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FINITE FIELDS, VECTOR SPACES, AND LINEAR CODES

» Our next goal is to bring algebraic structure into code design and
decoding.

» Encoding, decoding, and computing dnin become easier if the code
forms a vector space.

» Vector spaces are defined over fields.

» For coding, we care about finite fields.

609/798



DEFINITION (COMMUTATIVE GROUP)

A commutative group (also called Abelian group) is a set G endowed with a
binary operation x that combines any two elements a and b to form another
element denoted ax b. The group operation x must satisfy the following five
axioms:

» (Closure:) For all a, b € G, the result of the operation ax b is also in G.

> (Associativity:) Foralla,b € G, ax(bxc) = (axb)xc.

v

(Identity element:) There exists an element e € G, such that for all
ac @G, axe=exa=a.

v

(Inverse element:) For all a € G, there exists b € G, such that
axb=bxa=e.

v

(Commutativity:) Foralla,be G, axb = bxa.
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DEFINITION OF A FIELD

A field is the triplet (I, +, x) where K is a set, and +, x are two binary
operators called addition and multiplication, such that the following axioms
hold:

1. Associativity: Va, b, c € K,
a+(b+c)=(a+b)+c
ax(bxc)=(axb)xc

2. Commutativity: Va, b € K,

at+tb=b+a

axb=bxa
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3. Identity under +: K contains an element, typically denoted by 0, such
that vVa € KC,
a+0=a

4. Inverse under +: Va € K, there exists a unique b € K such that
a+b=0

b is the additive inverse of a, typically denoted by —a.

611/798



. Identity under x: K contains an element, typically denoted by 1, such
that vVa € K,

axl=a
. Inverse under x: Va € K, a # 0, there exists a unique b € K, such that
axb=1

b is the multiplicative inverse of a, typically denoted by a~".

. Distributivity: Va, b, c € K,

ax(b+c)=(axb)+(axc).
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Some remarks:

> If K is finite, then (K, +, x) is a finite field.

> Instead of (+, x) the binary operations of a field may be denoted by
(_F7')1 (*ﬁ O)a (GB, /\), -

> abis a short hand for a x b.
> a— bis ashort hand for a+ (—b).

» If nis a positive integerand b € K, nbmeans b+ b+ ---+ b.
N——

ntimes

> If k is a positive integerand a € K, 8 meansax ax --- x a.
e —

k times
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EXAMPLE

Well-known examples of fields:

> (R, +, "), the (field of) real numbers
» (C,+, "), the (field of) complex numbers

> (Q,+,), the (field of) rational numbers
Well-known examples that are not fields:

> (N, +,-), the (set of) non-negative integers

> (Z,+,-), the (set of) integers
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EXERCISE

Are these finite fields?

» (Z/16Z,+,-), the integers modulo 16

» (z/17Z,+,-), the integers modulo 17

SOLUTION

> (Z/16Z,+, ") is not a field because some non-zero elements do not have
the multiplicative inverse.

> (Z/17Z,+,-) is a field because all its non-zero elements have an
inverse.
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USEFULNESS OF FINITE FIELDS

Any algebraic manipulation in a finite field behaves similarly to R. For
instance:

> we can solve equations

» we can do linear algebra (define vectors and matrices, compute
determinants, etc.)
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EXAMPLES OF CALCULATIONS OVER FINITE FIELDS

The following statements can be deduced from the field axioms:

> ifxeK\0,thenx-y=0=y=0
> Vxeck,0.-x=0

> VxeK, keN,x=0=x=0

> (—1) - x=—x

> (a+ b2 =& +2ab+b?
= (a+l) (a+b) = ab s pb+har ™
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| EXAMPLEe CALCULAToNS | (DetAiLs)
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EXAMPLE CALCUWLATIoNS | (DetaiLs)

2) |IF xv =0
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EXAMPLE
Find the solution of 3x + 6 =4 in (Z/7Z,+, -).

SOLUTION

3Xx+6=43x+6+(—6)=4+(—6)
< 3x=5
38 '.3x=3".5
& x=5.5=25=14
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EXAMPLE

In(Z/7Z,+,-), we have
1+1+---+1=0
N e’
7 times

Hence, the order of 1 with respect to + is 7.
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CHARACTERISTIC OF A FINITE FIELD

> Every field contains the special number 1.

» For a finite field, the order of 1 with respect to + is a prime number p
called the field characteristic.

EXAMPLE

Let p be prime, so that (Z/pZ, +, -) is a finite field. Its characteristic is p.
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EXERCISE

Can you prove that the characteristic of a finite field (F, +, -) is a prime
number?

Hint: (F, +) is a commutative group, hence there exists a smallest integer
m > 1 such that

1414+---4+1=0.

N— ——

m times

PRosr by CovTRADICT (V! M= Ab

te ot = (1+1 D (11 )
e -

o~
Hie Ycees tler
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SOLUTION

» et mbe the smallest number suchthat1 +1+---4+1=0
——/—

m times

» Suppose that m = abwitha > 1and b > 1
» One of the field axioms (distributivity) implies

(Tl =t e ) 7 e 1) =@

atimes b times

» Hence, either

1+1+---+1=0 or 1+1+4+-.-4+1=0
N——— N———

atimes b times

» Contradiction: Hence the smallest m is a prime number.
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DEFINITION

An isomorphism between two finite fields F = (F, +, x) and K = (K, $, ®)
is a bijection
¢: F—=>K

such that, for all a, b € F,

#(a+ b) = ¢(a) ® #(b)
#(ax b) = ¢(a) @ ¢(b).

We say F and K are isomorphic if there exists an isomorphism between
them.
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PROPERTIES OF FINITE FIELDS

THEOREM (TEXTBOOK THEOREM 12.1, WITHOUT PROOF)

1. The cardinality of a finite field is an integer power of its characteristic.
(Hence all finite fields have cardinality p™ for some prime p and some
positive integer m.)

2. All finite fields of the same cardinality are isomorphic.

3. For every prime number p and positive integer m, there is a finite field of
cardinality p”.
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USEFUL FOR US TO KNOW

> (Z/KkZ,+,-) is afinite field iff k = p for some prime p.

v

A field that has p elements is isomorphic to (Z/pZ, +, -).

v

In(Z/pZ,+, ), we know how to add and multiply without tables.

v

A field with p™ elements is denoted by Fyn.

v

Rather than developing the theory that allows us to add and multiply in
Fpm, in most of our examples we stick to (Z/pZ, +, -), keeping in mind
that all we do generalizes to arbitrary finite fields.
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ExAMPLE (F2)

The smallest finite field is (Z/2Z, +, -), denoted by F». Its elements are 0 and
1 and the operations are

g
:

- o
e k=lIK=}
-
o

o|o
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EXERCISE (F3)

Define the finite field of cardinality 3.

SoLuTION (F3)

IF3 is isomorphic to (Z/3Z, +, -), with addition and multiplication defined as
follows:

o
—_
n
o
-

= N|Oo||N

-
—_
N
o
-
oo o
N|—=| O
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EXAMPLE (F4)

Because 4 is of the form p™, there exists a finite field with 4 elements.

Let us denote the elements 0,1, a, b.

The axioms associated to 0 and 1 imply

Ol |—=|O
ol |—=|O
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EXAMPLE (CONT.)

The field characteristic is p = 2, therefore 1 + 1 = 0.
Similarly, x + x = x - (1 +1) = x - 0 = 0 for all x, so we can complete the
diagonal of the + table:

o|lo|=|o|l+
o|lo|=|o|lo
—~|lolo|w |l
o|l=|o|o|loc

Q| T|O|—=

Finally, we can complete the remaining blanks knowing that each element
has to show up exactly once in each row and each column.
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EXAMPLE (CONT.)

Similarly, the - table is completed using the fact that F; = ({1, a, b},-) is a
group.

o|lo|=|oO|l+
Tl 2O O
= O|T | |l®
o= |(T| T
= |O|o (Ol
=T |(O| T

Tl —=O

Tl —=O

QL T(O|—
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EXERCISE

Is F4 isomorphic to (Z/4Z,+,-)?

SOLUTION

It cannot be, because (Z/4Z,+, -) is not a field.

Other reason: in F4, the characteristic is p = 2. Hence a+ a = 0 for all
a € F4. Not the case for (Z/4Z, +, -).
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EXAMPLE (GROUP ISOMORPHISM?)
Let (F4, +) be F4 without multiplication. Is (F4, +) isomorphic to
((z/22)%,+)?

Recall: (Z/2Z)? = Z/2Z x 7./27 with addition component-wise over
(z/2Z, +).

SOLUTION

The answer is YES: both are finite commutative groups. In both cases, all
nonzero elements have order 2. Since they have the same set of orders, they
are isomorphic.

The isomorphismis: 0=00,1=11,a=01,b= 10
or 0=00,1=11,a= 10, b= 01.
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EXAMPLE (FIELD ISOMORPHISM?)

Is F4 isomorphic to ((Z/2Z)?, +,-)?

SOLUTION

The answer is NO, because ((Z/2Z)?, +, ) is not a field: (0, 1) is a non-zero
element that has no multiplicative inverse.

However, since they have the same number of elements, we can redefine the
multiplication of ((Z/2Z)?, +, -) so that the result is a field. It suffices to use
the multiplication table from F4 and substitute 0 = 00, 1 = 11, a = 01,

b = 10. (We are just re-labeling the elements of a previously established
field.)

633/798



SOLUTION (CONT.)

Fy ((z/2z)?, +,®)
+]o]1]a]b + Joo |11 |01 ] 10
offo[1]alb o0 [oo[11]o1]10
11]olb]|a 1111 [ o0 | 10 | o1
alalb|o]1 o1 [[o1 [ 10 | 00 | 11
blblal1]|o0 10 [[ 10 [ o1 | 11 [ 00
-Jlo]1]a]b ® |00 11]01]10
offofloJo]o 00 |[ 0o [ 00 0o 00
1 0O|1|a|b 11 00 | 11 | O1 10
alolalb]1 o1 [[oo0 [ o1 | 10| 11
blolb|1]a 10 [[ o0 [ 10 | 11 | o1
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FINITE-DIMENSIONAL VECTOR SPACES

This is a review, since you should know everything that we need from linear
algebra. (MATH-111e.)

We review only what we need for the chapter on linear block codes (next
week).

For missing proofs, see e.g.

» Sheldon Axler, “Linear Algebra Done Right”, Springer

» Tom M. Apostol, “Linear Algebra: A First Course with Applications to
Differential Equations”, Wiley.

» David C. Lay, “ Linear Algebra and Its Applications”, Addison-Wesley.
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VECTOR SPACES

DEFINITION (VECTOR SPACE)

A nonempty set V is said to be a vector space over a finite field F if:

1. there exists an operation called addition that associates to each pair
U,V € V avector i+ v € V called the sum of 4 and V;

11. there exists an operation called scalar multiplication that associates to
each o € F and vV € V a new vector av € V called the product of o and

-

v;

and these operations satisfy the following axioms:
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DEFINITION (CONT.)

> i+ v=v+iforald,veV,
> (I+V)+w=0U+ (V+w)foral i,v,we V;

There exists an element 0 € V such that0 + v = v forall v € V;

v

v

For all ¥ € V, there exists an element — € V such that V + (—V) = 0;
> o(li+V)=al+avVforallacFandall d,v e V,;

> (a+B)V=av+pvforalla,BeFandallve V;

> o(BV) = (aB)Vforalla,f € Fandall v € V;

> 1V = vforall Vv € V, where 1 is the (multiplicative) identity in F.
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DEFINITION (EQUIVALENT, COMPACT DEFINITION)

(V,+, x) is a vector space over a field F if:
» (V,+) is a commutative (abelian) group;

» The binary operator x is between an element of V and one of I, with the
following properties:

> (associativity) VYV € Vand o, € F, a(BV) = (ap)V;
> (identity) 1V = v;

> (distributivity) a(i+ V) =al+aV and (a+ B)V =aV+ BV.
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EXAMPLE (VECTOR SPACE)

For every field F and every positive integer n, V = F" is the vector space of
n-tuples.

Vector-addition is done component-wise according to the addition rule of F:

(Ut,...,Un) +(va,...,Vn) = (Ut + V4, ..., Un+ Vp)
Multiplication of a vector by a scalar is also done component-wise according
to the multiplication rule of F:

a(Vi,...,Vn) = (aVi,...,aVp)
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EXAMPLE (VECTOR SPACE)

For every field F and positive integer n, the set of polynomials of the form
p(x) = a + arx + - - - + ax" with coefficients ao, . .., a, € F is a vector
space, where the addition of polynomials and the multiplication of a
polynomial by a scalar are done according to the “usual rules”.

FOFRRTIPIPPRN

P = by« b e el w

L= suth 1 (ag)nk o F (kD"

"
= €, + C rv . 4+ (. X
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EXAMPLE (VECTOR SPACE)
Let p be a prime number and consider the field F = (Z/pZ, +, -).

Let n be a positive integer and consider the vector space V = F". This is a
vector space over (the finite field) F.

It turns out that for all vector spaces of the form V = F”, F finite field, we can
define a multiplication among vectors that fulfills all the axioms of a field.

Hence F”, where F = (Z/pZ, +, -), is a vector space that can be made into
the finite field Fpn.

In fact it has p” elements, and its characteristic is p, and there is only one
such field (up to isomorphism).

All finite fields can be put in this form. We have already seen ((Z/2Z)?, +, -).

We are not proving the above result, because we will not make use of it in
this course.
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SUBSPACE OF A VECTOR SPACE

If V is a vector space and S C V with the property that S is closed under
vector addition and multiplication by a scalar, then S is itself a vector space.

(Closure of S with respect to vector addition and multiplication of a vector by
a scalar are required by two axioms. Verify for yourself that the other axioms
that S has to fulfill to be a vector space are automatically inherited from V.)

We call such an S a subspace of V.
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EXAMPLE

Let V=R? Ve V,and define S={§c V:8=av,acR}.
> If 4 e S, then bl = b(av) = (ba)V € Sforallbe R
> Ifa,we S, thenli+w=aV+avV=(a+a)Vves

Hence S is a subspace of V.
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EXAMPLE

Let V = F2 and define S = {(x1, X2, X3) : X; € F7 and x; + 2x2 + 3x3 = 0}.

S is a subspace of V. (Be sure that you see why.)

NB: there are four kinds of operations in a vector space:

1. scalar addition,
scalar multiplication,

vector addition,

Sl o

multiplication of a vector with a scalar.

The one used is always clear from the context.

For instance, it is clear that the above equation x; + 2x, + 3x3 = 0 involves
additions and multiplications in F7.
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A linear combination of a list (v4, . .., V) of vectors in V is a vector of the
form >°1, A\ivi, where Ay, ..., Ay € F.

The set of all linear combinations of (v, ..., V) is called the span of
(V4,...,Vy), denoted span(Vi, ..., Vn).
If span(Vy,. .., Vs) = V, we say that (v4,. .., V,) spans V.

A vector space is called finite-dimensional if some list of vectors in it spans
the whole space. (A list has finite length by definition.)

The vectors v, i = 1,..., n are said to be linearly independent iff
S Aivi=0implies Ay =--- =X, =0.

A basis of V is a list of vectors in V that is linearly independent and spans V.
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THEOREM

A list (V4, ..., V,) of vectors in V is a basis of V iff every v € V can be written
uniquely in the form

n
V=Y AV
i=1
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EXERCISE (PROOF OF =)

Prove that if (4, ..., V,) is a basis of V, then for every vector v € V, there is
a unique set of coefficients A1, ..., A, such that

n
V= A\
i=1
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SOLUTION

(4, ..., Vy) is a basis of V, hence it spans V (by definition), which means that
every v € V can be written as

n
V= Z,\,V,-.
i=1

We need to prove uniqueness. Suppose that >, \iv; = Y7, Bivi.
Then 37, Aivi — S0, Bivi = 0.
Using the axioms, we rewrite as >_7 ,(\i — Bj)Vi = 0.

The linear independence of the basis vectors implies A; — ;i = 0, i.e., A = §;
for all /. O
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EXERCISE (PROOF OF <)

Prove that if every vector v € V has a unique set of coefficients A, ..., \p,
such that .,
V = 2{: Aivm
i=1

then (4, ..., Vy) is a basis of V.
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SOLUTION

By assumption, (i, ..., V,) spans V. It remains to be shown that the list
(4, ..., Vy) is of linearly independent vectors.

Write the zero vector as 0 = >, A;¥;. The uniqueness of the coefficients
implies that \; = 0 for all /.

Hence the vectors v, . . ., V, are linearly independent. O
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THEOREM

Every spanning list in a vector space can be reduced to a basis of the vector
space.
PROOF (OUTLINE)

Remove all the zero-elements of the list.

Of the new list, remove the second element if it is in the linear span of the
first. Repeat the same until we have a list in which the second element is not
in the linear span of the first.

Of the new list, remove the third element if it is in the linear span of the first
two.

Continue similarly.

The result is a list of vectors that span the vector space and are linearly
independent (or else one vector can be written as the linear combination of
vectors with smaller index). O
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The above theorem implies that every finite-dimensional vector space has a
basis.

THEOREM (WITHOUT PROOF)

Any two bases of a finite-dimensional vector space have the same length.

The dimension of a finite-dimensional vector space V, denoted by dim(V), is
defined to be the length of any basis of V.

652/798



A FEW PROPERTIES OF THE DIMENSION OF A VECTOR SPACE

Let V be a vector space and suppose that dim(V) = n.

> If (V4,..., V) is a list of linearly independent vectors in V, then it is a
basis of V.
> If (V4,...,Vs) spans V, then it is a basis of V.

» A list of m > nvectors in V cannot be linearly independent.
» A list of m < nvectors cannot span V.

m=n m>n m<n
A A A

.

Vo Vo
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EXAMPLE

Let F be a finite field. A basis of F" is

((1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)).
It is called canonical basis.

dim(F") = n.
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EXAMPLE

Let S be the subspace of FS spanned by v = (4,3, 1).

Define S by means of equations.
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SOLUTION

(x,y,z) € Simplies (x, y, z) = aVv for some « € F;. Equivalently,
(x,¥,2) = (4a, 3, ) or

X =4«
Yy =3a
Z=w

After eliminating «,
X =4z
y=3z

x+3z=0
1)
y+4z=0

or, using the fact that —4 = 3,
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SOLUTION (CONT.)

Conversely, suppose that (x, y, z) € FS satisfies (1). Let a be the value of z.
Then

X = -3«
y = —4a
Z=w
or, equivalently
X =4«
y =3a
Z=aq,

which can be written as (x, ¥, z) = aV for some « € F7.

We have proved that a vector (x, y, z) € FS is in S iff it satisfies the system of
equations (1).
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EXAMPLE (FINDING A BASIS)

Let V C F2 such that

V= {(X1,X27X3) EIF:;: 3X1 + 2X2 + X3 ZO}

Find dim(V).

The above equation can be described by the vector of coefficients
(3,2,1) € F.

Specifically, the equation is satisfied for (xi, X, X3) iff (3,2, 1)(x1, X2, X3)T = 0.
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SOLUTION

We must obtain a basis of V. The equation 3x; + 2x> + X3 = 0 has two free
variables, say x; and x».

Choose x; = a and xo = .

(X1, X2, X3) = (o, B, —3a — 28) = (v, B, 4a + 53)
= (17074)a+ (07175)ﬂ

Clearly v4 = (1,0,4) and v» = (0, 1,5) are linearly independent and are in V.

Moreover, since (X1, X2, X3) is an arbitrary vector in V, the equation above
clearly shows that V = span(¥;, v»).

(v4, 2) is both linearly independent and spans V, so it is a basis of V.

Therefore dim(V) = 2. O
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THEOREM (WITHOUT PROOF)

The set of solutions in V = F” of m linear homogeneous equations in n
variables is a subspace S of V.

Let r be the dimensionality of the vector space spanned by the coefficient
vectors. Then dim(S) =n—r.

In particular, if the m vectors of coefficients are linearly independent, then
dim(S) =n—m.

Conversely, if S'is a subspace of V = F” with dim(S) = k, there exists a set
of n — k linear equations with coefficients that form linearly independent
vectors in V, the solution of which are the vectors in S.
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EXAMPLE (REVISITED)

Let V C F3 such that

V = {(x1,%2,x3) € F3: 3xy + 2x2 + X3 = 0}

Find dim(V), and then find a basis for V.




EXAMPLE (REVISITED)

Let V C F3 such that

V = {(x1,%2,x3) € F3: 3xy + 2x2 + X3 = 0}

Find dim(V), and then find a basis for V.




EXAMPLE (REVISITED)

Let V C F2 such that

V = {(X1,X2,X3) EF:;: 3X1 + 2Xo + X3 :O}

Find dim(V), and then find a basis for V.

SOLUTION
There is only one vector vV = (3,2, 1) of coefficients. It spans a vector space
of dimension r = 1. Hence dim(V) =3 -1 =2.

If we choose v; = (1,0, v41) and ¥» = (0, 1, v»1), then we are guaranteed that
they are linearly independent. We choose v11 so as to satisfy the above
equation, i.e., vi1 = —3 = 4. Hence v, = (1,0,4)

Similarly we obtain > = (0,1, 5).
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EXAMPLE (REVISITED)
Let S be the subspace of FS spanned by v = (4,3, 1).

Define S by means of equations.

e () = &=

f;7 * Eo‘\AD\'\W\DVj — M= 7\’& _;2——
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SOLUTION

S is a one-dimensional subspace of V = F3, hence it can be described by
3 — 1 =2 equations.

Let us find two linearly independent vectors ¢, ¢; € V such that
ZIL cjv; =0,i=1,2. (The above theorem implies that they exist.)

We can choose ¢ = (1,0, ¢13) and & = (0, 1, cz3) and complete to fulfill the
above equation.

Hence, ¢ = (1,0,—4) = (1,0,3) and & = (0,1, -3) = (0, 1,4).
Therefore S is the set of vectors (x1, X2, X3) that satisfy

Xy +3x3=0
Xo+4x3 =0
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RANK OF A MATRIX

For any matrix with entries in a field F:

» the dimension of the vector space spanned by its rows . ..

» equals the dimension of the vector space spanned by its columns.

It is called the rank of the matrix.
-

)

1
A: -—//D-:\.]/—/“ TZ[R,E“
I

v
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EXAMPLE

Let S be the subspace of V = FS whose elements (xi, xz, x3) verify

4x; +x =0
X1 +x3=0

» The coefficient matrix is A = ﬁ (1) ﬂ

» ltsrankisr = 2.

» dim(S) =dim(V) —r=3-2=1.
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CARDINALITY AND DIMENSION

THEOREM (12.2 OF TEXTBOOK)

An n-dimensional vector space V over a finite field F:

» s finite,

» has cardinality
card(V) = [card(F)]".
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Proof:

Let (V4,..., Vn) be a basis of V. For every v € V, there is a unique n-tuple
(M, ..., An) € F"suchthat Vv = 3>, AV

Hence the mapping
F"— VvV
My An) = V=D A
i

is a bijection.

By the pigeonhole principle,

card(V) = card(F") = [card(F)]".
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