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KEY IDEA

↭ Pack multiple symbols into “supersymbols”!

↭ (S1,S2,S3, . . . ,Sn)

↭ Now, apply our Main Result to such supersymbols:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code ! for S must
satisfy

HD(S1,S2, . . . ,Sn) →L((S1,S2, . . . ,Sn), !)

and there exists a uniquely decodable code !SF satisfying

L((S1,S2, . . . ,Sn), !SF ) < HD(S1,S2, . . . ,Sn) + 1.

↭ Why is this clever?

↭ Let us study the entropy of the supersymbol HD(S1,S2, . . . ,Sn) next.
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OUR NEXT NUGGET

↭ Understand the behavior of

HD(S1,S2, . . . ,Sn)

when S1,S2, . . . ,Sn are not independent random variables following the
same distribution.

Key steps to get there:

↭ Understand conditional entropy

↭ Understand how to model “many” random variables (a.k.a. random
processes)
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OUR NEXT NUGGET

Example: Standard text.

↭ After a letter “q”, we have a letter “u” with very high probability
(probability 1 in some languages).

↭ After a letter “c”, we have a letter “h” with higher probability than many
other letters.

↭ After a letter “i”, it is extremely unlikely to have yet another letter “i”. And
so on.
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OUR NEXT NUGGET

Example: Audio recoding.

↭ Why?

Example: Image.

Example: Video recording.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . ,Sn of n coin flips.

So Si ↑ A = {H,T}, where H stands for heads, T for tails, i = 1, 2, . . . , n.

pSi (H) = pSi (T ) = 1
2 for all i , and coin flips are independent.

Hence,

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2n for all (s1, s2, . . . , sn) ↑ A

n

H

T n
0 10 20 30 40 50 60
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KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence S1,S2, . . . ,Sn of weather conditions.

So Si ↑ A = {S,R}, where S stands for sunny, R for rainy, i = 1, 2, . . . , n.

The weather on the first day is uniformly distributed in A.

For all other days, with probability q = 6
7 the

weather is as for the day before.

S

R n
0 10 20 30 40 50 60

1 ↓ q

q

1 ↓ q

q
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CONDITIONAL PROBABILITY

Recall how to determine the conditional probability:

pX |Y (x |y)
def
=

pX ,Y (x , y)
pY (y)

.

It gives the probability of the event X = x , given that the event Y = y has
occurred.

It is defined for all y for which pY (y) > 0.
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Two CARD DECKS

FAIR
COINY : Toss

DECK A DECK B
2

18 RED
[
IF If
HEAD TAIL

M
BLACK

36 BLACK

DRAW A SINGLE CARD

X = 30 I CARD BLA



P(X=0(Yis HEAp)=2
= P(x= 1) YISHEm) = 12

P(X=o (Y(s +Ak) = 1
= p(X=1)Y ISTAk) = 0.

P(x =0) = 34



CONDITIONAL PROBABILITY

EXAMPLE (“BIT FLIPPER CHANNEL”)

1
1 → ω

1

0
1 → ε

0

XY

ε

ω
↑↓

p(x |y) y = 0 y = 1

x = 0 1 → ε ω

x = 1 ε 1 → ω

Suppose Y is uniformly distributed. Then, the joint distribution of X ,Y is

p(x , y) y = 0 y = 1

x = 0 1
2 (1 → ε) 1

2ω

x = 1 1
2 ε

1
2 (1 → ω)
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CONDITIONAL PROBABILITY

EXERCISE (“BIT FLIPPER CHANNEL”)

As we have seen, for the bit flipper channel with uniform input Y , the joint
distribution of X ,Y is

p(x , y) y = 0 y = 1

x = 0 1
2 (1 → ε) 1

2ω

x = 1 1
2 ε

1
2 (1 → ω)

↭ Find the conditional distribution p(y |x) (input given the output).
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CONDITIONAL PROBABILITY
SOLUTION (“BIT FLIPPER CHANNEL”)

The general formula is

p(y |x) =
p(x , y)
p(x)

.

Hence, we need the marginal distribution of X :

p(x , y) y = 0 y = 1 Marginal distribution p(x)

x = 0 1
2 (1 → ε) 1

2ω
1
2 (1 → ε) + 1

2ω

x = 1 1
2 ε

1
2 (1 → ω) 1

2 ε + 1
2 (1 → ω)

Hence, we find the desired object:

p(y |x) y = 0 y = 1

x = 0 1→ω
1→ω+ε

ε
1→ω+ε

x = 1 ω
1→ε+ω

1→ε
1→ε+ω

↭ Convince yourself that
indeed, p(y |x) is a valid
probability distribution for
each fixed value of x .
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CONDITIONAL EXPECTATION OF X GIVEN Y = y

pX |Y (·|y) is a probability distribution on the alphabet of X , just like pX (·)

DEFINITION

The conditional expectation of X given Y = y is defined as

E[X |Y = y ]
def
=

∑

x↑X

xpX |Y (x |y).
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CONDITIONAL EXPECTATION OF X GIVEN Y = y

EXERCISE (“BIT FLIPPER CHANNEL”)

1
1 → ω

1

0
1 → ε

0

XY

ε

ω
↑↓

p(x |y) y = 0 y = 1

x = 0 1 → ε ω

x = 1 ε 1 → ω

↭ Find the conditional expectations E[X |Y = y ] for y = 0 and for y = 1.
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CONDITIONAL ENTROPY OF X GIVEN Y = y

pX |Y (·|y) is a probability distribution on the alphabet of X , just like pX (·)

Every probability distribution has an entropy associated to it:

↭ pX (·) →↔ H(X )

↭ pX |Y (·|y) →↔ H(X |Y = y)

DEFINITION

The conditional entropy of X given Y = y is defined as

HD(X |Y = y)
def
= →

∑

x↑X

pX |Y (x |y) logD pX |Y (x |y).
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CONDITIONAL ENTROPY OF X GIVEN Y = y

EXERCISE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel with uniform input, calculate:

↭ H(X |Y = y) for each fixed y ,

↭ H(Y |X = x) for each fixed x .

SOLUTION
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Two CARD DECKS

H(X/Y IS HEAD) = 1 BIT.

H(X/Y Is TAL) = 0

H(X) = h((4) =h(34)



NOTE : HERE (SEE WEEK 1)

BINARYh (p) is TheEENTROPN
h(p)=plogp - (l-p)log(l-p)



Two CARD DECKS

H(X/Y IS HEAD) = 1 BIT.

H(X/Y Is TAL) = 0

H(X) = h((4) =h(34)

H(X(Y) = p(TiS HEAcYH(X/YISHEA)
+ p(yisTAIt) H(X)YISTAL)
= "2 : + + 10=



ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y = y)

The conditional entropy of a discrete random variable X → X conditioned on
Y = y satisfies

0 ↑ HD(X |Y = y) ↑ logD |X |,

with equality on the left iff pX |Y (x |y) = 1 for some x , and with equality on the
right iff pX |Y (x |y) = 1

|X| for all x .

The proof is identical to our proof of the basic entropy bounds.
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ENTROPY BOUNDS

EXAMPLE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel, verify the entropy bounds.
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ENTROPY BOUNDS

Question: Do we also have the following entropy bound:

HD(X |Y = y)
???
↑ HD(X )?

Answer: No!

EXAMPLE (BIT FLIPPER WITH UNIFORM INPUT Y )

(Or “counterexample,” if you prefer). Just for ease of calculation, let us set
ω = 0 (but this is not necessary for the example to work!). Then, we have:

HD(X |Y = 0) = hD(ε) and HD(X |Y = 1) = 0.

where hD(·) is the binary entropy function (with logD(·)). But we have

HD(X ) = hD

(
1 ↓ ε

2

)
.

(Set, for example, ε = 3/8, thus 1→ω
2 = 5/16.)
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CONDITIONAL ENTROPY OF X GIVEN Y

The most useful and impactful definition is the average conditional entropy of
X given Y = y , averaged over all values of y under the marginal distribution
pY (y). Formally, we thus define:

DEFINITION

The conditional entropy of X given Y is defined as

HD(X |Y )
def
=

∑

y↑Y

pY (y)

(
↓

∑

x↑X

pX |Y (x |y) logD pX |Y (x |y)

)
.
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CONDITIONAL ENTROPY OF X GIVEN Y

EXAMPLE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel, we have

HD(X |Y ) = p(Y = 0)HD(X |Y = 0) + p(Y = 1)HD(X |Y = 1).

We have already calculated

HD(X |Y = 0) = hD(ε) and HD(X |Y = 1) = hD(ω).

For example, when Y is uniform, we have

HD(X |Y ) =
hD(ε) + hD(ω)

2
.
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ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y )

The conditional entropy of a discrete random variable X → X conditioned on
Y satisfies

0 ↑ HD(X |Y ) ↑ logD |X |,

with equality on the left iff for every y there exists and x such that
pX |Y (x |y) = 1, and with equality on the right iff pX |Y (x |y) = 1

|X| for all x and
all y .

This follows directly from our bounds on HD(X |Y = y).

Note: Having pX |Y (x |y) = 1
|X| for all x and all y implies that X and Y are

independent random variables.
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SupposeWEHAVEx) for all y
THEN :

p(x) = zzyp(y)p(x(y)
= p(y) "(x
="(



HENCE , IN THIS EXAMPLE :

We HAVE That X Is

INDEPENDENT OF
Y

.



ENTROPY BOUNDS

EXERCISE (“BIT FLIPPER CHANNEL”)

Verify the bounds for the bit-flipper channel.
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

The following bound is important and impactful (and also intuitively pleasing!):

THEOREM (CONDITIONING REDUCES ENTROPY)

For any two discrete random variables X and Y ,

HD(X |Y ) → HD(X )

with equality iff X and Y are independent random variables.

In words: On average, the uncertainty about X can only become smaller if
we know Y .

Note Bene: As we have seen, this is not true point-wise: We may have
HD(X |Y = y) > HD(X ) for some values of y .
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H(X(Y) - H(X)
= zp(y)(- [p(x(y)(yp(x(y)] +Ep((y()

↓

=[p(3)py) log)+p(y(x)p()p(

= [p(x,y) log
,PX,Y

[P(,y) (P-1) log()



= &P(x,y))P(
* P()
-1) log(e)

p(x ,y)
=

x* (P((p(y) - p(x,y))G(e)
=3) P(p9))-[p(x())Glog(e)
~
= 1 =1

= O.



JUSTIFICATION OF Q

[p(y(x) p(x)logp(x)
= Ep(x)(ogp(x)p(y(x))]

= 1

= [xp(x)logp(x) .



Proof [Conditioning reduces entropy]:

HD(X |Y ) → HD(X ) = E
[
logD

1
pX |Y (X |Y )

]
+ E[logD pX (X )]

= E
[

logD
pX (X )

pX |Y (X |Y )

]

= E
[

logD
pX (X )pY (Y )

pX |Y (X |Y )pY (Y )

]
= E

[
logD

pX (X )pY (Y )
pX ,Y (X ,Y )

]

(IT-Inequality)
↑ E

[
pX (X )pY (Y )
pX ,Y (X ,Y )

→ 1
]

logD(e)

=
∑

(x,y)→X↑Y

[
pX (x)pY (y) → pX ,Y (x , y)

]
logD(e)

= [1 → 1] logD(e) = 0.

The condition for equality is pX (x)pY (y)
pX,Y (x,y) = 1 for all x and y , i.e., equality holds iff

X and Y are independent random variables.
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CONDITIONAL ENTROPY OF f(X).
Let X be an arbitrary
random variablee.

Let f(x) be a (deterministic)
function of X.

H(f(x)(x) = 0



let : Y= f(x)
P(y(x) =27
= H(y(x) = H(f(x)(X) = 0



ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

A generalization of the previous bound is also of interest to us:

THEOREM (CONDITIONING REDUCES ENTROPY)

For any three discrete random variables X ,Y and Z ,

HD(X |Y ,Z ) → HD(X |Z )

with equality iff X and Y are conditionally independent random variables
given Z (that is, if and only if p(x , y |z) = p(x |z)p(y |z) for all x , y , z).
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Proof [Conditioning reduces entropy, generalized version]:

HD(X |Y , Z ) → HD(X |Z ) = E
[
logD

1
pX|Y ,Z (X |Y , Z )

]
+ E[logD pX|Z (X |Z )]

= E
[
logD

pX|Z (X |Z )

pX|Y ,Z (X |Y , Z )

]

= E
[
logD

pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX|Y ,Z (X |Y , Z )pY |Z (Y |Z )pZ (Z )

]

= E
[
logD

pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X , Y , Z )

]

(IT-Inequality)
↑ E

[ pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X , Y , Z )
→ 1

]
logD(e)

=
∑

x→X

∑

y→Y

∑

z→Z

[
pX|Z (x|z)pY |Z (y|z)pZ (z) → pX,Y ,Z (x, y, z)

]
logD(e)

= [1 → 1] logD(e) = 0.

The condition for equality is pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X ,Y ,Z ) = 1 for all x , y , z, i.e.,
equality holds iff X and Y are conditionally independent random variables
given Z .
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PROOF THAT

Px
,Y ,
z(X , y ,z)

=

PX/4,2(x(y ,2) Pyz(y(z) P2(2)
STEP 1 : OBSERVE THAT :

Pi1z(y(2)Pz(z) = Prz(y ,2)
STEP 2 : NEXT PAGE :



&12 (y(2)p2(2) = P4
,
z(y ,2)

WITH THIS
,
REWRITE :

wi= (Y ,2)

2Px(,2 (x1y ,2)
= Pxw(x(w)

Px14
,
2(13 ,2)PT/2(y(z) P2(2)

= Px/w(x(u)pm(w) =Px,w(X ,2)
= PX

,
Y,2
(x, Y ,2)



FIRST QUIZ

· OPENS TODAY AT 17 : 00

· CLOSES MONDAY (MARCH 10)
AT 23 : 59

· FORMULA COLLECTION.



YESTER DAY

CONDITIONAL ENTROPY

H(V (T) = p(y) H(X(Y=y)
= - Ep(y) p(x(y) (op(x(y)
= - zp()p(x(y) hyp(x(y)



=

- ESP(x,y) logp(x(y)

0 = H
,
(x(5) =H(X) = tog*/

X
,Y , 2

:

0 = H (x/Y
,2) [H(x/2) [H(X)

= log
,
(x)



ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

Recall: When we simply write H(X ), suppressing the subscript D, then we
mean D = 2.

EXAMPLE

Let X → {0, 1} be uniformly distributed and let Y = X . Then

H(X |Y ) = 0 and H(X ) = 1.

EXAMPLE

Let X → {0, 1} and Y → {0, 1} be uniformly distributed and independent.
Then

H(X |Y ) = 1 and H(X ) = 1.
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LISA ROLLS TWO DICE

EXERCISE (LISA ROLLS TWO DICE)

↭ Lisa rolls two dice and announces the sum L written as a two digit
number.

↭ The alphabet of L = L1L2 is {02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12}.
↭ The alphabet of L1 is {0, 1}.

↭ The alphabet of L2 is {0, 1, . . . , 9}.

↭ Determine the probability that L2 = 2, knowing that L1 = 1, that is,

pL2|L1(2|1).

195 / 798



LISA ROLLS TWO DICE

SOLUTION

Using the definition (and calculations from Lecture 1),

pL2|L1(2|1) =
pL1,L2(1, 2)

pL1(1)
=

1/36
1/6

=
1
6
.
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LISA ROLLS TWO DICE

After running over all possible values for (i, j), we obtain

L1 = i 0 1
L2 = j pL1,L2 (i, j) pL2 (j)

0 0 3/36 3/36
1 0 2/36 2/36
2 1/36 1/36 2/36
3 2/36 0 2/36
4 3/36 0 3/36
5 4/36 0 4/36
6 5/36 0 5/36
7 6/36 0 6/36
8 5/36 0 5/36
9 4/36 0 4/36

pL1 (i) 5/6 1/6

pL2|L1 (j|0) pL2|L1 (j|1)
L2 = j

0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0
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LISA ROLLS TWO DICE

EXAMPLE

H(L2|L1 = 1)=
3
6

log
6
3

+
2
6

log
6
2

+
1
6

log 6

= 1.459 bits

H(L2|L1 = 0)= · · · = 2.857 bits

pL2|L1 (j|0) pL2|L1 (j|1)
L2 = j

0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0
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LISA ROLLS TWO DICE

EXAMPLE

H(L2|L1) = pL1(0)H(L2|L1 = 0) + pL1(1)H(L2|L1 = 1)

=
5
6

↑ 2.857 +
1
6

↑ 1.459 = 2.624 bits

Now, we can observe that

2.624 = H(L2|L1) ↓ H(L2) = 3.22,

exactly like it has to be according to our theorems.
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THE CHAIN RULE FOR ENTROPY

Recall that the joint entropy of two random variables X ,Y is completely
naturally defined as

HD(X ,Y ) = ↔

∑

x

∑

y

pX ,Y (x , y) logD pX ,Y (x , y).

Using the fact that pX ,Y (x , y) = pX (x)pY |X (y |x), we can write this as

HD(X ,Y ) = ↔

∑

x

pX (x)

(
∑

y

pY |X (y |x) logD
(
pX (x)pY |X (y |x)

)
)

= ↔

∑

x

pX (x)

(
∑

y

pY |X (y |x)
(
logD pX (x) + logD pY |X (y |x)

)
)

= ↔

∑

x

pX (x)

{ (
∑

y

pY |X (y |x) logD pX (x)

)

+

(
∑

y

pY |X (y |x) logD pY |X (y |x)

)}
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It (X
,Y)

=

-

EP(x ,y) loyp(x ,y)
=

-[p(xy) log[p(x)pC
=

-[p(y)& logp() + logpl



= ( zp(x,y)(yp(x)) +( -p(x,y)bp(()
= ( zp(x)p(y(x)logp(x) +(zp(x,y)(mp((x)
/+
= H(x) + H(i(X)



-

HENCE :

|t(X ,Y) = H(x) +H(y(x)
Il = H(r) + H(X(i)

H(Y, X)
-

p(X= x, Y=y) = p(T=y , X= x)



THE CHAIN RULE FOR ENTROPY

But now, we observe:

HD(X ,Y ) = →

∑

x

pX (x)

{ (
∑

y

pY |X (y |x) logD pX (x)

)

+

(
∑

y

pY |X (y |x) logD pY |X (y |x)

)}

= →

∑

x

pX (x)

(
∑

y

pY |X (y |x) logD pX (x)

)

︸ ︷︷ ︸
HD(X)

+
∑

x

pX (x)

(
→

∑

y

pY |X (y |x) logD pY |X (y |x)

)

︸ ︷︷ ︸
HD(Y |X)

= HD(X ) + HD(Y |X ).
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THE CHAIN RULE FOR ENTROPY

Let us write this once more and enjoy it properly:

HD(X ,Y ) = HD(X ) + HD(Y |X ).

In words: To find the joint entropy of two random variables, we can first
calculate the entropy of one of the two, and then add to it the conditional
entropy of the second, given the first.

Of course, what we could do once, we can do again!
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THE CHAIN RULE FOR ENTROPY

THEOREM (CHAIN RULE FOR ENTROPIES)

Let S1, . . . ,Sn be discrete random variables. Then

HD(S1,S2, . . . ,Sn) = HD(S1) + HD(S2|S1) + · · · + HD(Sn|S1, . . . ,Sn→1).

The above result says that the uncertainty of a collection of random variables
(in any order) is the uncertainty of the first, plus the uncertainty of the second
when the first is known, plus the uncertainty of the third when the first two are
known, etc.
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Proof [Chain rule for entropy]:

pS1,S2,...,Sn (s1, . . . , sn) = pS1(s1)
n∏

i=2

pSi |S1,...,Si→1(si |s1,...,si→1)

→ logD
(
pS1,S2,...,Sn (s1, . . . , sn)

)
= → log pS1(s1)→

n∑

i=2

logD
(
pSi |S1,...,Si→1(si |s1,...,si→1)

)

The expected value of the LHS is HD(S1,S2, . . . ,Sn).

The expected value of the RHS is
HD(S1) + HD(S2|S1) + · · · + HD(Sn|S1, . . . ,Sn→1).
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THE CHAIN RULE FOR ENTROPY

EXAMPLE

Let X , Y , Z be discrete random variables. We have:

H(X ,Y ,Z ) = H(X ) + H(Y |X ) + H(Z |X ,Y )

= H(X ) + H(Z |X ) + H(Y |X ,Z )

= H(Y ) + H(X |Y ) + H(Z |X ,Y )

= H(Y ) + H(Z |Y ) + H(X |Y ,Z )

= H(Z ) + H(X |Z ) + H(Y |X ,Z )

= H(Z ) + H(Y |Z ) + H(X |Y ,Z ),

where we omitted the subscript D for compact notation, but these
relationships hold for all integers D ↑ 2.
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THE CHAIN RULE FOR ENTROPY

The chain rule for entropy and the fact that conditioning reduces entropy,
proves the following theorem which was stated last week without proof:

THEOREM

Let S1, . . . ,Sn be discrete random variables. Then

H(S1,S2, . . . ,Sn) ↓ H(S1) + H(S2) + · · · + H(Sn),

with equality iff S1, . . . ,Sn are independent.
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H(S.,Sc,Sa) = H(S,) + H(S2(s ,)+H(sals,Su)
- H(s

,
) + H(S2) + H(S)



THE CHAIN RULE FOR ENTROPY

Sometimes it is convenient to compute the conditional entropy using the
chain rule for entropies. For instance:

H(X |Y ) = H(X ,Y ) → H(Y ).
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THE CHAIN RULE FOR ENTROPY

COROLLARY

H(X ,Y ) ↑ H(X );

H(X ,Y ) ↑ H(Y ).

The above inequalities follow from the chain rule for entropies and the fact
that entropy (conditional or not) is nonnegative.
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LISA ROLLS TWO DICE

EXAMPLE (LISA ROLLS TWO DICE)

From

H(L1, L2) = 3.2744 bits

H(L1) = 0.6500 bits

H(L2) = 3.2188 bits,

we compute

H(L2|L1) = H(L1, L2) → H(L1) = 3.2744 → 0.6500 = 2.624 bits

H(L1|L2) = H(L1, L2) → H(L2) = 3.2744 → 3.2188 = 0.056 bits,

and verify that indeed

H(L1|L2) ↓ H(L1) ↓ H(L1, L2)

H(L2|L1) ↓ H(L2) ↓ H(L1, L2).
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LISA ROLLS TWO DICE

EXERCISE

Determine H(L1, L2|S1,S2).

SOLUTION

L1 and L2 are deterministic functions of S1 and S2.
Hence H(L1, L2|S1,S2) = 0.
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LISA ROLLS TWO DICE

EXAMPLE

Determine H(S1,S2|L1, L2) knowing that H(S1,S2) = 5.1699 bits and
H(L1, L2) = 3.2744 bits.

SOLUTION

H(S1,S2|L1, L2) = H(S1,S2, L1, L2) → H(L1, L2).

But H(S1,S2, L1, L2) = H(S1,S2). (Can you say why?)

Hence H(S1,S2|L1, L2) = H(S1,S2) → H(L1, L2) = 1.896 bits.
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . ,Sn of n coin flips.

So Si ↔ A = {H,T}, where H stands for heads, T for tails, i = 1, 2, . . . , n.

pSi (H) = pSi (T ) = 1
2 for all i , and coin flips are independent.

Hence,

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2n for all (s1, s2, . . . , sn) ↔ A

n

H

T n
0 10 20 30 40 50 60
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence S1,S2, . . . ,Sn of weather conditions.

So Si ↔ A = {S,R}, where S stands for sunny, R for rainy, i = 1, 2, . . . , n.

The weather on the first day is uniformly distributed in A.

For all other days, with probability q = 6
7 the

weather is as for the day before.

S

R n
0 10 20 30 40 50 60

1 → q

q

1 → q

q
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EXAMPLE

For the Sunny-Rainy source:

↭ pS1(S) = 1
2

↭ pS1,S2(R,R) = pS1(R)pS2|S1(R|R) = 1
2 q

↭ pS1,S2(R,S) = pS1(R)pS2|S1(S|R) = 1
2 (1 → q)

↭ pS1,S2,S3,S4(R,S,S,R) = 1
2 (1 → q)q(1 → q) = 1

2 q(1 → q)2

In general, if c is the number of weather changes (0 ↓ c ↓ n → 1), then

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2

qn→1→c(1 → q)c .
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EXERCISE

Let i = 2, 3, . . .
For the Sunny-Rainy source:

↭ Find pSi (si)

↭ Find pSi |Si→1(si |si→1)

↭ Are Si and Si→1 independent?
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SOLUTION (SUNNY-RAINY SOURCE)

By definition, pSi |Si→1(j|k) = q if j = k and (1 → q) otherwise.

Hence Si→1 and Si are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that pSi is uniform.

It is true by definition for i = 1.

Suppose that pSi is uniform for i = 1, . . . , n → 1. We show that it is uniform
also for i = n:

pSn (j) =
∑

k↑{S,R}

pSn|Sn→1(j|k)pSn→1(k) =
1
2

∑

k↑{S,R}

pSn|Sn→1(j|k)

=
1
2
(
q + (1 → q)

)
=

1
2
.

Hence the marginals are uniformly distributed (like for the Coin-Flip source).
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EXERCISE

Let i = 2, 3, . . .
For the Coin-Flip (CF ) and Sunny-Rainy (SR) sources:

↭ Compute H(Si)

↭ Compute H(Si |S1, . . . ,Si→1)

H

T n
0 10 20 30 40 50 60

S

R n
0 10 20 30 40 50 60
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SOLUTION (H(Si))

The entropy depends only on the distribution, and for a uniform distribution, it
is the log of the alphabet’s cardinality. Hence

HCF (Si) = HSR(Si) = log 2 = 1
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SOLUTION (H(Si |S1, . . . , Si→1) FOR THE COIN-FLIP SOURCE)

Si is independent of S1, . . . ,Si→1

Hence, H(Si |S1, . . . ,Si→1) = H(Si).
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SOLUTION (H(Si |S1, . . . , Si→1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on Si→1. Hence

HSR(Si |S1 = s1, . . . ,Si→1 = si→1) = HSR(Si |Si→1 = si→1).

When Si→1 = k ↔ {S,R}, the probabilities for Si are q and (1 → q). Hence

HSR(Si |Si→1 = si→1) = →q log q → (1 → q) log(1 → q).

Taking the average on both sides yields

HSR(Si |Si→1) = →q log q → (1 → q) log(1 → q).

For q = 6
7 , we have

HSR(Si |Si→1) = →q log q → (1 → q) log(1 → q) = 0.592.
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Coin-Flip source.

SOLUTION

The source produces independent and identically distributed symbols. Hence

H(S1,S2, . . . ,Sn)
(indep.)

= H(S1) + H(S2) + · · · + H(Sn)

(identically distributed)
= nH(S1)

Moreover, the distribution is uniform, therefore H(S1) = 1 bit. Putting things
together,

H(S1,S2, . . . ,Sn) = n bits
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Sunny-Rainy source with q = 6
7 .

SOLUTION

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · · + H(Sn|S1, . . . ,Sn→1)

For i = 2, 3, . . . , n, the statistic of Si depends only on Si→1. Hence

H(Si |S1,S2, . . . ,Si→1) = H(Si |Si→1)

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · · + H(Sn|Sn→1)

We have already determined that H(S1) = 1 bit and H(Si |Si→1) = 0.592 bits.
Therefore

H(S1,S2, . . . ,Sn) = 1 + 0.592(n → 1) bits
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SUMMARY : THE MAIN RESULT OF SOURCE CODING / DATA

COMPRESSION

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code ! for S must
satisfy

HD(S1,S2, . . . ,Sn) ↓L((S1,S2, . . . ,Sn), !)

and there exists a uniquely decodable code !SF satisfying

L((S1,S2, . . . ,Sn), !SF ) < HD(S1,S2, . . . ,Sn) + 1.

↭ And in many cases, as n becomes large, the upper and the lower bound
are arbitrarily close!

223 / 798



SOURCE CODING / COMPRESSION : OUTLOOK

Additional Questions of interest include:

↭ What if the source alphabet is not finite?

↭ What if we do not know the source distribution pX (x)? (Universal source
coding)
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WHAT IF THE SOURCE ALPHABET IS INFINITE?

↭ In all of our previous discussion on actual codes, we have assumed that
the source alphabet is discrete and finite.

↭ What if it is discrete but infinite?

↭ ... is this just an academic endeavour?

↭ In this class, we only touch the top of this iceberg...

225 / 798



BINARY PREFIX-FREE CODE FOR POSITIVE INTEGERS

The set of positive integers is infinite and no probability is assigned to its
elements. Hence we cannot use Huffman’s construction to encode integers.

First Attempt to Encode Positive Integers: “Standard Method"

n c(n)

1 1
2 10
3 11
4 100
5 101
...

...

The code is not prefix-free.

The length of c(n) is l(n) = ↗log2 n↘ + 1.

Note: The first digit is always 1.
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Second Attempt: “Elias Code 1"

We prefix code c(n) with l(n) → 1 zeros.

n c1(n)

1 1
2 010
3 011
4 00100
5 00101
...

...

The code is prefix-free. (Codewords of different length cannot have the same
number of leading zeros.)

The length of c1(n) is

l1(n) = l(n) → 1 + l(n) = 2↗log2 n↘ + 1.

Note: we are essentially doubling the length to make the code prefix-free.
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Third Attempt: “Elias Code 2"

Instead of l(n) → 1 zeros followed by a 1, we prefix with c1
(
l(n)

)
, which is

also prefix-free (hence can be identified). Like the zeros, it tells the length of
the codeword.

Notation: c̃(n) is c(n) without the leading 1.

n c(n) l(n) c1(n) c1
(
l(n)

)
c̃(n)

1 1 1 1 c1(1) = 1
2 10 2 010 c1(2) 0 = 010 0
3 11 2 011 c1(2) 1 = 010 1
4 100 3 00100 c1(3) 00 = 011 00
5 101 3 00101 c1(3) 01 = 011 01
...

...

The code is prefix-free.

The codeword length is
l2(n) = l1

(
l(n)

)
+ l(n) → 1 = 2↗log2(↗log2 n↘ + 1)↘ + 1 + ↗log2 n↘.
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WHAT IF THE SOURCE DISTRIBUTION IS NOT KNOWN?

↭ Universal source coding.

↭ Practically important algorithms: “Lempel-Ziv” (LZ77, LZ78). Time
permitting, we briefly discuss how they work. An analysis is beyond the
scope of AICC-2.
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CHALLENGE FOR NEXT LECTURE

EXERCISE

There are 14 billiard balls numbered as shown:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

↭ if one ball is different . . .

↭ if there is such a ball, which one, . . .

↭ and whether the different ball is heavier/lighter.
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