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Today we learn about Reed Solomon Codes (Irving Reed and Gustave
Solomon, 1960).

Why do we care?

I They are powerful (MDS)

I They are linear

I They let us choose various parameters (arbitrary Fq and 0 < k < n  q)

I They have a nice construction

I They have elegant and efficient decoding algorithms
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I They are used in many applications, namely:

I Storage devices: tape, CDs, DVDs, bar codes, QR codes, . . .

I Digital radio/television broadcast

I High-speed modems: ADSL, xDSL, . . .

I Deep space exploration modems (including Voyager 2, 1977, Jupiter,
Saturn, Neptune)

I Wireless mobile comm., including cellular phones and microwave links
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POLYNOMIALS OVER FINITE FIELDS

Not surprisingly, the notion of polynomial extends to finite fields.

I Let ~u = (u1, . . . , uk ) 2 Fk for some finite field F.

I We associate to ~u the polynomial

P~u(x) = u1 + u2x + · · · + uk xk�1.

I P~u(x) can be evaluated at any x 2 F.

I The degree of a polynomial is the highest exponent i for which xi has a
non-zero coefficient.

I By convention, the zero polynomial has degree �1.
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EXAMPLE

I F = F5;

I P(x) = 2 + 4x + 3x2 is a polynomial of degree 2 over F5;

I P(x) = P~u(x) for ~u = (2, 4, 3) 2 F3
5;

I a polynomial P(x) over a field F can be evaluated at any x 2 F:
P~u(2) = 2 + 4 · 2 + 3 · 22 = 2 + 3 + 2 = 2.
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EXAMPLE

I P(x) = 3x has degree 1.

I P(x) = 3 has degree 0.

I P(x) = 0 has degree �1.
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INTERPOLATION VIA POLYNOMIALS

Problem: given a field F and k pairs (ai , yi) 2 F2, where the ai are all distinct,
is there a polynomial P(x) over F of degree at most k � 1 (hence described
by at most k coefficients) such that

P(ai) = yi , i = 1, . . . , k?

The answer is yes, obtained via Lagrange’s interpolation polynomials.
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LAGRANGE’S INTERPOLATION POLYNOMIALS

To simplify notation, we demonstrate how it works by means of examples.

EXAMPLE

I Fix a field F and distinct field elements a1, a2, a3 as well as y1, y2, y3 (not
necessarily distinct).

I We seek a polynomial P(x) of degree at most 2 and coefficients in F
such that P(ai) = yi .

I Suppose we can find a polynomial Q1(x) of degree at most 2, such that

Q1(x) =

8
<

:
1, x = a1

0, x = ai 6= a1
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EXAMPLE (CONT.)

I Suppose that Q2(x) behaves similarly for a2 and Q3(x) for a3.

I The desired polynomial is then P(x) = y1Q1(x) + y2Q2(x) + y3Q3(x).

I Back to the construction of Q1(x).

I (x � a2)(x � a3) is 0 at all the ai except at a1 where it is
(a1 � a2)(a1 � a3).

I Hence (x�a2)(x�a3)
(a1�a2)(a1�a3)

is the desired Q1(x).

I We construct Q2(x) and Q3(x) similarly.
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EXAMPLE (CONCRETE CASE)

Over F5, find the polynomial P(x) of degree not exceeding 2, for which
P(ai) = yi for

i (ai , yi)

1 (2, 3)

2 (1, 0)

3 (0, 4)
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SOLUTION

We find the Lagrange interpolation polynomials Q1(x) and Q3(x) and then
form P(x) = y1Q1(x) + y3Q3(x). (Notice that Q2(x) is not needed because
y2 = 0.)

Q1(x) = (x�1)(x�0)
(2�1)(2�0) = (x�1)x

2 = 3(x � 1)x ;

Q3(x) = (x�2)(x�1)
(0�2)(0�1) = (x�2)(x�1)

2 = 3(x � 2)(x � 1);

Finally

P(x) = 3(3(x � 1)x) + 4(3(x � 2)(x � 1))

= 4x2
� 4x + 2x2

� 6x + 4

= x2 + 4.
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CONCLUSION

It should be obvious from the above example that we can proceed similarly
for any field F, for any positive integer k , and for any given set of k points with
components in F.
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ROOTS OF POLYNOMIALS

Let P(x) be a polynomial over a field F. The roots of P(x) are those b 2 F for
which P(b) = 0.

THEOREM (FUNDAMENTAL THM. OF ALGEBRA, TEXTBOOK THM 14.1)

Let P(x) be a polynomial of degree at most k � 1 over a field. If P(x) 6= 0
then the number of its distinct2 roots is at most k � 1.

2The theorem holds even for non-distinct roots if we account for their multiplicities. The stated
version, which has an easier proof, is what we need.
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EXAMPLE

Let the field be R and P(x) = ax + b, a 6= 0. This polynomial has 1 root.

x

P(x)
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax2 + bx + c, a 6= 0.

This polynomial has 0, 1, or 2 roots.

x
b2

� 4ac < 0

P(x)

x
b2

� 4ac = 0

P(x)

x
b2

� 4ac > 0

P(x)

Recall: The roots of P(x) in C are �b±
p

b2�4ac
2a .
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax3 + bx2 + cx + d , a 6= 0. This polynomial has
1, 2, or 3 roots.

x

P(x)

x

P(x)

x

P(x)
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EXAMPLE

P(x) = x2 + x + 1 has no roots in F5.

x P(x)

0 1
1 3
2 2
3 3
4 1
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EXAMPLE

P(x) = x2
� 3x + 2 has 2 roots in F5.

x P(x)

0 2
1 0
2 0
3 2
4 1
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PROOF (FUNDAMENTAL THM OF ALGEBRA)

LET p(X) HAVE degree [ k-1.

CLAIM : IF p(X) HAS R (OR MOREY
ROOTS

, THEN p(x) =O XX
("p(x) IS THE ALL-ZERO POLYNOMIAL)

PROOF :

SPECIFY & POINTS :

~, 4) (an , ye) ... Cab , 32)



VIA LAGRANGE
,

WE GET A POLYNOMIAL
Of DEGREE I K-1 :

Pi(X) = 11 + 42x + uyx
*
+.. + u
,
xk-1

S

Ex,NOW CONSIDER THE MAPPING : ar=9k)
Plan)

4: (Y& - ( Pz(ax) (Y
↑

Up Pi(ak)
THIS MAPPING IS A BISECTION !



polynomial ak values at (9 ...,ap)
10, 0, ..., 0 > (0, 0, 0 , --0

-
(0

,
0
,
0
... 1)

: ↓ :

-->

we have
we have

1IF1
* homes 11Fl holes



Proof: Fundamental Theorem of Algebra

Let P(x) be a polynomial of degree at most k  1. We prove that if it has
more than k  1 distinct roots, then it is the zero polynomial (contraposition).

Let a1, . . . , ak 2 F be k distinct numbers, and consider the map

~ : Fk
� Fk ,  u 1�

8
P~u(a1), . . . ,P~u(ak )

<
.

By Lagrange, for every y1, . . . , yk 2 F, there exists at least one  u 2 Fk , such
that P~u(ai) = yi , i = 1, . . . , k . Hence the above map is surjective (onto).

Because the domain of ~ and its co-domain have the same cardinality, by the
pigeonhole principle, ~ is bijective.

Hence there is a single  u 2 Fk for which a1, . . . , ak are roots of P~u : it is
 u =  0.
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REED-SOLOMON CONSTRUCTION

1) CHOOSE A FINITE FIELDFg .

2) CHOOSE 1 AND b S .t.

0 < k = n = 9
3) CHOOSE N DISTINCT ELEMENTS

4),
9

i =(Pala , Pi(az), ..., Palan)
NOTE : degree (Py(*) <K-1.



REED SOLOMON (RS) CODE CONSTRUCTION

I Choose a finite field F and integers k , n, such that 0 < k  n  q, where
q = card(F).

I Choose n distinct elements a1, . . . , an 2 F. They exist because n  q.

I The codewords are defined via the following map:

Fk
� Fn, ~u 1� ~c =

8
P~u(a1), . . . ,P~u(an)

<
.

I This is a block code of length n over F.
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EX = k= 2
,
n = 3

, q
= 3

- If3 py(X) Z

00 O 000

n = (n=4) OI

z
012

02 021

10 11/
Pi(x) = u,+UzY 1+ X 120

a =0
in I + 2x 1

,
0
,

2

az= 1
20 2 222

21 2+X 201
az =2 22 2+2x 2 g



EXAMPLE

I Let (k , n, q) = (2, 3, 3). They fulfill 0 < k  n  q.

I So we are in F3.

I Define (a1, a2, a3) = (0, 1, 2).

Write down all the codewords of the corresponding RS
code.

SOLUTION

We are looking for qk = 32 = 9 codewords of length
n = 3.

~u P~u(x) ~c

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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Ex: q = 5 (15)
> Select from n = (1) , 2, 3, 4 , 5

-

k = 08

n = i P= (x)

I
C

OI



Ex: q = 5 (15)
> Select from n = (1) , 2, 3, 4 , 5

2 =2
+
155

-
n = 3

08

P= (x)

I
C

Ex: &
03

a, = 1
,
az= 3
, az
=404
10
12 1 + 2x (3 ,2,4)
i

44



PROPERTY OF RS CODES

->

IF n 13 (i = (pu(a) , ...Pi(a))
->= 1 < (= = (p = (a) , .., P= (an)

THEV au +BE 1 < E+BE K,Bel
PROOF :

+B
- (Pate(a) , ..., Part (an)



Pan += (X)
= (u= +Bvz) + (xnz+Pv)X

+ (xnz +Bv)x
k-1

+ + (ank +-E)X
= ((uz+ 42x + n ,x2 + . + nxk

+

]
+&[+2x + V,x2+... + Vxk+]

= <Pa(X + RPE(x)



Pause(x) = <u ,+Br +(anz+Bm)X
+ ((u ,+Bv)x2

=() = + --

4+ _1
+(VR+Bv)x+

Hence
= xpy(x) +Bpz(X)

<u +R=(4pa(a) +pp = (a) , ... apeland+ppe)1



= x (palail , palan) ... - pilar)
-B(pE(a) , .. p = (au)

= + BE
T



KEY PROPERTIES OF RS CODES

1) THEY ARE LINEAR

2) THEIR DIMENSION IS INDEED k
,

k
I . E . THEY HAVE

9 CODEWORDS
.

3) THEY ARE MDS GDES :

dmin = n- k + 1 .



R S CODES ARE LINEAR

PROOF : IF , And =G
THEV a +B = C

(HOLDS FOR ALL CODEWORDS

If E, 5 THEN- := (Pala ,
-- Pilan)2 S THE 7 :2= (PE(a)-)

THEN CONSTRUCT THE CODEWORD FOR
tan+Bu = c = at + BE -



Proof: RS Codes are Linear

Let ~u, ~v be in Fk and   F. Notice that

P~↵u(x) =  u1 +  u2x + · · · +  uk xk�1 =  P↵u(x);

P↵u+↵v (x) = (u1 + v1) + (u2 + v2)x + · · · + (uk + vk )xk�1 = P↵u(x) + P↵v (x).

Hence
P~↵u+↵v (x) =  P↵u(x) + P↵v (x).

This proves that if

~u 2� ~x  C

~v 2� ~y  C

then  ~u + ~v 2�  ~x + ~y  C.

Hence the code is linear.
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RS CODES HAVE gG CODEWORDS

PROOF :
k

1) CLEARLY NO MORE THAN 9.
2) COULD I AND LEAD To

THESAME CODEWORDY
->

C=
- Pu(ai) = pr (ai)

for i = 1 , 2, .., n .



= Pila:) - poli) = 0

ufor i = 1 , 2, .., n

THIS IS A POLYNOMIAL
OF DEGREE I K-1.
IT HAS I ZEROS .

But n > k-1
HENCE

MUST BE ALL-ZERO

-> POLTNOMIAL.
=> n =v .



Proof: the design-parameter k is indeed the dimension of the RS-code

It suffices to prove that the encoding map is injective (one-to-one), implying
that there are [card(F)]k distinct codewords, hence that k is the dimension of
the code.

When proving the fundamental theorem of algebra, we showed that the map

~ : Fk
2 Fk

 u �2
8
P~u(a1), . . . ,P~u(ak )

<

is one-to-one.

This guarantees that the encoding map

Fk
2 C,  u �2

8
P~u(a1), . . . ,P~u(ak ),P~u(ak+1), . . . ,P~u(an)

<

is one-to-one.
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RS CODES ARE MDS

LINEAR CODE
PROOF : => Amiz = win weight .

Pf(x) IS A POLYNOMIAL OF

DEGREE - k - 1 .

↓

(Pala) , Pe(an) , ..., pi(an)
-
k-1 zeros (or all-werd)

= 2n -(k-1) non-zeros



=> min weight In - k+

= dmin (6) 2n-k+ 1 .

=> Mscode
B



RS CODES ARE MDS

PROOF :

Pf(X) Is A POLYNOMIAL OF

DEGREE K-1.
↓

#Pla
k - 1 ZERDES

(SINCE 9 ARE ALL DIFFERENT)



Proof: RS codes are MDS

We want to prove that dmin = n  k + 1.

I Let ~u 2 Fk be a non-zero information vector. P~u(x) is a non-zero
polynomial of degree at most k  1. Hence it has at most distinct k  1
roots.

I The corresponding codeword ~c (obtained by evaluating P~u(x) at n
distince values) has at most k  1 zeros.

I Hence w(~c) � n  (k  1) = n  k + 1 for all ~c.

I Since ~c is an arbitrary non-zero codeword, dmin � n  k + 1.

I By the Singleton’s bound, dmin 1 n  k + 1.

Hence dmin = n  k + 1.
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To summarize, we have proved the following:

THEOREM (TEXTBOOK THM. 14.3)

A Reed Solomon code with design parameters k and n is a linear (n, k) code
of minimum distance dmin = n  k + 1, i.e., it attains Singleton’s bound with
equality.

Note that the condition
card(F) � n

is necessary or else we can’t find n distinct field elements a1, . . . , an.
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LINEAR CODES : GENERATOR MATRIX?

k =2
,
n= 3 i Pa(X) Z

O 000

01 Ic=(1 ,4)x 02/

10 2 III

GE IF in 1 +Y 120
1+ 2x 102

20 2 222
21 2+X 201

22 2 + 24 2. 10



LINEAR CODES : GENERATOR MATRIX?

k =2
,
n= 3
py(X) Z

O 000

01 Ic=(i) X 02/

10 2 III

GE IF in 1 +Y 120
1+ 2x 102

20 2 222
21 2+X 201

=H = (1 11 22 2 + 24 2. 10



EXERCISE

Find a generator matrix G for this code over F3.

SOLUTION

We need to find two codewords that are linearly
independent.

Here are a few choices:

G =

8
0 1 2
1 1 1

<
G =

8
1 2 0
2 0 1

<
G =

8
2 1 0
1 0 2

<

~u P~u(x) ~c

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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Recall that each generator matrix defines an input/output map.

The map that we originally used to define RS codes

~u  P~u(x)  ~c = P~u(a1), . . . ,P~u(an)

is just one of many possible maps.

In fact there are (qk
2 1)(qk

2 q) · · · (qk
2 qk�1) maps for a linear code of

dimension k over Fq .
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EXERCISE

Which of the following is a valid parity-check matrix?

1. A =

8
1 1 1
0 1 2

<
;

2. B =

8
0 1 2
1 0 2

<
;

3. C =
:

1 1 1
�

.

~u P~u(x) ~c

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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SOLUTION

A parity-check matrix for this code has n 2 k = 1 row, so
only C is correctly sized.

Moreover, we can easily verify that ~giCT = 0, where ~gi is
the i th row of G, hence ~cCT = 0 for all codewords ~c.

Therefore C is a parity-check matrix for the considered
code.

~u P~u(x) ~c

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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How about if we want the generator matrix for a specific encoding map?

EXERCISE

Find the generator matrix G that can be used as the
encoder according to the given table.

SOLUTION

We want

I (1, 0)G = (1, 1, 1), so the first row of G is (1, 1, 1).

I (0, 1)G = (0, 1, 2), so the second row of G is (0, 1, 2).

Therefore

G =

8
1 1 1
0 1 2

<

~u P~u(x) ~c

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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YESTERDAY

REED-SOLOMON CODES

(n
,
k
, 9

F
ock = n = 9

9

· LINEAR ·drin = n - k+ 1
· que CODEwors



EXAMPLE : 9 = 13, n
=4
,
k =2

I PE(X 2
a = 0

0
,
0 O 0, 0

,
0
,

0

92= 0, X 0
,

1
,
2
,
3

0, 2 2x 0
,
2
,
4
,
6

9 = 2 · i
0, 12 124 0, 12, 11 , 10

94 = 3 1, 1
,
1
, 1 , 1

1, 1 + X
&

1
,
2 1 + 2x

&

qb = 169 = !

E

1 ,
12 1 +12x
i S

dmin = 3 12
,
12 12 + 12 x 12

,
11
,
10

,

9



I ↓
a = 10in 3 S
0c = (0 , zi)
->

11

I -2 10
6
H = ( 2 -30 (

Lo



A SPECIAL GENERATOR

MATRIX



IFi Pu(X)

10 , 000 .. o 1 (71 .. 1)
0 1000 .. o X (a =92 - - au)
00100 .. 0 X2 (aaa

&
& &

4 [

,

⑳Iht



1 1

An an Ge(9192 + it)G = 22

"

k- 1 k-1
91 an

Vandermoude natrix.



More generally:

I We want a generator matrix for a given encoding map.

I It suffices to find the codewords that correspond to the following length-k
information words:

(1, 0, 0, . . . , 0, 0)

(0, 1, 0, . . . , 0, 0)

(0, 0, 1, . . . , 0, 0)

...
(0, 0, 0, . . . , 1, 0)

(0, 0, 0, . . . , 0, 1)

I The corresponding codewords are linearly independent (proof below)
and are k in number. Hence they form a basis.
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-> Py(x) = X
-> pe(= xh

-> pe(x)= yk
- 2

-> pf(x)=yk
- 1



We prove that a linear encoding map sends linearly independent information
vectors to linearly independent codewords.

Proof:

Let ~ui  Fk , i = 1, . . . , k , be a collection of linearly independent information
vectors and let ~ci  Fn be the corresponding codewords.

We prove that the the codewords are linearly independent.

Suppose, to the contrary, that the codewords are linearly dependent, i.e.,

k8

i=1

 i~ci = 0,

with some of the  i non-zero.

Then
k8

i=1

 i~ui = 0,

which contradicts the assumption that the information vectors are linearly
independent.
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How so ? IS Generate)- i
->
L

[ Xi = 0 BY Pu(*)
i
-
WHICH POLY NOMIAL GENERATES

THIS CODEWRD ?

P2X(x)



How so ? IS Generate)- i
->
L

[ Xi = 0 BY Pu(*)
i
-
WHICH POLY NOMIAL GENERATES

THIS CODEWRD ?

~

Pixini (x)

DEGREEK-1
BUT WE Know It HAs

U Zeros !



HENCE IT MUST BE

THE ALL-Zero

POLYNOMIAL !
THAT IS

,

Xin=



In particular, the map that we used to define the code sends ~u  Fk to

~c =
8
P~u(a1), . . . ,P~u(an)

<
.

If ~u has 1 at position i and 0 elsewhere, then P~u(x) = xi�1.

Hence, the map that we have used to defined RS codes has the generator
matrix

1 1 1 . . . 1
a1 a2 a3 . . . an

(a1)
2 (a2)

2 (a3)
2 . . . (an)2

...
...

...
. . .

...
(a1)

k�1 (a2)
k�1 (a3)

k�1 . . . (an)k�1

:

����������

 

!!!!!!!!!⇣

G = .
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DECODING FROM ERASURES

· How MANY CAN BE TOLERATED ?

(n , k , 9) n= 7
,
k = 3

&min = n-k +1 =5

E =( ,, dr , 3 , 2 ,5 , % : (7)

i = (6
,
%, g , 4 ,

?
,
?,?)



EX : q = 13,
h = 4

,
k=2

, 90 =
0
, 92

= 1
,
9
,
22,

94= 3

i = (0 , 2 , 4 ,
6)

- = 1 ?, 2 , %
,
6)

&: Which PE(X) GENERATE ?
wo know 1) deg(pu(d) = 1

2) Pa(X = 1) = 2

3) pa(X= 3)
= 6



Pa(x) =E(x - 3)

Pa(x) = z(X - 1)

Pi(x) = 2 . (x -3) +6 : [(x-)

= - (x-3) + 3(x-1)
= 2x



=> just do Lagrange interpolation!
works because we have

E points.

(ai , (i)
which we know to be

Generatedfromapola



EXAMPLE (CD-ROM)

CDs use Cross-Interleaved Reed-Solomon Codes (CIRC) as follows:

I Each byte of the source is seen as an element of F = F28 .

I Source symbols, are encoded using a (28, 24) RS code over F.

I The elements of a sequence of many codewords are interleaved.

I The result is encoded using a (32, 28) RS code over F.

Notice that both codes have dmin = 5, but this small distance is compensated
by the interleaver which distributes strings of errors among many codewords.

The end result is that error bursts up to 4000 bits can be corrected. We have
roughly that many bits in a track segment of length 2.5mm.

Source: Standard ECMA-130, "Data interchange on read-only 120mm optical data disks (CD-ROM)", 2nd Edition, 1996.
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2
.5 mu

bit,

are erased- too

symbols
are erased

500
=>- = 17

.
55

28 codewords
erased



= 28 byts 28 byte

#

S 28 bigtes ->
-

1/ T M (
24#Ser



OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

CHANNEL CODING

Error Detection and Error Correction

Finite Fields and Vector Spaces

Linear Codes

Reed Solomon Codes

Summary of Chapter 3

795 / 798



SUMMARY OF CHAPTER 3

Basic Concepts of Error Detection and Correction:

I Two basic channel models: Erasure channel and Error channel.

I Code = subset of all possible sequences of length n (over D-ary
alphabet).
I Convenient to talk about the number of codewords via the parameter

k = logD |C|.

I Minimum Distance Decoding

I Minimum Distance of a code

I Singleton’s bound: dmin  n 2 k + 1.

I A code satisfying this bound with equality is called MDS code.
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SUMMARY OF CHAPTER 3

Linear Codes: Basic Properties, Design, Decoding

I Finite field: A finite set with two operations (“sum” and “product”)
satisfying the “natural” properties (as you know them over the reals).
I Only exists if the cardinality of the finite set is a prime power, card(F) = pm.

I Vector spaces over finite fields. Subspaces. Basis.

I Linear Code = Subspace of a vector space over a finite field

I Generator matrix (= collection of vectors spanning the subspace)
I Particularly desirable form: Systematic generator matrix.

I Parity check matrix

I Key example: Hamming codes
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SUMMARY OF CHAPTER 3

Reed-Solomon Codes

I A very popular class of linear codes over a finite field F. They are MDS!

I Block length has to be n  |F| (so we need large finite fields).

I They can be neatly described via polynomials.
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