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MOTIVATION / CHANNEL MODEL

I The Internet often drops packets due to congestion.

I Not all the bits on a storage device can be retrieved.

I Wireless signals are very noisy.

We consider two types of channel models:

0100111

0100111

Erasure
Channel

0?001?1

Error
Channel

1000101

(The channel input alphabet is not necessarily binary.)
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We define the erasure weight p (resp. error weight p) as the total number
of erasures (resp. errors).

0100111

0100111

Erasure
Channel

0?001?1 p = 2 [erasures]

Error
Channel

1000101 p = 3 [errors]

Erasures are easier to deal with: they are essentially channel errors of known
location.
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CHANNEL CODING TO DEAL WITH ERASURES

Suppose that the source outputs 2 bits, and we store them as is (no channel
coding):

01
message

Erasure
Channel

0?

If any bit is erased, there is no way to determine the original message. (All
hypotheses are equally valid.)
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Now suppose that we do some channel coding:

Encoder
00 7! 000000
01 7! 000111
10 7! 111000
11 7! 111111

Erasure
Channel

Decoder

00
01

11

01 00
01

11

0?
0?

11

01

The decoder is able to fill the erased positions, because only one codeword is
consistent with the observed channel output.
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CHANNEL CODING TO DEAL WITH ERRORS

Suppose that the source outputs 2 bits, and we store them as is (no channel
coding):

01
message

Error
Channel

00

There is no way to tell that the channel flipped a bit.
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Now suppose that we do channel coding:

Encoder
00 7! 000000
01 7! 000111
10 7! 111000
11 7! 111111

Error
Channel

Decoder

00
01

11

01 00
01

11

00
01

01

01

The channel output is not a valid codeword. The decoder recognizes it, and
assumes that the transmitted codeword is the one that agrees in most
positions with the observed channel output.
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WE STUDY ONLY BLOCK CODES

The above is an (n, k) block code with n = 6 and k = 2: each k source
symbols are substituted by n channel symbols over the same alphabet.

Since the alphabet is {0, 1}, we call it a binary (n, k) block code.

We consider only block codes.
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EXAMPLE OF A NON-BLOCK CODE

The following is a convolutional encoder: every encoder input symbol
produces two encoder output symbols.

The output pair produced at any given time is a linear function of the
corresponding encoder input and encoder state (the previous two inputs).

bj bj�1 bj�2

L

LL

x2j�1 = bj � bj�2

x2j = bj � bj�1 � bj�2

(The name comes from linear system theory, done in your second year.)
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TERMINOLOGY

I The code C is the set of codewords.

I A codeword c is an element of A
n.

(The alphabet A is {0, 1} in our
example).

I The block-length is n.

I Each codeword carries k = log2 |C|

information bits. (k = log2 8 = 3 bits
in our example.)

I The rate is k
n bits per symbol.

Encoder
k = 3 n = 7
000 7! 0000000
001 7! 0011100
010 7! 0111011
100 7! 1110100
011 7! 0100111
101 7! 1101000
110 7! 1001111
111 7! 1010011
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The Hamming distance d(x , y) between two n-tuples x and y is the number
of positions in which they differ.

EXAMPLE (HAMMING DISTANCE)

I x = (101110), y = (100110), d(x , y) = 1

I x = (0427222), y = (1227986), d(x , y) = 5

I x = (0427222), y = (0427222), d(x , y) = 0

I x = (00), y = (22), d(x , y) = 2
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THE HAMMING DISTANCE IS INDEED A DISTANCE

In math, a function of two variables is a distance if it satisfies the following
axioms:

DEFINITION (DISTANCE AXIOMS)

1. non-negativity: d(x , y) � 0 with equality iff x = y .

2. symmetry: d(x , y) = d(y , x).

3. triangle inequality: d(x , z)  d(x , y) + d(y , z).

x

y

z
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d(x
, y)= d(xi

, Yi)
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d(x
, y)= d(xi

, Yi)

CLAIM : d(Xi
,
2) = d(Xi ,Yi) +d(yi ,<i)

EITHER : d(Xi ,2) = 0 ~=
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Proof: We need to check that the triangle inequality holds.

Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn).

The Hamming distance is additive in the sense d(x , z) =
Pn

i=1 d(xi , zi)| {z }
0 or 1

.

I if d(xi , zi) = 0, then d(xi , zi) 7 d(xi , yi) + d(yi , zi).

I if d(xi , zi) = 1, then either d(xi , yi) = 1 or d(yi , zi) = 1 or both.

I Hence d(xi , zi) 7 d(xi , yi) + d(yi , zi).

I By adding over all i ,

d(x , z) =
nX

i=1

d(xi , zi) 7

nX

i=1

�
d(xi , yi) + d(yi , zi)

�
= d(x , y) + d(y , z).
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GEOMETRICAL INTERPRETATION

An n-length sequence of integers may be seen as an element of Rn.

00

01

10

11

d(00, 11)  d(00, 10) + d(10, 11)

000

010

001

011

100

110

101

111

d(011, 100)  d(011, 001) + d(001, 100)
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MINIMUM-DISTANCE DECODER

I The decoder guesses the encoder input based on the channel output.

I Here we consider only minimum-distance decoders.

Encoder
00 !� 000000
01 !� 000111
10 !� 111000
11 !� 111111

Error
Channel

Decoder

00
01

11

01 00
01

11

00
01

01

01
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Let y be the channel output observed by the decoder. A minimum-distance
decoder decides that the channel input is (one of) the ĉ � C for which d(y , ĉ)

is minimized:
ĉ = arg min

x�C
d(y , x)

The justification is that a small error weight is more likely than a large one.
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EXAMPLE (MINIMUM-DISTANCE DECODER)

Let y = (0110111) be the channel output.

The encoder decides that the channel input was
ĉ = (0100111).

Encoder
k = 3 n = 7
000 !� 0000000
001 !� 0011100
010 !� 0111011
100 !� 1110100
011 !� 0100111
101 !� 1101000
110 !� 1001111
111 !� 1010011
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DEFINITION (MINIMUM DISTANCE)

The minimum distance of a code C is

dmin(C) = min
x,y�C;x 2=y

d(x , y)

EXAMPLE

C = {000000, 100110, 011001, 111111} = dmin(C) = 3.
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Code C

0000 n = ↑
000l
0 0 1 0 k= 10g2(6) = log216 = 4001 I
010 O

010
0110
o 1 1 I Rate== =

1
.

100 0

100
1018
101 I
110 0
& 10 &min= 1 .111 0

111



Code C

0000 n = ↑
000l
0 0 1 0
001 I k= 10g2(6) = log28 = 3
010 O

010
0110

Rate= = 3o 1 1 I

&min= 1 .



Code C

0000 n = 4
001
1108
111 / b= 102/5) = logz4 = 2

Rate= = 1.

&min= 2



Code C

0000 n =

11I I en= Togn() = 1 - 2 = /

k I
Rate = in

=

I

&min= 4



CODE E

00 0 n = 3
00 1
002
018 t= 109216) =19227o 1 I
01 2

Rate = loga27
t

020

02/ channel use022 3
100
10

110

k = logz(6) = log,27 = 3102

11 - Rate = E=1112 ALPHA BET
140

SIZE
· dmin-1

.

222



Code C

000 n = 3
01 I

022 2= boy2(b) = 109
,
9 = 2

110

220
Rate= = 3

121
102

201
212 drin= 2

-> 300000-EASURE



HAMMING DISTANCE :

1) d(x ,y) 20 w
. eg . if
X = y .

2)d(x ,y) = d(y , x)

3)d(x,z)[d(x, y) +d(y,z)



WHAT TO EXPECT FROM A DECODER

For an error channel:

(1) channel-error correction: the best is if the decoder recognizes and
corrects the channel errors. In this case, the encoder input is recovered
error-free.

(2) channel-error detection: in some circumstances, the encoder is able to
detect the presence of channel errors but it is unable to correct them.
The receiver may or may not ask for retransmission.

(3) decoding error: the worse is if the decoder tries to do as in (1) and
makes the wrong decision.
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For an erasure channel:

(1) erasure-correction: the best is if the decoder is capable of filling in the
erased positions. In this case, the encoder input is recovered error-free.

(2) (erasure detection: unlike errors, erasures are always detected.)

(3) decoding error: the worse is if the decoder fills-in one or more erased
positions with incorrect symbols.
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ERROR DETECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERROR DETECTION: TEXTBOOK THEOREM 11.2)

1. Channel errors of weight p < dmin(C) do not lead to a codeword. Hence
they are detected.

2. Some channel errors of weight p 7 dmin(C) do lead to another codeword.
Hence they cannot be detected by a minimum-distance decoder.

Note: Erasures are always detected (by definition).
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Proof:

1. I Let c  C be transmitted and y be received.

I If p = d(c, y) < dmin(C), y cannot be a codeword, therefore the error is
detected.

2. I We construct an example in which a channel error of weight p = dmin(C)
cannot be detected.

I Let c and c� be codewords at distance dmin(C).

I Suppose that c is the channel input and the channel output is y = c�.

I y is a codeword. A minimum-distance decoder will decide that no channel
error has occurred.
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EXAMPLE (ERROR DETECTION)

Let the encoding map be the MOD 97-10 procedure:

u !� v = (100 · u) +
P
98 � [100 · u]97

|

Recall that v is considered as valid if [v ]97 = 1.

For example, u = 0216936631 !� v = 021693663165.

Suppose v is transmitted and v � is received, d(v , v �) = 1.

We can always write v � = v + a10k with a  {�9, . . . ,�1, 1, . . . , 9}.

The only way for v � to be a valid codeword is if
{
a10kz

97 = 0.

Since [10]97 is invertible, so is [10k ]97, hence a = 0.

Therefore all weight 1 errors are detected, implying that the minimum
distance is at least 2.
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ERASURE CORRECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERASURE CORRECTION: TEXTBOOK THEOREM 11.3)

A minimum-distance decoder for a code C corrects (fills in) all the erasures
of weight p iff p < dmin(C).
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PROOF

2: Suppose that p < dmin(C).

Let c and y be the input and the output of an erasure channel,
respectively, with d(c, y) = p.

We show that there is only one way to fill in the erased positions.

Let c  C and c̃  C be two codewords that agree with y in the
non-erased positions.

Clearly d(c, c̃) ) p < dmin(C). This is possible only if c = c̃.
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PROOF

�: We use contraposition.

Suppose that p = dmin(C).

We construct an example where the decoder will not always decode
correctly.

Let c and c� be codewords at distance dmin(C).

Let c be the channel input, and suppose that the channel outputs the y
obtained by erasing the p components of c that differ from c�.

Notice that d(c, y) = p = d(c�, y).

If c is a minimum-distance codeword, then so is c�.
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ERROR CORRECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERROR CORRECTION: TEXTBOOK THEOREM 11.4)

A minimum-distance decoder for a code C corrects all channel errors of
weight p iff p < dmin(C)

2 .
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PROOF :

TRUE CODEWORD
:
C

NOISY CHANNEL OUTPUT i y
d(c

,y) = p
LET E BE THE OUTPUT OF

THE MIN ,num DISTANCE DECODER,

d(
, y) = p

THEN : ~
TRIANGLE !

W

d(c,)) +d



- 2p < &min (G).
HENCE, c
=

.

HEN CE MIN . DIST. DECODER
/

OUTPUTS THE CORRECT ANSWER.
T



Proof of 7:

Let c and y be the input and the output of an error-channel, and suppose that
d(c, y) = p < dmin(C)

2 .

Let ĉ ! C be the guess made by a minimum-distance decoder that observes
y .

We prove that ĉ = c.

d(y , ĉ) � p because d(y , c) = p.

By the triangle inequality, d(c, ĉ) � d(c, y) + d(y , ĉ) � 2p < dmin(C).

Hence ĉ = c.
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Proof of �: We use contraposition.

We have seen that if p = dmin, then the channel output can be a different
codeword.

Hence it suffices to consider dmin > p 
dmin(C)

2 .

We construct an error pattern of weight p that cannot be corrected.

Let c and c� be codewords at distance dmin(C).

Let y be obtained as follows: of the dmin(C) positions where c and c�

disagree, p positions are chosen as in c�. All the remaining positions are
chosen as in c. By construction,

d(c, y) = p

d(c�, y) = dmin(C) 2 p � 2p 2 p = p.

We see that c� is at least as close to y as c.
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DETECTION/CORRECTION SUMMARY

detection
guaranteed if

correction
guaranteed if

erasure channel (not applicable) p < dmin

error channel p < dmin p < dmin
2
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EXERCISE

What is the minimum distance of code C?

SOLUTION

dmin = d(c0, c1) = 3.

(Many other pairs (ci , cj) satisfy d(ci , cj) = 3 as well.)

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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Note: For notational convenience, we often write codewords without
parenthesis or commas. For instance, 0000000 is a shorthand notation for
(0, 0, 0, 0, 0, 0, 0).

EXERCISE (CONT.)

How many erasures can C correct?

If y1 = ?01110?, what was the transmitted codeword?

If y2 = 11???00, what was the transmitted codeword?

If y3 = ???0011, what was the transmitted codeword?

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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SOLUTION

dmin(C) = 3, so the code can correct all erasures of weight
p < dmin(C) = 3.

For y1, p = 2 < dmin(C): correction is guaranteed. y1 is
decoded to c1.

For y2, p = 3 )< dmin(C): correction is not guaranteed in
general. In fact, y2 cannot be corrected by a
minimum-distance decoder, because c3 and c5 are at the
same distance from y .

For y3, p = 3 )< dmin(C): correction is not guaranteed in
general, but only one codeword is compatible with this y ,
namely c7.

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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EXERCISE (CONT.)

How many errors can C correct?

If y1 = c1 + 0100000, what codeword is decoded?

If y2 = c4 + 0010100 = 0110011, what codeword is
decoded?

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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SOLUTION

dmin(C) = 3, so the code can correct all errors of weight
p < dmin(C)

2 = 1.

p(y1) = 1 � arg minĉ2C d(y1, ĉ) = 0011100 = c1.

p(y2) = 2 � arg minĉ2C d(y2, ĉ) = c2 )= c4.

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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EXERCISE

Let |C| = M. How many distances do we have to check to determine dmin(C)

via a brute-force approach?
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SOLUTION

Consider the following M � M matrix, with as many rows and columns as the
number of codewords.

1 2 3 M 2 1 M
1 x

( (
· · ·

( (

2 x x
(

· · ·
( (

...
...

...
M 2 1 x x · · · x

(

M x x · · · x x

A "
(

" at position (i, j) means that ci and cj need to be compared, whereas
"x" means that they don’t need to be compared.

There are 1
2 (M2

2 M) = 1
2 M(M 2 1) =

P
M
2

|
of them.
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I The code used in CDs has M = 21024
6 10300 codewords.

I A brute-force approach requires on the order of 10600 comparisons.

I (There are about 1050 atoms on Earth, about 1080 atoms in the universe,
and about 5 � 1029 picoseconds since the big bang.)

I We need codes that have structure, for which we can tell the minimum
distance via analytical means, rather than by brute-force computation.

I First, we derive an upper bound to dmin(C).
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UPPER BOUND TO dmin(C)

Recall the important parameters of a block code C over a D-ary alphabet:

I n, the block length.

I k = logD |C|, the number of information symbols carried by a codeword.
(Equivalently, |C| = Dk .)

I dmin is the minimum distance.
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THEOREM (SINGLETON’S BOUND: TEXTBOOK THEOREM 11.5)

Regardless of the alphabet size, the minimum distance of a block code
satisfies

dmin 2 1 � n 2 k

Block codes that satisfy the Singleton bound with equality are called
Maximum Distance Separable codes. (MDS codes.)
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PROOF :

-> -dmin-1-
112 N

2 23

E:it·
=

k
D9 0 12 ... 2301

.

I I



~
NO Two Of These

STRINGS OF LENGTH -(dmin-1)
CAN BE EQUAL !

OTHERWISE
,
THE CODE CANNOT

HAVE MINIMUM DISTANCE

dmin



BUT How MANY DIFFERENT

STRINGS OF LENGT -(duin-t
CAN WE MAKE ?

-> D
n -(dmin- 1)

Hence We must HAVE :

k n -(dmin- 1)
D = D

#
h = n-drin +1

t



TERMINOLOGY REVIEW

Recall that for a function f : E 7 F

I E is the domain

I F is the codomain

I f (E) is the image

I (range is sometimes used for the codomain, and sometimes for the
image)
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PIGEONHOLE PRINCIPLE

injective
(one-to-one)

surjective
(onto)

bijective
(one-to-one and onto)

Let f : E 7 F , where E and F are finite sets.

f injective ! |E| � |F|

f surjective ! |E| � |F|

f bijective ! |E| = |F|
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Proof of the Singleton Bound:

Consider the map f : C 7 A
n�(dmin�1) that removes the last dmin  1

components of a codeword

f : (c0, . . . , cn�dmin , cn�(dmin�1), . . . , cn�1P |{ z
dmin�1 components

) 27 (c0, . . . , cn�dmin )

The code has minimum distance dmin, so f is injective (one-to-one).

By the pigeonhole principle, the cardinality of its domain cannot exceed the
cardinality of the codomain:

|C| � |A|
n�(dmin�1)

Dk
� Dn�(dmin�1)

k � n  (dmin  1).
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EXERCISE

Write down dmin  1 and n  k for this code. Verify that
Singleton’s bound is satisfied.

SOLUTION

dmin  1 = 2.
n  k = 7  log2 8 = 4.

Since dmin  1 � n  k , Singleton’s bound is satisfied.

code C

c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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