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Today we learn about Reed Solomon Codes (Irving Reed and Gustave
Solomon, 1960).

Why do we care?

» They are powerful (MDS)

» They are linear

> They let us choose various parameters (arbitrary Fsand 0 < k < n < q)

» They have a nice construction

» They have elegant and efficient decoding algorithms
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» They are used in many applications, namely: \

>

Storage devices: tape, CDs, DVDs, bar codes, QR codes, . ..

Digital radio/television broadcast

High-speed modems: ADSL, xDSL, ...

Deep space exploration modems (including Voyager 2, 1977, Jupiter,
Saturn, Neptune)

Wireless mobile comm., including cellular phones and microwave links
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POLYNOMIALS OVER FINITE FIELDS

Not surprisingly, the notion of polynomial extends to finite fields.

> Let = (us,...,ux) € F¥ for some finite field F.

> We associate to i the polynomial

Pi(x) = U1 4+ tox + -+ - + uRx1.

> P;(x) can be evaluated at any x € F.

> The degree of a polynomial is the highest exponent i for which x' has a
non-zero coefficient.

» By convention, the zero polynomial has degree —oo.
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EXAMPLE

> I = Fs;
> P(x) =2+ 4x + 3x? is a polynomial of degree 2 over Fs;
> P(x) = P;(x) for U = (2,4,3) € F3;

» a polynomial P(x) over a field F can be evaluated at any x € F:
Pj2)=2+4.-24+3.22=24+3+2=2.
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EXAMPLE

» P(x) = 3x has degree 1.
> P(x) = 3 has degree 0.

> P(x) = 0 has degree —cc.
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INTERPOLATION VIA POLYNOMIALS

Problem: given a field F and k pairs (a;, ;) € F2, where the a; are all distinct,
is there a polynomial P(x) over F of degree at most k — 1 (hence described
by at most k coefficients) such that

P(a,-):y,-, I:‘I,,k7

/ P(a) R

It

The answer is yes, obtained via Lagrange’s interpolation polynomials.
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LAGRANGE’S INTERPOLATION POLYNOMIALS

To simplify notation, we demonstrate how it works by means of examples.

EXAMPLE

» Fix a field F and distinct field elements ay, a», as as well as y1, y2, y3 (not
necessarily distinct).

> We seek a polynomial P(x) of degree at most 2 and coefficients in F
such that P(a;) = y;.

» Suppose we can find a polynomial Q;(x) of degree at most 2, such that

01()(): {1, X =a

0, x=a # a
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EXAMPLE (CONT.)

> Suppose that Q:(x) behaves similarly for a; and Qs(x) for as.

> The desired polynomial is then P(x) = y1Q(x) + y2Qz(x) + ysQs(x).

v

Back to the construction of Qi (x).

v

(x — a)(x — a3) is 0 at all the a; except at a; where it is
(31 = ag)(a1 = 33).

v

(x—ap)(x—a3) ; i
Hence CE ORI the desired @ (x).

» We construct Qx(x) and Qs(x) similarly.
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EXAMPLE (CONCRETE CASE)

Over Fs, find the polynomial P(x) of degree not exceeding 2, for which
P(a;i) = y; for
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SOLUTION

We find the Lagrange interpolation polynomials Qi(x) and Qs;(x) and then
form P(x) = y1 Q1(x) + y3Qs(x). (Notice that Qx(x) is not needed because
y2=0.)

—1)(x=0 =i .
Qi(x) = };71%)2(70; — 2 = 3(x —1)x;

Os(x) = R = E=B=D — 3x — 2)(x - 1);

Finally

P(x) =3(3(x — 1)x) +4(3(x —2)(x — 1))
=4x* —4x+2x* —6x+ 4
=x*+4.
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CONCLUSION

It should be obvious from the above example that we can proceed similarly
for any field I, for any positive integer k, and for any given set of k points with
components in F.
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ROOTS OF POLYNOMIALS

Let P(x) be a polynomial over a field F. The roots of P(x) are those b € F for
which P(b) = 0.

THEOREM (FUNDAMENTAL THM. OF ALGEBRA, TEXTBOOK THM 14.1)

Let P(x) be a polynomial of degree at most k — 1 over a field. If P(x) # 0
then the number of its distinct? roots is at most k — 1.

2The theorem holds even for non-distinct roots if we account for their multiplicities. The stated

version, which has an easier proof, is what we need.
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EXAMPLE

Let the field be R and P(x) = ax + b, a # 0. This polynomial has 1 root.

P(x)
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax® + bx + ¢, a# 0.

This polynomial has 0, 1, or 2 roots.

NNV

—4ac<0 —4ac = —4ac >0

Recall: The roots of P(x) in C are —2£V/Z—42 v2:2*430_
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax® + bx? + cx + d, a # 0. This polynomial has
1, 2, or 3 roots.

P(x) P(x) P(x)
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EXAMPLE

P(x) = x2 + x + 1 has no roots in Fs.

<
3
S

A WO N = O
- W N W=
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EXAMPLE

P(x) = x2 — 3x + 2 has 2 roots in Fs.

<
3
S

A WO N = O
- N O O N
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Proof: Fundamental Theorem of Algebra

Let P(x) be a polynomial of degree at most k — 1. We prove that if it has
more than k — 1 distinct roots, then it is the zero polynomial (contraposition).

Let ay,..., ax € F be k distinct numbers, and consider the map
YiFC ST O (Py(ar),..., Pia)).
By Lagrange, for every y1, ..., yx € I, there exists at least one i € F¥, such

that P;(a)) = yi, i =1, ..., k. Hence the above map is surjective (onto).

Because the domain of ¢ and its co-domain have the same cardinality, by the
pigeonhole principle, 1 is bijective.

Hence there is a single i e F* for which ay, ..., ax are roots of Py: it is

=

i=0. O
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REED SOLOMON (RS) CODE CONSTRUCTION

» Choose a finite field F and integers k, n, such that 0 < k < n < q, where
q = card(F).

» Choose ndistinct elements ay, ..., a, € F. They exist because n < g.

» The codewords are defined via the following map:

F* > F", G = (Py(ar),...,Pi(an)).

» This is a block code of length n over F.
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EXAMPLE

> Let (k,n,q) =(2,3,3). They fulfill 0 < k < n <gq.
» So we are in Fs.

> Define (ai, a2, a3) = (0,1,2).

Write down all the codewords of the corresponding RS
code.

SOLUTION

We are looking for g% = 32 = 9 codewords of length
n=3.

i| Pix) | ¢

00
01
02
10
11
12
20
21
22

2x

14+ x
1+ 2x

24+ x
2+ 2x

000
012
021
111
120
102
222
201
210
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Proof: RS Codes are Linear
Let I, v be in F¥ and « € F. Notice that

P.a(X) = als + atpX + - - + aux* " = aPy(x);

Pao(X) = (Ur + vi) + (Ua + Vo)X + -+ + (U + vi)X* " = Py(x) + Py(x).

Paas(X) = aPg(x) + Py(x).

This proves that if

then al+V—aX+yeC.

Hence the code is linear.

O
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Proof: the design-parameter k is indeed the dimension of the RS-code

It suffices to prove that the encoding map is injective (one-to-one), implying
that there are [card(IF)]” distinct codewords, hence that k is the dimension of
the code.

When proving the fundamental theorem of algebra, we showed that the map

P — T
U (Pg(ar), ..., Psa))

is one-to-one.

This guarantees that the encoding map
F“—c¢, G (Pg(ar),...,Pi(ak), Pi(aks1), - .., Pa(an))
is one-to-one. O
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Proof: RS codes are MDS

We want to prove that dmin = n— k+ 1.

> Let U € F* be a non-zero information vector. P;(x) is a non-zero
polynomial of degree at most kK — 1. Hence it has at most distinct kK — 1
roots.

> The corresponding codeword ¢ (obtained by evaluating P;(x) at n
distince values) has at most k — 1 zeros.

> Hence w(¢) >n—(k—1)=n—k+1forall .
» Since ¢ is an arbitrary non-zero codeword, dyin > n— k + 1.
» By the Singleton’s bound, dmin < n— k + 1.

Hence dpyin = n— k + 1. O
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To summarize, we have proved the following:

THEOREM (TEXTBOOK THM. 14.3)

A Reed Solomon code with design parameters k and n is a linear (n, k) code
of minimum distance dni, = n — k + 1, i.e., it attains Singleton’s bound with
equality.

Note that the condition
card(F) > n

is necessary or else we can't find n distinct field elements a, . . ., an.
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EXERCISE

Find a generator matrix G for this code over F3.

SOLUTION

We need to find two codewords that are linearly
independent.
(2
o\

Here are a few choices:

G:<o12> G:<120>
11 1 2 0 1

1 0
0 2

i| Pix) | @

2x

14+ x
1+2x

2+ x
2+ 2x

000
012
021
111
120
102
222
201
210
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Recall that each generator matrix defines an input/output map.

The map that we originally used to define RS codes
u— PL-;(X) —C= P;,(a1), ey P;,(an)

is just one of many possible maps.

In fact there are (g — 1)(g* — @) - - - (¢" — ¢*~") maps for a linear code of
dimension k over [Fq.
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EXERCISE

Which of the following is a valid parity-check matrix?

1.A:111;
01 2

i| Pix) | ¢

00
01
02
10
11
12
20
21
22

2x

1+x
1+ 2x

2+ X
2 +2x

000
012
021
111
120
102
222
201
210
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SOLUTION

A parity-check matrix for this code has n — k = 1 row, so
only C is correctly sized.

Moreover, we can easily verify that §;C" = 0, where gi is
the ith row of G, hence EC" = 0 for all codewords ¢.

Therefore C is a parity-check matrix for the considered
code.

i| Pix) | ¢

00
01
02
10
11
12
20
21
22

2x

1+x
1+ 2x

2+ X
2 +2x

000
012
021
111
120
102
222
201
210
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How about if we want the generator matrix for a specific encoding map?

EXERCISE

Find the generator matrix G that can be used as the
encoder according to the given table.

SOLUTION

We want

> (1,00G = (1,1,1), so the first row of Gis (1,1,1).

» (0,1)G = (0,1,2), so the second row of G is (0, 1, 2).

Therefore

i| Pix) | ¢

00
01
02
10
11
12
20
21
22

0

X

2x

1

1+x
14 2x

2+ X
2+ 2x

000
012
021
111
120
102
222
201
210

790/798



MESTEROIAYV

Reed-SoLomon C£0D=S

[ n, &, q)
-~ F
D<Z£s;7lsa‘ 1
« LINEAR 'Aw{u:“-&‘ri
ﬂ*‘&@@ﬁ@s




EXAMPLE :

K
I
=

1: 13’ ’V\:4'1 &:2.

. >

n ij‘) C

0,0 ) 0.0 9
0, | X o, '3
0.7 2r 0.2,4,b
0,12 127 vz, 1\, \0
1, D l b, G0
|\ 1+ = .
VY 13 Ly

\, 1Y (+\Lx
I | (24|12, 1,00 4







A SPEC AL GenNERATOR
MATR'X










More generally:

» We want a generator matrix for a given encoding map.

> |t suffices to find the codewords that correspond to the following length-k
information words:

(1,0,0,...,0,0) A~~~ Pa(f\: 1
28;?22 > fald= x
s Yy Ly ey Yy "“;:) Q 1: (\FN\‘::- )(1/’

(o,o,o,:..,1,0) — Iz () = xfs")’
(0,0,0,...,0,1) N Q'\: C‘F\/—‘- kfl—-!

» The corresponding codewords are linearly independent (proof below)
and are k in number. Hence they form a basis.
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We prove that a linear encoding map sends linearly independent information
vectors to linearly independent codewords.

Proof:

Let i e FX, i = 1,..., k, be a collection of linearly independent information
vectors and let ¢; € F” be the corresponding codewords.

We prove that the the codewords are linearly independent.

Suppose, to the contrary, that the codewords are linearly dependent, i.e.,

K
> NG =0,
i=1

with some of the \; non-zero.

Then

k
Z A\l = 0,
i=1

which contradicts the assumption that the information vectors are linearly
independent. g
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In particular, the map that we used to define the code sends i € F¥ to

6 = (P;,(a1 )7 ey P;,(an)).

If & has 1 at position j and 0 elsewhere, then P;(x) = x'~".

Hence, the map that we have used to defined RS codes has the generator
matrix

1 1 1 1
aj a as an
(@) (2 () ... (&n)

(a) " (@) (@) (an)

793/798



DECOoDING FROM ERASYRES

¢ Bow MAMY CAv Be TolegATed |
(o A, g v ko3
AN:“\ T_“-—&fL :S—-

a
C"(C" vy C3»C¢»(§»CL'C%>

" 7 ?
< 21117
49 (C() «r Cq, %y o0 >



R . Which Y“(x) GCNCIZATL:D—’
WE Know 1) &e q(&
2-) P)(x- =
po(x=2% = ﬁ



Pl = — (<=3
P = L (x-1)
Fa(@ - _‘—L(x——Q +é-'\;<><-9
= —(x-%) + 3[x-D
= ZX



=) \u '
) 5+ (10 Lﬁjvﬁhzg \"\“’ra\aﬁa\!

wWokks becmpr we e

W\MUL w e ‘;ww \ be

jﬁmmh/\ L
% ob,?r&e, ’g’ Fags



EXAMPLE (CD-ROM)

CDs use Cross-Interleaved Reed-Solomon Codes (CIRC) as follows:

» Each byte of the source is seen as an element of F = Fys.
» Source symbols, are encoded using a (28, 24) RS code over F.
> The elements of a sequence of many codewords are interleaved.

> The result is encoded using a (32,28) RS code over F.

Notice that both codes have dn,i, = 5, but this small distance is compensated
by the interleaver which distributes strings of errors among many codewords.

The end result is that error bursts up to 4000 bits can be corrected. We have
roughly that many bits in a track segment of length 2.5mm.

Source: Standard ECMA-130, "Data interchange on read-only 120mm optical data disks (CD-ROM)", 2nd Edition, 1996.
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OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

CHANNEL CODING

Summary of Chapter 3
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SUMMARY OF CHAPTER 3

Basic Concepts of Error Detection and Correction:

>

>

Two basic channel models: Erasure channel and Error channel.
Code = subset of all possible sequences of length n (over D-ary

alphabet).
» Convenient to talk about the number of codewords via the parameter

k =logp [C|.
Minimum Distance Decoding

Minimum Distance of a code

Singleton’s bound: dmin < n— k 4+ 1.

> A code satisfying this bound with equality is called MDS code.
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SUMMARY OF CHAPTER 3

Linear Codes: Basic Properties, Design, Decoding

» Finite field: A finite set with two operations (“sum” and “product”)
satisfying the “natural” properties (as you know them over the reals).

> Only exists if the cardinality of the finite set is a prime power, card(F) = p™.

v

Vector spaces over finite fields. Subspaces. Basis.

v

Linear Code = Subspace of a vector space over a finite field

> Generator matrix (= collection of vectors spanning the subspace)
> Particularly desirable form: Systematic generator matrix.

v

Parity check matrix

v

Key example: Hamming codes
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SUMMARY OF CHAPTER 3

Reed-Solomon Codes

» A very popular class of linear codes over a finite field F. They are MDS!

> Block length has to be n < |F| (so we need large finite fields).

» They can be neatly described via polynomials.
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