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PREDICTION, LEARNING, AND CROSS-ENTROPY LOSS

In today’s lecture, we explore the role of entropy in prediction and learning
problems.
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EXAMPLE : CLASSIFY IMAGES
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EXAMPLE : CLASSIFY IMAGES

!
Image

Neural Network

!
Label

Label
Ibex
Kangaroo
Lynx
Wombat
Dog
Cat
Turtle
Dolphin
Elephant
Kookaburra
Other
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IS OUR "NEURAL NETWORK"

PERFORMING WELL ?

IMAGE : X

OUR MACHINE (NEURAL NETWORK
Outputs Q(x)
TRUE LABEL : Label(x)



"ZERO-ONE Loss" :

15 Q(x) + Label (x)]
O, if Q(x) = habd(x)

= (1
, if k(x) + Labe(x)





CLASSIFICATION ERROR :

[x([Q(x) # habe(x)]
number of images

is the fraction of mis-labeled

images.



WHAT'S TO LIKE ?

· VERY INTUITIVE

· INTERPRETABLE

WHAT'S NOT TO LIKE ?

· NOT DIFFERENTIABLE



EXAMPLE : CLASSIFY IMAGES

!
Image

Neural Network

!
Label

Label Probability
Ibex 0.98
Kangaroo 0.005
Lynx 0.002
Wombat 0.002
Dog 0.001
Cat 0.001
Turtle 0.001
Dolphin 0.001
Elephant 0.001
Kookaburra 0.001
Other 0.005
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EXAMPLE : CLASSIFY IMAGES

↭ Our Neural Network produces

Pmachine(label |image).

↭ The true label distribution is

Ptrue(label |image) =

{
1, correct label,
0, wrong label.

(assuming for simplicity that for each image, there is a single correct
label).

↭ Ideally, we would like

Pmachine(label |image) = Ptrue(label|image)

for every pair (image, label).

↭ Clearly, this is not going to happen in the real world!
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EXAMPLE : CLASSIFY IMAGES

↭ Instead, people like to consider cross entropy loss.

↭ That is, we wish for our Pmachine(label|image) to minimize

L(Ptrue(label|image),Pmachine(label |image))

= →

∑

label

Ptrue(label|image) logD Pmachine(label|image)

↭ Given training data (imagei , labeli), for i = 1, 2, . . . , n, we select
Pmachine(label |image) to minimize the cross entropy loss.
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CROSS ENTROPY LOSS

↭ Cross Entropy Loss:

L(P,Q) = →

∑

y

P(y) logD Q(y).

where
↭ P is the true distribution
↭ Q is our approximation (via the neural network).

Why is it popular?

↭ Good properties for training with “gradient descent” in certain standard
architectures.

↭ Theoretical properties.

We will now discuss these in turn.
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IMAGE CLASSIFICATION

LABEL

"O'

LABE

"1"



A (VERY) SIMPLE NEURAL NET
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GOAL :



GOAL :

GIVEN

TRAINING

DATA
,
-

SELECT
:

Wo , bo
, we , be

CLEVERLY !



FOR US :

SELECT

Wo , bo
, we , be

SUCH As to MINIMIZE

CROSS-ENTROPY Loss.



FOR A SINGLE IMAGE X :

L(P(y(x)
, Q(y(x))

= -[P(y(x) (yQ(y(x)
=- (0(x)(yQ(0(x)
- p(1(x)(yQ(((x)



FOR A SINGLE IMAGE X :

L(P(y(x)
, Q(y(x))

= [P(y(x) logQ(y(x)
Y

=

- P(0(x) logQ(0(X) - P(1(x)logQ(7(x)



Xt (R
&= total # of pixels

No EIR9 We IRd

Q10x)=2
eX

-Wo +b

=

X :NotboxoW1 +by
+ e



L(P(y(x)
, Q(y(x))

=

- P(0(x) logQ(0(X) - P(1(x)logQ(7(x)
= - P(0(x) log

e Xowo +
b.

eX
·NotboxoW

exow1 +by
- P(1(x) logX ·NotboxoW



L(P(y(x)
, Q(y(x))

! log
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BACK TO THE FULL TRAINING SET

NOW
, ADD

UP THE

CROSS-
ENTROPY
Loss

OVER THE

TRAINING
SET .



TOTAL Loss :

↳
total

(wo
,
bo
, Waba) =
eX: wo +b.

log=
exes

X - Notbo xown the
e
i
+ ei

eXw1 +b
-[ log X - Wo+by xW1 +by&Kangaroos es + es



IDEA #1 :

SELECT

wo , bo , Wa , be
TO MINIMIZE

↳
total

(wo
,
bo
, Wa , be)



IDEA #2

"GRADIENT DESCENT "

Loss

↳
S
weights

Wo(kt1) = w .(k)Dbiris



IN EITHER CASE
,
We WANT

DERIVATIVES

OF L)Wo , bo , W , b ,)
< SIMPLE FOR LOG-Loss !
SEE Homework 4 !



SOME Follow-ups ...



A (VERY) SIMPLE NEURAL NET

bo
①

·

wo' zo Q
pixels %: < "Soft
of

X & ①

·

2
Max"

Q
&

-

4b
=

&
Wi
,
d



· MORE THAN 2 CLASSES ?
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

↭ The Neural Network takes in an image. Let us call this x .
↭ It outputs a label distribution Q(y |x) over the set of labels.
↭ Let us restrict to just two labels. Only “Ibex” (y = 0) and “Kangaroo”

(y = 1).
↭ In simplified terms, the Neural Network outputs:

Q(y = 0|x) =
ez0

ez0 + ez1
,

Q(y = 1|x) =
ez1

ez0 + ez1
= 1 → Q(y = 0|x).

where

z0 = w0x + b0

z1 = w1x + b1

where w0 and w1 are called weights and b0 and b1 are called biases.
↭ The key is to select the weights and biases cleverly.
↭ This is done by training with data.
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Label = 0
(“Ibex”)

Label = 1
(“Kangaroo”)
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

↭ For fixed weights and biases, calculate the loss over all n training
samples:

Ltraining =
n∑

i=1

(
P(y = 0|xi) logD

ez0,i

ez0,i + ez1,i
+ P(y = 1|xi) logD

ez1,i

ez0,i + ez1,i

)

where z0,i = w0xi + b0 and z1,i = w1x + b1.

↭ Suppose images i = 1, 2, . . . , k are ibexes (label 0), and images
i = k + 1, k + 2, . . . , n are kangaroos (label 1). Then, we can write

Ltraining =
k∑

i=1

logD
ew0xi+b0

ew0xi+b0 + ew1xi+b1
+

n∑

i=k+1

logD
ew1xi+b1

ew0xi+b0 + ew1xi+b1

↭ Now minimize this over all weights and biases!
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Ltraining =
k∑

i=1

logD
ew0xi+b0

ew0xi+b0 + ew1xi+b1
+

n∑

i=k+1

logD
ew1xi+b1

ew0xi+b0 + ew1xi+b1

↭ Find gradient (derivative) with respect to weights (and biases).
↭ Most commonly, gradient descent is used.

↭ Start with a random choice of the weights.
↭ Then, proceed in “small” steps against the gradient.
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CROSS ENTROPY LOSS : THEORETICAL PROPERTIES

↭ Cross Entropy Loss:

L(P,Q) = →

∑

y

P(y) logD Q(y).

THEOREM

For a fixed probability distribution P, the minimum

min
Q

L(P,Q)

is attained if and only if we select Q→ = P, and in this case,

L(P,Q→) = L(P,P) = H(P),

where H(P) is the entropy of the probability distribution P.

The proof, which will be done in class, uses once again the “IT inequality.”
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PROOF :

H(p) = L(P,G)
cam: w. eg . if P =Q.

H(p) -<(p
,Q) -> 0

-

[p(y)byp(y) + &p(y)logQ(y)
= [ploA



~ [p(p) [ -17 log(e)

= (a(y) -P(y))ey(e)
= Sayl
= 0 D



NOTE :

KL-DIVERGENCE

Caka KL DISTANCE) :

D
,
x(P((Q) := [P(y) logue
Fact 1 : Di (P(a) 10

with equility off P = Q.
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SUMMARY OF CHAPTER 1

Entropy:
HD(X ) = →

∑

x

p(x) logD p(x).

For D = 2, we simply write H(X ), and we call the unit bits.

Entropy has many useful properties, including:

↭ 0 ↑ HD(X ) ↑ logD |X |

↭ HD(X |Y ) ↑ HD(X ) with equality if and only if X and Y are independent.

↭ HD(X ,Y ) = HD(X ) + HD(Y |X )
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SUMMARY OF CHAPTER 1

Data Compression:

↭ Every uniquely decodable binary code must use at least H(X ) bits per
symbol on average.

↭ There exists a binary code that uses between H(X ) and H(X ) + 1 bits
per symbol on average.

↭ Hence, for a source string of length n :
↭ every uniquely decodable binary code must use at least

H(S1,S2, · · · ,Sn)/n bits per source symbol, and
↭ there exists a binary code that uses between H(S1,S2, · · · ,Sn)/n and

H(S1,S2, · · · ,Sn)/n + 1/n bits per source symbol.
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· COIN FLIP

· SUNNY-RAINY



S1
, Su Sz ...

QUIZ : ARE S1 AND Sy INDEPENDENT?

P(S1Ss) = [p(s1 , Sn ,Ss)
= Esp(st)p(sz(s])p(s(sz)



SUMMARY OF CHAPTER 1

Entropy and Algorithms

↭ We explored examples where entropy can give a lower bound on
algorithmic performance.
↭ Example: in search-type problems, give a lower bound on the minimum

number of necessary queries.

Cross-Entropy Loss

↭ Machine (e.g., Neural Network) outputs a distribution Q(y) over all
possible labels.

↭ Cross-Entropy Loss: Select Q(y) to minimize
L(P,Q) = →

∑
y P(y) logD Q(y).
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