ = abd for some integer d.

Clearly both a and b divide c.
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EXERCISE (TRUE OR FALSE?)

Ifalcand b |c, thenab|c.

361/798



EXERCISE (TRUE OR FALSE?)

Ifalcand b |c, thenab|c.

SOLUTION

alcandb | cdoes notimply ab | c.

In fact, ab could exceed c.

Example: a= b = c.

361/798



EX ERC(S E

TRUc /FALSE

IF a]c AN
THen ab l C
PRIME FACTWRS

K, &y
a=r‘ F‘
SR I

b= pl -
Jo 0

ble AND GC D(a,'o) =1



EX ERC(S & TP-WE/FALSe
IF alc AN blc AND GCD(a,L)=1_
THewn a'o |¢ ]§\

PRIME Fo'::—c,T\f_r‘ 1= . ’{,‘ ‘1' e,
It fr - A””{‘F‘ X; > 0 The ‘l)-o{
b My

S P AP >0 Hey ks

TS \§ TRMe




HOWEVER

THEOREM

Ifa| cand b | cand ged(a, b) =1, then ab | c.

PROOF

the prime factorization of ¢ contains all the prime factors of a.
the prime factorization of ¢ contains all the prime factors of b.

a and b have distinct prime factors.

>
>
>
= £ is an integer that has all the prime factors of b in it.
= Hence it is divisible by b.

>

This proves that ab | c.
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