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PREDICTION, LEARNING, AND CROSS-ENTROPY LOSS

In today’s lecture, we explore the role of entropy in prediction and learning
problems.
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EXAMPLE : CLASSIFY IMAGES

Image

Neural Network

Label

DAy
252/798



EXAMPLE : CLASSIFY IMAGES

Image

Label

Neural Network

Label

Ibex
Kangaroo
Lynx
Wombat
Dog

Cat

Turtle
Dolphin
Elephant
Kookaburra
Other
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EXAMPLE : CLASSIFY IMAGES

Image

Neural Network

Label

Label Probability
Ibex 0.98
Kangaroo 0.005
Lynx 0.002
Wombat 0.002
Dog 0.001
Cat 0.001
Turtle 0.001
Dolphin 0.001
Elephant 0.001
Kookaburra ~ 0.001
Other 0.005
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EXAMPLE : CLASSIFY IMAGES

4'3:: Cakﬂo{ @\

» Our Neural Network producii/ \ Jes,
Pmachine(label‘ image) .
» The true label distribution is

1, correct label,

Pm,e(label\image) = { 0 wrong label

(assuming for simplicity that for each image, there is a single correct
label).

> |deally, we would like
Prachine(labellimage) = Pyue(label|image)

for every pair (image, label).

» Clearly, this is not going to happen in the real world!
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EXAMPLE : CLASSIFY IMAGES

» Instead, people like to consider cross entropy loss.

» That is, we wish for our Prachine(/abel|image) to minimize

L( P"Ue(labe”image)v Pmachine(/abe/|image))
= = Puus(label|image) log, Prachine(label|image)

label
» Given training data (image;, label;), for i = 1,2, ..., n, we select
Prachine(label|image) to minimize the cross entropy loss.
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CRroOSS ENTROPY LOSS

» Cross Entropy Loss:

L(P,Q) =~ P(y)logp Q(y).

y

where

» P is the true distribution
> Qs our approximation (via the neural network).

Why is it popular?

» Good properties for training with “gradient descent” in certain standard
architectures.

» Theoretical properties.

We will now discuss these in turn.
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

» The Neural Network takes in an image. Let us call this x.

> It outputs a label distribution Q(y|x) over the set of labels.

> Let us restrict to just two labels. Only “Ibex” (y = 0) and “Kangaroo”
(y=1).

» In simplified terms, the Neural Network outputs:

e’
Q(y =0Jx) = oo L en’
e
Qy=1ix) = % F o =1-Q(y =0|x).
where
Zo = WoX + by

Zy = Wi X + by

where wp and wy are called weights and by and by are called biases.
» The key is to select the weights and biases cleverly.

» This is done by training with data.
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Label =0
(“loex™)

Label =1

(“Kangaroo”)
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

> For fixed weights and biases, calculate the loss over all n training
samples: [y vuS  S1eN MEHNG, |

n

e%0.i e
Ltraining = Z (P(y 0|XI) IOgD W + P(y - 1|X’) IOgD W)
i=1

where zp; = woX; + b and z; = wix + by.

» Suppose images i =1,2,..., k are ibexes (label 0), and images
i=k+1,k+2,...,nare kangaroos (label 1). Then, we can write
k e"oXi+bo n W1 Xitby

logp

Liraining = E logp ewoxi+by - gwixi+by *,

- ewoXi+by - @wiXi+b
i=

» Now mininize this over all weights and biases!

[Mivus S1aN WSHNG, |
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

|M\NM§ SI&N MISAHNG, |

k gWoXi+bo n e Xitb
Luaining = 31080 ozt gwn e + D 198D Gty g ey
=1 i=k+1

» Find gradient (derivative) with respect to weights (and biases).
» Most commonly, gradient descent is used.

> Start with a random choice of the weights.
> Then, proceed in “small” steps against the gradient.
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CROSS ENTROPY LOSS : THEORETICAL PROPERTIES

» Cross Entropy Loss:

L(P,Q) = ZP ) logp Q(¥).

THEOREM

For a fixed probability distribution P, the minimum
min L(P,Q)
is attained if and only if we select Q* = P, and in this case,
L(P,Q") = L(P,P) = H(P),

where H(P) is the entropy of the probability distribution P.

The proof, which will be done in class, uses once again the “IT inequality.”
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SUMMARY OF CHAPTER 1

Entropy:
Hp(X) = Z p(x) logp p(x

For D = 2, we simply write H(X), and we call the unit bits.

Entropy has many useful properties, including:

> 0 < Hp(X) < logp | X|
> Hp(X|Y) < Hp(X) with equality if and only if X and Y are independent.

> Hp(X, Y) = Ho(X) + Ho(Y|X)
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SUMMARY OF CHAPTER 1

Data Compression:

» Every uniquely decodable binary code must use at least H(X) bits per
symbol on average.

> There exists a binary code that uses between H(X) and H(X) + 1 bits
per symbol on average.

» Hence, for a source string of length n :

» every uniquely decodable binary code must use at least
H(S1, Sz, - -+, Sn)/n bits per source symbol, and

> there exists a binary code that uses between H(Sy, S, - - , Sp)/n and
H(Sy, Sz, -+, Sn)/n+ 1/nbits per source symbol.
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SUMMARY OF CHAPTER 1

Entropy and Algorithms

» We explored examples where entropy can give a lower bound on
algorithmic performance.

» Example: in search-type problems, give a lower bound on the minimum
number of necessary queries.

Cross-Entropy Loss

» Machine (e.g., Neural Network) outputs a distribution Q(y) over all
possible labels.

> Cross-Entropy Loss: Select Q(y) to minimize
L(P, Q) = =3, P(y)logp Q).
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