WEEK 3: CONDITIONAL ENTROPY
(BOOK CHAPTER 4)
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INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

Conditional Entropy

CRYPTOGRAPHY

CHANNEL CODING
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KEY IDEA
> Pack multiple symbols into “supersymbols™!
> (S51,5,,S;s,...,Sn)
» Now, apply our Main Result to such supersymbols:
THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code I for S must
satisfy

Hp(S1,Ss,...,Sn) <L((S1,Ss, ..., Sn),T)

and there exists a uniquely decodable code T g satisfying

L((S1,Sg, ey Sn),rs[:) < HD(S1,32,...,S,7) + 1.

» Why is this clever?

> Let us study the entropy of the supersymbol Hp(Si, Sz, . .., Sn) next.
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OUR NEXT NUGGET

» Understand the behavior of
Hp(S1,S2,...,Sn)

when S;, Sy, ..., Sy are not independent random variables following the
same distribution.

Key steps to get there:

» Understand conditional entropy

» Understand how to model “many” random variables (a.k.a. random
processes)
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OUR NEXT NUGGET

Example: Standard text.

> After a letter “q”, we have a letter “u” with very high probability
(probability 1 in some languages).

> After a letter “c”, we have a letter “h” with higher probability than many
other letters.

> After a letter “i”, it is extremely unlikely to have yet another letter “i”. And
SO on.
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OUR NEXT NUGGET

Example: Audio recoding.

» Why?

Example: Image.

Example: Video recording.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, S,, ..., S, of n coin flips.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, S,, ..., S, of n coin flips.

So Sj € A= {H, T}, where H stands for heads, T for tails, i =1,2,...,n.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, S,, ..., S, of n coin flips.

So Sj € A= {H, T}, where H stands for heads, T for tails, i =1,2,...

ps;(H) = ps,(T) = 1 for all i, and coin flips are independent.

,n.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, S,, ..., S, of n coin flips.
So Sj € A= {H, T}, where H stands for heads, T for tails, i =1,2,...,n.

ps;(H) = ps,(T) = 1 for all i, and coin flips are independent.

Hence,

1
Ps;,Ss,..., Sn(s1732; .. -7Sn) = on for all (31,32, .. -7Sn) e A"

20 30 40 50 60

o
Y
(=X

173/798



KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.

»
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KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.

So S € A= {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.
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KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.
So S € A= {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.

The weather on the first day is uniformly distributed in A.
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KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.
So S; € A= {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.
The weather on the first day is uniformly distributed in A.

For all other days, with probability g = $ the
weather is as for the day before.

(A R ¢ ¢ - & -

n
J 0 10 20 30 40 50 60

174/798



CONDITIONAL PROBABILITY

Recall how to determine the conditional probability:

def Px,v (X, )
X = AT\ )
pxv(x1y) py(y)

It gives the probability of the event X = x, given that the event Y = y has
occurred.

It is defined for all y for which py(y) > 0.
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CONDITIONAL PROBABILITY

EXAMPLE (“BIT FLIPPER CHANNEL”)

Yy X
1 — -
0 € 0 pixly) | y=0 y=1
::E::::::><::::::: - ‘- O 1 o 6
1 1 x=1 € 1—6
1.6
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CONDITIONAL PROBABILITY

EXERCISE (“BIT FLIPPER CHANNEL”)

As we have seen, for the bit flipper channel with uniform input Y, the joint
distribution of X, Y is

» Find the conditional distribution p(y|x) (input given the output).
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CONDITIONAL PROBABILITY
SOLUTION (“BIT FLIPPER CHANNEL”)

The general formula is

p(x.y)
p(x)
Hence, we need the marginal distribution of X :

plylx) =

p(x,y) | y=0 y=1 |, Marginal distribution p(x)

x=0|1(1-¢ 10 1(1—e)+ 36
x=1 le 1(1-96) Te+1(1-9)

Hence, we find the desired object:

> .
pyIX) | y=0 y—1 F)onvmce yourslelf thatl
— 5 indeed, p(y|x) is a valid
x=0 | =25 = probability distribution for
X=1| % 7o each fixed value of x.

178/798



CONDITIONAL EXPECTATION OF X GIVEN Y =y

pxv(:|y) is a probability distribution on the alphabet of X, just like px(-)

DEFINITION

The conditional expectation of X given Y = y is defined as

EX|Y = y] € xpxv(xly).

XeX
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CONDITIONAL EXPECTATION OF X GIVEN Y =y

EXERCISE (“BIT FLIPPER CHANNEL")

Yy X
17 = f—
0 € 0 pxly)  y=0 y=1
€ Aand X=0|1—¢ P
; g ] X =1 e 1-56
1-6

» Find the conditional expectations E[X|Y = y] for y = 0 and for y = 1.

[E[X{\(: 0] = D~f(xzo/9¢9—(—i\><p‘— Llyfo)
=
E[x\¥=1) = )- 5
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CONDITIONAL ENTROPY OF X GIVEN Y =y

px|v(:|y) is a probability distribution on the alphabet of X, just like px(-)
Every probability distribution has an entropy associated to it:

> px(-) — H(X)
> pxy(-ly) — H(X|Y =y)

DEFINITION

The conditional entropy of X given Y = y is defined as

Ho(XIY =) & =3 pxjv(x1y) logp pxiv (X1y)-

XEX
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CONDITIONAL ENTROPY OF X GIVEN Y =y

EXERCISE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel with uniform input, calculate:

> H(X|Y = y) for each fixed y,
> H(Y|X = x) for each fixed x.

SOLUTION

182/798



Two CARD DecCWUsS

HC}(,Y K¢ “’?A‘)? = 4 BT

b (X[M s TAL) = O

o = h (74) =Ww(%)



Note . \letre (Sece werk i)

L() (s TMﬁ?WAL‘(]
Ern TRl

FunCcT\on

h@)= —p Loy p— (1) bo(1p)




Two CARD DecCWUsS

HIX|Y 18 Hear) = 4 BT
(X[ s TAL) = O

KO = h (14) =uw()

XN = 2CY 1 HeADH(X]Y o)
g \\(> “-‘i Q(*( \f’\‘A\Q HORLY 5TAL)

— '/21_ ~ ‘IL~D = ‘/Z—



ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y = y)

The conditional entropy of a discrete random variable X € X conditioned on
Y = y satisfies
0 < Hp(X|Y = y) < logp ||,

with equality on the left iff px|y(x|y) = 1 for some x, and with equality on the
right iff px;v(x|y) = 27 for all x.

The proof is identical to our proof of the basic entropy bounds.
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ENTROPY BOUNDS

EXAMPLE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel, verify the entropy bounds.
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ENTROPY BOUNDS

Question: Do we also have the following entropy bound:

Hp(X|Y = y) < Hp(X)?

Answer: No!

EXAMPLE (BIT FLIPPER WITH UNIFORM INPUT Y)

(Or “counterexample,” if you prefer). Just for ease of calculation, let us set
0 = 0 (but this is not necessary for the example to work!). Then, we have:

Ho(X|Y = 0) = hp(e) and Hp(X|Y = 1) =0.

where hp(-) is the binary entropy function (with log,(-)). But we have
1—
Hp(X) = hp ( 5 E) .

(Set, for example, € = 3/8, thus 15 = 5/16.)
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CONDITIONAL ENTROPY OF X GIVEN Y

The most useful and impactful definition is the average conditional entropy of
X given Y = y, averaged over all values of y under the marginal distribution
py(y). Formally, we thus define:

DEFINITION

The conditional entropy of X given Y is defined as

Ho(XIY) €S py(y) (— S~ pxiv(xly) log PXY(XU’)) :

yey XeX
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CONDITIONAL ENTROPY OF X GIVEN Y

EXAMPLE (“BIT FLIPPER CHANNEL”)
For the Bit flipper channel, we have
Ho(X|Y) = p(Y =0)Hp(X|Y =0) + p(Y = 1)Hp(X]Y = 1).
We have already calculated
Hp(X|Y =0) = hp(e) and Hp(X|Y =1) = hp(9).
For example, when Y is uniform, we have

ho(e) + hol(6)

Hp(X|Y) = 5
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ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y)

The conditional entropy of a discrete random variable X € X conditioned on
Y satisfies
0 < Hp(X|Y) < logp | X,

with equality on the left iff for every y there exists and x such that
pxiv(x|y) = 1, and with equality on the right iff px|y(x|y) = for all x and
all y.

B \X\

This follows directly from our bounds on Hp(X|Y = y).

Note: Having pxv(x|y) = IXI for all x and all y implies that X and Y are
independent random variables.
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ENTROPY BOUNDS

EXERCISE (“BIT FLIPPER CHANNEL”)

Verify the bounds for the bit-flipper channel.
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

The following bound is important and impactful (and also intuitively pleasing!):

THEOREM (CONDITIONING REDUCES ENTROPY)

For any two discrete random variables X and Y,
Hp(X|Y) < Hp(X)

with equality iff X and Y are independent random variables.

In words: On average, the uncertainty about X can only become smaller if
we know Y.

Note Bene: As we have seen, this is not true point-wise: We may have
Hp(X|Y = y) > Hp(X) for some values of y.
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Proof [Conditioning reduces entropy]:

1

Ho(X|Y) = Ho(X) = E [logo } + Elogp px(X)]

pxv(X]Y)
Y px(X)
B E[I &o PX|Y(X|Y)}
_ px(X)py(Y) ] _ px(X)py(Y)
- E['% Py (XIV)pr Y)] = { 80 o v (X, V)

(Tinequality) T py (X)py(Y)
9 Px(X)py(Y)
E[px,y(X, y) log(e)

= > [px(¥)pr(y) = px.v(x,y)] logp(e)

(x.y)eX XY

=[1—1]logp(e) = 0.

x)

The condition for equality is % =1 for all x and y, i.e., equality holds iff

X and Y are independent random variables. O
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

A generalization of the previous bound is also of interest to us:

THEOREM (CONDITIONING REDUCES ENTROPY)

For any three discrete random variables X, Y and Z,
Hp(X|Y, Z) < Hp(X|Z)

with equality iff X and Y are conditionally independent random variables
given Z (that is, if and only if p(x, y|z) = p(x|z)p(y|z) for all x, y, z).
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Proof [Conditioning reduces entropy, generalized version]:

Hp(X]Y,Z) — Hp(X|Z) = E {'%o + Ellogp pxz(X12)]

1
Px|v.z(X|Y,2)

px|z(X|2)
E[IO o pX\Y,Z(X‘YvZ)]

]E[Iog Pxz(X|Z)py z(Y|Z)pz(Z) ]
P pxiv.2(XIY. Z)py 2(Y|Z)pz(Z)

=E[|Og Px1z(X|Z)py|z(Y|Z)pz(Z )]
px,v,z(X,Y,2)

(ITnequaliy) E [PX\Z(X\Z)PY\Z( Y|Z)pz(2)

px.v.z(X, Y, 2) - 1] logp(€)

=333 [pxiz(XI2)py 2(y12)pz(2) — px,v.z(X, ¥, 2)] logp(e)

XEX yEY zEZ
=[1 —1]logp(e) = 0.

The condition for equality is pX'Z();LZipZ"(‘f((ilgpz =1forall x,y,z,i.e.,
equality holds iff X and Y are conditionally independent random variables

given Z. O
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

Recall: When we simply write H(X), suppressing the subscript D, then we
mean D = 2.

EXAMPLE
Let X € {0, 1} be uniformly distributed and let Y = X. Then

H(X|Y) =0 and H(X) = 1.

EXAMPLE

Let X € {0,1} and Y € {0, 1} be uniformly distributed and independent.
Then
H(X|Y)=1and H(X) =1.
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LISA ROLLS TWO DICE

EXERCISE (LISA ROLLS TWO DICE)

» Lisa rolls two dice and announces the sum L written as a two digit
number.

> The alphabet of L = L4L, is {02, 03, 04, 05, 06,07,08,09,10, 11,12}.
»> The alphabet of Ly is {0,1}.
»> The alphabet of L, is {0, 1,...,9}.

» Determine the probability that L, = 2, knowing that Ly = 1, that is,/'"i 1\

Pz, (2]1). "
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LISA ROLLS TWO DICE
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LISA ROLLS TWO DICE

SOLUTION

Using the definition (and calculations from Lecture 1),

pr(1,2)  1/36 1
21 = 1.2 = = —.
pL2|L1( ‘ ) pL1(1) 1/6 6
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LISA ROLLS TWO DICE

After running over all possible values for (i, j), we obtain

Pryiey (10)  pryye, GI1)
L=j
0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0

Li=i 0 1
L=j py,(i,)) P, (/)
0 0o 3/36 || 3/36
1 0o 2/36 || 2/36
2 1/36  1/36 || 2/36
3 2/36 0 2/36
4 3/3 0 3/36
5 4/36 0 4/36
6 5/36 0 5/36
7 6/36 0 6/36
8 5/36 0 5/36
9 4/36 0 4/36
pe, (i) | 5/6 1/6
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LISA ROLLS TWO DICE

EXAMPLE
3 6 2 6 1
H(Lz|Ly =1)= = log = + = log = + = |
(Lo|Ly = 1) glogg +glogs + 5logb
= 1.459 bits
H(Lo|Ly = 0)= - - - = 2.857 bits

Py, (10)  Pryiey G11)
Le=j
0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5,/30 0
7 6/30 0
8 5/30 0
9 4/30 0
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LISA ROLLS TWO DICE

EXAMPLE

H(Lz|L1) = p, (0)H(Lz|L1 = 0) + pr, (1)H(L2|Ls = 1)

= g x 2.857 + % x 1.459 = 2.624 bits

Now, we can observe that

2.624 = H(Lo|L1) < H(Lz) = 3.22,

exactly like it has to be according to our theorems.
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THE CHAIN RULE FOR ENTROPY

Recall that the joint entropy of two random variables X, Y is completely
naturally defined as

Ho(X,Y) == px,v(x,y)logp Px,v (X, ¥)-
X y

Using the fact that px,v(x, y

ZPX(X

px(x)pyix(¥|x), we can write this as

Py x(¥|x)logp (PX(X)PY|X(}/|X))>
.V

)=
= *ZPX ( pY\X (y1x) (logp px(x) +|0gDpyx(yX))>
I—pr { <va|x(ylx logp px(x ))

+ (Z pyx(y|x) logp PY|X(J’|X)> }
y
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THE CHAIN RULE FOR ENTROPY

But now, we observe:

Ho(X,Y) == px(x) { <Z pyix(y1x) IOgDpX(X)>
+ (Z Pyix(¥|x) |°€DPYX(Y|X)> }

y

=-> px(x) <Z prix(¥1x) logp PX(X)>

y

Hp(X)

+ ZPX(X) (— ZleX(y|X) logp PY|X(}’|X)>
X y

Hp(Y[X)

= Hp(X) + Ho(Y|X).
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THE CHAIN RULE FOR ENTROPY

Let us write this once more and enjoy it properly:

Hp(X, Y) = Ho(X) + Ho(Y|X).

In words: To find the joint entropy of two random variables, we can first
calculate the entropy of one of the two, and then add to it the conditional
entropy of the second, given the first.

Of course, what we could do once, we can do again!
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THE CHAIN RULE FOR ENTROPY

THEOREM (CHAIN RULE FOR ENTROPIES)

Let Sy,..., S, be discrete random variables. Then

Ho(S1, Sz, ..., Sn) = Ho(S1) + Ho(S2|S1) + - - + Hp(SnlS, - .., Snot).

The above result says that the uncertainty of a collection of random variables
(in any order) is the uncertainty of the first, plus the uncertainty of the second
when the first is known, plus the uncertainty of the third when the first two are
known, etc.
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Proof [Chain rule for entropy]:

n
Ps,,ss,..., Sn(s1 Y S") = Ps, (51 ) Hpsi|s1 vvvvv Si_1(silst,---,8i-1)
i=2

i=2

The expected value of the LHS is Hp(S1, Sz, . . ., Sh).

The expected value of the RHS is
Hp(S1) + Hp(Sz2|S1) + - - - + Hp(Sn| Sy, - - -, Sa—1). O
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THE CHAIN RULE FOR ENTROPY

EXAMPLE

Let X, Y, Z be discrete random variables. We have:

H(X,Y,Z)=H(X)+ H(Y|X)+ H(Z|IX,Y)
= H(X) + H(Z|X)+ H(Y|X, Z)
= H(Y)+ H(X|Y)+ H(Z|X,Y)
= H(Y)+ H(Z|Y)+ H(X|Y, Z)

=H(Z)+ H(X|Z) + H(Y|X, Z)

=H(Z)+ H(Y|Z) + H(X|Y, 2),

where we omitted the subscript D for compact notation, but these

relationships hold for all integers D > 2.
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THE CHAIN RULE FOR ENTROPY

The chain rule for entropy and the fact that conditioning reduces entropy,
proves the following theorem which was stated last week without proof:

THEOREM

Let Sy,..., Sy be discrete random variables. Then
H(S1, Sg, ey Sn) < H(S1) + H(Sg) + -+ H(Sn)7

with equality iff Sy, ..., S, are independent.
“Cs‘ ) S&:S 3) = H'(—§|) ¥ H<§L\S£>’H¥<§% 13\)SL>
SORES) + H’(SL> ~+ 3&(53>
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THE CHAIN RULE FOR ENTROPY

Sometimes it is convenient to compute the conditional entropy using the
chain rule for entropies. For instance:

H(X|Y) = H(X, Y) — H(Y).
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THE CHAIN RULE FOR ENTROPY
HOGY) =30 ) 2 ()

COROLLARY

H(X, Y) > H(X);
H(X, Y) > H(Y).

The above inequalities follow from the chain rule for entropies and the fact
that entropy (conditional or not) is nonnegative.

208/798



LISA ROLLS TWO DICE

EXAMPLE (LISA ROLLS TWO DICE)

From
H(Li, Lo) = 3.2744 bits
H(Ly) = 0.6500 bits
H(L:) = 3.2188 bits,
we compute

H(Lz|L1) = H(L1, L) — H(L1) = 3.2744 — 0.6500 = 2.624 bits
H(Li|Lz) = H(L1, L) — H(Lp) = 3.2744 — 3.2188 = 0.056 bits,

and verify that indeed
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LISA ROLLS TWO DICE

EXERCISE
Determine H(Ly, L»|Sy, S2).

wege:

S 1 OUT(one oF % MUE DE

S}z OWTang ©oOF &)y DIE
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LISA ROLLS TWO DICE

EXERCISE
Determine H(Ly, L»|Sy, S2).

SOLUTION

Ly and L, are deterministic functions of S; and S.
Hence H(L4, L2|Sy, S2) = 0.
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LISA ROLLS TWO DICE

EXAMPLE

Determine H(S:, Sz|L1, Lo) knowing that H( Sy, S2) = 5.1699 bits and

H<51§7/>L|,\L7/> —< &
= k(5,50 T R(L LIS, 8

= k(W) S H0w [ L)W
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LISA ROLLS TWO DICE

EXAMPLE

Determine H(S:, Sz|L1, Lo) knowing that H( Sy, S2) = 5.1699 bits and

SOLUTION
H(Sy, So|L4, L2) = H(Sy, So, Ly, L) — H(Ly, La).

But H(S1, S, L1, L2) = H(Sy, S2). (Can you say why?) ElR o
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LISA ROLLS TWO DICE

EXAMPLE

Determine H(S:, Sz|L1, Lo) knowing that H( Sy, S2) = 5.1699 bits and

SOLUTION
H(Sy, So|L4, L2) = H(Sy, So, Ly, L) — H(Ly, La).

W AN
But H(Si, S, Ly, Lz) = H(Si, S2). (Can you say why?) 5 o

Hence H(S1,SQ|L1 R Lg) = H(S1,Sg) = H(L1,L2) = 1.896 bits. %
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, Sy, ..., S, of n coin flips.
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, Sy, ..., S, of n coin flips.

So Sj € A= {H, T}, where H stands for heads, T for tails, i = 1,2,...,n.

B
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, Sy, ..., S, of n coin flips.
So Sj € A= {H, T}, where H stands for heads, T for tails, i = 1,2,...,n.

ps;(H) = ps,(T) = } for all i, and coin flips are independent.

B

(1§
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence Sy, Sy, ..., S, of n coin flips.

So Sj € A= {H, T}, where H stands for heads, T for tails, i = 1,2,...,n.
ps,(H) = ps,(T) = % for all i, and coin flips are independent.

Hence,

1
Ps,.5,,.... Sn(31732»---73n)=§ for all (s1,S2,...,8n) € A"

20 30 40 50 60

o
-0
(=X
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Si, Sy, ..., S, of weather conditions.
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.

So S; € A = {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.

213/798



DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.
So S; € A = {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.

The weather on the first day is uniformly distributed in A.
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence Sy, S,, ..., S, of weather conditions.
So S; € A = {S, R}, where S stands for sunny, R for rainy, i = 1,2,...,n.
The weather on the first day is uniformly distributed in A.

For all other days, with probability g = $ the
weather is as for the day before.

é é 00b é 000b
000 0000

n
10 20 30 40 50 60

F(§V\:R](|:§/ §2$S/ =) éh’\:R> ‘qukov "
= P(fv\';&l Su™ R) 213798




EXAMPLE

For the Sunny-Rainy source:

> ps,(S) = 1
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EXAMPLE

For the Sunny-Rainy source:
> ps,(S)=1

> ps,.s,(R. R) = ps,(R)Ps, s, (RIR) = 3q
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EXAMPLE

For the Sunny-Rainy source:
> ps,(S)=1

> ps,.s,(R, R) = ps, (R)ps,is,(RIR) = 39

Nl =

> ps,.s,(R,S) = ps, (R)Ps,s,(SIR) = 3(1 — q)
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EXAMPLE

For the Sunny-Rainy source:
> ps,(S)=1

> ps,.s,(R, R) = ps, (R)ps,is,(RIR) = 39

Nl =

> ps,.s,(R,S) = ps, (R)Ps,s,(SIR) = 3(1 — q)

> Ps;.s.55.5(R. S, 8, R) = 5(1-a)q(1 — q) = 39(1 - g)°
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EXAMPLE

For the Sunny-Rainy source:
> ps,(S)=1

> ps,.s,(R, R) = ps, (R)ps,is,(RIR) = 39

Nl =

> ps,.s,(R,S) = ps, (R)Ps,s,(SIR) = 3(1 — q)

> pS1,32,S3,S4(H7 S) Sa R) = %(1 - q)q(1 - q) =

1a(1 - q)

In general, if ¢ is the number of weather changes (0 < ¢ < n— 1), then

1

Ps,.5y.....5,(S1,82,- -, 8n) = =q" ' °(1 — q)°.

2

214/798



EXERCISE

Leti=2,3,...
For the Sunny-Rainy source:

> Find ps,(si)
> Find ps;s;_, (silsi-1)

» Are S; and S;_; independent?
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SOLUTION (SUNNY-RAINY SOURCE)

By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.
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SOLUTION (SUNNY-RAINY SOURCE)
By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.

Hence S;_1 and S; are not independent.
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SOLUTION (SUNNY-RAINY SOURCE)
By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.
Hence S;_1 and S; are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that ps, is uniform.
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SOLUTION (SUNNY-RAINY SOURCE)
By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.
Hence S;_1 and S; are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that ps, is uniform.

It is true by definition for j = 1.
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SOLUTION (SUNNY-RAINY SOURCE)
By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.
Hence S;_1 and S; are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that ps, is uniform.

It is true by definition for j = 1.

Suppose that ps, is uniform for i = 1,...,n— 1. We show that it is uniform
also for i = n:

Ps.)= 3 Psis (KIPs, (K) = 5 3 Pys,,(IK)

ke{S,R} ke{S,R}

1 1
=5(@+(1-9) =5
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SOLUTION (SUNNY-RAINY SOURCE)
By definition, ps,|s,_, (j|k) = qif j = k and (1 — q) otherwise.
Hence S;_1 and S; are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that ps, is uniform.

It is true by definition for j = 1.

Suppose that ps, is uniform for i = 1,...,n— 1. We show that it is uniform
also for i = n:

Ps.)= 3 Psis (KIPs, (K) = 5 3 Pys,,(IK)

ke{S,R} ke{S,R}

1 1
=5(@+(1-9) =5

Hence the marginals are uniformly distributed (like for the Coin-Flip source).
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EXERCISE
Leti=2,3,...

For the Coin-Flip (CF) and Sunny-Rainy (SR) sources:

» Compute H(S))
» Compute H(Si|S:,...,Si—1)

= L O & O o b0 20 N
10 20 30 40 50 60

e
? R g 8 - " SR n
0 10 20 30 40 50 60
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SOLUTION (H(S;))

The entropy depends only on the distribution, and for a uniform distribution, it
is the log of the alphabet’s cardinality. Hence

Hcr(Si) = Hsr(Si) = log2 =1

218/798



SOLUTION (H(Sj|S1, ..., Si—1) FOR THE COIN-FLIP SOURCE)

S; is independent of Sy, ..., Si_4
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SOLUTION (H(Sj|S1, ..., Si—1) FOR THE COIN-FLIP SOURCE)
S; is independent of Sy, ..., Si_4

Hence, H(S,'|S1, caog 8/71) = H(S,)
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SOLUTION (H(Sj|S1, ..., Si—1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on S;_4. Hence

Hsr(Si|S1 = s1, ..., Si—1 = si—1) = Hsp(Si|Si-1 = si-1).
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SOLUTION (H(Sj|S1, ..., Si—1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on S;_4. Hence

Hsr(Si|S1 = s1, ..., Si—1 = si—1) = Hsp(Si|Si-1 = si-1).

When Si_1 = k € {S, R}, the probabilities for S; are g and (1 — g). Hence

Hsr(Si|Si—1 = si—1) = —qlogq — (1 — q) log(1 — q).
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SOLUTION (H(Sj|S1, ..., Si—1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on S;_4. Hence

Hsr(Si|S1 = s1, ..., Si—1 = si—1) = Hsp(Si|Si-1 = si-1).

When Si_1 = k € {S, R}, the probabilities for S; are g and (1 — g). Hence

Hsr(Si|Si—1 = si—1) = —qlogq — (1 — q) log(1 — q).

Taking the average on both sides yields

Hsr(Si|Si-1) = —qlog g — (1 — q) log(1 — q).
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SOLUTION (H(Sj|S1, ..., Si—1) FOR THE SUNNY-RAINY SOURCE)
Si depends only on S;_4. Hence

Hsr(Si|S1 = s1, ..., Si—1 = si—1) = Hsp(Si|Si-1 = si-1).

When Si_1 = k € {S, R}, the probabilities for S; are g and (1 — g). Hence

Hsr(Si|Si—1 = si—1) = —qlogq — (1 — q) log(1 — q).

Taking the average on both sides yields

Hsr(Si|Si-1) = —qlog g — (1 — q) log(1 — q).

For g = &, we have

Hsg(Si|Si—1) = —qlogg — (1 — g) log(1 — q) = 0.592.
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EXERCISE

Determine H(S:, S, . . ., Sp) for the Coin-Flip source.
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EXERCISE

Determine H(S:, S, . . ., Sp) for the Coin-Flip source.

SOLUTION

The source produces independent and identically distributed symbols. Hence

(indep.)

H(S:,Ss,. .., Sn) H(S1) + H(S2) + - - + H(S)

(identicall)giistributed) nH( 81)
Moreover, the distribution is uniform, therefore H(S;) = 1 bit. Putting things

together,
H(S17 S, ..., Sn) = n bits
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EXERCISE

Determine H(S:, Sz, . . ., Sp) for the Sunny-Rainy source with g = %
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EXERCISE

Determine H(S:, Sz, . . ., Sp) for the Sunny-Rainy source with g = %

SOLUTION
H(S1, Sz, ..., Sn) = H(S1) + H(S2|S1) + - + H(Sh|S1, .- ., Sh1)
Fori=2,3,...,n, the statistic of S; depends only on S;_4. Hence
H(Si|S1,Ss, ..., Si—1) = H(Si|Si-1)
H(Si,Ss,...,Sn) = H(S1) + H(S2|S1) + - - + H(Sh|Sh-1)
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EXERCISE

Determine H(S1, S, . . ., Sp) for the Sunny-Rainy source with g = $.

SOLUTION
H(S1, Sz, ..., Sn) = H(S1) + H(S2|S1) + - + H(Sh|S1, .- ., Sh1)
Fori=2,3,...,n, the statistic of S; depends only on S;_4. Hence
H(Si|S1,Ss, ..., Si—1) = H(Si|Si-1)
H(Si,Ss,...,Sn) = H(S1) + H(S2|S1) + - - + H(Sh|Sh-1)

We have already determined that H(S;) = 1 bit and H(S;|Si—1) = 0.592 bits.
Therefore
H(S:,Sz,...,Sp) =1+ 0.592(n — 1) bits
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SUMMARY : THE MAIN RESULT OF SOURCE CODING / DATA
COMPRESSION

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code I for S must
satisfy

Hp(Si1, Sz, ..., Sn) <L((S1, Sz, ..., Sn),TN)
and there exists a uniquely decodable code I s¢ satisfying

L((S1,Sg, ey S,,),FS,:) < HD(S1,82,. . .,Sn) + 1.

» And in many cases, as n becomes large, the upper and the lower bound
are arbitrarily close!
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SOURCE CODING / COMPRESSION : OUTLOOK

Additional Questions of interest include:

» What if the source alphabet is not finite?

» What if we do not know the source distribution px(x)? (Universal source
coding)
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WHAT IF THE SOURCE ALPHABET IS INFINITE?

» In all of our previous discussion on actual codes, we have assumed that

the source alphabet is discrete and finite.

» What if it is discrete but infinite?

» ... is this just an academic endeavour?

» In this class, we only touch the top of this iceberg...
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BINARY PREFIX-FREE CODE FOR POSITIVE INTEGERS

The set of positive integers is infinite and no probability is assigned to its
elements. Hence we cannot use Huffman’s construction to encode integers.

First Attempt to Encode Positive Integers: “Standard Method"

c(n)
1

10
11
100
101

g b~ WD =S

The code is not prefix-free.
The length of ¢(n) is I(n) = |log, n| + 1.

Note: The first digit is always 1.
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Second Attempt: “Elias Code 1"

We prefix code c¢(n) with /(n) — 1 zeros.

n ci(n)

11

2 010

3 011

4 00100
5 00101

The code is prefix-free. (Codewords of different length cannot have the same
number of leading zeros.)

The length of ¢i(n) is

h(n)=1(n) —1+1(n) =2|log, n|] + 1.

Note: we are essentially doubling the length to make the code prefix-free.
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Third Attempt: “Elias Code 2"

Instead of /(n) — 1 zeros followed by a 1, we prefix with ¢ (/(n)), which is
also prefix-free (hence can be identified). Like the zeros, it tells the length of
the codeword.

Notation: ¢(n) is ¢(n) without the leading 1.

n c(n) I(n) ci(n) c(l(n)c(n)
11 1 ci(1) =1

2 10 2 010  ¢(2)0=0100
3 11 2 011  ¢(2)1=0101
4 100 3 00100 ¢4(3)00 =01100
5 101 3 00101 ¢(3)01=01101

The code is prefix-free.

The codeword length is
k(n) = h(I(n)) + I(n) — 1 = 2[logy(|log, n| +1)| + 1 + [log, nJ.
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WHAT IF THE SOURCE DISTRIBUTION IS NOT KNOWN?

» Universal source coding.

| 2w

» Practically important algorithms: “Lempel-Ziv” (LZ77, LZ78). Time
permitting, we briefly discuss how they work. An analysis is beyond the
scope of AICC-2.
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CHALLENGE FOR NEXT LECTURE

EXERCISE

There are 14 billiard balls numbered as shown:
0000000000 0DD®OO®

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

» if one ball is different ...

» if there is such a ball, which one, ...

> and whether the different ball is heavier/lighter.
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