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ENTROPY AND ALGORITHMS

In today’s lecture, we explore the role of entropy in algorithms beyond data
compression.

Specifically, we will briefly look at the following examples:

↭ “20 Questions Problem”

↭ Sorting

↭ “Billiard Balls” Puzzle
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Up NEXT

USE ENTROPY

TO TACKLE THIS

PROBLEM .



LAST WEEK

H(X) = H
,
(p) = - [p(x)(oyyp(x)

D

0 - Hp(x) = logp(t)
H(X(Y= y) = - Ep(x(y)(ypp(x(y)
↳ H(x(y) = [p(y) H(x)i=y)



H(X(4) =H(X)
H(x (4

,
2) = H(x(z) = H(x)

H(S,, Sc , Sa , S4)
= H(S2, Sa , S, Ss)
= H(s,) +H(S2(S)+H(Sn(S,S2)

+ H(S (S ,, S2 ,Sz)



H(S,, Sc , Sa , S4)
= H(S2, Sa , S, Ss)
= H(s,) +H(S2(S)+H(Sn(S,S2)

+ H(S (S ,, S2 ,Sz)

= H (S
,
) + H((z) +H(Sz)+H(s))

WITH EQ IFF

S , S2 ,Sy ,

S
e
Are Independent



THE 20 QUESTIONS PROBLEM

Let X be a random variable.

What is the minimum number of "Yes/No questions" needed to identify X?

And which questions should be asked?
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SOLUTION

↭ Consider a binary code ! for X → X .

↭ Once ! is fixed, we know x → X iff we know the codeword !(x).

↭ The strategy consists in asking the i th question so as to obtain the i th bit
of the codeword !(x).

↭ The average number of questions is L(X , !), which is minimized if ! is
the encoding map of a Huffman code.

↭ We will see that we cannot do better.

First an example.
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EX : X = S cat , dog

p(cat) = 2
p(dog) = "



EX : X = Scat , dog , pony 3

p(cat) = "2
p(dog) = 14

p(pony) =4



EXAMPLE

Let X be a random variable in A = {a, b, c, d , e} having distribution pX :

X a b c d e
pX 0.1 0.1 0.2 0.2 0.4
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EXAMPLE (CONT.)

We construct a binary Huffman code for X :

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A !H

a 000
b 001
c 010
d 011
e 1

Suppose that the realization is X = b (but we do not know it).
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EXAMPLE (CONT.)

The strategy is to identify b via its binary codeword.

With the first question we try to find the first letter of the codeword:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A !H

a 000
b 001
c 010
d 011
e 1

We ask the question: Is X → {e}?

The answer is NO. We know that the first letter of the codeword is 0.
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EXAMPLE (CONT.)

With the second question we find the second codeword letter:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A !H

a 000
b 001
c 010
d 011
e 1

We ask the question: Is X → {c, d}?

The answer is NO. We know that the second letter of the codeword is 0.
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EXAMPLE (CONT.)

With the third question we find the third codeword letter:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A !H

a 000
b 001
c 010
d 011
e 1

We ask the question: is X = b?

The answer is Yes. We know that the third letter of the codeword is 1 and that
X = b.
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OPTIMALITY OF THE HUFFMAN QUERYING STRATEGY

We have seen that a prefix-free code for X → X leads to a querying strategy
to find the realization of X .

Similarly, a deterministic querying strategy leads to a binary prefix-free code
for X . Here is why:

↭ Before the first question we know that x → X .

↭ Without loss of generality, the first question can be formulated in terms of
“Is x → A?” for some A ↑ X . (The choice of A is determined from the
strategy, that we fix once and for all.)

↭ If the answer is YES, then we know that x → A ↑ X . Otherwise
x → A

c
↑ X . Either way we have reduced the size of the set that

contains x .

↭ We continue asking similar questions until the value of x is fully
determined, then we stop.
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↭ The sequence of YES/NO answers is a binary codeword associated to x .

↭ The code obtained when we consider all possible values of x is a binary
prefix-free code.

↭ Since the tree is prefix-free, its average codeword-length cannot be
smaller than that of a Huffman code.
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SORTING VIA PAIRWISE COMPARISONS

G VEN AN UNSORTED LIST WITH IN ELEMENTS :

c
,
a

,

b (n = 3)

Repeat :
1) select two positions
1 i < j = n

I I
2) compare and swap T

If Xi > X ;
then swap elements XitX;
Else do nothing



COMPARE XI AND Yu C
,
a

,
b

X1)Xz Xz = Xi
L

Y

SWAP X11) X 2 DO NOTHINGb
,
a

, C
COMPARE X2 ANDX COMPARE X2 ANDY

x2) Xy *2 [ Xz x2) Xy *2 [ Xz

L V L V

SWAP Do SWAP Do

X
,

#+ Xz NOTHING X,
#+ X3 NOTHING

ba , cICOMPARE COMPARE COMPARE COMPARE

*
1
AND X2 *

1
AND X2 *

1
AND X2 *

1
AND X2

w*342 MEX2*342X-342EXY342 MEX



COMPARE XI AND Yu
C

,
a

,
b

X1)Xz Xz = Xi
L

Y

SWAP X1) X 2 DO NOTHING
b

,
a, C
COMPARE X2 ANDY COMPARE X2 ANDY

x2) Xy *2 [ Xz x2) Xy *2 [ Xz

L V L V

SWAP Do SWAP Do

X
,

#+ Xz NOTHING. X, X3 NOTHING
ba

,
C

ICOMPARE COMPARE COMPARE COMPARE

*
1
AND X2 *

1
AND X2 *

1
AND X2 *

1
AND X2

w*342 ****242X-342EXY342 MEX
a

,
b,



UNSORTED · SORTED LIST
L IS T (a

,
b

,
c

,
d

,
e

, f)
> ALGORITHM >

X · SEQUENCE
OF PAIRWISE
COMPARISONS

OBSERVATION 1

THE SEQUENCE OF PAIRWISE

COMPARISONS MUST IDENTIFY

THE EXACT ORDER OF THE

UNSORIES LIST
.



UNSORTED · SORTED LIST
L IS T (a

,
b

,
c

,
d

,
e

, f)
> ALGORITHM >

X · SEQUENCE
OF PAIRWISE
COMPARISONS

OBSERVATION 2

THE SEQUENCE OF PAIRWISE

COMPARISONS IS A UNIQUELT
DECODABLE (ACTUALLY ,

PREFIX-FREE

BINARY CODE FOR X .



UNSORTED · SORTED LIST
L IS T (a

,
b

,
c

,
d

,
e

, f)
< ALGORITHM >

X · SEQUENCE
OF PAIRWISE
COMPARISONS

Therefore, we must have :

IE [number of comparisons]]Hz(X)



WHAT Is X?

1) WHAT ALPHABET DOES IT LIVE IN ?

: A= 3 aba ,
ach

,
bac
,
bea

,
cab
,

cba]
*: set of all permutations .

(x1 = n !
2) WHAT Is p(X) ?
OUR ALGOMTHM SHOULD

WORK FOR Ap(x) .



UNSORTED · SORTED LIST
L IS T (a

,
b

,
c

,
d

,
e

, f)
< ALGORITHM >

X · SEQUENCE
OF PAIRWISE
COMPARISONS

Therefore, we must have :

IE [number of comparisons]
- max Hy(X) = log21*

p(x) = logzn !



Known Bounds on Factorial

n + 1n"
=> n ! 2

en
-1

en
-1

~ uniform X
↳ H(X) = log+

= nlogm - (n-1) loge



ENTROPY AND SORTING

↭ Sorting by pairwise comparisons with binary output.
That is, for each comparison, the answer is either “ < ” or “ → ”.

↭ Suppose we have an unordered list of n objects that need to be sorted.

↭ How many binary comparisons are needed?

↭ Let us tackle this question via entropy.
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BILLIARD BALLS

EXERCISE

There are 14 billiard balls numbered as shown:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

↭ if one ball is different . . .

↭ if there is such a ball, which one, . . .

↭ and whether the different ball is heavier/lighter.
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COMPARE BALLS

50,
1

, 73132,
3

,
207

-is
Em+ 473 i I
To XAY

: :
⑮B mi]



OBSERVATION 1 :

WE ARE SPECIFYING A

TERNARY CODE .



OBSERVATION 1 :

WE ARE SPECIFYING A

TERNARY CODE .

> BuT A CODE FOR WHAT ?



A CODE FOR X :

X = 0 : all balls equal
X = +1 : ball 1 is heavier

in

X = + 13 ball 13 is heavier I*I

i

·

i &X =-1: ball 1 is lighter =27
.

X= -73 : ball 13 is lighter



COMPARE BALLS

50,
1

, 73132,
3

,
207

↑

L J S

OBSERVATION :

NUMBER OF WEIGHINGS

=

LENGTH OF TERNARY
CODEWORD



Theorem :

IE(Number of Weighings] <Hg(X)

Moreover, our strategy must work

irrespective of the probability
distribution of X.



Theorem :

IE(Number of weighings]
I max Hy(X)
p(x

= logz27 = 3



BUT DOES THERE INDEED EXIST SUCH
A CODE (I. E .

A WEIGHING STRATEGY) ?

FACT : ENTROPY DOES NOT
GUARANTEE THE

EXISTENCE OFSUCH

* STRATEGY !



BUT DOES THERE INDEED EXIST SUCH
A CODE (I. E .

A WEIGHING STRATEGY) ?

↳ LET US suppose IT EXISTS !
THEN ENTROPY TELLS US

A FEW BASIC FACTS



FACT 1 : IF 3 WEIGHINGS Se
,
Se

, Se
UNIQUELY SPECIFY X

&

THEN WE MUST HAVE

H(X) = Hs)Sa, Sasa) .

=8S
,
Su
,
5) = H(X)+u(x)
= H(S1

,
S2
,5)is



PROOF :

It) X, Se , Sr, Sa) = O

=Hs(S2)+H(=,S2 ,Sa)
= H
,
(x)+Su,Sa(x)

=O

D



LET X BE UNIFORMLY DISTRIBUTED .

FACT 2 : IF 3 WEIGHINGS Se
,
Se

, Se
UNIQUELY SPECIFY X

,

THEN WE MUST HAVE

(a) Se
, Su , Sy UNIFORML

DISTRIBUTED

(b) Se
,
S2

, Sy INDEPENDENT



PROOF : MUST BE

Ha ,
Sa
,
()3

BUT Al So :

Hy(S1) + H(S2(S1)+ H(Ss(S=,S2)
[H
,
(S1) + H

,
)Sr) + H(Su)

EQ
.X

IFF

SSASs [ log- 3 + 19+3 + 1,3 = 3
X
EQ. IFF UNIFORM .



+ 1 +2 , 90 ,
1
... 73 198,

9
...

133
+ 3

,
+4

+5 ,
+6

+7,
- 8 ↑

-5
,
-10

,
-11 ~

-12
,
-13

↓ ↓

V
L L W J

↓ I ↓ ↓ ↓ t

L W J

↓ ↓ t



20. +1 ,
- 7

,
+2

,
- 2

, ..,
+ 13

, -133 UNIFORM

0 . 1 .21 3 .

4
.5

5 + 1, + 2,
-3

,
-4

,

-53 S -1
,

-2
,
+3

,
+4

,
+53

-

↑

L ~

HENCE
,
HERE :

↑( = -) =/27) uMFrp(S=
= ) = 17/27

OPTIMAL !
↑ (s =

= ) = 5/27



20. +1 ,
- 7

,
+2

,
- 2

, ..,
+ 13

, -133 UNIFORM

2+ 1 ,
+2

,
+3, + 4,

0
.

1
.
2

.

3
.
41 5. 6. 7. 8. 9

- 5. -6.
-7
,
-5
.
93

↑

L ~



20. +1 ,
- 7

,
+2

,
- 2

, ..,
+ 13

, -133 UNIFORM

2+ 1 ,
+2

,
+3, + 4,

0
.

1
.
2

.

3
.
41 5. 6. 7. 8. 9

- 5. -6.
-7
,
-5
.
93

↑

L ~

Now Sy IS UNIFORM !

=> LDBE THE START OF

AN OPTIMAL STRATEGY !



2 + 1, +2, +3,
+4 0 1

.

2
.

3
.

4 1 5
.

6
.
7

.

8
.

9 5-1 .
-2

,
-3

.
-42

- 5
,
- 6

,
-7

,
-8

,
-97 +5

,
+6

,
+7

,
+8

.

+97

↑

~

1,2
.

5 13 ,
4

,
6 50

,
+ 10,+11, ↓

+12, +13
,
-10

,

+ 1+2 -11
,
-12

,
- 73]

- 6
V

L W W J

112 ↓ I ↓ I ↓ t

L W J

↓ ↓ t



2 + 1, +2
, +3

,
+4 0 1

.

2
.

3
.

4 1 5
.

6
.
7

.

8
.

9 5-1 .
-2

,
-3

.
-42

- 5
,
- 6

,
-7

,
-8

,
-97 +5

,
+6

,
+7

,
+8

.

+97

↑

L ~
3

.4.51 1
.2 . b 50

,
+ 10,+11, ↓

3 +3. +4.- 63 S + 1 +2
,

-53
+12, +13

,
-10

,

-11
,
-12

,
- 73]

V
L W W J

↓ ↓ I ↓ I ↓ t

3+ 70
,
-17-12)

I ~ I↓



2 + 1, +2
, +3

,
+4 0 1

.

2
.

3
.

4 1 5
.

6
.
7

.

8
.

9 5-1 .
-2

,
-3

.
-42

- 5
,
- 6

,
-7

,
-8

,
-97 +5

,
+6

,
+7

,
+8

.

+97

↑

~
3

.4. 511
.2 . 6 50

,
+ 10,11, 3

.4.51 1
.2 . 6

3 +3. +4.- 63 S + 1 +2
,

-53
+12, +13

,
-10

,

-11
,
-12

,
- 73]

L W J V
-d

314 I 1 2 0
.
10 111

.
12 ↓ ↓ t

12 3+ 70
,
-17-12)

+3 - 6 +4
L W J

11 ↓ 12 I t

/1
- 12 +10 - 11



↓

↑

L ~

↓ ↓

V
L va L W J

↓ ↓ t ↓ ↓ ↓ t

L W J

↓ ↓ t



↓

↑

L ~

↓ ↓

V
L va L W J

↓ ↓ t ↓ ↓ ↓ t

L W J

↓ ↓ t



BILLIARD BALLS

EXERCISE

Can we use the 20 questions approach to solve the 14 billiard balls riddle?

SOLUTION

No, because the kind of questions that we can "ask", when we are weighing,
is quite limited.

For instance, the first question cannot be "is 1 or 2 heavy?"
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BILLIARD BALLS

Here is a way to formalize the Billiard Balls problem.

Let us identify the solution with the variable X :

“all balls equal” X = 0
“Ball 1 heavy” X = 1
“Ball 1 light” X = →1
“Ball 2 heavy” X = 2
“Ball 2 light” X = →2
...

...
“Ball 13 heavy” X = 13
“Ball 13 light” X = →13

Hence, X ↑ X = { →13,→12, . . . ,→1, 0, 1, . . . , 12, 13}.

Evidently, |X | = 27.
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BILLIARD BALLS

The results of the weighings uniquely specify the value of X .

Hence, in the billiard balls problem, we implicitly specify a ternary code
for a certain source.

We know that the number of ternary symbols needed to represent the source
is at least

N ↓ HD=3(X ).

Our code should work irrespective of the source distribution. In other words, it
must work for all source distributions, thus

N ↓ max
p(x)

HD=3(X ) = log3 |X | = log3 27 = 3.

Hence, conclusion: We need at least 3 weighings.

247 / 798



BILLIARD BALLS : STRATEGIES

But is there a strategy that requires only 3 weighings?

From source compression, we can establish the following facts:

↭ For each weighing, the three outcomes must be equally likely.

↭ The weighings must be independent of each other.

In class, we will together formally prove these two statements.

Then, leveraging these two insights, we will construct the weighing strategy.

Remark: It is because we carefully selected the numbers (alphabet size of
27; each weighing has 3 possible outcomes) that there is a strategy that
exactly matches the entropy lower bound of 3 weighings. If you change the
numbers, it will not generally be true that there is a strategy that exactly
matches the lower bound.
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