

WEEK 4, PART 2: PREDICTION, LEARNING, AND CROSS-ENTROPY LOSS

Prof. Michael Gastpar
Slides by Prof. M. Gastpar

Spring Semester 2025

OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

Probability Review

Sources and Entropy

The Fundamental Compression Theorem: The IID Case

Conditional Entropy

Entropy and Algorithms

Prediction, Learning, and Cross-Entropy Loss

Summary of Chapter 1

CRYPTOGRAPHY

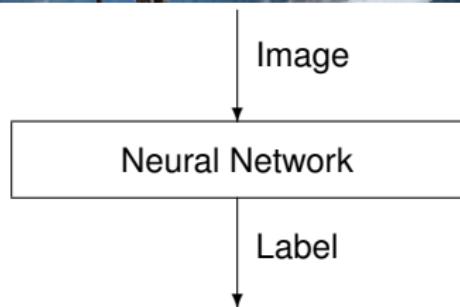
CHANNEL CODING

PREDICTION, LEARNING, AND CROSS-ENTROPY LOSS

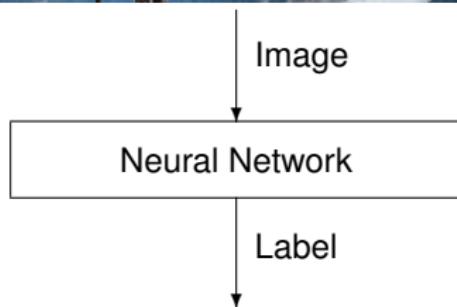
In today's lecture, we explore the role of entropy in prediction and learning problems.

EXAMPLE : CLASSIFY IMAGES

EXAMPLE : CLASSIFY IMAGES



EXAMPLE : CLASSIFY IMAGES



Label

- Ibex
- Kangaroo
- Lynx
- Wombat
- Dog
- Cat
- Turtle
- Dolphin
- Elephant
- Kookaburra
- Other

IS OUR "NEURAL NETWORK" PERFORMING WELL ?

IMAGE: x

OUR MACHINE (NEURAL NETWORK)
OUTPUTS $Q(x)$

TRUE LABEL: $Label(x)$

“ZERO - ONE LOSS”:

$$\begin{aligned} & \mathbb{1} \{ Q(x) \neq \text{Label}(x) \} \\ &= \begin{cases} 0, & \text{if } Q(x) = \text{Label}(x) \\ 1, & \text{if } Q(x) \neq \text{Label}(x) \end{cases} \end{aligned}$$

CLASSIFICATION ERROR:

$$\sum_x \mathbb{1} \{ Q(x) \neq \text{label}(x) \}$$

number of images

is the fraction of mis-labeled images.

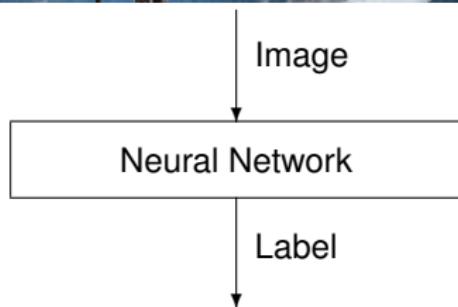
WHAT'S TO LIKE?

- VERY INTUITIVE
- INTERPRETABLE

WHAT'S NOT TO LIKE?

- NOT DIFFERENTIABLE

EXAMPLE : CLASSIFY IMAGES



Label	Probability	
Ibex	0.98	1
Kangaroo	0.005	0
Lynx	0.002	0
Wombat	0.002	0
Dog	0.001	0
Cat	0.001	0
Turtle	0.001	0
Dolphin	0.001	0
Elephant	0.001	0
Kookaburra	0.001	0
Other	0.005	0

EXAMPLE : CLASSIFY IMAGES

- Our Neural Network produces

$$P_{\text{machine}}(\text{label}|\text{image}).$$

also called Q
in these slides.

- The true label distribution is

$$P_{\text{true}}(\text{label}|\text{image}) = \begin{cases} 1, & \text{correct label,} \\ 0, & \text{wrong label.} \end{cases}$$

(assuming for simplicity that for each image, there is a single correct label).

- Ideally, we would like

$$P_{\text{machine}}(\text{label}|\text{image}) = P_{\text{true}}(\text{label}|\text{image})$$

for every pair $(\text{image}, \text{label})$.

- Clearly, this is not going to happen in the real world!

EXAMPLE : CLASSIFY IMAGES

- ▶ Instead, people like to consider **cross entropy loss**.
- ▶ That is, we wish for our $P_{\text{machine}}(\text{label}|\text{image})$ to **minimize**

$$\begin{aligned} L(P_{\text{true}}(\text{label}|\text{image}), P_{\text{machine}}(\text{label}|\text{image})) \\ = - \sum_{\text{label}} P_{\text{true}}(\text{label}|\text{image}) \log_D P_{\text{machine}}(\text{label}|\text{image}) \end{aligned}$$

- ▶ Given training data $(\text{image}_i, \text{label}_i)$, for $i = 1, 2, \dots, n$, we select $P_{\text{machine}}(\text{label}|\text{image})$ to minimize the cross entropy loss.

CROSS ENTROPY LOSS

- ▶ Cross Entropy Loss:

$$L(P, Q) = - \sum_y P(y) \log_D Q(y).$$

where

- ▶ P is the true distribution
- ▶ Q is our approximation (via the neural network).

Why is it popular?

- ▶ Good properties for training with “gradient descent” in certain standard architectures.
- ▶ Theoretical properties.

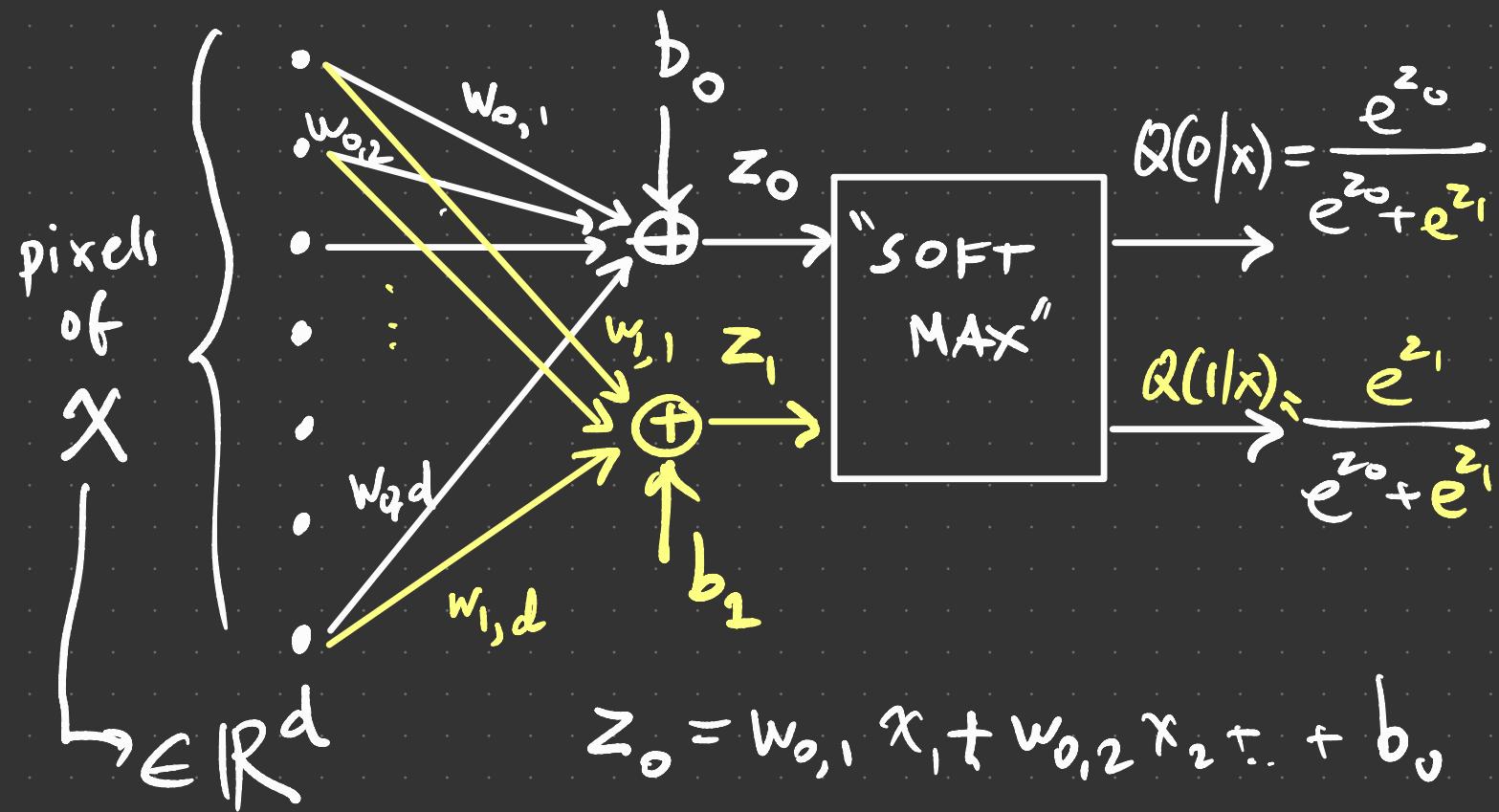
We will now discuss these in turn.

IMAGE CLASSIFICATION

LABEL
"0"

LABEL
"1"

A (VERY) SIMPLE NEURAL NET



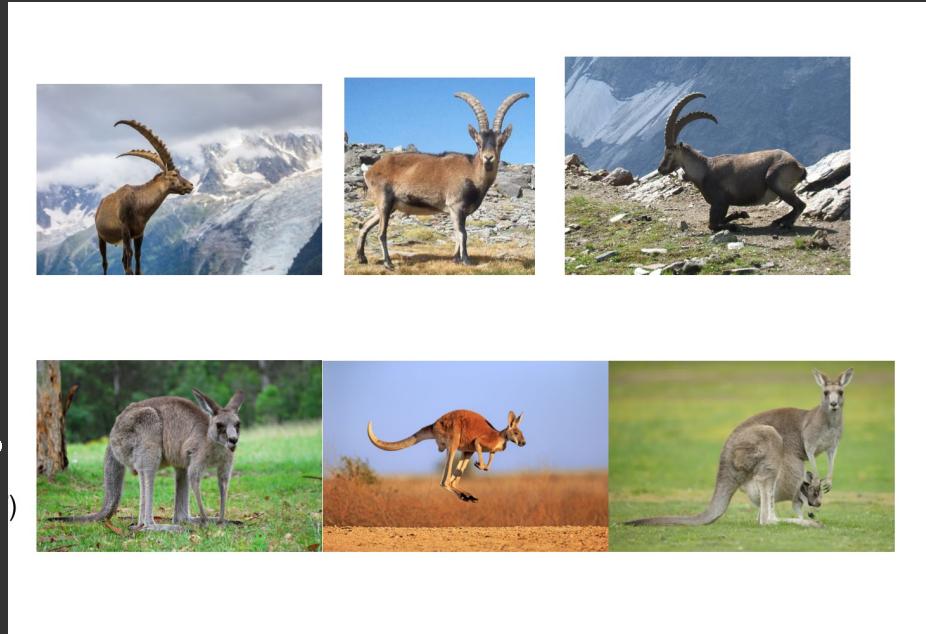
GOAL:

GOAL:

GIVEN
TRAINING
DATA, \rightarrow

SELECT:

w_0, b_0, w_1, b_1
CLEVERLY!



For us:

SELECT

w_0, b_0, w_1, b_1

such as to minimize

CROSS-ENTROPY LOSS

FOR A SINGLE IMAGE x :

$$\begin{aligned} L(P(y|x), Q(y|x)) \\ = - \sum P(y|x) \log Q(y|x) \\ = - \stackrel{y}{P}(0|x) \log Q(0|x) \\ \quad - P(1|x) \log Q(1|x) \end{aligned}$$

FOR A SINGLE IMAGE x :

$$L(p(y|x), Q(y|x))$$

$$= \sum_y p(y|x) \log Q(y|x)$$

$$= -p(0|x) \log Q(0|x) - p(1|x) \log Q(1|x)$$

$x \in \mathbb{R}^d \leftarrow$ total # of pixels

$w_0 \in \mathbb{R}^d$

$w_1 \in \mathbb{R}^d$

$$Q(0|x) = \frac{e^{z_0}}{e^{z_0} + e^{z_1}} = \frac{e^{x \cdot w_0 + b_0}}{e^{x \cdot w_0 + b_0} + e^{x \cdot w_1 + b_1}}$$

$$L(P(y|x), Q(y|x))$$

$$= -P(0|x) \log Q(0|x) - P(1|x) \log Q(1|x)$$

$$= -P(0|x) \log \frac{e^{x \cdot w_0 + b_0}}{e^{x \cdot w_0 + b_0} + e^{x \cdot w_1 + b_1}}$$

$$-P(1|x) \log \frac{e^{x \cdot w_1 + b_1}}{e^{x \cdot w_0 + b_0} + e^{x \cdot w_1 + b_1}}$$

$$L(P(y|x), Q(y|x))$$

$$= \begin{cases} \log \frac{e^{x \cdot w_0 + b_0}}{e^{x \cdot w_0 + b_0} + e^{x \cdot w_1 + b_1}}, & \text{if } x \text{ is } \text{Ibex} \\ \log \frac{e^{x \cdot w_1 + b_1}}{e^{x \cdot w_0 + b_0} + e^{x \cdot w_1 + b_1}}, & \text{if } x \text{ is } \text{Kangaroo} \end{cases}$$

BACK TO THE FULL TRAINING SET

NOW, ADD
UP THE
CROSS-
ENTROPY
LOSS
OVER THE
TRAINING
SET.

TOTAL LOSS:

$$L_{\text{total}}(w_0, b_0, w_1, b_1) =$$

$$= -\sum_{\text{ibexes}} \log \frac{e^{x_i \cdot w_0 + b_0}}{e^{x_i \cdot w_0 + b_0} + e^{x_i \cdot w_1 + b_1}}$$

$$-\sum_{\text{koenig-roep}} \log \frac{e^{x_j \cdot w_1 + b_1}}{e^{x_j \cdot w_0 + b_0} + e^{x_j \cdot w_1 + b_1}}$$

IDEA # 1:

SELECT

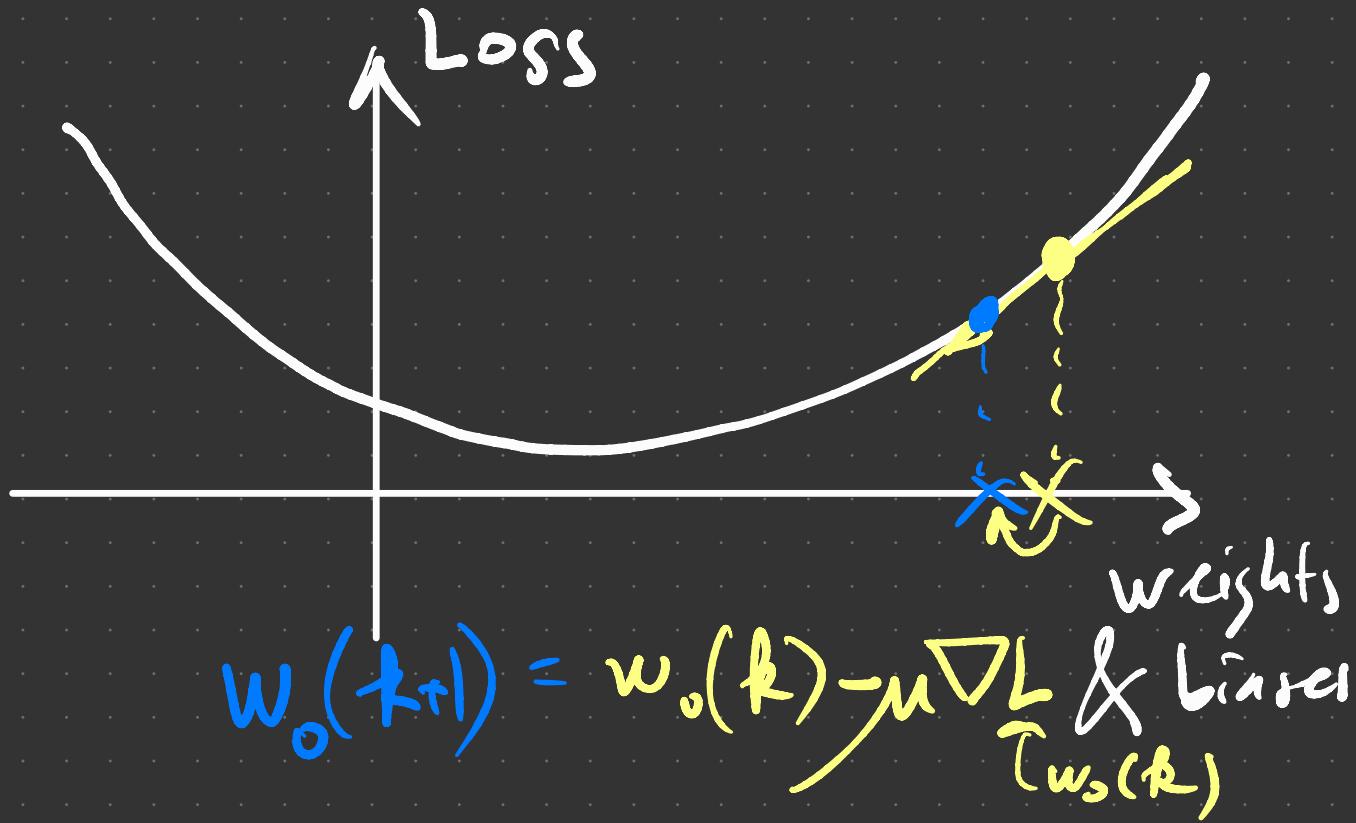
w_0, b_0, w_1, b_1

TO MINIMIZE

$L_{\text{total}}(w_0, b_0, w_1, b_1)$

IDEA #2

"GRADIENT DESCENT"



IN EITHER CASE, WE WANT
DERIVATIVES

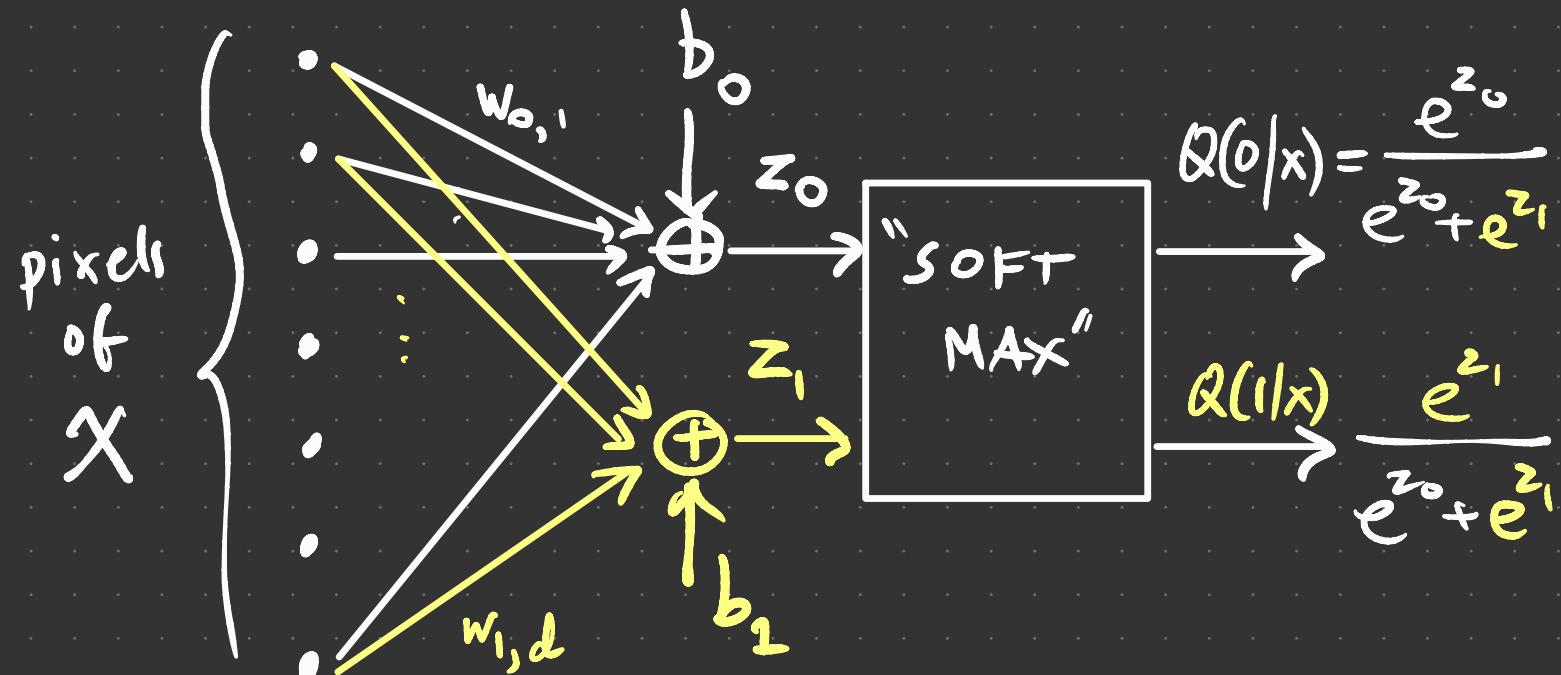
OF $L(w_0, b_0, w_1, b_1)$.

→ SIMPLE FOR LOG-LOSS!

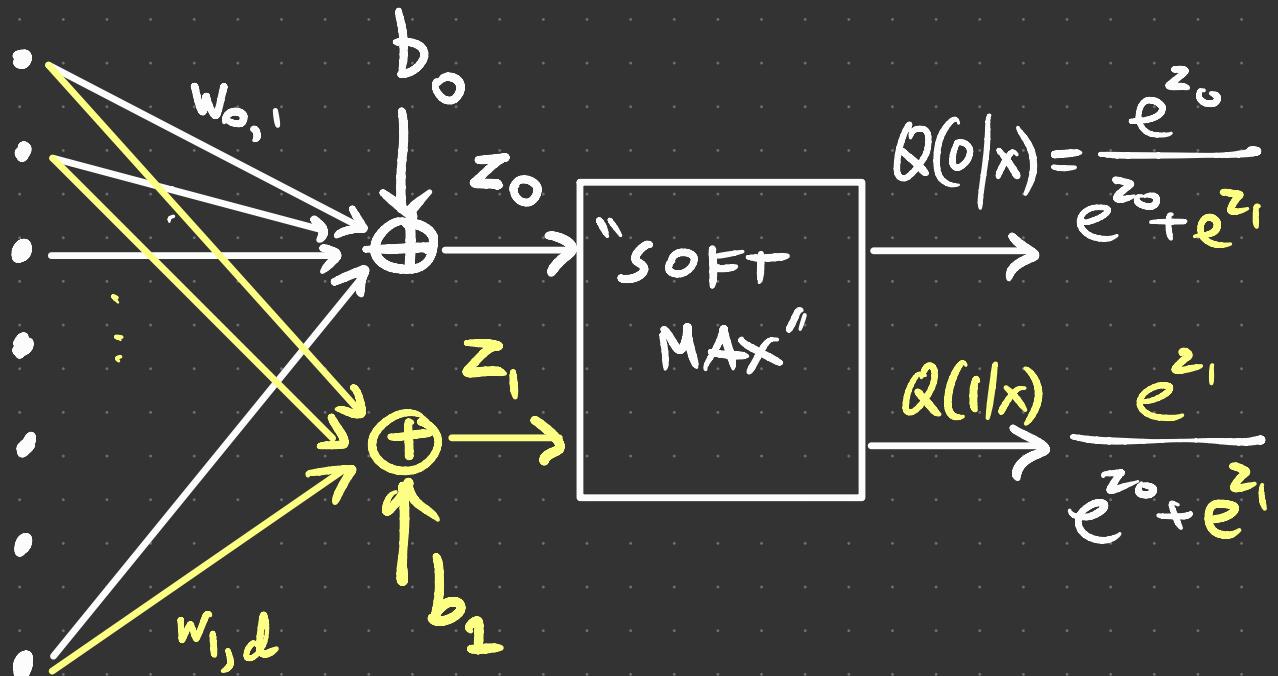
SEE HOMEWORK 4!

SOME FOLLOW-UPS ...

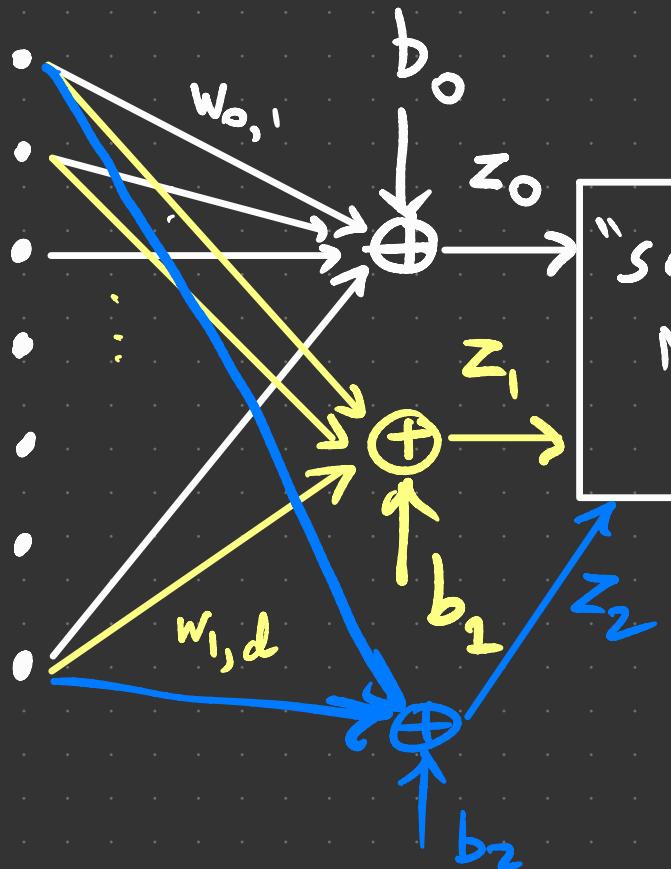
A (VERY) SIMPLE NEURAL NET



• MORE THAN 2 CLASSES ?



• MORE THAN 2 CLASSES ?

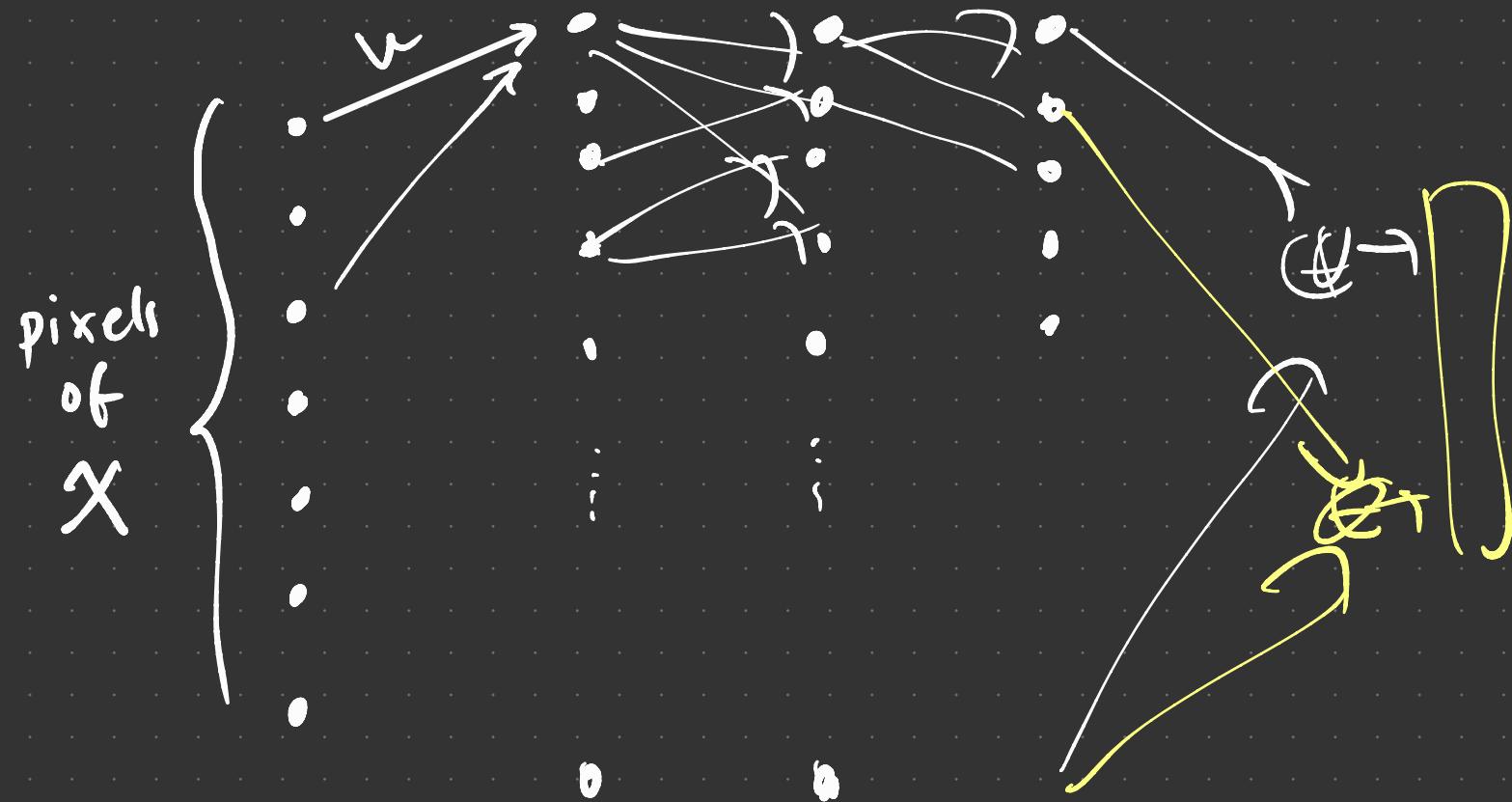


$$Q(0|x) = \frac{e^{z_0}}{e^{z_0} + e^{z_1} + e^{z_2}}$$

$$Q(1|x) = \frac{e^{z_1}}{e^{z_0} + e^{z_1} + e^{z_2}}$$

$$Q(2|x) = \frac{e^{z_2}}{e^{z_0} + e^{z_1} + e^{z_2}}$$

"DEEP LEARNING" ?



EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

- ▶ The Neural Network takes in an image. Let us call this x .
- ▶ It outputs a label distribution $Q(y|x)$ over the set of labels.
- ▶ Let us restrict to just two labels. Only “Ibex” ($y = 0$) and “Kangaroo” ($y = 1$).
- ▶ In simplified terms, the Neural Network outputs:

$$Q(y = 0|x) = \frac{e^{z_0}}{e^{z_0} + e^{z_1}},$$

$$Q(y = 1|x) = \frac{e^{z_1}}{e^{z_0} + e^{z_1}} = 1 - Q(y = 0|x).$$

where

$$z_0 = w_0 x + b_0$$

$$z_1 = w_1 x + b_1$$

where w_0 and w_1 are called *weights* and b_0 and b_1 are called *biases*.

- ▶ The key is to select the weights and biases cleverly.
- ▶ This is done by *training* with data.

EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Label = 0
("Ibex")

Label = 1
("Kangaroo")

EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

- ▶ For fixed weights and biases, calculate the loss over all n training samples:

MINUS SIGN MISSING

$$L_{\text{training}} = \sum_{i=1}^n \left(P(y=0|x_i) \log_D \frac{e^{z_{0,i}}}{e^{z_{0,i}} + e^{z_{1,i}}} + P(y=1|x_i) \log_D \frac{e^{z_{1,i}}}{e^{z_{0,i}} + e^{z_{1,i}}} \right)$$

where $z_{0,i} = w_0 x_i + b_0$ and $z_{1,i} = w_1 x_i + b_1$.

- ▶ Suppose images $i = 1, 2, \dots, k$ are ibexes (label 0), and images $i = k + 1, k + 2, \dots, n$ are kangaroos (label 1). Then, we can write

$$L_{\text{training}} = \sum_{i=1}^k \log_D \frac{e^{w_0 x_i + b_0}}{e^{w_0 x_i + b_0} + e^{w_1 x_i + b_1}} + \sum_{i=k+1}^n \log_D \frac{e^{w_1 x_i + b_1}}{e^{w_0 x_i + b_0} + e^{w_1 x_i + b_1}}$$

- ▶ Now minimize this over all weights and biases!

MINUS SIGN MISSING

EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

MINUS SIGN MISSING

$$L_{\text{training}} = \sum_{i=1}^k \log_D \frac{e^{w_0 x_i + b_0}}{e^{w_0 x_i + b_0} + e^{w_1 x_i + b_1}} + \sum_{i=k+1}^n \log_D \frac{e^{w_1 x_i + b_1}}{e^{w_0 x_i + b_0} + e^{w_1 x_i + b_1}}$$

- ▶ Find gradient (derivative) with respect to weights (and biases).
- ▶ Most commonly, *gradient descent* is used.
 - ▶ Start with a **random choice** of the weights.
 - ▶ Then, proceed in “small” steps against the gradient.

CROSS ENTROPY LOSS : THEORETICAL PROPERTIES

- ▶ Cross Entropy Loss:

$$L(P, Q) = - \sum_y P(y) \log_D Q(y).$$

THEOREM

For a fixed probability distribution P , the minimum

$$\min_Q L(P, Q)$$

is attained if and only if we select $Q^ = P$, and in this case,*

$$L(P, Q^*) = L(P, P) = H(P),$$

where $H(P)$ is the entropy of the probability distribution P .

The proof, which will be done in class, uses once again the “IT inequality.”

PROOF: $H(P) \leq L(P, Q)$

Claim: $H(P) - L(P, Q) \leq 0$ w.e.q. iff $P = Q$.

$$-\sum_y p(y) \log p(y) + \sum_y p(y) \log Q(y)$$

$$= \sum_y p(y) \log \frac{Q(y)}{P(y)}$$

$$\begin{aligned}
 & \leq \sum_y p(y) \left[\frac{Q(y)}{P(y)} - 1 \right] \log(e) \\
 & \text{w.-eq.-if} \\
 & = \sum_y (Q(y) - P(y)) \log(e) \\
 & = \left\{ \sum_y Q(y) - \sum_y P(y) \right\} \log(e) \\
 & = 1 - 1 = 0
 \end{aligned}$$

□

NOTE :

KL-DIVERGENCE

(aka KL DISTANCE) :

$$D_{KL}(P \parallel Q) := \sum_y P(y) \log \frac{P(y)}{Q(y)}$$

Fact 1: $D_{KL}(P \parallel Q) \geq 0$

with equality iff $P = Q$.

OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

Probability Review

Sources and Entropy

The Fundamental Compression Theorem: The IID Case

Conditional Entropy

Entropy and Algorithms

Prediction, Learning, and Cross-Entropy Loss

Summary of Chapter 1

CRYPTOGRAPHY

CHANNEL CODING

SUMMARY OF CHAPTER 1

Entropy:

$$H_D(X) = - \sum_x p(x) \log_D p(x).$$

For $D = 2$, we simply write $H(X)$, and we call the unit *bits*.

Entropy has many useful properties, including:

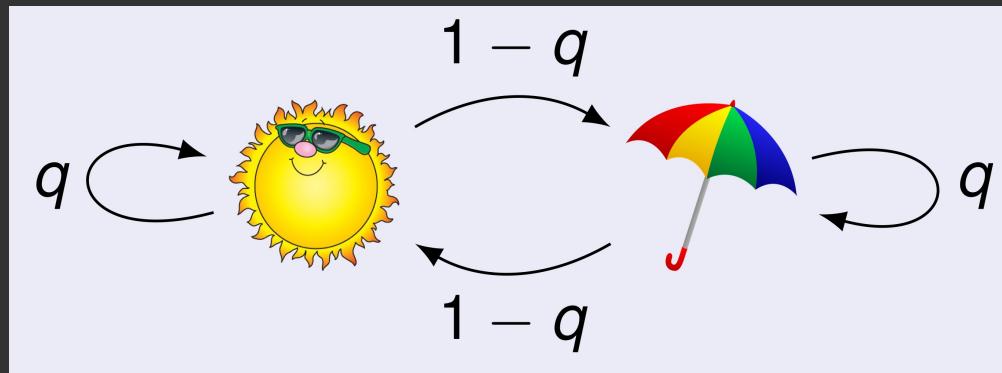
- ▶ $0 \leq H_D(X) \leq \log_D |\mathcal{X}|$
- ▶ $H_D(X|Y) \leq H_D(X)$ with equality if and only if X and Y are independent.
- ▶ $H_D(X, Y) = H_D(X) + H_D(Y|X)$

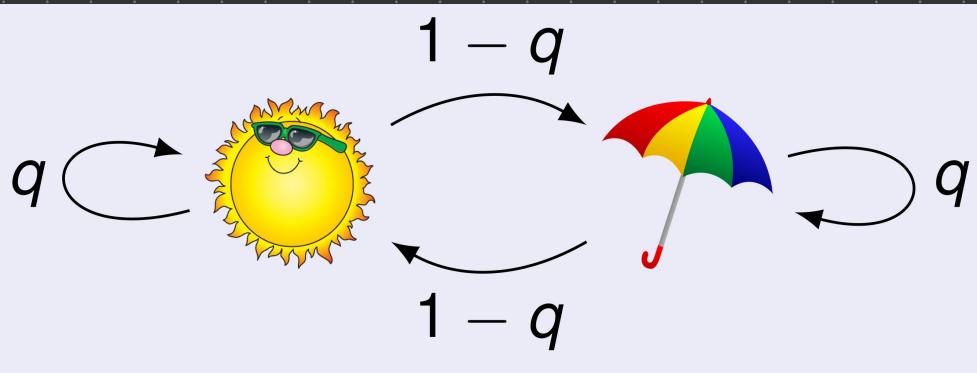
Data Compression:

- ▶ Every uniquely decodable binary code must use at least $H(X)$ bits per symbol on average.
- ▶ There exists a binary code that uses between $H(X)$ and $H(X) + 1$ bits per symbol on average.
- ▶ Hence, for a source string of length n :
 - ▶ every uniquely decodable binary code must use at least $H(S_1, S_2, \dots, S_n)/n$ bits per source symbol, and
 - ▶ there exists a binary code that uses between $H(S_1, S_2, \dots, S_n)/n$ and $H(S_1, S_2, \dots, S_n)/n + 1/n$ bits per source symbol.

- COIN FLIP

- SUNNY - RAINY





s_1, s_2, s_3, \dots

QUIZ: ARE s_1 AND s_3 INDEPENDENT?

$$\begin{aligned}
 p(s_1, s_3) &= \sum_{s_2} p(s_1, s_2, s_3) \\
 &= \sum_{s_2} p(s_1) p(s_2 | s_1) p(s_3 | s_2)
 \end{aligned}$$

Entropy and Algorithms

- ▶ We explored examples where entropy can give a lower bound on algorithmic performance.
 - ▶ *Example:* in search-type problems, give a lower bound on the minimum number of necessary queries.

Cross-Entropy Loss

- ▶ Machine (e.g., Neural Network) outputs a distribution $Q(y)$ over all possible labels.
- ▶ Cross-Entropy Loss: Select $Q(y)$ to minimize
$$L(P, Q) = - \sum_y P(y) \log_D Q(y).$$