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LAST WEEK

1) REVIEW : BASIC PROBABILITY

2) DEFINITION : ENTROPY



Hc(s)= = p(s)losets "surprise"

=
~ 50 .
2 + 6 . 3
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ENTROPY

DEFINITION (ENTROPY, UNCERTAINTY)

Hb(S) := →

∑

s→supp(pS)

pS(s) logb pS(s),

where supp(pS) =
{

s : pS(s) > 0
}
.

But what does this definition mean?

↭ We will see how entropy is a fundamental “physical” converse bound to
algorithms — it leads to impossibility results.

↭ At the same time, it gives guidance on how to design algorithms that
attain or approach the fundamental bounds.

↭ Our first concrete test case is source coding / data compression.

96 / 798



ENTROPY BOUNDs

0 =H
,
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SOURCE CODING PURPOSE

Source coding is often seen as a way to compress the source.

More generally, the goal of source coding is to efficiently describe the source
output.

For a fixed description alphabet (often binary), we want to minimize the
average description length.
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SETUP

Source dinner is served Encoder 0000︸ ︷︷ ︸
d

001︸︷︷︸
i

010︸︷︷︸
n

010︸︷︷︸
n

011︸︷︷︸
e

100︸︷︷︸
r

. . .

The source is specified by the source alphabet A and by the source statistic.

EXAMPLE

The source alphabet is A = {a, . . . , z, 0, . . . , 9}, and source symbols are
independent and identically distributed (iid) over A.
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Source dinner is served Encoder 0000︸ ︷︷ ︸
d

001︸︷︷︸
i

010︸︷︷︸
n

010︸︷︷︸
n

011︸︷︷︸
e

100︸︷︷︸
r

. . .

The encoder is specified by:

↭ the input alphabet A (the same as the source alphabet);

↭ the output alphabet D (typically D = {0, 1});

↭ the codebook C which consists of finite sequences over D;

↭ by the one-to-one encoding map ! : A
k

→ C, where k is a positive
integer.

For now, k = 1.
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EXAMPLE (FOUR LITTLE CODES)

For each code, the encoding map ! is specified in the following table:

A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

dac

dac

dac

dac

!O

!A

!B

!C

110010

11010

11100110

01110011

The source alphabet A, the k , the code alphabet D and the codebook C are
implicit from the encoding map.

100 / 798

Go = 500, 01 , 10, 113



DECODABILITY

We want to avoid the following problem (encoding map !A):

cbaad 10010011
cbaad

cacad

DEFINITION

The code is uniquely decodable if every concatenation of codewords has a
unique parsing into a sequence of codewords.
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Recall that the encoding function ! is one-to-one by assumption.

If we can identify codeword boundaries, we can decode sequences of
codewords.

Uniquely decodable codes allow us to store (or transmit) sequences of
codewords without storing (or sending) separators between codewords.
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EXAMPLE

Code A is not uniquely decodable:

bc ↑→ 0110

ada ↑→ 0110.

Try also to decode 0100.

A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111
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EXAMPLE

Code B is uniquely decodable. A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Example: the codeword sequence 10111010110 can only be parsed as
10, 1110, 10, 110.

It is uniquely decodable, because every 0 marks the end of a codeword. (The
0 plays the role of a separator.)

104 / 798



EXAMPLE

Code C is uniquely decodable. A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

It is uniquely decodable, because every 0 marks the beginning of a codeword.
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EXAMPLE

Code O is uniquely decodable. A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

A fixed-length code is always uniquely decodable.
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PREFIX-FREE CODES

DEFINITION

If no codeword is a prefix of another codeword, the code is said to be
prefix-free.

EXAMPLE

The codeword 01 is a prefix of 011.
The codeword 10 is not a prefix of 110.

A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Code O is prefix-free.
Code B is prefix-free (because of the 0 that marks the codeword end).
Codes A and C are not prefix-free.
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↭ A prefix-free code is always uniquely decodable.

↭ A uniquely decodable code is not necessarily prefix-free.

EXAMPLE

Code C is not prefix-free, yet it is uniquely
decodable. (Its reverse — read every
codeword from right to left — is prefix-free.)

A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Note: A code is uniquely decodable iff its reverse is uniquely decodable.
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A prefix-free code is also called instantaneous code.

↭ Think of phone numbers;

↭ Think about streaming: instantaneous codes minimize the decoding
delay (for given codeword lengths).
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EXAMPLE

If we are using code C and the decoder sees
0, it might or might not be looking at a
codeword.

The decoder needs to look past the end of a
codeword.

A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

It is possible to construct uniquely decodable codes for which the decoder
has to wait until the end of the transmission before it can parse, hence before
it can decode.

This can lead to unbounded delays.
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EXAMPLE (CURIOSITY: ANALOGY WITH NATURAL LANGUAGES)

Suppose that we are describing numbers between 0 and 100:

↭ 83 ↓→ quatre-vingt trois (not instantaneous)

↭ 83 ↓→ Dreiundachtzig (not instantaneous)

↭ 83 ↓→ ottanta tre (almost instantaneous)

↭ 83 ↓→ otgonta treis (almost instantaneous)

Instantaneity is not the only thing that matters.

The length of the description matters as well! We’ll come back to this shortly.
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CODES FOR ONE RANDOM VARIABLE

We start by considering codes that encode one single random variable
S ↔ A.

To encode a sequence S1,S2, . . . of random variables, we encode one
random variable at a time.
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COMPLETE TREE OF A CODE

A !O !A

a 00 0
b 01 01
c 10 10
d 11 11

a b c d

Code !O

0 1

a

b c d

Code !A

0 1
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A !B !C

a 0 0
b 10 01
c 110 011
d 1110 0111

a

b

c

d

Code !B

0 1

a

b

c

d

Code !C

0 1
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WITH/WITHOUT PREFIX

A !B !C

a 0 0
b 10 01
c 110 011
d 1110 0111

a

b

c

d

Code !B

Prefix-Free

0 1

a

b

c

d

Code !C

With Prefix

0 1
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DECODING TREE

↭ Obtained from the complete tree by keeping only branches that form a
codeword.

↭ Useful to visualize the decoding process.

a

b

c

d

Code !B

0 1 A !O !A !B !C

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111
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CODEWORD LENGTH

↭ The codeword length is defined the obvious way.

↭ Example:

A !B codeword lengths

a 0 1
b 10 2
c 110 3
d 1110 4

↭ We would like the average codeword-length to be as small as possible.

117 / 798



KRAFT-MCMILLAN
PART 1: NECESSARY CONDITION FOR THE CODE TO BE UNIQUELY DECODABLE

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D→l1 + · · · + D→lM → 1 (Kraft’s inequality).
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EXAMPLE

For Code O we have

2→2 + 2→2 + 2→2 + 2→2 = 1

Hence Kraft’s inequality is fulfilled with equality.

A !O codeword lengths

a 00 2
b 01 2
c 10 2
d 11 2
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EXAMPLE

For Codes B and C we have 2→1 + 2→2 + 2→3 + 2→4 = 0.9375 < 1.

Kraft’s inequality is fulfilled.

Code B is prefix-free.

Code C is not prefix-free (but there is a prefix-free code that has the same
codeword lengths).

A !A !B !C

a 0 0 0
b 01 10 01
c 10 110 011
d 11 1110 0111
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Recall Kraft-McMillan, Part 1:

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D→l1 + · · · + D→lM → 1 (Kraft’s inequality).

EXERCISE

What is the contrapositive of Kraft-McMillan part 1?

See next example.
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EXAMPLE

For Code A we have 2→1 + 2→2 + 2→2 + 2→2 = 1.25 > 1.

Kraft-McMillan’s inequality is not fulfilled.

There exists no uniquely decodable code with those codeword lengths.

A !A !B !C

a 0 0 0
b 01 10 01
c 10 110 011
d 11 1110 0111
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Proof of K-MM Part I: We prove a slightly weaker result, namely that the
codeword lengths of prefix-free codes satisfy K-MM’s inequality. 1

Let L = maxi li be the complete tree’s depth.
a

b

c

d
There are DL terminal leaves.

There are DL→li terminal leaves below a codeword at depth li .

No two codewords share a terminal leaf. (The code is prefix-free.)

Hence DL→l1 + DL→l2 + · · · + DL→lM → DL.

After dividing both sides by DL we obtain Kraft’s inequality
D→l1 + D→l2 + · · · + D→lM → 1.

1The full proof appears in the LTU book
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Recall Kraft-McMillan, Part 1:

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D→l1 + · · · + D→lM → 1 (Kraft’s inequality)

EXERCISE

What is the converse of Kraft-McMillan part 1?

The converse of Kraft-McMillan part 1 is not true. (Consider e.g. two
codewords: 01 and 0101.)

However, the following statement is almost as good.
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KRAFT-MCMILLAN
PART 2: SUFFICIENT CONDITION FOR THE EXISTENCE OF A PREFIX-FREE CODE

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If the positive integers l1, . . . , lM satisfy Kraft’s inequality for some positive
integer D, then there exists a D-ary prefix-free code (hence uniquely
decodable) that has codeword lengths l1, . . . , lM .

125 / 798



EXERCISE

Let l1 = 1, l2 = 2, l3 = 3, l4 = 4. Because
∑4

i=1 2→li = 15
16 < 1, there exists a

binary prefix-free code with the given codeword lengths.
Construct such a code.

(Use the following tree as a starting point.)

(It is convenient to order the codeword lengths in increasing order.)
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Proof Outline of K-MM part 2

↭ suppose that l1 → l2 → · · · → lM are the desired codeword lengths

↭ which fulfill the Kraft-McMillan’s inequality

↭ start with a full D-ary tree of depth L = lM
↭ choose a node at depth l1. Declare the path from the root to that node as

codeword c1

↭ delete the subtree to the chosen node. This guarantees that subsequent
codewords are prefix-free
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↭ proceed similarly to find prefix-free codewords of lengths l2, . . . , li for
i < M

↭ because the lengths l1, . . . , li satisfy Kraft-McMillan with strict inequality,
there are unused terminal leaves

↭ hence we can choose a codeword of length li+1 that does not extend any
of the already chosen codewords. Etc.
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IMPORTANT CONSEQUENCE OF KRAFT-MCMILLAN

PART I

If a D-ary code is uniquely
decodable, then its codeword
lengths l1, . . . , lM satisfy Kraft’s
inequality

D→l1 + · · · + D→lM → 1.

PART II

If the positive integers l1, . . . , lM satisfy
Kraft’s inequality for some positive
integer D, then there exists a D-ary
prefix-free code that has those
codeword lengths.

The Kraft-McMillan theorem implies that any uniquely decodable code can be
substituted by a prefix-free code of the same codeword lengths.
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PREFIX-FREE CODES

Our focus will be on prefix-free codes. Reasons:

↭ no loss of optimality: codewords can be as short as for any uniquely
decodable code;

↭ a prefix-free codeword is recognized as soon as its last digit is seen:
↭ important for, e.g., a phone number;

↭ advantageous to limit the decoding delay in, say, streaming;
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AVERAGE CODEWORD LENGTH

↭ The typical use of a code is to encode a sequence of random variables
into the corresponding codeword sequence.

↭ We are interested in minimizing the average codeword-length.
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Ex =
A = 3 a , b , c , d] D =2

SEA ↑(s) e(s)
-

A P 1

b 10 2

c 178 3

d 1117 4



Ex : A = 3a , b , c , d] D =2

SEA ↑(s) e(s) p(s)
-

A P 1 0. 05

b 10 2 0 . 05

[ 110 3 O
.
1

d 1117 40 . 8

((s,i= /E(Length] = 0
.05. 2 + 0.05.2

+ 0
.

1 . 3 +0.8 . 4
= 3

.65o



DEFINITION (AVERAGE CODEWORD LENGTH)

Let l(!(s)) be the length of the codeword associated to s → A.

The average codeword-length is

L(S, !)
def
=

∑

s→A

pS(s)l(!(s)).
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UNITS

The units of L(S, !) are code symbols.

When D = 2, the units of L(S, !) are bits.
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EXAMPLE

Can we do better than !O with a
binary code?

A pS(s) !O !B !B→ !C

a 0.05 00 0 1110 0
b 0.05 01 10 110 01
c 0.1 10 110 10 011
d 0.8 11 1110 0 0111

L(S, !B) = 0.05 ↑ 1 + 0.05 ↑ 2 + 0.1 ↑ 3 + 0.8 ↑ 4 = 3.65

L(S, !B→) = 0.05 ↑ 4 + 0.05 ↑ 3 + 0.1 ↑ 2 + 0.8 ↑ 1 = 1.35

L(!B→) < L(!O) < L(!B) = L(!C).

Is there a lower bound to the average codeword-length?
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AVERAGE CODEWORD LENGTH: LOWER BOUND

THEOREM (TEXTBOOK THM 3.1)

Let ! : A ↓ C be the encoding map of a D-ary code for the random variable
S → A.

If the code is uniquely decodable, then the average codeword-length is lower
bounded by the entropy of S, namely

HD(S) ↔ L(S, !),

with equality iff, for all s → A, pS(s) = D↑l(!(s)). An equivalent condition is
l(!(s)) = logD

1
pS(s)

.
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H(s)- [p(s)((s)
= - [
, p()(ogp(s)

= Eps)f(s)
e(s)

= - [p(s)logp() - [p() log2
=
- [p4)log(p(s)2e)

=

Sp(log (t 2-e(s)
= 51(2e -) C



= (32-e) -)d
=1

[0



Proof:

HD(S) → L(S, !) =
∑

i

pi logD
1
pi

→

∑

i

pi logD Dli

=
∑

i

pi logD
1

piDli

(IT→Ineq.)
↑ logD(e)

∑

i

pi

( 1
piDli

→ 1
)

= logD(e)

(∑

i

D→li →

∑

i

pi

)

= logD(e)

(∑

i

D→li → 1
)

(K→MM)

↑ 0.

The first inequalities hold with equality iff, for all i , pi = D→li . When this is the
case, also the second inequality holds with equality.
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YESTERDAY

Jet M(s) ((N(s) p(s)
hello 001021 6 "100

good 22122 5 2/100

morning 00 0 3 /1000

: = i

↓
average
length



YESTERDAY

· TREE REPRESENTATION

· DEF : UNIQUELY DECODABLE CODE

· DEF : PREFIX-FREE CODE .

· PREFIX-FREEUNIQUELT DECODABLE



YESTERDAY

· CODE WITH CODEWORD LENGTHS

3
,
2 , .., 23

· IF UNIQUELY DECODABLE
THEN MUST HAVE

D-li1 .



YESTERDAY

· IF ID-e11 ,
THEN THERE EXISTS

* D-ARY PREFIX-FREE CODE

WITH CODEWORD LENGTHS

3
,
2 , .., 23



YESTERDAY

· AVERAGE CODEWORD LENGTH :

L(s, 4) = zp()e(p(s))
· MUST SATISFY :

Hy(s) = L(S, i)



EXAMPLE (CONT.)

↭ H(S) = →2 ↑ 0.05 ↑ log 0.05 → 0.1 ↑ log 0.1 → 0.8 ↑ log 0.8 = 1.022

↭ Recall that L(S, !B→) = 1.35

↭ We verify H(S) < L(!B→) < L(!O) < L(!B) = L(!C)

A pS(s) !O !B !B→ !C

a 0.05 00 0 1110 0
b 0.05 01 10 110 01
c 0.1 10 110 10 011
d 0.8 11 1110 0 0111
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A KEY OBSERVATION

The right-hand side of

L(S, !)
def
=

∑

s→A

p(s)l(!(s))

and

HD(S)
def
=

∑

s→A

p(s)logD
1

pS(s)

are identical if l(!(s)) = logD
1

pS(s)
.

↭ Unfortunately l(!(s)) = logD
1

pS(s)
is often not possible (not an integer).

↭ How about choosing l(!(s)) = ↓logD
1

pS(s)
↔?

↭ Is it a valid choice for a prefix-free code? (Is Kraft’s inequality satisfied?)
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GOOD CODE: SHANNON-FANO CODES

THEOREM (TEXTBOOK THM 3.2)

↭ For every random variable S ↗ A and every integer D ↘ 2, there exists a
prefix-free D-ary code for S such that, for all s ↗ A,

l(!(s)) = ↓→ logD pS(s)↔

↭ Such codes are called D-ary Shannon-Fano codes.
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Proof: Using a simplified notation, we need to check that the choice

li = ↓→ logD pi↔, i = 1, . . . , |A|

fulfills Kraft’s inequality.

We use the fact that D↑x is a monotonically decreasing function of x for
D > 1.

∑

i

D↑li =
∑

D↑↓↑ logD pi↔

≃

∑

i

DlogD pi

=
∑

i

pi

= 1
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EXERCISE

Construct a binary Shannon-Fano code for the
following random variable.

s → A pS(s) ↑↓ log2 pS(s)↔

a 0.05
b 0.05
c 0.1
d 0.8
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s → A pS(s) ↑↓ log2 pS(s)↔

a 0.05
b 0.05
c 0.1
d 0.8

x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

↑ log2(x) 4.3219 3.3219 2.3219 1.7370 1.3219 1.0000 0.7370 0.5146 0.3219 0.1520

s → A pS(s) ↑↓ log2 pS(s)↔

a 0.05 5
b 0.05 5
c 0.1 4
d 0.8 1
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s → A pS(s) ↑↓ log2 pS(s)↔

a 0.05 5
b 0.05 5
c 0.1 4
d 0.8 1

d

c

b a

Shannon-Fano code

d

c

b a

shorter code
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THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a D-ary Shannon-Fano code for the random
variable S fulfills

HD(S) ≃ L(S, !SF ) < HD(S) + 1.
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Proof: It suffices to prove the upper bound (we have already proved the
lower bound).

First suppose that we could use li = → log pi . The average length would be

L(S, !) =
∑

i

pi li =
∑

i

pi(→ logD pi) = HD(S).

Instead we use li = ↓ → log pi↔ < → log pi +1.

Since each term of an average increases by less than 1, the average itself
increases by less than 1.
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EXAMPLE

Does there exist a binary code !E

having a shorter average length than
the binary Shannon-Fano code !D?

A pS(s) !D !E

a 0.05 11100 111
b 0.05 11000 110
c 0.1 1000 10
d 0.8 0 0

L(S, !) 1.7 1.3

d

c

b a

Code !D

0 1

d

c

b a

Code !E

0 1

So, Shannon-Fano codes are good, but not optimal.
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OPTIMAL CODE: HUFFMAN CODE

Unlike the Shannon-Fano code, the construction of the Huffman code starts
from the leaves.

a b c d
.05 .05 .1 .8

0.1

0.2

1

0

1

A Huffman code for a random variable is prefix-free and optimal, in the sense
that no code can achieve a smaller average codeword-length. (To be proved.)
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HUFFMAN
1

D = 2

O
O
.

1 1·⑧ 1

⑧
0
.05 0. 1 0

.15 0
.3 0

.4



HUFFMAN 1
D = 2

oiryA0
.
37 ① 0

.410

1 1
① ② ②
0
. 18 0. 19 0

. 2 0
.

21 0
.22



HUFFMAN D = 2

⑧ ②
0
. 18 0. 19 0

. 2 0
.

21 0
.22



HUFFMAN 1D = 2

·pig
⑧
0 .10 .10 .20

.

20 .4



HUFFMAN 1 D = 2

0. 6

↑10 .2 & 0 .4x

1 1
⑨ ③ ② ⑨ ②
0 . 1 0. 1 0

.20
.

20 .4



TREE WITH PROBABILITIES: A HANDY TOOL

↭ Consider a tree with probabilities assigned to leaf nodes, like the
decoding tree of a prefix-free code

↭ The probabilities of the leaf nodes induce probabilities to the
intermediate notes (like in Huffman’s construction).

↭ The result is called a tree with probabilities.

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1
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LEMMA (PATH-LENGTH LEMMA)

The average path length of a tree with probabilities is the sum of the
probabilities of the intermediate nodes (root included):

∑

i

pi li =
∑

j

qj

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1
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③

①
I

⑫
-

Ei leaf
Vertex

)
intermediate
Vertex

# 3
,
3
= 1

#1
,
5
= 0.



Proof: Define the indicator function

Ij,i =

{
1, if node j is on the path to leaf i
0, otherwise.

Notice that

qj =
∑

i

piIj,i .

Hence
∑

j

qj =
∑

j

∑

i

piIj,i

=
∑

i

pi
∑

j

Ij,i

=
∑

i

pi li .
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EXAMPLE

The following example mirrors the proof.

q1

p1 q2

p2 q3

p3 p4

q1 = p1 + p2 + p3 + p4

q2 = + p2 + p3 + p4

q3 = + p3 + p4

q1 + q2 + q3 = p1 → 1 + p2 → 2 + p3 → 3 + p4 → 3
= p1 → l1 + p2 → l2 + p3 → l3 + p4 → l4
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The average codeword-length of a prefix-free code can be computed
efficiently using the Path-Length Lemma.

EXAMPLE

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

L(S, !) = 0.2 + 0.4 + 0.6 + 1 = 2.2.
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THEOREM (HUFFMAN’S CONSTRUCTION IS OPTIMAL)

If !H is a Huffman code (prefix-free by construction) and ! is another uniquely
decodable code for the same source S, then it is guaranteed that

L(S, !H) ↑ L(S, !).
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Proof: For simplicity, we consider only binary codes. Let L = maxi li . The
proof is based on the following three facts.

Fact 1: In the decoding tree of an optimal binary code, each intermediate
node has exactly two offsprings.

Examples:

p1

p2 p3

This is OK

p1 p2

This is OK

p1

p2

This is NOT OK

In particular, any leaf at depth L has a sibling.
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Fact 2: An optimal encoder assigns shorter codewords to higher-probability
letters.

Examples: Suppose that p5 ↑ p4 ↑ p3 ↑ p2 ↑ p1.

p1

p2 p3 p4 p5

This is OK

p4

p2 p3 p1 p5

This is NOT OK

This and Fact 1 imply that two of the least likely codewords have length L.
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Fact 3: Based on Fact 2, without loss of optimality, we may require that two
of the least-likely leaves be siblings at depth L.

Example: Suppose that p5 ↑ p4 ↑ p3 ↑ p2 ↑ p1.

p1

p4 p2 p3 p5

If this is optimal . . .

p1

p3 p2 p4 p5

. . . then this is also optimal
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Code Construction:

We seek an optimal (minimum average-length) code for the given
probabilities (in increasing order from left to right).

pM pM→1 pM→2

· · ·

p1

157 / 798



We do the first step as in the figure.

pM pM→1

q1 = pM + pM→1

pM→2

· · ·

p1

Suppose that we construct a code !̃ for q1, pM→2, . . . , p1.

In !̃, q1 is a leaf node.

By extending q1 as in the above figure, the code !̃ becomes a code ! for
pM , pM→1, pM→2, . . . , p1.

Fact 3 above guarantees the existence of a code !̃ such that ! is optimal.
The question is how to find !̃.
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Let L and L̃ be the average length of ! and !̃, respectively.

Except for q1, codes ! and !̃ have the same intermediate nodes.

pM pM→1

q1 = pM + pM→1

pM→2

· · ·

p1

By the path-length lemma, L = L̃ + q1.

Hence, L is as small as possible iff L̃ is as small as possible.

We are done if we find an optimal code !̃ for q1, pM→2, . . . , p1.

This is progress: we have reduced the size of the alphabet from M to M ↓ 1.
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Continuing the same way, after M ↓ 2 steps we are left with the problem of
constructing an optimal code for an alphabet of two letters.

An optimal code is to assign codeword 0 to one letter, and codeword 1 to the
other letter.

qj qi

qi + qj = 1

1 0

We have described Huffman’s code construction. No binary code ! has a
smaller average codeword-length.
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MAIN RESULT

The expected codeword length of any useful source code satisfies the
following bounds:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code ! for S must
satisfy

HD(S) →L(S, !)

and there exists a uniquely decodable code !SF satisfying

L(S, !SF ) < HD(S) + 1.
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KEY IDEA

↭ Pack multiple symbols into “supersymbols”!

↭ (S1,S2,S3, . . . ,Sn)

↭ Now, apply our Main Result to such supersymbols:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code ! for S must
satisfy

HD(S1,S2, . . . ,Sn) →L((S1,S2, . . . ,Sn), !)

and there exists a uniquely decodable code !SF satisfying

L((S1,S2, . . . ,Sn), !SF ) < HD(S1,S2, . . . ,Sn) + 1.

↭ Why is this clever?

↭ Let us study the entropy of the supersymbol HD(S1,S2, . . . ,Sn) next.
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RECALL: JOINT ENTROPY

Recall from the first week: The formula for the entropy of a random
variable S extends to any number of random variables. If X and Y are two
discrete random variables, with (joint) probability distribution pX ,Y then

HD(X ,Y ) = E[↑ logD pX ,Y (X ,Y )],

which means

HD(X ,Y ) = ↑

∑

(x,y)→X↑Y

pX ,Y (x , y) logD pX ,Y (x , y).
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RECALL: JOINT ENTROPY

Now suppose that X and Y are independent.

This means that pX ,Y (x , y) = pX (x)pY (y).

HD(X ,Y ) = ↑

∑

(x,y)→X↑Y

pX (x)pY (y) logD pX (x)pY (y)

= ↑

∑

(x,y)→X↑Y

pX (x)pY (y) logD pX (x) ↑

∑

(x,y)→X↑Y

pX (x)pY (y) logD pY (y)

= ↑

∑

x→X

pX (x) logD pX (x) ↑

∑

y→Y

pY (y) logD pY (y)

= HD(X ) + HD(Y ).
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MAIN RESULT

↭ Pack multiple symbols into “supersymbols”!

↭ Consider the case where Si are all independent and follow the same
distribution.

↭ Then, HD(S1,S2,S3, . . . ,Sn) = nHD(S).

THEOREM (TEXTBOOK THM 3.3)

Suppose that S1,S2, . . . ,Sn are independent and follow the same distribution.
The average codeword-length of a uniquely decodable code ! for
(S1,S2, . . . ,Sn) must satisfy

nHD(S) →L((S1,S2, . . . ,Sn), !)

and there exists a uniquely decodable code !SF satisfying

L((S1,S2, . . . ,Sn), !SF ) < nHD(S) + 1.
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MAIN RESULT

↭ Pack multiple symbols into “supersymbols”!

↭ Consider the case where Si are all independent and follow the same
distribution.

↭ Then, HD(S1,S2,S3, . . . ,Sn) = nHD(S).

THEOREM (TEXTBOOK THM 3.3)

Suppose that S1,S2, . . . ,Sn are independent and follow the same distribution.
The average codeword-length of a uniquely decodable code ! for
(S1,S2, . . . ,Sn) must satisfy

HD(S) →
L((S1,S2, . . . ,Sn), !)

n

and there exists a uniquely decodable code !SF satisfying

L((S1,S2, . . . ,Sn), !SF )
n

< HD(S) +
1
n
.
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GENERAL KRAFT INEQUALITY
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KRAFT SUM
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