
WEEK 5: INTRODUCTION TO CRYPTOGRAPHY

ONE-TIME PAD, PERFECT SECRECY,
AND PUBLIC-KEY CRYPTOGRAPHY (DIFFIE-HELLMAN)

(TEXTBOOK CHAPTER 6)

Prof. Michael Gastpar
Slides by Prof. M. Gastpar and Prof. em. B. Rimoldi

Spring Semester 2025

266 / 798

OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

One-Time Pad, Perfect Secrecy, Public-Key (Diffie-Hellman)

Rudiments of Number Theory

Modular Arithmetic

Commutative Groups

Public-Key Cryptography

Summary of Chapter 2

CHANNEL CODING

267 / 798

WHY CRYPTOGRAPHY

Cryptography serves two purposes:

↭ Privacy: Preventing that sensitive information lands in the wrong hands.

↭ Authenticity: Preventing that information is falsified.

268 / 798

Before the Internet:

↭ Cryptography was essentially a tool for diplomats and generals.

↭ Common people would sign a letter (for authenticity), put it in an
envelope (for privacy) and trust the postal service for the delivery to the
intended recipient (reliability).

269 / 798

The Internet has changed that:

↭ Now we send sensitive information over public channels on a daily basis.
We need to control who can decipher such information (privacy). People
and businesses can be destroyed if private information leaks out.

↭ We have the ability to post information that can be read by anybody —
hence that can have a huge impact. We need to be able to verify who is
posting (authenticity). People and businesses can be destroyed if
information is falsified.

270 / 798

Cryptography gives us the tools to:

↭ authenticate the sender and the receiver

↭ verify the integrity of the message

↭ keep the message confidential

All these problems are related. Our initial focus is on how to keep a message
confidential.

271 / 798

Alice's WILD Bob's
private WILD private
space WORLD space

PLAIN TEXT
t t

t
, ,
+2
,ty ,ty, CRYPTOGRAM d

CIPHERTEXT
C

JENYRYPT D > DECRYPT

KEY

1
v ↑key
TrudyRA CRYPTANALYST k
CHACKER)

BASIC SETUP FOR CONFIDENTIALITY

Encryption
algorithm

Plaintext t

kA

Alice

EkA (t)

Decryption
algorithm

t

kB

Bob

DkB (EkA (t))

Trudy

Ciphertext c

Alice wants to sent the plaintext t to Bob:

↭ She encrypts t using her key kA. The result is the ciphertext c = EkA(t).

↭ She sends c to Bob over a public channel.

↭ Bob decrypts c using his key kB . The result is DkB (EkA(t)) = t .

↭ For Trudy, it is nearly impossible to recover t from c without knowing kB .

272 / 798

BASIC TERMINOLOGY

↭ plaintext, ciphertext (also called cryptogram), key, encrypter, decrypter:
already defined.

↭ cryptography: the art of composing cryptograms.

↭ cryptanalysis: the art of breaking cryptograms.

↭ a cryptanalyst has broken the system when he can quickly determine the
plaintext from the cryptogram, no matter what key is used.

↭ attacker: same as cryptanalyst.

273 / 798

CAE .SAR'S CYPHER

~
SPACE

A B < DE ... WX Y 20g
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

DE F G H ... z % · A B (

CAE .SAR'S CYPHER

MODULO perspective

~
SPACE

A B < DE ... WX Y 20g
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

01234-22232425262728

CAE .SAR'S CYPHER

MODULO perspective

~
SPACE

A B < DE ... WX Y 20g
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

01234-22232425262728
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

ADD 3
,
REDUCE MOD-29

↓ ↓ ↓ ↓ ↓ ↓o ↓ ↓ ↓ ↓ ↓ ↓
34567... 25262728012

CAE .SAR'S CYPHER

MODULO perspective

~
SPACE

A B < DE ... WX Y 20g
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

01234-22232425262728
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

ADDR
,
REDUCE MOD-29

↓ ↓ ↓ ↓ ↓ ↓o ↓ ↓ ↓ ↓ ↓ ↓

TRY R= 1

ErCAME

ANCIENT CRYPTOGRAPHY

Caesar’s Cipher (Julius Caesar (1st century BC))

Suppose that we are using the English alphabet augmented by a few special
characters, say "space", "comma", and "period".

An alphabet of 29 characters, represented by the integers 0, 1, . . . , 28.

↭ the key k is an integer between 0 and 28, known to Alice and Bob and to
nobody else.

↭ the encryption algorithm substitutes the i-th letter of the alphabet with
the (i + k)-th letter (mod 29).

↭ the decryption algorithm substitutes the j-th letter with the (j → k)-th
(mod 29).

274 / 798

EXAMPLE (CAESAR’S CIPHER)

The alphabet is

{A,B,C,D,E , . . . ,W ,X ,Y ,Z , space, comma, period}

EN
C

RY
PT

k = 1

I CAME, I SAW, I CONQUERED.

J,DBNF.,J,TBX.,J,DPORVFSFEA

275 / 798

↑

Monoalphabetic Cipher

Caesar’s cipher is a special case of a monoalphabetic cipher. A more general
monoalphabetic cipher uses an arbitrary permutation of the alphabet.

EXAMPLE (MONOALPHABETIC CIPHER)

EN
C

RY
PT

k

COWARDS DIE MANY TIMES

XTHPFKIBKLDBGPMQBALGDI

k
A → P
B → V
C → X
D → K
E → D
F → C
G → O
H → J
I → L
J → W
K → Z
L → E
M → G
N → M
O → T
P → Y
Q → S
R → F
S → I
T → A
U → N
V → U
W → H
X → R
Y → Q

Z → space
space → B

276 / 798

Polyalphabetic Cipher

A monoalphabetic cipher uses a fixed substitution table over the entire
message. A polyalphabetic cipher uses multiple substitution tables.

A key specifies which table is used for which position of the message.

EXAMPLE (POLYALPHABETIC CIPHER: VIGENÈRE’S CIPHER)

↭ It uses multiple Caesar ciphers.

↭ So if the key is 5,9,20, it means
↭ the offset for the first letter of the message is 5

↭ that for the second letter is 9

↭ for the third letter it is 20

↭ for the fourth letter it is 5 (we start over with the first offset of the key)

↭ etc.

277 / 798

VIGENERE : EXAMPLE

i
k = 5

,
9
,

20

KEY ASSUMPTION IN MODERN CRYPTOGRAPHY

The security is based on the secret key (not on the secrecy of the algorithm).

EXAMPLE (COUNTEREXAMPLE)

Caesar was evidently relying on the secrecy of the algorithm.

EN
C

RY
PT

k = 1

I CAME, I SAW, I CONQUERED.

J,DBNF.,J,TBX.,J,DPORVFSFEA

278 / 798

VARIOUS ATTACKS POSSIBLE

We distinguish between the following attacks:

↭ ciphertext-only: one or more cryptograms available to the cryptanalyst,
known to have been encrypted with the same key.

↭ known plaintext: the cryptanalyst has one or more plaintexts and the
resulting cryptograms, known to have been encrypted with the same key.

↭ chosen plaintext: for any plaintext that he requires, the cryptanalyst can
obtain the cryptogram under the same key.

279 / 798

WHAT KIND OF SECURITY DO WE EXPECT?

↭ Ideally, a cryptographic system should be secure against a chosen
plaintext attack.

↭ At the very least, it should be secure against a ciphertext-only attack.

280 / 798

HOW SECURE WERE THE ANCIENT CRYPTOSYSTEMS?

EXAMPLE (CAESAR’S CIPHER)

↭ chosen plaintext attack: encrypt one letter and you get the key

↭ known plaintext attack: compare one letter and get the key

↭ ciphertext-only attack: try all the 29 possible keys

Caesar’s cipher is not at all secure against a contemporary attacker.

281 / 798

EXAMPLE (GENERIC MONOALPHABETIC CIPHER)

↭ chosen plaintext attack: encrypt each letter of the alphabet

↭ known plaintext attack: compare input/output over a text that uses all
letters

↭ ciphertext-only attack:
↭ brute-force approach: try all 29! = 8.84 → 1030 permutations
↭ letter-frequency approach: use the fact that for a given language we know

the frequency of each letter

A brute-force approach is challenging.

With a modern computer, the key can easily be found using the
letter-frequency attack.

How to make the letter-frequency attack unfruitful?

282 / 798

EXAMPLE (VIGENÈRE’S CIPHER, WITH AN n-LENGTH KEY)

↭ chosen plaintext attack: encode the same letter until you have the
n-length key

↭ known plaintext attack: compare input/output until you have the n-length
key

↭ ciphertext-only attack:
↭ brute-force approach: try all 29n keys if you know n. (Many more otherwise.)

↭ for n = 21, the number of keys is 5.1330

↭ for n = 100, the number of keys is 1.73146

↭ if you know n, you can partition input/output into n parts, each of which is a
Caesar cipher with its own key.

↭ letter-frequency approach: effective if the plaintext-length to key-length ratio
is sufficiently large.

283 / 798

HOMEWORK 5
,
PROBLEM 1

HOMEWORK 5
,
PROBLEM 1

THE ONE-TIME PAP

.
1001 3 THE PAD.

THE ONE-TIME PAP

=0017070101I
170101000171 THE PAD.

077110070707Mos 3
100101011010 MESSAGE

C
-> 11011 CRYPTOGRAM

THE ONE-TIME PAD

Preliminary assumptions:

↭ The plaintext t , the key k and the cryptogram c are n-length binary
sequences over the alphabet A = {0, 1}.

↭ The key k is produced by selecting each bit independently and with
uniform distribution.

↭ Alice and Bob use a private channel to exchange the key ahead of time.

Encryption: c = t → k (component-wise binary sum)

Decryption: c → k = (t → k) → k = t → (k → k) = t

284 / 798

EXAMPLE (ONE-TIME PAD)

Encryption:

t = 1 0 1 1 0 1
k = 0 1 0 0 0 1
c = 1 1 1 1 0 0

Decryption:

c = 1 1 1 1 0 0
k = 0 1 0 0 0 1
t = 1 0 1 1 0 1

We get back the plaintext because b + b = 0 (mod 2) for b ↑ {0, 1}.

Generalizing to a non-binary alphabet is straightforward.

285 / 798

EXAMPLE (ONE-TIME PAD)

Encryption:

t = 1 0 1 1 0 1
k = 0 1 0 0 0 1
c = 1 1 1 1 0 0

Decryption:

c = 1 1 1 1 0 0
k = 0 1 0 0 0 1
t = 1 0 1 1 0 1

We get back the plaintext because b + b = 0 (mod 2) for b ↑ {0, 1}.

Generalizing to a non-binary alphabet is straightforward.

285 / 798

GENERAL ONE-TIME PAD

A = 30 , 1 , 2 , 3 , 43

t = 340212

k = 120324 UNIFORMLY
INDEPENDENT

C = 4100

DECRYPT?
->SUBTRACT k .

GUESSING

X : RANDOM VARIABLE.
P(X= 1) = 1/2

p(X=z) = 14

Guess X ? p(x=3) =4 .

PICK X = 1
.

GUESSING

X : RANDOM VARIABLE.
P(X= 1) = 1/3

p(X=2) = 13

p(x=3) = 13
GUESS X ?

DOESN'T MATTER
WHAT YOU PICK.

GUESSING p(X(y) T=0 Y= /

X : RANDOM VARIABLE
.
XO "2

Y: SECOND R .V,
X=11
X=2 14 Yz

ONLY ONE GUESS
, KNOWING Y .

T=O : GUESS X= o

Y= 1 : GUESS X =2

GUESSING p(X(y) T=0 Y= /

X : RANDOM VARIABLE
.
X0 "2 12

Y: SECOND R .V,
X= %Y
X=21414

ONLY ONE GUESS
, KNOWING Y .

↳) GUESS X = 0

(IGNOREY)
↑ IS USELESS HERE,

PBSERVATION :

IF X AND Y ARE INDEPENDENT,

THEN Y DOES NOT HELP

IN GUESSING X.

PERFECT SECRECY

DEFINITION (PERFECT SECRECY)

A cryptosystem has perfect secrecy if the plaintext T and the cryptogram C
are statistically independent.

Perfect secrecy is the ultimate kind of security against a ciphertext-only
attack: The attacker cannot do better than guessing the plaintext T .

286 / 798

PERFECT SECRECY OF THE ONE-TIME PAD

↭ The n-length key k is selected at random (uniform distribution over
{0, 1}

n).

↭ The key k and the message t are selected independently.

↭ The ciphertext is c = t → k .

pC|T (c|t) = pK |T (c ↑ t |t) = pK (c ↑ t) =
1
2n .

(n is known by assumption.)

Hence C and T are independent: knowledge of C is useless in guessing T .

287 / 798

- bits of message

1

+ (70070(01770)
= PEy(+ 1 + 00) =5

S

A WEAKNESS OF THE ONE-TIME PAD

EXAMPLE (ONE-TIME PAD)

An cryptanalyst that has the plaintext t and the corresponding cryptogram c,
immediately gets the key:

k = c → t

Hence the pad (the key) should be used only once.

288 / 798

ONE-TIME PAD: ADVANTAGES AND DRAWBACKS

+ very simple algorithm

+ as secure as it gets against a ciphertext-only attack and key used once

+ of instructional value to prove that perfect secrecy is possible

- the key is as long as the plaintext (this is fundamental, see later)

- the key needs to be exchanged ahead of time over a private channel

- a ciphertext-only attack can break the system if the key is used twice
(see homework)

- a known plaintext attack reveals the key

The "one-time pad" has been used extensively in diplomatic and espionage
circles.

289 / 798

Alice's Bob's
private private
space space

plain text
t

t
te

,
te
,
ty , ...

CYPHERTEXT

CRYPTOGRAM A

V

ENCRYPT
· - DECRYPT

N ↑
KEY

KEY ~ k
k Trudy

PRIVATE CHANNEL

PERFECT SECRECY REQUIRES HIGH-ENTROPY KEYS

The following Theorem makes no assumption on the encryption algorithm.

EN
C

RY
PT

k

t

c

THEOREM (PERFECT SECRECY)

Perfect secrecy implies
H(T) → H(K).

290 / 798

thm : IF PERFECT SECRECY
, #) TIC

THEN H(T) < H(K).

PROOF : +
,
K, ↑

=HT)
<

H(T
,
k
, c) m

= H(c) + H(+ (c) + H(k(T, c)
= H(d) + H(k(c)+2)

= H(T) + H(k)+,)=Y

= H(t) + H(k)T
,
c) = H(k)
-
-0

=> H(T) = H(k)
+

Thm : IF PERFECT SECRECY,

THEN H(T) < H(K).

PROOF :

H(T, k, C) = H(T)

= H(l) +) + H(k(+, a)
= H(c) + H(17(a)+C)

= 0
= H(T) = H (k)d

Thm : IF

PERFECTSECRETTHEN

PROOF : TIC
H(C) + H(T) 2
= H(d) + H(T(C) -

↓ CHAIN RULE
= H(C

,
T)

2)CHINRe F
EH(b ,

T
, k) OF ENTROPH

= H(c) + H(k(c) + H(T(k ,4)
um

Proof:

Perfect secrecy
(
H(T) = H(T |C)

)
and decodability

(
H(T |K ,C) = 0

)
imply

H(T) = H(T |C)

→ H(T ,K |C)

= H(K |C) + H(T |K ,C)

= H(K |C)

→ H(K).

NB: Entropy plays a key role also in cryptography.

291 / 798

EXERCISE

Determine the minimum average length of the binary key for a cryptosystem
that has the following characteristics:

↭ the message is an uncompressible binary string of length n

↭ the system achieves perfect secrecy

292 / 798

-

SOLUTION

↭ H(T) must be (essentially) n bits (otherwise further compression is
possible).

↭ perfect secrecy requires H(T) → H(K).

↭ hence H(K) is at least n.

↭ the average blocklength of the binary key is at least n bits.

293 / 798

SYMMETRIC-KEY CRYPTOSYSTEMS: KEY-DISTRIBUTION PROBLEM

A symmetric-key cryptosystem is one for which both ends use the same key
(kA = kB = k). All examples considered so far rely on a symmetric key.

There exists fast (and secure) symmetric-key cryptosystems, but:

↭ Anybody that has the key can encrypt and/or decrypt.

↭ The key cannot be sent over an insecure channel.

↭ In an n-user network, each user needs n ↑ 1 keys to communicate
privately with every other user. Key distribution is a problem as it has to
be done over a secure channel. And keys have to be changed frequently!

↭ We have a real problem: see e.g. the first 6 min. and 20 sec. of
http://www.youtube.com/watch?v=YEBfamv-_do&sns=em

294 / 798

PUBLIC KEY-DISTRIBUTION (DIFFIE AND HELLMAN)

Is there a way to distribute keys over a public channel?

In 1976, Diffie and Hellman came up with a solution.

295 / 798

EXAMPLE : p = 7 : A = 30 , 1, 2, 3,4,5, 63

g
= 3

i gimod 7

O

I

·

EXAMPLE : p = 7 : A = 30 , 1, 2, 3,4,5, 63

g
= 3 g = 2
i gimod 7 i g"mod 7

O O

I 3

↳ ↳

· -E
1

Alice's Bob's
private private
space space

plain text
t

t
te

,
te
,
ty , ...

CYPHERTEXT

CRYPTOGRAM A

V

ENCRYPT
· - DECRYPT

N ↑
KEY

KEY ~ kB
k TrudyA

Alice's Bob's
private private
space space

secret : a

A = gamodp
p, g

PUBLIC DIRECTORY

Alicee.... A

Alice's a
,
b
,g Bob's

private E
private

space St,2...,p-1) space
secret : a secret : b

A = gamodp B =gmodp
p, g

PUBLIC DIRECTORY

Alicee.... A
S
Bob B2

Alice's a
,
b
,g Bob's

private E
private

space St,2...,p-1) space
secret : a secret : b

A = gamodp B =gmodp
p, g

b
PUBLIC DIRECTORY

Bamodp S
Alicee.... A

A modp
Bob B2

AT THIS POINT :

· ALICE HAS B"mod p

B" = (gb modp)"mod p
· BOB HAs Ab mod

p

A = (g
* modp)" modp

FACT : [sneak preview of next week ..7
For all X , y ,m XL

[(x mod m) · (ymodm)) mod m
=

Xy
mod m

AT THIS POINT :

· ALICE HAS B"mod p

B" = (gb modp)"modp = gabmolp
· BOB HAs Ab mod

p

A" = (g
* modp)" modp = g

a

modp

BUT CAN'T ANYBODY GENERATE

THIS KEY ?

7 NEED TO PERFORM

INVERSE OF g"modp .
"DISCRETE LOGARITHM "PROBLEM

Setup:

↭ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p → 1} and arithmetic is modulo p (more on it later).

↭ Pick a generator g. A generator has the property that gi generates all
elements in {1, 2, . . . , p → 1} when i = 0, 1, . . . , p → 2.

↭ Note: Towards the end of this chapter, after introducing all of the algebra
necessary, we will see that a generator always exists since we are in
what is called a cyclic group.

EXAMPLE

p = 5. The numbers are {0, 1, 2, 3, 4}.

g = 2 is a generator. Indeed:
i gi

0 1
1 2
2 4
3 3

296 / 798

↭ Alice picks a number a, kept secret.

↭ Bob picks a number b, kept secret.

↭ Alice and Bob send the number A = ga and B = gb to the public
directory, respectively. This can be done over a non-private channel.

The public directory, readable by everyone, looks like this

User Public Key
Alice A
Bob B
...

...

297 / 798

Shared key generation:

Suppose that Alice and Bob want to communicate using a symmetric-key
cryptosystem (the only kind of cryptosystem that we have studied so far).

Alice’s Space

Public Channelt c

Bob’s Space

t

kk

E D

They need a shared key k that nobody else knows.

Here is how they proceed:

↭ Alice gets B from the public directory and computes k = Ba = gba.

↭ Bob gets A from the public directory and computes k = Ab = gab.

We see that Alice and Bob have come up with a shared key k .
298 / 798

Eve wants to listen in:

Assuming that the cryptosystem used by Bob and Alice is secure, the best
option for Eve is to find the key k .

She knows p, g, A, and B.

In general, there seems to be no better way than finding the number a for
which ga = A, and then compute k = Ba.

299 / 798

This is a problem. Let us check out some numbers: Suppose p is a 2048-bit
number. (It must be prime, but let us neglect this and assume p = 22048.)

↭ It takes roughly
2 log2 p = 4096

multiplications to perform a ↑ ga (called discrete exponentiation). With a
computer that performs 1010 multiplications per second, the
exponentiation is done seamlessly.

↭ It takes roughly

exp

((
64
9

) 1
3
(ln p)

1
3 ln ln p)

2
3

)
↓ 1035

multiplications to perform ga
↑ a (called discrete logarithm to the base

g). With the same computer, it takes about 1025 seconds, which is about
7 ↔ 107 times the age of the Earth. (The age of the Earth is about
4.5 ↔ 109 years, i.e., 14.3 ↔ 1016 seconds.)

Conclusion: Diffie and Hellman’s public key-distribution scheme is clever,
efficient, and it seems to be secure.

300 / 798

A PARADIGM SHIFT

The perceived security of the DH public key-distribution algorithm relies on
the solution to a problem considered to be difficult to solve.

We call this computational security. Even though it seems unlikely, someone
could find a very fast algorithm to compute the discrete logarithm. The DH
system would instantly become insecure.

To the contrast, perfect secrecy offers provable security even when the
enemy has infinite time and computing power.

Most cryptographic systems rely on computational security.

This leads to the notion of a one-way function.

301 / 798

ONE-WAY FUNCTIONS

Discrete exponentiation is an example of a one-way function: a function for
which a fast algorithm exists and no fast algorithm is known for the function’s
inverse.

(More precisely, to be considered as a one-way function, the modulus p
needs to be a large prime number such that n = p → 1 has a large prime
factor.)

302 / 798

In the DH protocol:

↭ Alice uses the function fa : g ↗↑ ga (with a kept secret)

↭ Bob uses the function fb : g ↗↑ gb (with b kept secret)

The functions commute: fa(fb(g)) = fb(fa(g)). Hence

fa(B) = fb(A).

An attacker needs to invert the map a ↗↑ ga (or, equivalently, invert the map
b ↗↑ gb). This is hard to do, because discrete exponentiation is believed to be
a one-way function.

303 / 798

The following is another application of a one-way function.

EXAMPLE (APPLICATION OF A ONE-WAY FUNCTION)

If a computer were to save user’s names and passwords, a system manager
would have access to both.

This is not the case if the operating system stores, along the name, a
one-way function f of our password. (The password itself is never stored.)

Operating
System

Alice

k

[Alice, f(k)]
Log Files

Computer System

304 / 798

TRAPDOOR ONE-WAY FUNCTIONS

A trapdoor one-way function is a one-way function with an extra feature called
the trapdoor information: with this information, the hard-to-carry-out inverse
computation becomes easy.

Diffie and Hellmann realized that with such a tool the key-distribution problem
would disappear.

Let us first take a look at what Diffie and Hellman proposed to do with a
trapdoor one-way function (if such a function could be found).

305 / 798

PUBLIC-KEY CRYPTOGRAPHY (ASYMMETRIC CRYPTOGRAPHY)

Suppose that Alice wants to send private information to Bob.

Bob has a trapdoor one-way function, implemented by an algorithm EB that
he publishes in a open directory.

He is the only one who has the trapdoor information kB . Hence he has the
algorithm DB that implements the inverse function.

Alice and Bob no longer need a shared key (see figure).

Alice’s Space

Public Channel
EB DB

kB

t c

Bob’s Space

t

306 / 798

The first trapdoor one-way function was found by Rivest, Shamir, and
Adleman in 1978.

We start with ElGamal’s trapdoor one-way function because, as for the DH
protocol, it relies only on the assumption that the exponentiation is a one-way
function.

307 / 798

ElGamal’s trapdoor one-way function

Setup: (same as for the DH protocol)

↭ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p → 1} and arithmetic is modulo p (more on it later).

↭ Pick a generator g.

↭ Pick randomly selected numbers x and y . Unlike p and g, x and y are
kept secret.

Here is a trapdoor one-way function, with trapdoor information x .

x = randomly selected number
y = randomly selected number

t
(
gy , gyx t

)

Given the trapdoor information x , we can invert the function as follows:

↭ compute the inverse of
(
gy)x

= gyx .

↭ multiply the result with gyx t . The result is t .
308 / 798

ElGamal’s Encryption Scheme

It is based on the above trapdoor one-way function. Let p and g be fixed and
known to everyone.

Here is how Alice sends encrypted text to Bob:

Alice:
t = plaintext, t ;
y = random number, y ;

Bob:
x = random number, x ;

Bob sends gx to Alice

Alice sends the cryptogram (gy , gyx t) to Bob

Note: x and y are transaction specific.

309 / 798

Alice's Bob's
privateI private
space space

secret : &1,-,p- 1)

B=g
Y

modp

PUBLICDIRECTORY

Bob ...(p ,g ,B)
<

Alice's Bob's
private private
space space

plain text t secret : X

randomly generate
y B=gYmodp

B PUBLICDIRECTORY
T

Bob ...(p ,g ,B) <

Alice's Bob's
private logtmodp , private
space space

plain text t secret : X

randomly generate BUp)>
- B=gYmodp

Pig ,
B -

PUBLIC DIRECTORY
T

Bob ...(p ,g ,B) <

IS THIS GOOD ENOUGH FOR BOB ?

BOR HAs (gewodp]
Y

wodp

ge
*

mop3 = g
YY

wodp

B&t wodp
= (gYwolp) : modp
= B rodp

IS THIS GOOD ENOUGH FOR BOB ?

BOB HAS

gyY3 (g) modpY more o

=

g
*Y

modp
BY t modp =it modp

② "sneak peek"
There exists a (EStip-1)
such that (D . $4modp = 1

such a C is called

"MULTIPLICATIVE INVERSE OF BY

It is unique. a Multiplicative These
Ex . p = 7. - i
e

such a C is called

"MULTIPLICATIVE INVERSE OF BY

It is uniquee. aMultiplicative thesea
Ex . m = 6 1 1

2 -

2

Step2 ,
continued :

compute I and fid :

34 · [(B2 ·7) modp]malp
= D . B2 .t modp
=)[C. B3] wop) . -3 modp
= t modp = t

BURNING QUESTIONS

· "modulo" : how does this work,
really

· why did Diffie-Hellman pick
a prime number p ?

· which
go work ?

(what is the structure behind it ?)

· what about

"multiplicative inverses" ?

Alice Bob

a=25 b = 42
25

H= 2 mod67 B = 2
**
mod 67

=28 p = 67 , g
=2

= 24

Alie : 28

Bob : 24

SHARED SECRET :

Alice Computs : 2425 mod 67 = 22

Bob coputes :
2842 md67 = 22

Alice
-> (28, ->

Bob

.25 X = 42Y 22:7)
25

H= 2 mod67
=43 B = 2

**
mod 67S=28 p = 67 , g

=2
= 24

t issix bits

T Alie : 28

1
,
2
,
3
,
... 64 Bob : 24
t= 5

BOB RECEIVES (28, 43).

① HE CALCULATES :

2842 mod 67 = 22

② FIND MULTIPLICATIVE INVERSE
OF 22 (mod 67) :
64. 22 mod 67 = 1

=> WE Have C = 64

FINALLY
,
HE CALCULATES :

64 · 43 mod 67

= 5

↳ HE Now knows t =5.

Next goal: The RSA public key cryptosystem. It will take two weeks to build
up the necessary background.

310 / 798

