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COMPUTER SCIENCE

AICC-I

↭ Computation

↭ Algorithms

↭ Discrete Structures
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COMPUTER SCIENCE

AICC-I

↭ Computation

↭ Algorithms

↭ Discrete Structures

But to have interesting
computations, we need data!
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COMPUTER SCIENCE

AICC-I

↭ Computation

↭ Algorithms

↭ Discrete Structures

From The Opte Project

6 / 798



COMPUTER SCIENCE

AICC-I

↭ Computation

↭ Algorithms

↭ Discrete Structures

AICC-II

↭ Communication

↭ Information and Data Science

↭ Cryptography, Secrecy,
Privacy
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IN THIS COURSE: THREE MAIN TOPICS

↭ Source Coding: It is about compressing information.

↭ Cryptography: It is about protecting the information
against undesirable human activities: how to provide
message integrity and confidentiality.

↭ Channel Coding: It is about protecting the information
from natural damages.

All three pertain to information storage/communication.

8 / 798



WE STUDY: SOURCE CODING, CRYPTOGRAPHY, CHANNEL CODING

Why these topics?

↭ important building blocks of communication systems

↭ non-evident topics and the results are often surprising

↭ intimately related to fundamental concepts (probability theory, linear
algebra, number theory)

↭ have a common root: the notion of entropy

↭ require/promote rigorous thinking
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Digital Communication: The "Big Picture"
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COMMUNICATION OVER THE INTERNET

Process 1 Process 2

Application Application(HTTP, SMTP, . . . )
(compression, encryption)

Transport Transport(TCP/UDP, . . . )
(channel coding)

Network Network(routing)

Link Link(channel coding)

Physical Physical

Physical Medium
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POINT-TO-POINT COMMUNICATION SYSTEM

fast, private, and reliable bit-pipe

private and reliable bit-pipe

reliable bit-pipe

source coding 
(compression)

source decoding 
(expansion)

encryption decryption

channel coding channel decoding

Transmitter Side Receiver Side

source sink

physical channel
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FIRST TOPIC: SOURCE CODING

We will rely on discrete probability theory and on the work of various
people including:

Shannon Fano Huffman
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SECOND TOPIC: CRYPTOGRAPHY

We will rely on number theory

Euler Fermat

as well as on group theory and on the work of various people including:

Shannon Clifford Cocks Rivest, Shamir, Adleman
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THIRD TOPIC: CHANNEL CODING

We will rely on finite fields

Galois

as well as on linear algebra and on the work of various people including:

Shannon Reed Solomon
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Course Organization

16 / 798



OUTLINE

INTRODUCTION AND ORGANIZATION

Introduction

Course Organization

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

CHANNEL CODING

17 / 798



TEACHING CREW

↭ Professor:
Michael Gastpar

↭ Senior Teaching Assistants:
Adrien Vandenbroucque, Millen Kanabar, Yunzhen Yao

↭ Student TAs:

Roxanne Chevalley Ait Lalim Adrien Mehdi Zoghlami
Michaël Brasey Yuki Crivelli Valerio de Santis
Théo Hollender Gersende Kerjan Simon Lefort
Mattia Metzler Emmanuel Omont Laura Paraboschi

Anthony Tamberg
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SCHEDULE

↭ Tuesdays 15:15 - 17:00
Lecture
RLC E1 240

↭ Wednesdays 13:15 - 15:00
Lecture
RLC E1 240

↭ Wednesdays 15:15 - 17:00
Exercises
Various rooms, see Moodle
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GRADING FORMULA

↭ 90% Final exam during exam period.
Note: No documents or electronic devices allowed during the exam.

↭ 10% Quizzes (on-line on Moodle).
↭ There will be 6 Quizzes. Only the best 5 count.
↭ The Quiz questions are very similar to the final exam questions in style and

difficulty.
↭ On the Quizzes, you can update your answer as many times as you want

before the deadline.
↭ However, once the deadline is passed, you can no longer change your

answers.

↭ There is also a weekly homework set:
↭ The Quizzes are highly correlated with the homework.
↭ If you did not do the homework, you should not expect to be able to do

the Quizzes!
↭ We do not grade the homework.

20 / 798



HOW TO BE EFFICIENT AND DO WELL IN THIS COURSE

Before class (stay ahead):

↭ browse through the slides to know what to expect

↭ review the background material as needed

After class:

↭ read the notes: they are the reference

↭ do the review questions

Before the exercise session:

↭ are you up-to-date with the theory?

↭ solve what you can ahead of time and finish during the exercise session

↭ write down YOUR own solution
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COURSE WEB SITE

↭ moodle.epfl.ch > Informatique (IN) > Bachelor > COM-102 Advanced
information, computation, communication II
(Password protected if not registered to AICC-II)

↭ There you’ll find:
↭ Lecture slides

↭ Link to videos

↭ Homework assignments

↭ Solutions

↭ Quizzes

↭ Forums (news and questions/answers)
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Review of Discrete Probability:
(Book Chapter 0)
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INITIAL CASE: FINITE ! WITH EQUALLY LIKELY OUTCOMES

Sample space !: set of all possible outcomes.

! = {ω1, . . . ,ωn}

!

Event E: subset of !. Since the outcomes are equally likely,

p(E) =
|E |

|!|
.

E

p(E) = 6
24

!
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EXAMPLE : TOSSING A FAIR COIN.

n = 9H
,
+ 3

p(H) = "2

p(T) = "2



EXAMPLE : ROLL A FAIR DIE.

#= 30 ,:

P(w) = Y ,

Vweal



CONDITIONAL PROBABILITY

The conditional probability p(E |F ) is the probability that E occurs, given
that F has occurred (hence assuming that |F | →= ↑):

p(E |F ) =
|E ↓ F |

|F |
.

E

F p(E |F ) = 3
10

!

We may think of F as a new sample space.
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TOSS TWO FAIR COINS

· ONE COMES UP HEADS .

· WHAT IS tHE PROBABILITY
THAT THE OTHER COIN IS ALSO HEADS?

= 3 HH, HT, TH, TT ?
F = &HH

, HT,TH3
E = EHH3



EXAMPLE : ROLL TWO FAIR DICE :

& & - ·H= 3 :
1 ..............

-

-., in



INDEPENDENT EVENTS

Events E and F are called independent if p(E |F ) = p(E).

!

F

E

p(E |F ) = 1
3 = p(E)

E and F are independent

!

F
E

p(E |F ) = 1
2 →= p(E) = 1

3

E and F are NOT independent
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GENERAL CASE: FINITE !, ARBITRARY p(ω)

Sample space !: set of all possible outcomes.

! = {ω1, . . . ,ωn}
!

Probability distribution (probability mass function) p:
A function p : ! ↑ [0, 1] such that

∑

ω→!

p(ω) = 1.
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EXAMPLE : TOSSING A BlASED COIN.

2 = 5H,+ 3

p(t)
= 2

p(T) =



Event E: a subset of !.

E
!

The domain of the probability mass function p is extended to the power set of
!:

p(E) =
∑

ω→E

p(ω).

30 / 798



CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS

The general form for the conditional probability is

p(E |F ) =
p(E → F )

p(F )

for F such that p(F ) ↑= 0.

!

F
E

Independent Events. Exactly as before, events E and F are called
independent if p(E |F ) = p(E). Equivalently, E and F are independent if
p(E → F ) = p(E)p(F ).
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Disjoint Events:

If E1 and E2 are disjoint events then

p(E1 ↓ E2) = p(E1) + p(E2).

E1

E2

!
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Law of Total Probability:

For any F ↔ ! and its complement F c ,

E

F F c

!

p(E) = p(E |F )p(F ) + p(E |F c)p(F c).

More generally, if ! is the union of disjoint events F1,F2, . . . ,Fn,

p(E) = p(E |F1)p(F1) + p(E |F2)p(F2) + · · · + p(E |Fn)p(Fn).

(Divide and conquer.)
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Proof: We prove the law of total probability for ! = F ↓ F c . (The general
case follows straightforwardly.)

E

F F c

!

p(E) = p(( E → F ) ↓ (E → F c)
︸ ︷︷ ︸

union of disjoint sets

)

= p(E → F ) + p(E → F c)

=
p(E → F )

p(F )
p(F ) +

p(E → F c)
p(F c)

p(F c)

= p(E |F )p(F ) + p(E |F c)p(F c).
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EXERCISE

Example of Total Probability: Two factories supply light bulbs.

↭ Factory F1’s bulbs work for over 5000 hours in 99% of cases;

↭ Factory F2’s bulbs work for over 5000 hours in 95% of cases.

↭ It is known that factory F1 supplies 60% of the total bulbs.

What is the chance that a bulb chosen at random works for longer than 5000
hours?
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SOLUTION

Answer:
! is the space of all bulbs.
(Optional: to picture the partitioning of ! into subsets, you may want to
imagine each bulb being labeled by the factory’s name and the number of
hours that it works.)
Let E ↔ ! be the set that consists of all bulbs that work for longer than 5000
hours and let Fi ↔ ! be the set of bulbs from factory i = 1, 2.

↭ p(E |F1) = .99

↭ p(E |F2) = .95

↭ p(F1) = .6

p(E) = p(E |F1)p(F1) + p(E |F2)p(F2) =
99

100
↗

6
10

+
95
100

↗
4
10

=
974

1000
.
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Sometimes we are given p(E), p(F ) and p(E |F ), and we need p(F |E).

In this case we use Bayes’ Rule:

p(F |E) =
p(E |F )p(F )

p(E)
.

Proof: We use the definition of conditional probability to write p(E → F ) two
ways and solve for p(F |E):

p(F |E)p(E) = p(E → F ) = p(E |F )p(F ).
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Example:

Let ! be a population of drivers (e.g. of Switzerland, on New Year’s eve).

Let A be the event that a driver has an accident.

Let D be the event that a driver is drunk.

From observations, the police knows p(A), p(D) as well as p(D|A).

p(A|D) cannot be easily obtained from observations. Yet, knowing it might
discourage a drunk person to drive.

38 / 798



Let us be concrete (numbers are made up):

p(A) = 10↑6,

p(D) = 0.1,

p(D|A) = 0.8.

Now

p(A|D) =
p(D|A)p(A)

p(D)
=

0.8 ↗ 10↑6

0.1
= 8 ↗ 10↑6.

We can also compute

p(A|Dc) =
p(Dc

|A)p(A)
p(Dc)

=
(1 ↘ 0.8) ↗ 10↑6

(1 ↘ 0.1)
=

2
9

↗ 10↑6.

Notice that, in this case, p(A|D)
p(A|Dc ) = 36.
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Random Variable X : A function X : ! ≃ R.

R

ω2

ω12

ω21 X(ω21) X(ω2)

X(ω12)

!
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EX : d = 5 H
,
T3

x(w) = 3 ,
w = H

, w
= T

T(m) = 96



Probability distribution pX : pX (x) is the probability that X = x , i.e. the
probability of the event

E = {ω → ! : X (ω) = x}.

Hence,
pX (x) =

∑

ω→E

p(ω).

R

ω2

ω12

ω21 X(ω21) X(ω2)

X(ω12)

!
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EXAMPLE (LUCKY DICE)

You roll a dice.
If the outcome is 6, you receive 10 CHF. Otherwise, you pay 1 CHF.

! = {1, 2, 3, 4, 5, 6}

For each ω, p(ω) = 1/6.

Then, define:

X (ω) =





10, ω = 6

↑1, ω → {1, 2, 3, 4, 5}.

Hence, we have

pX (x) =






1
6 , x = 10
5
6 , x = ↑1.
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How about the probability that X → [a, b]?

R
G

a b

We can compute it two ways:

↭ using p:
∑

ω→G p(ω).

↭ using pX :
∑

x→[a,b] pX (x).
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EXERCISE (LISA ROLLS TWO DICE)

↭ Lisa rolls two dice and announces the sum L written as a two digit
number.

↭ The alphabet of L = L1L2 is {02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12}.
↭ The alphabet of L1 is {0, 1}.

↭ The alphabet of L2 is {0, 1, . . . , 9}.

↭ Determine pL.
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SOLUTION

! =
{

(i, j) : i, j → {1, . . . , 6}

}
.

L : ! ↓ R defined by L
(
(i , j)

)
= i + j written as a two-digit number.

L = 02 iff ω = (1, 1), which has probability 1
36 .

L = 03 iff ω → {(1, 2)} ↔ {(2, 1)}. The events {(2, 1)} and {(1, 2)} are
disjoint, with probability 1

36 each. Hence L = 03 with probability 2
36 .

Etc.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Two RANDOM VARIABLES

whiX(m)⑤

& ⑧⑭ >

Y(w)
>



Two Random Variables:

Let X : ! → R and Y : ! → R be two random variables.

The probability of the event E(x,y) = {ω ↑ ! : X (ω) = x and Y (ω) = y} is

pX ,Y (x , y) =
∑

ω→E(x,y)

p(ω).

We can compute pX from pX ,Y :

pX (x) =
∑

y

pX ,Y (x , y).

pX is called marginal distribution (of pX ,Y (x , y) with respect to x).

pY can be computed similarly.
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Two RANDOM VARIABLES

SNOW IN S ZERMATT X 50
, 13

NEN DAZ Y 50. 13

Y
X

O 1

I0 0. 4 0
.
2=P(Y=0)

10
.
3 0

.
1 - 0

.4 = p(t=1)
-↓ ↓
p(x) =0.70. 3)



EXERCISE

Determine the probability pL1 , knowing pL, where L = L1L2.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

L1 0 1
pL1
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SOLUTION

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We marginalize:

pL1(1) =
∑

x

pL1,L2(1, x) =
3
36

+
2

36
+

1
36

=
6

36
=

1
6
.

Hence

L1 0 1
pL1

5
6

1
6
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The Expected Value E[X ] of a random variable X : ! → R is

E[X ] =
∑

ω

X (ω)p(ω)

=
∑

x

xpX (x).

To see that these two expressions are indeed equal, we reorganize the sum:
∑

ω

X (ω)p(ω) =
∑

x

∑

ω:X(ω)=x

X (ω)p(ω) =
∑

x

x
∑

ω:X(ω)=x

p(ω) =
∑

x

xpX (x).
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EXERCISE LUCKY DICE

You roll a dice.
If the outcome is 6, you receive 10 CHF. Otherwise, you pay 1 CHF.
What is your expected gain or loss?

SOLUTION

Recall: ! = {1, 2, 3, 4, 5, 6} and for each ω, p(ω) = 1/6.

X (ω) =





10, ω = 6,

↑1, ω ↓ {1, 2, 3, 4, 5}.

Then,

E[X ] =
∑

ω

X (ω)p(ω) =
1
6

(↑1) +
1
6

(↑1) +
1
6

(↑1) +
1
6

(↑1) +
1
6

(↑1) +
1
6

· 10

=
∑

x

xpX (x) =
5
6

(↑1) +
1
6

· 10
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Expectation is a linear operation in the following sense:

Let X1, X2, . . . , Xn be random variables and ε1, ε2, . . . , εn be scalars. Then

E
[ n∑

i=1

Xiεi

]
=

n∑

i=1

εiE[Xi ].

(See e.g. Rosen.)
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Recall that two events E and F are independent iff

p(E |F ) = p(E)

or, equivalently, iff
p(E ↔ F ) = p(E)p(F ).
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Two random variables X and Y are independent iff, for all realizations x and
y ,

p({X = x} ↔ {Y = y}) = p({X = x})p({Y = y}),

or, more concisely, iff
pX ,Y (x , y) = pX (x)pY (y).

Generalization to n random variables is straightforward: X1,. . . , Xn are
independent iff

pX1,...,Xn (x1, . . . , xn) =
n∏

i=1

pXi (xi).
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The conditional distribution of Y given X is the function pY |X defined by

pY |X (y |x) =
pX ,Y (x , y)

pX (x)
.

It is defined for all x such that pX (x) ↗= 0.
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The following statements are equivalent to the statement that X and Y are
independent random variables:

↭ pX ,Y = pX pY ;

↭ pY |X (y |x) = pY (y) (for all x for which it is defined and for all y );

↭ pY |X (y |x) is not a function of x ;

↭ pX |Y (x |y) = pX (x) (for all y for which it is defined and for all x);

↭ pX |Y (x |y) is not a function of y .
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EXERCISE

Let L be the random variable modeling Lisa’s experiment.

Let L1 and L2 be the first and the second digit of L, respectively.

Are L1 and L2 independent ?

Hint: Compute pL(13).
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SOLUTION

pL1(1) =
1
6

(found earlier)

pL2(3) =
2

36
(see table below)

pL(13) = 0 ↗= pL1(1)pL2(3)

Hence L1 and L2 are NOT independent.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

L1 0 1
pL1

5
6

1
6

L2 0 1 2 3 4 5 6 7 8 9
pL2

3
36

2
36

2
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36
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The expected value of a product is NOT always the product of the expected
values.

Example: X = Y ↓ {↑1, 1}, uniformly distributed.

E[XY ] = 1

E[X ]E[Y ] = 0

However, if X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ].

(See e.g. Rosen.)
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SUMMARY — PROBABILITY REVIEW

↭ Random variable
↭ Probability distribution

↭ Joint distribution of multiple random variables.
↭ Marginal distribution.
↭ Conditional distribution.

↭ Independence
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Sources and Entropy
(Book Chapter 1)
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LOGARITHM

IF b4 = y THEN X = log , Y
(2) log , (1)

= 0

(2) togp (xy) = logp(x) + loy
, (y)

(3) tog y (t) = - logp(x)

(4) togp (x) = log , (a) log(x)



How do we communicate in the digital world?

We communicate by revealing the value of a sequence of variables that we
call (information) symbols.

The i-th symbol might represent

↭ the intensity of the i th pixel of a black/white digital photo

↭ your score in your i th exam

↭ the i th bit of a binary file

↭ the i th letter of a text

↭ etc.
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In an article that appeared in 1928, Hartley (Bell Labs) wrote: A symbol
provides information only if there had been other possibilities for its value,
besides that which was revealed.

In modern language, Hartley was saying that the value of a symbol provides
information only if the symbol is a (non-constant) random variable.
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WEATHER

W- > 3 sun , rain , fog , snow, hail 3
> INFORMATION IS



WEATHER

W- > 3 sun , rain , fog , snow, hail 3
> INFORMATION IS

(Noory ,Wororow) & Cur
,sual,

(sur
,
rain)...

> INFORMATION IS



In the same article, Hartley gave a tentative answer to the following related
question: How much information is carried by a symbol such as S?

Hartley’s answer:

↭ Suppose that S → A is a symbol that can take on |A| different values.

↭ The amount of information conveyed by n such symbols should be n
times the information conveyed by one symbol.

↭ There are |A|
n possible values for the n symbols.

↭ This suggests that log |A|
n = n log |A| is the appropriate measure for

information, where we are free to choose the base for the logarithm.

64 / 798



EXAMPLE

In a village that has 8 telephones, we can assign a different three-digit binary
number, such as 001, to each phone.

Hence it takes 3 bits of information to identify a phone. Mathematically, the
phones are represented by a uniformly distributed random variable
S → A = {1, 2, . . . , 8}.
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EXAMPLE

The world population in 2024 is estimated to be 8.1 billion.

Hence it takes log2(8.1 ↑ 109) = 32.9 bits of information to identify a person.
A person is represented by a uniformly distributed random variable
S → A = {1, 2, . . . , 8.1 ↑ 109

}.

The world population in 1970 is estimated to have been 3.7 billion. How
many bits did it take back then?
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The following example shows that something is not right with Hartley’s
measure of information.

EXAMPLE

Suppose that Sn → {sunny, rainy} is the weather prognosis for day n + 1,
revealed on day n. Suppose that Sn = rainy has probability 5

365 .

It seems intuitively obvious that the amount of information provided by
Sn = rainy is much higher than that provided by Sn = sunny.

Hartley’s measure assigns log2(2) = 1 bit of information to both, Sn = sunny
and Sn = rainy.
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In an article that appeared in 1948, Shannon fixes the problem by defining
the notion of uncertainty or entropy H(S) associated to a discrete random
variable S.

DEFINITION (ENTROPY, UNCERTAINTY)

Hb(S) := ↓

∑

s→supp(pS)

pS(s) logb pS(s),

where supp(pS) =
{

s : pS(s) > 0
}
.

68 / 798



A few comments are in order regarding

Hb(S) := ↓

∑

s→supp(pS)

pS(s) logb pS(s) :

↭ The condition s → supp(p) is needed because logb pS(s) is not defined if
pS(s) = 0.

↭ To simplify the notation, we declare that pS(s) log pS(s) = 0 when
pS(s) = 0. This convention allows us to simplify the notation to

Hb(S) = ↓

∑

s→A

pS(s) logb pS(s).

↭ The choice of the base b determines the unit. Typically b = 2. In this
case, the unit is the bit.
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We can think of evaluating

H(S) = ↓

∑

s→A

pS(s) log pS(s)

by first computing ↓ log pS(s) for each s → A, and then take the average
(excluding zero-probability terms).

Hence we can write
H(S) = E[↓ log pS(S)].
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EXAMPLE

When pS is the uniform distribution over the alphabet A, pS(s) = 1
|A| and

↓ log pS(s) = log |A|, which is constant.

In this case
H(S) = E[log |A|] = log |A|,

which is Hartley’s information measure.

Hence Shannon’s entropy equals Hartley’s measure of information if (and
only if as we will see) the random variable has uniform distribution.

We will see that Shannon’s entropy it is indeed the answer to very practical
engineering questions.
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EXAMPLE (ANNE’S LOCK)

A sequence of 4 decimal digits s1, s2, s3, s4 representing
the number to open Anne’s lock can be seen as the output
of a source S1,S2,S3,S4 with Si → A = {0, 1, . . . , 9}.

If Anne picks each of the 4 digits at random and independently, then all 4-digit
sequences are equiprobable, i.e.,

pS1,S2,S3,S4(s1, s2, s3, s4) =
1

104 for all 4-digit numbers s1s2s3s4.

Notation: When no confusion can arise, we write p(s1, s2, s3, s4) instead of
pS1,S2,S3,S4(s1, s2, s3, s4).
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EXAMPLE (ANNE’S LOCK, ALTERNATIVE VIEW)

We can also take the view that Anne’s lock number is
modeled by a single random variable

S → A = {0000, 0001, . . . , 9998, 9999}

p(s) =
1

104 for all 4-digit numbers.

Since the distribution is uniform over the alphabet A,

H(S) = log2 |A| = log2 104
↔ 13.3 bits.
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EXAMPLE (ENTROPY OF FRENCH)

A monkey produces text by selecting letters at random from a
French text

H = 3.9425 bits.

As we will see shortly, the maximum entropy of a source with
|A| = 26 is log2 26 = 4.7004 bits.

Letter Prob.
A 0.0811
B 0.0081
C 0.0338
D 0.0428
E 0.1769
F 0.0113
G 0.0119
H 0.0074
I 0.0724
J 0.0018
K 0.0002
L 0.0599
M 0.0229
N 0.0768
O 0.0520
P 0.0292
Q 0.0083
R 0.0643
S 0.0887
T 0.0744
U 0.0523
V 0.0128
W 0.0006
X 0.0053
Y 0.0026
Z 0.0012
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BINARY ENTROPY FUNCTION

An interesting special case is when |A| = 2.

In this case, pS has only two possible values, say p and (1 ↓ p).

The corresponding entropy is H(S) = h(p) where

h(p) := ↓p log2 p ↓ (1 ↓ p) log2(1 ↓ p).

h(p) is called the binary entropy function.

↭ For p = 0 and for p = 1, h(p) = 0.

↭ For p = 1
2 , h(p) = 1.

↭ For p → {0.0001, 0.9999}, H(S) ↔ 0.001.

p
0 1

2
1

h(p)

1
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EXAMPLE

Let Sn be the above weather forecast.

The probabilities of Sn are p = 5
365 and (1 ↓ p) = 360

365 .

H2(Sn) = h
( 5

365

)
= ↓

5
365

log2
5

365
↓

360
365

log2
360
365

↔ 0.072 bits.
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EXAMPLE

Let S be the answer to the question "Is 8950 Anne’s lock number ?".

Now S → A = {YES,NO} is a binary random variable with pS(YES) = 1
104 .

Hence H(S) = h
( 1

104

)
↔ 0.001 bits.

p
0 1

2
1

h(p)

1
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INFORMATION-THEORY INEQUALITY

Surprisingly many results in information theory are a direct consequence of
the following key inequality.

LEMMA (IT-INEQUALITY)

For a positive real number r ,

logb r ↗ (r ↓ 1) logb(e),

with equality iff (if and only if) r = 1.
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Proof [IT-Inequality]: Because logb(r) = ln(r) logb(e), it suffices to show that

ln r ↗ (r ↓ 1),

with equality iff r = 1.

The inequality is true (see graph below) because:

↭ the functions ln r and r ↓ 1 coincide at r = 1,

↭ the function r ↓ 1 has slope 1 throughout,

↭ d
dr ln(r) = 1

r < 1 for r > 1,

↭ d
dr ln(r) = 1

r > 1 for r < 1.

r

r ↓ 1

ln(r)

1
↓1
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THEOREM (ENTROPY BOUNDS)

The entropy of a discrete random variable S → A satisfies

0 ↗ Hb(S) ↗ logb |A|,

with equality on the left iff pS(s) = 1 for some s, and with equality on the right
iff pS(s) = 1

|A| for all s.
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Proof of the left inequality:

Recall that
H(S) =

∑

s→A

↓pS(s) log pS(s),

and observe that

↓pS(s) log pS(s) =





0 if pS(s) → {0, 1}

> 0 if 0 < pS(s) < 1.

Thus, H(S) ↘ 0, with equality iff pS(s) → {0, 1} for all s → A.

pS(s) → {0, 1} for all s → A iff pS(s) = 1 for some s.
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To prove the right inequality, we use a trick that often works in inequalities
involving entropies:

To prove, say, A ↗ B, we prove A ↓ B ↗ 0 by means of the IT-Inequality.
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THM : H
,
( .5) - tog , IAI

PROOF :

H
,
(5)- log , IA)⑳
= - [p()(y , p() - log , IAI
= - [p(s)(yyp(s) - 5, p(s)lgg/A)
=
- [pG)[(opp() +(p(t)]
=
- 2

, 44)(oyy(p(s)(A))



= p(s) lospital
=[p(s)(A) -1) logp(e)
=St-log()
[3

*
1 - 13(yp(e)

10 .



Proof of the right inequality:

H(S) → log |A| = E
[

→ log pS(S)
]

→ log |A|

= E
[

→ log pS(S) → log |A|

]

= E
[
log

1
pS(s)|A|

]

=
∑

s→A

pS(s)

[
log

1
pS(s)|A|

]

(IT-Inequality)
↑

∑

s→A

pS(s)

[
1

pS(s)|A|
→ 1

]
log(e)

= log(e)
∑

s→A

[
1

|A|
→ pS(s)

]

= log(e) (1 → 1) = 0,

with equality iff pS(s)|A| = 1 for all s.
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EXAMPLE

Let S be Anne’s lock number. Its entropy is maximized if Anne chooses at
random over all 104 possibilities.

In this case, and only in this case,

H(S) = log |A| = log 104
↓ 13.3 bits.
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EXAMPLE

Let S be Anne’s grandmother’s lock number. She always picks S = 0000.
Then

H(S) = 0
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The formula for the entropy of a random variable S extends to any number of
random variables. If X and Y are two discrete random variables, with (joint)
probability distribution pX ,Y then

H(X ,Y ) = E[→ log pX ,Y (X ,Y )],

which means

H(X ,Y ) = →

∑

(x,y)→X↑Y

pX ,Y (x , y) log pX ,Y (x , y).
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EXAMPLE

Let pX ,Y be given by the following table

x y pXY (x , y)

0 0 1/8
0 1 3/8
1 0 1/4
1 1 1/4

H(X ,Y ) = →
1
8 log2

1
8 →

3
8 log2

3
8 →

1
4 log2

1
4 →

1
4 log2

1
4 .
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We are mainly interested is sources that emit a large number of random
variables. (We want to compress large amounts of data.)

The sequence of random variables can be

↭ finite, like in (S1, . . . ,Sn) (random vector)

↭ infinite, like in S1,S2, . . . (random sequence, random process), also
denoted by {Si}

↓
i=1.

↭ sometimes it is convenient to consider . . . ,S↔1,S0,S1, . . . , also denoted
by {Si}.

A collection of random variables (S1, . . . ,Sn) is specified by the joint
probability distribution pS1,...,Sn . This is all we need to compute the entropy
H(S1, . . . ,Sn).
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EXAMPLE (COIN-FLIP SOURCE)

A sequence of coin flips can be seen as the output of a source
S1,S2, . . . ,Sn with Si ↔ A = {H,T}, where H stands for head,
and T for tail, i = 1, . . . , n.

If the coin is fair, all sequences are equally likely:

p(s1, s2, . . . , sn) =
∏

i

p(si) =
1
2n for all (s1, s2, . . . , sn) ↔ A

n

Notation: A
n = A ↗ A ↗ · · · ↗ A︸ ︷︷ ︸

n times

is the n-fold cartesian product of A.
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The following statement is a corollary to two fundamental results that we will
prove next week.

THEOREM (1.4 OF TEXTBOOK)

Let S1, . . . ,Sn be discrete random variables. Then

H(S1,S2, . . . ,Sn) ↑ H(S1) + H(S2) + · · · + H(Sn),

with equality iff S1, . . . ,Sn are independent.
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EXAMPLE

Let S1 and S2 be the random variables associated to Bart’s two dice rolls.

H(S1) = H(S2) = log 6 (the two distributions are uniform)

H(S1,S2) = log 36 (the distribution of (S1,S2) is uniform)

We verify that

H(S1,S2) = log 36 = log 62 = 2 log 6 = H(S1) + H(S2).
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EXAMPLE (ENTROPIES IN LISA’S EXPERIMENT)

↭ H(L1) = 0.65 bits

↭ H(L2) = 3.22 bits

↭ H(L1, L2) = 3.27 bits

H(L1, L2) < H(L1) + H(L2). Hence L1 and L2 are not independent.
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We will see that entropy is fundamental in all three topics:

↭ Source coding: To derive the limit to how much a source can be
compressed.

↭ Cryptography: To derive the length of the shortest key for which perfect
secrecy is possible.

↭ Channel coding: To derive the highest rate at which we can
communicate reliably across an unreliable communication channel.

Stay tuned!
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all have the same hat.



EX .
"

HAT PARTY 1950
"

· i men
,
all have the same hat.

· they throw hats in a corner.

· leaving , they randomly take a hat.
PROBLEM :

[ Number of men who leave
with their own hat]
= T



Let

Ri =



Let

R=
1
, it man i

leaves with
his own hut.

O
,
otherwise.

IE[Re + Ry + .. + Ru]

= IE(R1] + IE(R27 +.. + lE[Rn]
= h + h + .. + t=


