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Why do we care about linear codes?

Linear codes have more structure.

We use that structure to simplify our tasks, notably:

» To determine the code’s performance (dmin in particular).

» To simplify the encoding.

» To simplify the decoding.
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DEFINITION (TEXTBOOK DEF. 13.1)

A block code is a linear code if the codewords form a subspace of F” for
some finite field F.
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EXAMPLE

Let C C F} be the block code that consists of the listed
codewords. Is it linear?

SOLUTION
We have
Cs = Ci + Cz
Cs = Ci +Cs
Cs = C2 + C3
CG7 =Ci+ G+ Cs

Therefore C = span(&i, &, Gs) C IF4 is a linear code (over
the finite field Fy).

code C
¢ = 0000000
¢ = 0011100

G = 0111011
s = 1110100
Cs = 0100111
G5 = 1101000
Co = 1001111
¢ = 1010011
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EXAMPLE

What is the dimension of code C (i.e., the dimension of
the subspace formed by the codewords)?

SOLUTION

The set (¢, &2, G3) is a basis of C. Hence dim(C) = 3.

code C

S = 0000000

¢ = 0011100
G = 0111011
G = 1110100
¢y = 0100111
¢s = 1101000
G = 1001111
¢, = 1010011
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SIZE VS DIMENSION

We have seen that a k-dimensional subspace of F” has cardinality [card(F)]*.
(Count the number of linear combinations you can form with the vectors that
form the basis, with coefficients in F.)

EXAMPLE

If the size of a binary block code is not of the form 2, then the code is not
linear.
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HAMMING WEIGHT

DEFINITION

Let X = (xy, ..., X») be an n-tuple with components in a finite field.

The (Hamming) weight of X, denoted w(X), is the number of its non-zero
components in (xi, ..., Xa), i.e.

w(X) =d((0,...,0),(x1,...,Xn)).
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EXERCISE ("ACADEMIC" QUESTION)

In the definition of Hamming weight, we are requiring that the components of
X take value in a (finite) field F. Why?

SOLUTION
Otherwise there is no guarantee that the alphabet contains the 0 element.
Recall that in a finite field IF, no matter how we label its elements, one is the 0

element (the identity element with respect to addition). Hence the Hamming
weight is well-defined.
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EXAMPLE
» The weight of (1,0,1,1,0) is 3.

> The weight of (3,0,4,1,1,2) is 5.
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THEOREM

The minimum distance of a linear code C is the smallest weight of a
codeword in C, zero-vector excluded, i.e.,

dmin(C) = min_w(C)
cec;cA
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In the proof that follows, we use the following two facts:

> Forall 4,V € F",

-

d(u,v) =w(i— V)
(Reason: U and v are different at position i iff 4 — V is non-zero at
position i.)
> Let f: B — R be an arbitrary function and A C B be finite sets. Then
. o
min f(x) > min f(x)

(We might find a smaller minimum if we enlarge the set.)
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Proof:
Anin(C) = a,vrenci;%ﬁ d(d. v)

= min _w(l-V)
0,7EC A7

V

min _w(C) (reason: C is a vector space, so U — V € C).
ceC;c#£0

min_w(¢)= min d(c,0)
GeCi5A0 deCié#0

> min d(G V) (reason: we have equality with v = 0)
C,VEC;CHV
= dmin(C).

O
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EXERCISE

Find the minimum distance of the linear code C.
Q/ (D=0 >

w(Z)="7

\«/(a‘, ) - g

code C

& = 0000000
¢ = 0011100
& = 0111011

& = 1110100
& = 0100111
& = 1101000
G = 1001111
& = 1010011
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SOLUTION

» Compute the weight of each non-zero codeword:

wy = w(0011100) = 3
we = w(0111011) =5 | codeC
& = 0000000
ws = w(1110100) = 4 & — 0011100
ws = w(0100111) = 4 & — 0111011
ws = w(1101000) = 3 & = 1110100
we = w(1001111) =5 Gy = 0100111
w(1010011) = 4 & = 1101000
W= & = 1001111
¢, = 1010011

> dmin(C) = 3

> Note: compare this to the work needed to compute
d(vi, vj) for all i # j.
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EXERCISE ((BINARY) PARITY-CHECK CODE)

The parity-check code C C Fj consists of those elements of F5 that have an
even number of 1s, i.e.,

C:{(01,...,cn)€IFQ:Zc,~:O}.

(Addition is in F», i.e., mod 2.)

Determine k and dpin.
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SOLUTION

> The code is a subset of F] that satisfies an homogeneous linear
equation.

» Hence the code is linear, and k = n — 1.

» (We can also tell that Kk = n — 1, by observing that we are free to choose
the first n — 1 bits and satisfy the constraint with the last symbol. )

» For a linear code, dnmin is the minimum non-zero weight.
» It is achieved by any codeword that has exactly two 1s.

» Hence dpin = 2.

Note: In this example, linearity allows us to determine dpi, via deductive
reasoning rather than by inspection.
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EXERCISE ((BINARY) REPETITION CODE)

It is the subset of FJ that consists of two codewords, namely (0, ...,0) and

(1,...,1).

Determine k and dpis.

SOLUTION
> The code is linear: it is the subspace of F3 spanned by (1,...,1).
> k=1.

» dnin = n (the weight of the only non-zero codeword).
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The above two codes are not terribly useful, but they have an interesting
property shared by the next code which is even less useful.

EXERCISE (THE CODE F7)
I satisfies the definition of a linear code.

Determine k and dpjn.

SOLUTION
> k=n.
912 L M— <4
o -
» dmin = 1. = _j_

= IS ALSo WOS.
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The above three code families fulfill the Singleton bound with equality. Hence
they are MDS codes. Moreover, they are also linear codes.

No other family of binary linear codes is MDS.

But there are non-binary codes that are MDS, e.g., the family of
Reed-Solomon codes (studied next week).
\/%[c/k
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GENERATOR MATRIX

DEFINITION (TEXTBOOK DEFINITION 13.3)

Let (G4, - - ., Ck) be a basis of a linear code C C F” over some finite field F.
The k x n matrix that has ¢; as its ith row is called a generator matrix of C.
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code C

EXAMPLE % — 0000000
(G, Gz, C3) form a basis for C. Therefore ¢1 = 0011100
N G =0111011
¢ 001 1 100 & = 1110100
G=|¢&|=|0 1 1 1 0 1 1 & = 0100111
G 110100 & = 1101000

G = 1001111

is a generator matrix of C.
¢ = 1010011
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ENCODING

A k x n generator matrix specifies an encoding map that sends an
information vector i € F¥ to the corresponding codeword ¢ = GG.

i— G —>c¢=1uG

code C
EXAMPLE Co = 0000000
& = 0011100
0 01 1 10 0\ &_o111011
i=1,01)=é=1,01)]0 1 1 1 0 1 1 & — 1110100
110100/ g_—o0100111
=(1,1,0,1,0,0,0). & = 1101000

G = 1001111
¢ = 1010011
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We have seen the generator matrix
Gy 0

G1 == 62 == 0

G 1

- o o
-
-
-
o
o

Here is another one:

& 0011100
G=|6¢+&|=]0 1 0 0 1 1 1
G + G 1101 00 0
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U— UGy
000 — 0000000 = &y
001 — 1110100 = C3
010 — 0111011 = &
011 — 1001111 = &
100 — 0011100 = &
101 — 1101000 = &
110 — 0100111 = &
111 = 1010011 = &

A linear code C has as many generator matrices as the number of bases of
the vector space C.

Each generator matrix determines an encoding map:

U— uGs
000 — 0000000 = &,
001 — 1101000 = Cs
010 — 0100111 = ¢,
011 — 1001111 = G
100 — 0011100 = &
101 — 1110100 = &
110 — 0111011 = G,
111 — 1010011 = &
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EXERCISE

How many generator matrices for a binary linear code of block-length n =7
and dimension k = 3?

SOLUTION

It is the number of lists that form a basis. A g-ary linear code of dimension k
has g* codewords and the number of bases is

@ -0 - (@ —d).
For a binary code (g = 2) we have

(2% —1)(2° —2)(2° —2°) =7 x 6 x 4 = 168.
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THE BIG PICTURE (TRANSMITTER)

Source

dinner is served
Y
Source Coding

(D=2)
0000111111 00101 ...
TRN F>’1\ o N N—— N~
__L__________:::::::}S d i n
Y

i 000 0000000
Channel Coding 011 o 1001111
¢=uG 111 — 1010011
100 0011100
(n=7,k=3) 101 1101000

00000001001111101001100111001101000
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code C

EXERCISE ——————
T, o = 0000000

Is {C> + Cs3, C1 + C2, Cy} a basis of C? & = 0011100

If yes, G =0111011

& = 1110100
¢ = 0100111
& = 1101000
G = 1001111
¢ = 1010011

» Specify the generator matrix.

> Explicitly specify the map uytsus — €1C2C3C4C5C6Cy.
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SOLUTION (BASIS)

G+ G i 00 1 1 1 {1
letG=|&+&|=]/0 1 0 0 1 1 {1
G 0011100

> From the first three columns we see that rank (G') =
3,80 {C> + Cs, C1 + G, Gt} are linearly independent.

» nlinearly independent vectors of an n-dimensional
space always form a basis of the space.

» G’ is the generator matrix associated to this basis.

code C
& = 0000000
¢ = 0011100
& = 0111011

& = 1110100
¢, = 0100111
& = 1101000
G = 1001111
¢ = 1010011
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SOLUTION (ENCODING MAP)

G =

o O =

o = O

- O O

—_ O =
-

O = =

O = =

(¢t1,Cz,Cs,C4, G5, Cs, C7) = (Us, Uz, Us) G

Therefore:
Ct = U Cy= U+ U3
Co = U Cs = Uy + U2+ Us
C3 = U3 Ce = U + U2
C7=U + W2

¢=(c1,0,Cs,Cs, 5, G, C7).
—_—— —

message bits parity bits

code C
& = 0000000
& = 0011100
& =0111011

G = 1110100
G, = 0100111
s = 1101000
Cs = 1001111
¢ = 1010011
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SYSTEMATIC FORM

The above matrix G’ is in systematic form.

DEFINITION (SYSTEMATIC FORM)

A generator matrix Gs is in systematic form if

Gs = (I, Pex(n—r)) -

Notice that a systematic generator matrix is a matrix in reduced echelon form.

When the generator matrix is in systematic form, each codeword is written as

¢ = UGSZ(U1,...,Uk,Ck+1,...,Cn).

ul=u uP
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Given a linear code C, how does one find the systematic form Gs?

1. Find a basis {¢i,..., ¢} of C.

2. Form the generator matrix: G =

Ck

3. Row-reduce G (Gaussian elimination on rows) to obtain a matrix in
reduced echelon form.
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/ pivots (leading coe?

* x Kk ok x Kk K 10 « 00 % %
0 x x *x * % % 01 %00 % «%
000 x x x % 00010 % %
0000  * % 00001 % %
echelon form reduced echelon form

This procedure uses the three operations below (that do not modify the
vector space spanned by the rows of G):

Tj: transpose (swap) rows i and j;
«S;: scale row i by «;

aAj: scale row i by o and add to row j.
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EXAMPLE (SYSTEMATIC FORM)

Let G be a generator matrix of a (5, 3) code on Fs:

1
3
1










The result is a generator matrix for the same code.

To make sure that we have the identity matrix on the left, we may have to
swap columns.

If we swap columns, we obtain a different code (different set of codewords)
that has the same parameters (n, k, dmin) as the original code.
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EXAMPLE (SYSTEMATIC FORM)

Let G be a generator matrix of a (5, 3) code on Fs:

G=

- h O

1 2 3
3 2 1
1 0 1

- O
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ENCODING

EXAMPLE (SYSTEMATIC FORM (CONT.))
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ENCODING

EXAMPLE (SYSTEMATIC FORM (CONT.))

With the generator matrix in systematic form H
100 3 2 S
Gs=|0 1 0 3 4],
0 0 1 0 O

the map (ur, Uz, us) — (G, Cz, C3, Cs, Cs) is
—_——— —_—— — —

information word codeword
Ci = Uy
W. € &: & = Us
S
C3 = U3

cs = 3uy + 3

Cs = 2U1 + 4
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EXAMPLE (SYSTEMATIC FORM)

Here an example where we have to swap columns.

1 1 1
G= (1 1 2) ’
The steps towards the reduced echelon form are
1 1 1 1 1 0
0 0 1 0o 0 1/°
By swapping the second and third columns, we obtain the following generator
matrix of a different (but equivalent) code.

= 1 0 1
G:(o 1 o)‘

Let
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DECODING

How to decode?
Decoding is about deciding the information word from the channel output.

If the channel output y is a codeword, then we assume that it equals the
channel input.

In this case decoding is about inverting the encoding map. This is trivial if the
generator matrix is in systematic form. (We read out the first k symbols of .)

But how to know if the channel output is a codeword?

We use the fact that a linear block code, like every subspace of a vector
space, can be defined by a system of homogeneous linear equations.

The channel output is a codeword iff it satisfies those equations.
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EXAMPLE

¢4 = 3¢t + 3¢ N -3¢ —3c+c,=0 N 2ci +2cc+c4 =0
Cs = 2¢1 + 40 —2¢1 —4c+c5=0 3ci+c+c=0

Therefore, y € C iff
2y1+2y+ys =0
3yi1i+y2+ys =0

i.e., iff

(1, Y2, Y3, Ya, ¥5)

o—-omMndN
- 00 = w
Il
(=1)

HT
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PARITY-CHECK MATRIX

A parity-check matrix H for a linear (n, k) code is an (n — k) x n matrix that
contains the coefficients of a system of homogeneous linear equations that
defines the code.

EXAMPLE

2y1+2y>+ys =0
(1, Y2, Y3, Ya, ¥s5) &

3yi+y2+ys =0

o —~oMNMN
~ 00— w
Il
(=]

HT
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THEOREM (TEXTBOOK THEOREM 13.1)

If G = (I, P), where Pis a k x (n — k) matrix, is a generator matrix (in
systematic form) of a linear (n, k) block code, then

H= (=P, )

is a parity-check matrix of the same code.
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Proof:

H = (— P", l»_x) has rank (n — k), hence it defines a system of equations,
the solution of which is a subspace of F” of dimension k.

We want to show that GGH” = 0 for all information vectors 4.

This is true iff GH' is the zero matrix (of size k x (n — k)).
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EXAMPLE

0 0 3
G=(0 1 0 3 is the generator matrix of a (5, 3) code over Fs.
0 0 1 O

-3 -3 0 1 0
H_(—z -4 0 0 1)_(

is a corresponding parity-check matrix.

o A~ DN

w N
- N
o o
o =
- O
~—ry>~F~
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SYNDROME

DEFINITION

Let H be the (n — k) x n parity-check matrix of a linear block code C C F"
and let y € F".

The syndrome of j is the vector

§=yH".

By definition,
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EXAMPLE (HAMMING CODES)
For every integer m > 2, there exists a binary Hamming code of parameters

n=2"_-1,

k=n—m.

The parity-check matrix is the m x n matrix whose columns consist of all
non-zero vectors of length m.

Hamming codes are easy to encode and to decode.

dkl < V\J?Af = a4l
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EXAMPLE (CONT.)

For instance, let m = 3.

A valid parity check matrix is

1
1

1 01 0 1 0 1
H=|0 1 1 0 0 1 ,
o 0 o 1 1 1
where, for convenience, the ith column is the binary representation of .
The block-lengthis n=2" —1 =7.
The rank of H is m, hence the code dimensionis k = n— m = 4.
¢=(1,1,1,0,...,0) is a codeword because ¢H" = 0.
Hence dpin < 3.

We show that dmin = 3 by showing how to correct all error patterns of weight
1.
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EXAMPLE (CONT.)
Let ¥ = € + €, be the channel output, where ¢ € C, € € F3, and w(€) = 1.

yH" = CH" + 8H" = éH".

i
Il

§ = éH' is the binary representation of the position of the error.

Hence we can correct the error.
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EXERCISE

For the (7,4) Hamming code,

1. find a parity-check matrix of the form H = ( — PT, ls).

2. find the corresponding generator matrix G = (s, P).
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SOLUTION

1. By moving to the far right the first, second, and fourth columns of the
original parity-check matrix we obtain

1
1
1

H=

o = -

1
0
1

—_ a4 O
o O =
o = O
- O O

which has the desired form. Notice that the result is a different code (we
have reordered the components) — still a Hamming code.

o O O =
o O = O
o = O O
- O O O
—_ O = =
_ a0 =
- o a4 o
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EXERCISE

For the binary (4, 1) repetition code,

1. find a generator matrix in systematic form.

2. find a parity-check matrix.
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SOLUTION

1. The code consists of the two codewords (0,0, 0,0) and (1,1,1,1). There
is only one basis of this code, hence there is only one generator matrix

G=(1,1,1,1).

2. Since the generator matrix is of the form (/;, P), a corresponding
parity-check matrix is of the form (—P7, k), namely

1

H= 1|1
1

o o =
o = O
- O O
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THEOREM

Let H be any parity check matrix of a linear code. The minimum distance of
the code is the smallest positive integer d such that there are d columns of H
that are linearly dependent.
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Proof:

For a linear code, the minimum distance is the smallest weight of a non-zero
codeword. Let ¢ # 0 be a codeword of smallest weight d. The fact that
¢HT = 0 proves that H has d linearly dependent columns.

We need to argue that fewer than d columns of H are not linearly dependent.
Suppose that H has t < d linearly dependent columns. Then we could find a
non-zero codeword & of weight smaller than d such that dH” = 0. This is a

contradiction. O
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EXAMPLE

The following is a parity check matrix for a Hamming code of parameters
n=7,k=A4.

H =

o o =
o =+ O
- O o

1
0
1

o = =
- a4 o

Clearly no two columns are linearly dependent.
Column 1, 2, and 3 are linearly dependent.

Hence dmin = 3.
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STANDARD ARRAY: BACKGROUND MATERIAL

Equivalence Relation (review):

> G a set;
» ~ an equivalence relation on G;

> [g] the equivalence class of a € G.

Key property that we will use: An equivalence relation on a set partitions the
set into disjoint equivalence classes.
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EXAMPLE

» G is the set of all students in Switzerland
» a~ bif aand b attend the same university

> [g] the subset of G that contains all the students that attend the same
university as a

Note: As in the above example, equivalence classes need not have the same
size.
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Special Case: Group-Theoretic Construction

When G forms a commutative group (G, x) and (#, x) is a subgroup, there is
a natural choice for ~ defined as follows:

a ~ bif there exists an h € H such that b= ax h.

Equivalently:
a~bifa'xbe .
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Claim: The above ~ is indeed an equivalence relation:

Proof:

> (reflexive) a ~ a:

true because a~'

xa€eH

» (symmetric) if a ~ bthen b ~ a:
true becauseifa ' xb=heHthenb ' xa=h"1eH

» (transitive) if a ~ band b ~ cthen a~ c:

true because if a~'xb=h; € Hand b~' x ¢ = h, € H, then H contains
also hy x ho whichisa "xbxb "xc=a 'xc
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Since in this case an equivalence class has the form
[al={axh:heH},

it makes sense to write
l[a] = axH.

For instance, if x is the addition, then [g] is H translated by a.
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EXAMPLE
Let (G,+) = (Z/10Z,+) and let # = {0, 5}.

Then (H, +) is a subgroup of (G, +), and the equivalence classes are:

[0] = # = {0,5}

[1]=1+%={1,6}
[21=2+%={27}
[8] =3+ # = {3,8}
[4] =4 +H = {4,9}.

EQ-J = [oj
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In the group theoretic language, [4] is called the coset of H with respect to a.

Claim: All cosets of H have the same cardinality card(#).

Proof:
h1,h2 € H st h ;é hh — axh #a*hg.

Hence ax H has the same cardinality as H. O
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Here is the group and subgroup of interest to us:

> The group (G, %) is (F", +) for some finite field F and positive integer n;
» the subset H is a linear code C C F”;
> thenifx,y e F", x ~ yiff —x+y € C;

> (equivalently, x ~ y iff y = x + ¢ for some ¢ € C).
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STANDARD ARRAY

The Standard Array is an array that has the elements of C in the top row,
starting with the 0 codeword, and each row forms a coset of C. Each element
of " shows up exactly once in the standard array.

Co = 0 Cq Co . CM—1 < [C]
i b+ ¢ h+c - b+ Cm—1 <+ [H]
7] b+ ¢ L+oe e >+ Cm—1 — [t]
f— fi1+c i1+ e e fi—1+ Cm—1 — [t1]
where foreachj=1,...,L—1, t is such that

> (c Um) |

Later we will choose the coset leaders more carefully.
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DECODING REGIONS

Suppose that card(C) = M.

Think of the decoder as being specified by M decoding regions D, ..., Dy_1
that partition F":

D[\ Dy =0if i # j;
M—1
UDi=F
i=0

Upon observing y € F”, the decoder finds the i such that y € D;, and
declares
c= Ci.
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THE COSET DECODER : HOw TO DECODE WITH THE STANDARD ARRAY

We let D; be the ith column of the standard array.

G =0 C C CM—1
t t + ¢ th+c b+ Cm—1
b b+ ¢ b+ e b+ Cu-1
fi—1 f1+0¢ fi1+c fL1+ cm-1
) ) 0 )
Do Dy Do Du—1

Note that D; = ¢; + Dy.
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Geometrical Interpretation:

Di =Dy + Ci

The union of all the D; is F". Hence every y € F” is in exactly one decoding
region.
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THE COSET DECODER : HOW TO IMPLEMENT

To find the codeword associated to a channel output y, we could find y in the
standard array and read out the entry on top of the same column.

Storing the whole standard array is impractical (often impossible for large
codes).

The first column describes the geometry of all decoding regions. We should
be able to leverage on that.
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Claim: In the standard array, each element of a row has the same syndrome
as the coset leader.

Proof:

> the elements of [;] have the form t; + ¢ for some c € C

» the syndrome of such an element is
(t+c)H =tH +cH = tH"

which is the syndrome of the coset leader t;
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Claim: The syndrome uniquely identifies the coset leader.

Proof:

Let f; and t; be coset leaders.

Suppose that tH™ = tH'.

Then (t — t)H™ = 0.

Hence f; — t; = ¢k € C.

It follows that #; and {; are in the same coset.

Since both are coset leaders, t; = t.
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In the previous slide, we have proved that the map

Dy — K

ts tHT

is one-to-one.

We use the pigeonhole principle to prove that it is also onto, hence it is a
bijection. (We will not use this fact.)

LetF = [Fy.

The standard array places the g” elements of F” into card(C) = g* columns

and card(Dy) = Z—: = q" ¥ rows.

The cardinality of F"~* is also g"~*.
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Hence the coset decoder can be implemented as follows:

W

. we precompute and store the coset leaders and the corresponding

syndrome;

. to decode y, we compute its syndrom s = yH';
. s encodes the row of y;

. we use the lookup table to determine the corresponding coset leader,

say, tj;

. ti and y uniquely determine the column of y, namely y = t; + ¢;;

henceci=y —t;

. the decoder declares that the transmitted codeword is ¢ = y — t;.
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To find the information word & that corresponds to ¢ we solve the linear
system
uG=c.

If Gis in systematic form, then & consists of the first k components of ¢.
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CHOOSING COSET LEADERS

There are many ways to choose the coset leaders t, b, - - -

In fact, every element of every row of the standard array can be chosen as
the coset leader.

THEOREM
In every row of the standard array:

» select the coset leader to be one of the minimum-weight vectors in that
row.

Then the coset decoder is a minimum-distance decoder.
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Proof:

Let y be in the ith row and jth column of the standard array, i.e., y € [t] and
ye D/.

We want to show that d(y, ¢;) < d(y, c«) for every k.

On the LHS we have d(y, ¢;) = d(ti + ¢;, ¢;) = w(t).

On the RHS we have d(y, cx) = d(ti + ¢, ck) = w(ti + ¢ — ck) = w(ti + ¢)
for some /.

ti and t; + ¢, are in the same coset, and t; is the coset leader. By choice,
w(t) < w(ti+ c). O
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EXAMPLE (STANDARD ARRAY FOR A TOY-CODE)

LetC = {(0,0,0),(1,1,1)}
—_—— ——

Co C1
Standard Array:
CO:(0707O) C1:(17171) «—C
t1:(0,0,1) t1+C1—(1,1,0) «—t+C
t2=(0,1,0) t2+C1=(1,0,1) —b+C
s =(1,0,0) ts+cr =(0,1,1) ~t+C
——
Dy D=
Do + ¢
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EXAMPLE (DECODING FOR THE TOY-CODE)

Transposed parity-check matrix and corresponding syndrome lookup table:

t s
11 (0,0,0)  (0,0)

H' =[1 o0 (0,0,1)  (0,1)
0 1 (0,1,0)  (1,0)
(1,0,0)  (1,1)

If y = (1,0, 1) is received, the syndrome is s = yH” = (1, 0), the coset
leader is t = (0, 1,0), and the decoded codewordisc =y — t = (1,1,1).
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EXAMPLE ((6, 3) BINARY LINEAR BLOCK CODE)

The code is defined by the following parity-check matrix

011 1] 100
H=[1 0 1 | 0 1 0].
110 ] 0 0 1

No two columns are linearly dependent. The first three columns are linearly
dependent. Hence dnmin = 3.

H has the form (P, /). The generator matrix G has the form (/, —P7):

100 | 0 1 1
G=|o 1 0 | 1 0 1].
001 ] 110
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EXAMPLE (CONT.)

The standard array has 2¥ = 2% = 8 columns and 2" = 2% = 8 rows.

The top row of the standard array is the code, and the left column consists of
the elements of Dy.

The code can correct all the errors of weight 1. Hence all the weight-1 words
are in Dy.

This gives:

000000 | 0OO1110 010101 011011 100011 101101 110110 111000
000001
000010
000100
001000
010000
100000
t7
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EXAMPLE (CONT.)

The next step is to fill in the rows for which we know the coset leader:

000000 | 001110 010101 011011 100011 101101 110110 111000
000001 | 001111 010100 011010 100010 101100 110111 111001
000010 | 001100 010111 011001 100001 101111 110100 111010
000100 | 001010 010001 011111 100111 101001 110010 111100
001000 | 000110 011101 010011 101011 100101 111110 110000
010000 | 011110 000101 001011 110011 111101 100110 101000
100000 | 101110 110101 111011 000011 001101 010110 011000

174

As t; we choose a weight-2 word that has not yet appeared in any row, i.e.,
anything except 001100, 001010, 000110, 010100, 010001, 000101, 100010,

100001, 000011, 110000, 101000, 011000.

We choose &7 = 100100.
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EXAMPLE (CONT.)

000000 | 001110 010101 011011 100011 101101 110110 111000
0oooot1 | 001111 010100 011010 100010 101100 110111 111001
000010 | 001100 010111 011001 100001 101111 110100 111010
000100 | 001010 010001 011111 100111 101001 110010 111100
001000 | 000110 011101 010011 101011 100101 111110 110000
010000 | 011110 000101 001011 110011 111101 100110 101000
100000 | 101110 110101 111011 000011 001101 010110 011000
100100 | 101010 110001 111111 000111 001001 010010 011100

The code will correct all the weight-1 channel-error patterns and the weight-2
channel-error pattern 100100. All the other channel-error patterns will lead to

a decoding error.
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EXAMPLE (CONT.)

The syndrome lookup table, i.e., the table that associates the coset leader ;

to the syndrome s; = t;H' is:

]

000000

000001
000010
000100
001000
010000
100000
100100

The code will correct all the weight-1 channel errors and the weight-2 channel
error 100100. All the other error patterns will lead to a decoding error.

Sj
000
001
010
100
110
101
011
111
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EXAMPLE (CONT.)

If y = 011000 is received, the decoder determines its syndrome
s=yH" =011,
and the corresponding coset leader

t = 100000.

i Si
000000 000
000001 001
000010 010
000100 100
001000 110
010000 101
100000 011
100100 111

The decoded word is
¢c=y—t=111000,

which is indeed a codeword. [J 7s50/798



Disclaimer:

The procedure that we have described requires to store |F|™% coset leaders
and the corresponding syndrome.

While the approach is theoretically appealing, a lookup table of that size is
prohibitive for most codes of practical interest.
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EXAMPLE (CD RoMm)

The information on a CD Rom is encoded via two codes.
One code has parameters |F| = 28, n = 32 and k = 28.

For it, there are |F|(" % = (2%)* = 4.29 x 10° coset leaders.
A coset leader is 8 x 32 = 256 bits long.

A syndrome is 8 x 4 = 32 bits long.

This requires more than 10'2 bits — far more than the capacity of a CD Rom.
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ERROR PROBABILITY

There are many ways to choose Dy.

In fact, every element of every row of the standard array can be chosen as
the coset leader.

Next, we learn how to choose the coset leaders so as to minimize the
decoding error-probability.
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Suppose that the channel is the following binary symmetric channel with

input alphabet X = {0, 1} and output alphabet J = {0,1}.

X y
1—¢
0 0
€
X
1 1
1—¢

The probability of the error pattern e € F" is

w(e) (1 n—w(e) __ € e 1 n
€1 —¢) =7 (1—¢)".

We assume e < 1/2. Then = < 1, and the above expression is a

decreasing function of w(e).
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Let P¢(ci) be the probability that the decoder decodes correctly, given that
¢ € C was transmitted.

When ¢; € C is transmitted, the decoder makes the correct decision
whenever y € Dy. But when ¢y is transmitted, the event y € Dy is the same
as the event e € Dy. Hence,

PC(O) _ Z 6W(e)(1 _ 6)an(e) _ Z EW(II)(.‘ _ 6)!77W(1,')’

e€Dy /=0

where we have defined ) = ¢y = 0.

In conclusion, we maximize P¢(0) if the coset leaders have the smallest
possible weights.
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EXAMPLE (CONT.)

The probability of error Pg is 1 — P¢, where Pg is the probability that the error

pattern e is in Dy.

For the binary symmetric channel, this probability is

Po=(1-¢)+6(1— e+ (1 — )¢

For e = 0.1, Pc = 0.8923.

(The probability that the channel output equals the channel input is (1 — €)

This is 0.531 when e = 0.1.)

ti

000000

000001
000010
000100
001000
010000
100000
100100

6
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We have assumed for simplicity a binary symmetric channel, but the same
idea applies to nonbinary channels (with input and output alphabet ) for
which the probability of an error pattern e € F” is decreasing with w(e).

Pc(ci) is the probability that y € D; when ¢; is transmitted.

This is the probability that ¢; + e € ¢; + Dy.
N N —

y Dj

It is the same as the probability that e € Dy. But this is P¢(0).
Hence, for all i, Pc(ci) = Pc(0).

Hence, the unconditional probability of correct decoding is Pc = P¢(0).
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We conclude that the error probability is minimized when the coset leaders
have the smallest weight.

This can be achieved by reordering each row of the standard array as follows.

Suppose that, in row j we have
w(t) > w(l + c).
By making t + ¢; the new coset leader of the jth row, the following happens:

1. the elements of that row are permuted;

2. the term of P¢(0) that corresponds to the jth row increases whereas the
other terms of P¢(0) are unaffected.
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To Summarize:

>

A linear code C is a subspace of a vector space F”.
The code partitions F” into cosets.
We cannot chose the cosets, but we can choose the coset leaders.

To maximize P¢(0), we let the leader of each coset be one of the
smallest-weight elements of the coset.

The cost leaders form Dgy, and D; = ¢; + Dq.

The error probability is the same and equal to Pc(0), no matter which
codeword is transmitted.
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