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COMPUTER SCIENCE

AICC-I

▶ Computation

▶ Algorithms

▶ Discrete Structures
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COMPUTER SCIENCE

AICC-I

▶ Computation

▶ Algorithms

▶ Discrete Structures

But to have interesting
computations, we need data!
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COMPUTER SCIENCE

AICC-I
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From The Opte Project
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COMPUTER SCIENCE

AICC-I

▶ Computation

▶ Algorithms

▶ Discrete Structures

AICC-II

▶ Communication

▶ Information and Data Science

▶ Cryptography, Secrecy,
Privacy
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IN THIS COURSE: THREE MAIN TOPICS

▶ Source Coding: It is about compressing information.

▶ Cryptography: It is about protecting the information
against undesirable human activities: how to provide
message integrity and confidentiality.

▶ Channel Coding: It is about protecting the information
from natural damages.

All three pertain to information storage/communication.
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WE STUDY: SOURCE CODING, CRYPTOGRAPHY, CHANNEL CODING

Why these topics?

▶ important building blocks of communication systems

▶ non-evident topics and the results are often surprising

▶ intimately related to fundamental concepts (probability theory, linear
algebra, number theory)

▶ have a common root: the notion of entropy

▶ require/promote rigorous thinking
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Digital Communication: The "Big Picture"

10 / 798



COMMUNICATION OVER THE INTERNET

Process 1 Process 2

Application Application
(HTTP, SMTP, . . . )

(compression, encryption)

Transport Transport
(TCP/UDP, . . . )

(channel coding)

Network Network(routing)

Link Link(channel coding)

Physical Physical

Physical Medium
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POINT-TO-POINT COMMUNICATION SYSTEM

fast, private, and reliable bit-pipe

private and reliable bit-pipe

reliable bit-pipe

source coding 
(compression)

source decoding 
(expansion)

encryption decryption

channel coding channel decoding

Transmitter Side Receiver Side

source sink

physical channel
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FIRST TOPIC: SOURCE CODING

We will rely on discrete probability theory and on the work of various
people including:

Shannon Fano Huffman
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SECOND TOPIC: CRYPTOGRAPHY

We will rely on number theory

Euler Fermat

as well as on group theory and on the work of various people including:

Shannon Clifford Cocks Rivest, Shamir, Adleman
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THIRD TOPIC: CHANNEL CODING

We will rely on finite fields

Galois

as well as on linear algebra and on the work of various people including:

Shannon Reed Solomon
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Course Organization
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TEACHING CREW

▶ Professor:
Michael Gastpar

▶ Senior Teaching Assistants:
Adrien Vandenbroucque, Millen Kanabar, Yunzhen Yao

▶ Student TAs:

Roxanne Chevalley Ait Lalim Adrien Mehdi Zoghlami
Michaël Brasey Yuki Crivelli Valerio de Santis
Théo Hollender Gersende Kerjan Simon Lefort
Mattia Metzler Emmanuel Omont Laura Paraboschi

Anthony Tamberg
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SCHEDULE

▶ Tuesdays 15:15 - 17:00
Lecture
RLC E1 240

▶ Wednesdays 13:15 - 15:00
Lecture
RLC E1 240

▶ Wednesdays 15:15 - 17:00
Exercises
Various rooms, see Moodle
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GRADING FORMULA

▶ 90% Final exam during exam period.
Note: No documents or electronic devices allowed during the exam.

▶ 10% Quizzes (on-line on Moodle).
▶ There will be 6 Quizzes. Only the best 5 count.
▶ The Quiz questions are very similar to the final exam questions in style and

difficulty.
▶ On the Quizzes, you can update your answer as many times as you want

before the deadline.
▶ However, once the deadline is passed, you can no longer change your

answers.

▶ There is also a weekly homework set:
▶ The Quizzes are highly correlated with the homework.
▶ If you did not do the homework, you should not expect to be able to do

the Quizzes!
▶ We do not grade the homework.
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HOW TO BE EFFICIENT AND DO WELL IN THIS COURSE

Before class (stay ahead):

▶ browse through the slides to know what to expect

▶ review the background material as needed

After class:

▶ read the notes: they are the reference

▶ do the review questions

Before the exercise session:

▶ are you up-to-date with the theory?

▶ solve what you can ahead of time and finish during the exercise session

▶ write down YOUR own solution
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COURSE WEB SITE

▶ moodle.epfl.ch > Informatique (IN) > Bachelor > COM-102 Advanced
information, computation, communication II
(Password protected if not registered to AICC-II)

▶ There you’ll find:
▶ Lecture slides

▶ Link to videos

▶ Homework assignments

▶ Solutions

▶ Quizzes

▶ Forums (news and questions/answers)
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Review of Discrete Probability:
(Book Chapter 0)
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INITIAL CASE: FINITE Ω WITH EQUALLY LIKELY OUTCOMES

Sample space Ω: set of all possible outcomes.

Ω = {ω1, . . . , ωn}

Ω

Event E: subset of Ω. Since the outcomes are equally likely,

p(E) =
|E |
|Ω| .

E

p(E) = 6
24

Ω

26 / 798



CONDITIONAL PROBABILITY

The conditional probability p(E |F ) is the probability that E occurs, given
that F has occurred (hence assuming that |F | ̸= ∅):

p(E |F ) =
|E ∩ F |
|F | .

E

F p(E |F ) = 3
10

Ω

We may think of F as a new sample space.
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INDEPENDENT EVENTS

Events E and F are called independent if p(E |F ) = p(E).

Ω

F

E

p(E |F ) = 1
3 = p(E)

E and F are independent

Ω

F

E

p(E |F ) = 1
2 ̸= p(E) = 1

3

E and F are NOT independent
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GENERAL CASE: FINITE Ω, ARBITRARY p(ω)

Sample space Ω: set of all possible outcomes.

Ω = {ω1, . . . , ωn}
Ω

Probability distribution (probability mass function) p:
A function p : Ω→ [0, 1] such that∑

ω∈Ω

p(ω) = 1.
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Event E: a subset of Ω.

E

Ω

The domain of the probability mass function p is extended to the power set of
Ω:

p(E) =
∑
ω∈E

p(ω).
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CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS

The general form for the conditional probability is

p(E |F ) =
p(E ∩ F )

p(F )

for F such that p(F ) ̸= 0.

Ω

F

E

Independent Events. Exactly as before, events E and F are called
independent if p(E |F ) = p(E). Equivalently, E and F are independent if
p(E ∩ F ) = p(E)p(F ).
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Disjoint Events:

If E1 and E2 are disjoint events then

p(E1 ∪ E2) = p(E1) + p(E2).

E1

E2

Ω
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Law of Total Probability:

For any F ⊆ Ω and its complement F c ,

E

F F c

Ω

p(E) = p(E |F )p(F ) + p(E |F c)p(F c).

More generally, if Ω is the union of disjoint events F1,F2, . . . ,Fn,

p(E) = p(E |F1)p(F1) + p(E |F2)p(F2) + · · ·+ p(E |Fn)p(Fn).

(Divide and conquer.)
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Proof: We prove the law of total probability for Ω = F ∪ F c . (The general
case follows straightforwardly.)

E

F F c

Ω

p(E) = p(( E ∩ F ) ∪ (E ∩ F c)︸ ︷︷ ︸
union of disjoint sets

)

= p(E ∩ F ) + p(E ∩ F c)

=
p(E ∩ F )

p(F )
p(F ) +

p(E ∩ F c)

p(F c)
p(F c)

= p(E |F )p(F ) + p(E |F c)p(F c).
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EXERCISE

Example of Total Probability: Two factories supply light bulbs.

▶ Factory F1’s bulbs work for over 5000 hours in 99% of cases;

▶ Factory F2’s bulbs work for over 5000 hours in 95% of cases.

▶ It is known that factory F1 supplies 60% of the total bulbs.

What is the chance that a bulb chosen at random works for longer than 5000
hours?
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SOLUTION

Answer:
Ω is the space of all bulbs.
(Optional: to picture the partitioning of Ω into subsets, you may want to
imagine each bulb being labeled by the factory’s name and the number of
hours that it works.)
Let E ⊆ Ω be the set that consists of all bulbs that work for longer than 5000
hours and let Fi ⊆ Ω be the set of bulbs from factory i = 1, 2.

▶ p(E |F1) = .99

▶ p(E |F2) = .95

▶ p(F1) = .6

p(E) = p(E |F1)p(F1) + p(E |F2)p(F2) =
99

100
× 6

10
+

95
100
× 4

10
=

974
1000

.
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Sometimes we are given p(E), p(F ) and p(E |F ), and we need p(F |E).

In this case we use Bayes’ Rule:

p(F |E) =
p(E |F )p(F )

p(E)
.

Proof: We use the definition of conditional probability to write p(E ∩ F ) two
ways and solve for p(F |E):

p(F |E)p(E) = p(E ∩ F ) = p(E |F )p(F ).
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Example:

Let Ω be a population of drivers (e.g. of Switzerland, on New Year’s eve).

Let A be the event that a driver has an accident.

Let D be the event that a driver is drunk.

From observations, the police knows p(A), p(D) as well as p(D|A).

p(A|D) cannot be easily obtained from observations. Yet, knowing it might
discourage a drunk person to drive.
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Let us be concrete (numbers are made up):

p(A) = 10−6,

p(D) = 0.1,

p(D|A) = 0.8.

Now

p(A|D) =
p(D|A)p(A)

p(D)
=

0.8× 10−6

0.1
= 8× 10−6.

We can also compute

p(A|Dc) =
p(Dc |A)p(A)

p(Dc)
=

(1− 0.8)× 10−6

(1− 0.1)
=

2
9
× 10−6.

Notice that, in this case, p(A|D)
p(A|Dc ) = 36.
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Random Variable X : A function X : Ω→ R.

R

ω2

ω12

ω21 X(ω21) X(ω2)

X(ω12)

Ω
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Probability distribution pX : pX (x) is the probability that X = x , i.e. the
probability of the event

E = {ω ∈ Ω : X (ω) = x}.

Hence,
pX (x) =

∑
ω∈E

p(ω).

R

ω2

ω12

ω21 X(ω21) X(ω2)

X(ω12)

Ω

41 / 798



EXAMPLE (LUCKY DICE)

You roll a dice.
If the outcome is 6, you receive 10 CHF. Otherwise, you pay 1 CHF.

Ω = {1, 2, 3, 4, 5, 6}

For each ω, p(ω) = 1/6.

Then, define:

X (ω) =

10, ω = 6

−1, ω ∈ {1, 2, 3, 4, 5}.

Hence, we have

pX (x) =

 1
6 , x = 10
5
6 , x = −1.
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How about the probability that X ∈ [a, b]?

R

G

a b

We can compute it two ways:

▶ using p:
∑

ω∈G p(ω).

▶ using pX :
∑

x∈[a,b] pX (x).

43 / 798



EXERCISE (LISA ROLLS TWO DICE)

▶ Lisa rolls two dice and announces the sum L written as a two digit
number.

▶ The alphabet of L = L1L2 is {02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12}.
▶ The alphabet of L1 is {0, 1}.

▶ The alphabet of L2 is {0, 1, . . . , 9}.

▶ Determine pL.
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SOLUTION

Ω =
{
(i, j) : i, j ∈ {1, . . . , 6}

}
.

L : Ω→ R defined by L
(
(i, j)

)
= i + j written as a two-digit number.

L = 02 iff ω = (1, 1), which has probability 1
36 .

L = 03 iff ω ∈ {(1, 2)} ∪ {(2, 1)}. The events {(2, 1)} and {(1, 2)} are
disjoint, with probability 1

36 each. Hence L = 03 with probability 2
36 .

Etc.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Two Random Variables:

Let X : Ω→ R and Y : Ω→ R be two random variables.

The probability of the event E(x,y) = {ω ∈ Ω : X (ω) = x and Y (ω) = y} is

pX ,Y (x , y) =
∑

ω∈E(x,y)

p(ω).

We can compute pX from pX ,Y :

pX (x) =
∑

y

pX ,Y (x , y).

pX is called marginal distribution (of pX ,Y (x , y) with respect to x).

pY can be computed similarly.
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EXERCISE

Determine the probability pL1 , knowing pL, where L = L1L2.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

L1 0 1
pL1
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SOLUTION

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We marginalize:

pL1(1) =
∑

x

pL1,L2(1, x) =
3
36

+
2

36
+

1
36

=
6

36
=

1
6
.

Hence

L1 0 1
pL1

5
6

1
6

48 / 798



The Expected Value E[X ] of a random variable X : Ω→ R is

E[X ] =
∑
ω

X (ω)p(ω)

=
∑

x

xpX (x).

To see that these two expressions are indeed equal, we reorganize the sum:∑
ω

X (ω)p(ω) =
∑

x

∑
ω:X(ω)=x

X (ω)p(ω) =
∑

x

x
∑

ω:X(ω)=x

p(ω) =
∑

x

xpX (x).
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EXERCISE LUCKY DICE

You roll a dice.
If the outcome is 6, you receive 10 CHF. Otherwise, you pay 1 CHF.
What is your expected gain or loss?

SOLUTION

Recall: Ω = {1, 2, 3, 4, 5, 6} and for each ω, p(ω) = 1/6.

X (ω) =

10, ω = 6,

−1, ω ∈ {1, 2, 3, 4, 5}.
Then,

E[X ] =
∑
ω

X (ω)p(ω) =
1
6
(−1) +

1
6
(−1) +

1
6
(−1) +

1
6
(−1) +

1
6
(−1) +

1
6
· 10

=
∑

x

xpX (x) =
5
6
(−1) +

1
6
· 10
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Expectation is a linear operation in the following sense:

Let X1, X2, . . . , Xn be random variables and α1, α2, . . . , αn be scalars. Then

E
[ n∑

i=1

Xiαi

]
=

n∑
i=1

αiE[Xi ].

(See e.g. Rosen.)
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Recall that two events E and F are independent iff

p(E |F ) = p(E)

or, equivalently, iff
p(E ∩ F ) = p(E)p(F ).
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Two random variables X and Y are independent iff, for all realizations x and
y ,

p({X = x} ∩ {Y = y}) = p({X = x})p({Y = y}),

or, more concisely, iff
pX ,Y (x , y) = pX (x)pY (y).

Generalization to n random variables is straightforward: X1,. . . , Xn are
independent iff

pX1,...,Xn (x1, . . . , xn) =
n∏

i=1

pXi (xi).
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The conditional distribution of Y given X is the function pY |X defined by

pY |X (y |x) =
pX ,Y (x , y)

pX (x)
.

It is defined for all x such that pX (x) ̸= 0.
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The following statements are equivalent to the statement that X and Y are
independent random variables:

▶ pX ,Y = pX pY ;

▶ pY |X (y |x) = pY (y) (for all x for which it is defined and for all y );

▶ pY |X (y |x) is not a function of x ;

▶ pX |Y (x |y) = pX (x) (for all y for which it is defined and for all x);

▶ pX |Y (x |y) is not a function of y .
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EXERCISE

Let L be the random variable modeling Lisa’s experiment.

Let L1 and L2 be the first and the second digit of L, respectively.

Are L1 and L2 independent ?

Hint: Compute pL(13).

56 / 798



SOLUTION

pL1(1) =
1
6

(found earlier)

pL2(3) =
2

36
(see table below)

pL(13) = 0 ̸= pL1(1)pL2(3)

Hence L1 and L2 are NOT independent.

L 02 03 04 05 06 07 08 09 10 11 12
pL

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

L1 0 1
pL1

5
6

1
6

L2 0 1 2 3 4 5 6 7 8 9
pL2

3
36

2
36

2
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36
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The expected value of a product is NOT always the product of the expected
values.

Example: X = Y ∈ {−1, 1}, uniformly distributed.

E[XY ] = 1

E[X ]E[Y ] = 0

However, if X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ].

(See e.g. Rosen.)
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SUMMARY — PROBABILITY REVIEW

▶ Random variable
▶ Probability distribution

▶ Joint distribution of multiple random variables.
▶ Marginal distribution.
▶ Conditional distribution.

▶ Independence
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Sources and Entropy
(Book Chapter 1)
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How do we communicate in the digital world?

We communicate by revealing the value of a sequence of variables that we
call (information) symbols.

The i-th symbol might represent

▶ the intensity of the i th pixel of a black/white digital photo

▶ your score in your i th exam

▶ the i th bit of a binary file

▶ the i th letter of a text

▶ etc.
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In an article that appeared in 1928, Hartley (Bell Labs) wrote: A symbol
provides information only if there had been other possibilities for its value,
besides that which was revealed.

In modern language, Hartley was saying that the value of a symbol provides
information only if the symbol is a (non-constant) random variable.
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In the same article, Hartley gave a tentative answer to the following related
question: How much information is carried by a symbol such as S?

Hartley’s answer:

▶ Suppose that S ∈ A is a symbol that can take on |A| different values.

▶ The amount of information conveyed by n such symbols should be n
times the information conveyed by one symbol.

▶ There are |A|n possible values for the n symbols.

▶ This suggests that log |A|n = n log |A| is the appropriate measure for
information, where we are free to choose the base for the logarithm.
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EXAMPLE

In a village that has 8 telephones, we can assign a different three-digit binary
number, such as 001, to each phone.

Hence it takes 3 bits of information to identify a phone. Mathematically, the
phones are represented by a uniformly distributed random variable
S ∈ A = {1, 2, . . . , 8}.
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EXAMPLE

The world population in 2024 is estimated to be 8.1 billion.

Hence it takes log2(8.1× 109) = 32.9 bits of information to identify a person.
A person is represented by a uniformly distributed random variable
S ∈ A = {1, 2, . . . , 8.1× 109}.

The world population in 1970 is estimated to have been 3.7 billion. How
many bits did it take back then?
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The following example shows that something is not right with Hartley’s
measure of information.

EXAMPLE

Suppose that Sn ∈ {sunny, rainy} is the weather prognosis for day n + 1,
revealed on day n. Suppose that Sn = rainy has probability 5

365 .

It seems intuitively obvious that the amount of information provided by
Sn = rainy is much higher than that provided by Sn = sunny.

Hartley’s measure assigns log2(2) = 1 bit of information to both, Sn = sunny
and Sn = rainy.
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In an article that appeared in 1948, Shannon fixes the problem by defining
the notion of uncertainty or entropy H(S) associated to a discrete random
variable S.

DEFINITION (ENTROPY, UNCERTAINTY)

Hb(S) := −
∑

s∈supp(pS)

pS(s) logb pS(s),

where supp(pS) =
{

s : pS(s) > 0
}
.
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A few comments are in order regarding

Hb(S) := −
∑

s∈supp(pS)

pS(s) logb pS(s) :

▶ The condition s ∈ supp(p) is needed because logb pS(s) is not defined if
pS(s) = 0.

▶ To simplify the notation, we declare that pS(s) log pS(s) = 0 when
pS(s) = 0. This convention allows us to simplify the notation to

Hb(S) = −
∑
s∈A

pS(s) logb pS(s).

▶ The choice of the base b determines the unit. Typically b = 2. In this
case, the unit is the bit.
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We can think of evaluating

H(S) = −
∑
s∈A

pS(s) log pS(s)

by first computing − log pS(s) for each s ∈ A, and then take the average
(excluding zero-probability terms).

Hence we can write
H(S) = E[− log pS(S)].
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EXAMPLE

When pS is the uniform distribution over the alphabet A, pS(s) = 1
|A| and

− log pS(s) = log |A|, which is constant.

In this case
H(S) = E[log |A|] = log |A|,

which is Hartley’s information measure.

Hence Shannon’s entropy equals Hartley’s measure of information if (and
only if as we will see) the random variable has uniform distribution.

We will see that Shannon’s entropy it is indeed the answer to very practical
engineering questions.
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EXAMPLE (ANNE’S LOCK)

A sequence of 4 decimal digits s1, s2, s3, s4 representing
the number to open Anne’s lock can be seen as the output
of a source S1,S2,S3,S4 with Si ∈ A = {0, 1, . . . , 9}.

If Anne picks each of the 4 digits at random and independently, then all 4-digit
sequences are equiprobable, i.e.,

pS1,S2,S3,S4(s1, s2, s3, s4) =
1

104 for all 4-digit numbers s1s2s3s4.

Notation: When no confusion can arise, we write p(s1, s2, s3, s4) instead of
pS1,S2,S3,S4(s1, s2, s3, s4).
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EXAMPLE (ANNE’S LOCK, ALTERNATIVE VIEW)

We can also take the view that Anne’s lock number is
modeled by a single random variable

S ∈ A = {0000, 0001, . . . , 9998, 9999}

p(s) =
1

104 for all 4-digit numbers.

Since the distribution is uniform over the alphabet A,

H(S) = log2 |A| = log2 104 ≈ 13.3 bits.
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EXAMPLE (ENTROPY OF FRENCH)

A monkey produces text by selecting letters at random from a
French text

H = 3.9425 bits.

As we will see shortly, the maximum entropy of a source with
|A| = 26 is log2 26 = 4.7004 bits.

Letter Prob.
A 0.0811
B 0.0081
C 0.0338
D 0.0428
E 0.1769
F 0.0113
G 0.0119
H 0.0074
I 0.0724
J 0.0018
K 0.0002
L 0.0599
M 0.0229
N 0.0768
O 0.0520
P 0.0292
Q 0.0083
R 0.0643
S 0.0887
T 0.0744
U 0.0523
V 0.0128
W 0.0006
X 0.0053
Y 0.0026
Z 0.0012
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BINARY ENTROPY FUNCTION

An interesting special case is when |A| = 2.

In this case, pS has only two possible values, say p and (1− p).
The corresponding entropy is H(S) = h(p) where

h(p) := −p log2 p − (1− p) log2(1− p).

h(p) is called the binary entropy function.

▶ For p = 0 and for p = 1, h(p) = 0.

▶ For p = 1
2 , h(p) = 1.

▶ For p ∈ {0.0001, 0.9999}, H(S) ≈ 0.001.

p
0 1

2
1

h(p)

1

75 / 798



EXAMPLE

Let Sn be the above weather forecast.

The probabilities of Sn are p = 5
365 and (1− p) = 360

365 .

H2(Sn) = h
( 5

365

)
= − 5

365
log2

5
365
− 360

365
log2

360
365

≈ 0.072 bits.

76 / 798



EXAMPLE

Let S be the answer to the question "Is 8950 Anne’s lock number ?".

Now S ∈ A = {YES,NO} is a binary random variable with pS(YES) = 1
104 .

Hence H(S) = h
( 1

104

)
≈ 0.001 bits.

p
0 1

2
1

h(p)

1
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INFORMATION-THEORY INEQUALITY

Surprisingly many results in information theory are a direct consequence of
the following key inequality.

LEMMA (IT-INEQUALITY)

For a positive real number r ,

logb r ≤ (r − 1) logb(e),

with equality iff (if and only if) r = 1.
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Proof [IT-Inequality]: Because logb(r) = ln(r) logb(e), it suffices to show that

ln r ≤ (r − 1),

with equality iff r = 1.

The inequality is true (see graph below) because:

▶ the functions ln r and r − 1 coincide at r = 1,

▶ the function r − 1 has slope 1 throughout,

▶ d
dr ln(r) =

1
r < 1 for r > 1,

▶ d
dr ln(r) =

1
r > 1 for r < 1.

r

r − 1

ln(r)

1−1
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THEOREM (ENTROPY BOUNDS)

The entropy of a discrete random variable S ∈ A satisfies

0 ≤ Hb(S) ≤ logb |A|,

with equality on the left iff pS(s) = 1 for some s, and with equality on the right
iff pS(s) = 1

|A| for all s.
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Proof of the left inequality:

Recall that
H(S) =

∑
s∈A

−pS(s) log pS(s),

and observe that

−pS(s) log pS(s) =

0 if pS(s) ∈ {0, 1}
> 0 if 0 < pS(s) < 1.

Thus, H(S) ≥ 0, with equality iff pS(s) ∈ {0, 1} for all s ∈ A.

pS(s) ∈ {0, 1} for all s ∈ A iff pS(s) = 1 for some s.
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To prove the right inequality, we use a trick that often works in inequalities
involving entropies:

To prove, say, A ≤ B, we prove A− B ≤ 0 by means of the IT-Inequality.

82 / 798



Proof of the right inequality:

H(S)− log |A| = E
[
− log pS(S)

]
− log |A|

= E
[
− log pS(S)− log |A|

]
= E

[
log

1
pS(s)|A|

]

=
∑
s∈A

pS(s)
[
log

1
pS(s)|A|

]
(IT-Inequality)

≤
∑
s∈A

pS(s)
[

1
pS(s)|A|

− 1
]
log(e)

= log(e)
∑
s∈A

[
1
|A| − pS(s)

]

= log(e) (1− 1) = 0,

with equality iff pS(s)|A| = 1 for all s.
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EXAMPLE

Let S be Anne’s lock number. Its entropy is maximized if Anne chooses at
random over all 104 possibilities.

In this case, and only in this case,

H(S) = log |A| = log 104 ≈ 13.3 bits.
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EXAMPLE

Let S be Anne’s grandmother’s lock number. She always picks S = 0000.
Then

H(S) = 0

85 / 798



The formula for the entropy of a random variable S extends to any number of
random variables. If X and Y are two discrete random variables, with (joint)
probability distribution pX ,Y then

H(X ,Y ) = E[− log pX ,Y (X ,Y )],

which means

H(X ,Y ) = −
∑

(x,y)∈X×Y

pX ,Y (x , y) log pX ,Y (x , y).
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EXAMPLE

Let pX ,Y be given by the following table

x y pXY (x , y)
0 0 1/8
0 1 3/8
1 0 1/4
1 1 1/4

H(X ,Y ) = − 1
8 log2

1
8 − 3

8 log2
3
8 − 1

4 log2
1
4 − 1

4 log2
1
4 .
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We are mainly interested is sources that emit a large number of random
variables. (We want to compress large amounts of data.)

The sequence of random variables can be

▶ finite, like in (S1, . . . ,Sn) (random vector)

▶ infinite, like in S1,S2, . . . (random sequence, random process), also
denoted by {Si}∞i=1.

▶ sometimes it is convenient to consider . . . ,S−1,S0,S1, . . . , also denoted
by {Si}.

A collection of random variables (S1, . . . ,Sn) is specified by the joint
probability distribution pS1,...,Sn . This is all we need to compute the entropy
H(S1, . . . ,Sn).
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EXAMPLE (COIN-FLIP SOURCE)

A sequence of coin flips can be seen as the output of a source
S1,S2, . . . ,Sn with Si ∈ A = {H,T}, where H stands for head,
and T for tail, i = 1, . . . , n.

If the coin is fair, all sequences are equally likely:

p(s1, s2, . . . , sn) =
∏

i

p(si) =
1
2n for all (s1, s2, . . . , sn) ∈ An

Notation: An = A×A× · · · × A︸ ︷︷ ︸
n times

is the n-fold cartesian product of A.
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The following statement is a corollary to two fundamental results that we will
prove next week.

THEOREM (1.4 OF TEXTBOOK)

Let S1, . . . ,Sn be discrete random variables. Then

H(S1,S2, . . . ,Sn) ≤ H(S1) + H(S2) + · · ·+ H(Sn),

with equality iff S1, . . . ,Sn are independent.

90 / 798



EXAMPLE

Let S1 and S2 be the random variables associated to Bart’s two dice rolls.

H(S1) = H(S2) = log 6 (the two distributions are uniform)

H(S1,S2) = log 36 (the distribution of (S1,S2) is uniform)

We verify that

H(S1,S2) = log 36 = log 62 = 2 log 6 = H(S1) + H(S2).
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EXAMPLE (ENTROPIES IN LISA’S EXPERIMENT)

▶ H(L1) = 0.65 bits

▶ H(L2) = 3.22 bits

▶ H(L1, L2) = 3.27 bits

H(L1, L2) < H(L1) + H(L2). Hence L1 and L2 are not independent.
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We will see that entropy is fundamental in all three topics:

▶ Source coding: To derive the limit to how much a source can be
compressed.

▶ Cryptography: To derive the length of the shortest key for which perfect
secrecy is possible.

▶ Channel coding: To derive the highest rate at which we can
communicate reliably across an unreliable communication channel.

Stay tuned!
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ENTROPY

DEFINITION (ENTROPY, UNCERTAINTY)

Hb(S) := −
∑

s∈supp(pS)

pS(s) logb pS(s),

where supp(pS) =
{

s : pS(s) > 0
}
.

But what does this definition mean?

▶ We will see how entropy is a fundamental “physical” converse bound to
algorithms — it leads to impossibility results.

▶ At the same time, it gives guidance on how to design algorithms that
attain or approach the fundamental bounds.

▶ Our first concrete test case is source coding / data compression.
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SOURCE CODING PURPOSE

Source coding is often seen as a way to compress the source.

More generally, the goal of source coding is to efficiently describe the source
output.

For a fixed description alphabet (often binary), we want to minimize the
average description length.
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SETUP

Source dinner is served Encoder 0000︸ ︷︷ ︸
d

001︸︷︷︸
i

010︸︷︷︸
n

010︸︷︷︸
n

011︸︷︷︸
e

100︸︷︷︸
r

. . .

The source is specified by the source alphabet A and by the source statistic.

EXAMPLE

The source alphabet is A = {a, . . . , z, 0, . . . , 9}, and source symbols are
independent and identically distributed (iid) over A.
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Source dinner is served Encoder 0000︸ ︷︷ ︸
d

001︸︷︷︸
i

010︸︷︷︸
n

010︸︷︷︸
n

011︸︷︷︸
e

100︸︷︷︸
r

. . .

The encoder is specified by:

▶ the input alphabet A (the same as the source alphabet);

▶ the output alphabet D (typically D = {0, 1});

▶ the codebook C which consists of finite sequences over D;

▶ by the one-to-one encoding map Γ : Ak → C, where k is a positive
integer.

For now, k = 1.
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EXAMPLE (FOUR LITTLE CODES)

For each code, the encoding map Γ is specified in the following table:

A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

dac

dac

dac

dac

ΓO

ΓA

ΓB

ΓC

110010

11010

11100110

01110011

The source alphabet A, the k , the code alphabet D and the codebook C are
implicit from the encoding map.
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DECODABILITY

We want to avoid the following problem (encoding map ΓA):

cbaad 10010011
cbaad

cacad

DEFINITION

The code is uniquely decodable if every concatenation of codewords has a
unique parsing into a sequence of codewords.
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Recall that the encoding function Γ is one-to-one by assumption.

If we can identify codeword boundaries, we can decode sequences of
codewords.

Uniquely decodable codes allow us to store (or transmit) sequences of
codewords without storing (or sending) separators between codewords.
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EXAMPLE

Code A is not uniquely decodable:

bc 7→ 0110

ada 7→ 0110.

Try also to decode 0100.

A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111
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EXAMPLE

Code B is uniquely decodable. A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Example: the codeword sequence 10111010110 can only be parsed as
10, 1110, 10, 110.

It is uniquely decodable, because every 0 marks the end of a codeword. (The
0 plays the role of a separator.)
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EXAMPLE

Code C is uniquely decodable. A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

It is uniquely decodable, because every 0 marks the beginning of a codeword.
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EXAMPLE

Code O is uniquely decodable. A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

A fixed-length code is always uniquely decodable.
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PREFIX-FREE CODES

DEFINITION

If no codeword is a prefix of another codeword, the code is said to be
prefix-free.

EXAMPLE

The codeword 01 is a prefix of 011.
The codeword 10 is not a prefix of 110.

A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Code O is prefix-free.
Code B is prefix-free (because of the 0 that marks the codeword end).
Codes A and C are not prefix-free.
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▶ A prefix-free code is always uniquely decodable.

▶ A uniquely decodable code is not necessarily prefix-free.

EXAMPLE

Code C is not prefix-free, yet it is uniquely
decodable. (Its reverse — read every
codeword from right to left — is prefix-free.)

A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

Note: A code is uniquely decodable iff its reverse is uniquely decodable.
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A prefix-free code is also called instantaneous code.

▶ Think of phone numbers;

▶ Think about streaming: instantaneous codes minimize the decoding
delay (for given codeword lengths).
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EXAMPLE

If we are using code C and the decoder sees
0, it might or might not be looking at a
codeword.

The decoder needs to look past the end of a
codeword.

A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111

It is possible to construct uniquely decodable codes for which the decoder
has to wait until the end of the transmission before it can parse, hence before
it can decode.

This can lead to unbounded delays.
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EXAMPLE (CURIOSITY: ANALOGY WITH NATURAL LANGUAGES)

Suppose that we are describing numbers between 0 and 100:

▶ 83 −→ quatre-vingt trois (not instantaneous)

▶ 83 −→ Dreiundachtzig (not instantaneous)

▶ 83 −→ ottanta tre (almost instantaneous)

▶ 83 −→ otgonta treis (almost instantaneous)

Instantaneity is not the only thing that matters.

The length of the description matters as well! We’ll come back to this shortly.
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CODES FOR ONE RANDOM VARIABLE

We start by considering codes that encode one single random variable
S ∈ A.

To encode a sequence S1,S2, . . . of random variables, we encode one
random variable at a time.
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COMPLETE TREE OF A CODE

A ΓO ΓA

a 00 0
b 01 01
c 10 10
d 11 11

a b c d

Code ΓO

0 1

a

b c d

Code ΓA

0 1
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A ΓB ΓC

a 0 0
b 10 01
c 110 011
d 1110 0111

a

b

c

d

Code ΓB

0 1

a

b

c

d

Code ΓC

0 1
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WITH/WITHOUT PREFIX

A ΓB ΓC

a 0 0
b 10 01
c 110 011
d 1110 0111

a

b

c

d

Code ΓB

Prefix-Free

0 1

a

b

c

d

Code ΓC

With Prefix

0 1
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DECODING TREE

▶ Obtained from the complete tree by keeping only branches that form a
codeword.

▶ Useful to visualize the decoding process.

a

b

c

d

Code ΓB

0 1 A ΓO ΓA ΓB ΓC

a 00 0 0 0
b 01 01 10 01
c 10 10 110 011
d 11 11 1110 0111
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CODEWORD LENGTH

▶ The codeword length is defined the obvious way.

▶ Example:

A ΓB codeword lengths

a 0 1
b 10 2
c 110 3
d 1110 4

▶ We would like the average codeword-length to be as small as possible.
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KRAFT-MCMILLAN
PART 1: NECESSARY CONDITION FOR THE CODE TO BE UNIQUELY DECODABLE

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D−l1 + · · ·+ D−lM ≤ 1 (Kraft’s inequality).
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EXAMPLE

For Code O we have

2−2 + 2−2 + 2−2 + 2−2 = 1

Hence Kraft’s inequality is fulfilled with equality.

A ΓO codeword lengths

a 00 2
b 01 2
c 10 2
d 11 2
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EXAMPLE

For Codes B and C we have 2−1 + 2−2 + 2−3 + 2−4 = 0.9375 < 1.

Kraft’s inequality is fulfilled.

Code B is prefix-free.

Code C is not prefix-free (but there is a prefix-free code that has the same
codeword lengths).

A ΓA ΓB ΓC

a 0 0 0
b 01 10 01
c 10 110 011
d 11 1110 0111
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Recall Kraft-McMillan, Part 1:

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D−l1 + · · ·+ D−lM ≤ 1 (Kraft’s inequality).

EXERCISE

What is the contrapositive of Kraft-McMillan part 1?

See next example.
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EXAMPLE

For Code A we have 2−1 + 2−2 + 2−2 + 2−2 = 1.25 > 1.

Kraft-McMillan’s inequality is not fulfilled.

There exists no uniquely decodable code with those codeword lengths.

A ΓA ΓB ΓC

a 0 0 0
b 01 10 01
c 10 110 011
d 11 1110 0111
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Proof of K-MM Part I: We prove a slightly weaker result, namely that the
codeword lengths of prefix-free codes satisfy K-MM’s inequality. 1

Let L = maxi li be the complete tree’s depth.
a

b

c

d

There are DL terminal leaves.

There are DL−li terminal leaves below a codeword at depth li .

No two codewords share a terminal leaf. (The code is prefix-free.)

Hence DL−l1 + DL−l2 + · · ·+ DL−lM ≤ DL.

After dividing both sides by DL we obtain Kraft’s inequality
D−l1 + D−l2 + · · ·+ D−lM ≤ 1.

1The full proof appears in the LTU book
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Recall Kraft-McMillan, Part 1:

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If a D-ary code is uniquely decodable then its codeword lengths l1, . . . , lM
satisfy

D−l1 + · · ·+ D−lM ≤ 1 (Kraft’s inequality)

EXERCISE

What is the converse of Kraft-McMillan part 1?

The converse of Kraft-McMillan part 1 is not true. (Consider e.g. two
codewords: 01 and 0101.)

However, the following statement is almost as good.
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KRAFT-MCMILLAN
PART 2: SUFFICIENT CONDITION FOR THE EXISTENCE OF A PREFIX-FREE CODE

THEOREM (KRAFT-MCMILLAN, TEXTBOOK THM. 2.2)

If the positive integers l1, . . . , lM satisfy Kraft’s inequality for some positive
integer D, then there exists a D-ary prefix-free code (hence uniquely
decodable) that has codeword lengths l1, . . . , lM .
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EXERCISE

Let l1 = 1, l2 = 2, l3 = 3, l4 = 4. Because
∑4

i=1 2−li = 15
16 < 1, there exists a

binary prefix-free code with the given codeword lengths.
Construct such a code.

(Use the following tree as a starting point.)

(It is convenient to order the codeword lengths in increasing order.)
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Proof Outline of K-MM part 2

▶ suppose that l1 ≤ l2 ≤ · · · ≤ lM are the desired codeword lengths

▶ which fulfill the Kraft-McMillan’s inequality

▶ start with a full D-ary tree of depth L = lM
▶ choose a node at depth l1. Declare the path from the root to that node as

codeword c1

▶ delete the subtree to the chosen node. This guarantees that subsequent
codewords are prefix-free
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▶ proceed similarly to find prefix-free codewords of lengths l2, . . . , li for
i < M

▶ because the lengths l1, . . . , li satisfy Kraft-McMillan with strict inequality,
there are unused terminal leaves

▶ hence we can choose a codeword of length li+1 that does not extend any
of the already chosen codewords. Etc.
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IMPORTANT CONSEQUENCE OF KRAFT-MCMILLAN

PART I

If a D-ary code is uniquely
decodable, then its codeword
lengths l1, . . . , lM satisfy Kraft’s
inequality

D−l1 + · · ·+ D−lM ≤ 1.

PART II

If the positive integers l1, . . . , lM satisfy
Kraft’s inequality for some positive
integer D, then there exists a D-ary
prefix-free code that has those
codeword lengths.

The Kraft-McMillan theorem implies that any uniquely decodable code can be
substituted by a prefix-free code of the same codeword lengths.
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PREFIX-FREE CODES

Our focus will be on prefix-free codes. Reasons:

▶ no loss of optimality: codewords can be as short as for any uniquely
decodable code;

▶ a prefix-free codeword is recognized as soon as its last digit is seen:
▶ important for, e.g., a phone number;

▶ advantageous to limit the decoding delay in, say, streaming;
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AVERAGE CODEWORD LENGTH

▶ The typical use of a code is to encode a sequence of random variables
into the corresponding codeword sequence.

▶ We are interested in minimizing the average codeword-length.
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DEFINITION (AVERAGE CODEWORD LENGTH)

Let l(Γ(s)) be the length of the codeword associated to s ∈ A.

The average codeword-length is

L(S, Γ) def
=
∑
s∈A

pS(s)l(Γ(s)).
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UNITS

The units of L(S, Γ) are code symbols.

When D = 2, the units of L(S, Γ) are bits.
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EXAMPLE

Can we do better than ΓO with a
binary code?

A pS(s) ΓO ΓB ΓB′ ΓC

a 0.05 00 0 1110 0
b 0.05 01 10 110 01
c 0.1 10 110 10 011
d 0.8 11 1110 0 0111

L(S, ΓB) = 0.05× 1 + 0.05× 2 + 0.1× 3 + 0.8× 4 = 3.65

L(S, ΓB′) = 0.05× 4 + 0.05× 3 + 0.1× 2 + 0.8× 1 = 1.35

L(ΓB′) < L(ΓO) < L(ΓB) = L(ΓC).

Is there a lower bound to the average codeword-length?
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AVERAGE CODEWORD LENGTH: LOWER BOUND

THEOREM (TEXTBOOK THM 3.1)

Let Γ : A → C be the encoding map of a D-ary code for the random variable
S ∈ A.

If the code is uniquely decodable, then the average codeword-length is lower
bounded by the entropy of S, namely

HD(S) ≤ L(S, Γ),

with equality iff, for all s ∈ A, pS(s) = D−l(Γ(s)). An equivalent condition is
l(Γ(s)) = logD

1
pS(s)

.
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Proof:

HD(S)− L(S, Γ) =
∑

i

pi logD
1
pi
−
∑

i

pi logD Dli

=
∑

i

pi logD
1

piDli

(IT−Ineq.)
≤ logD(e)

∑
i

pi

( 1
piDli

− 1
)

= logD(e)
(∑

i

D−li −
∑

i

pi

)
= logD(e)

(∑
i

D−li − 1
)

(K−MM)

≤ 0.

The first inequalities hold with equality iff, for all i , pi = D−li . When this is the
case, also the second inequality holds with equality.
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EXAMPLE (CONT.)

▶ H(S) = −2× 0.05× log 0.05− 0.1× log 0.1− 0.8× log 0.8 = 1.022

▶ Recall that L(S, ΓB′) = 1.35

▶ We verify H(S) < L(ΓB′) < L(ΓO) < L(ΓB) = L(ΓC)

A pS(s) ΓO ΓB ΓB′ ΓC

a 0.05 00 0 1110 0
b 0.05 01 10 110 01
c 0.1 10 110 10 011
d 0.8 11 1110 0 0111
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A KEY OBSERVATION

The right-hand side of

L(S, Γ) def
=
∑
s∈A

p(s)l(Γ(s))

and

HD(S)
def
=
∑
s∈A

p(s)logD
1

pS(s)

are identical if l(Γ(s)) = logD
1

pS(s)
.

▶ Unfortunately l(Γ(s)) = logD
1

pS(s)
is often not possible (not an integer).

▶ How about choosing l(Γ(s)) = ⌈logD
1

pS(s)
⌉?

▶ Is it a valid choice for a prefix-free code? (Is Kraft’s inequality satisfied?)
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GOOD CODE: SHANNON-FANO CODES

THEOREM (TEXTBOOK THM 3.2)

▶ For every random variable S ∈ A and every integer D ≥ 2, there exists a
prefix-free D-ary code for S such that, for all s ∈ A,

l(Γ(s)) = ⌈− logD pS(s)⌉

▶ Such codes are called D-ary Shannon-Fano codes.
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Proof: Using a simplified notation, we need to check that the choice

li = ⌈− logD pi⌉, i = 1, . . . , |A|

fulfills Kraft’s inequality.

We use the fact that D−x is a monotonically decreasing function of x for
D > 1.

∑
i

D−li =
∑

D−⌈− logD pi⌉

≤
∑

i

DlogD pi

=
∑

i

pi

= 1
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EXERCISE

Construct a binary Shannon-Fano code for the
following random variable.

s ∈ A pS(s) ⌈− log2 pS(s)⌉

a 0.05
b 0.05
c 0.1
d 0.8
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s ∈ A pS(s) ⌈− log2 pS(s)⌉

a 0.05
b 0.05
c 0.1
d 0.8

x 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

− log2(x) 4.3219 3.3219 2.3219 1.7370 1.3219 1.0000 0.7370 0.5146 0.3219 0.1520

s ∈ A pS(s) ⌈− log2 pS(s)⌉

a 0.05 5
b 0.05 5
c 0.1 4
d 0.8 1
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s ∈ A pS(s) ⌈− log2 pS(s)⌉

a 0.05 5
b 0.05 5
c 0.1 4
d 0.8 1

d

c

b a

Shannon-Fano code

d

c

b a

shorter code
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THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a D-ary Shannon-Fano code for the random
variable S fulfills

HD(S) ≤ L(S, ΓSF ) < HD(S) + 1.
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Proof: It suffices to prove the upper bound (we have already proved the
lower bound).

First suppose that we could use li = − log pi . The average length would be

L(S, Γ) =
∑

i

pi li =
∑

i

pi(− logD pi) = HD(S).

Instead we use li = ⌈ − log pi⌉ < − log pi +1.

Since each term of an average increases by less than 1, the average itself
increases by less than 1.
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EXAMPLE

Does there exist a binary code ΓE

having a shorter average length than
the binary Shannon-Fano code ΓD?

A pS(s) ΓD ΓE

a 0.05 11100 111
b 0.05 11000 110
c 0.1 1000 10
d 0.8 0 0

L(S, Γ) 1.7 1.3

d

c

b a

Code ΓD

0 1

d

c

b a

Code ΓE

0 1

So, Shannon-Fano codes are good, but not optimal.
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OPTIMAL CODE: HUFFMAN CODE

Unlike the Shannon-Fano code, the construction of the Huffman code starts
from the leaves.

a b c d
.05 .05 .1 .8

0.1

0.2

1

0

1

A Huffman code for a random variable is prefix-free and optimal, in the sense
that no code can achieve a smaller average codeword-length. (To be proved.)
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TREE WITH PROBABILITIES: A HANDY TOOL

▶ Consider a tree with probabilities assigned to leaf nodes, like the
decoding tree of a prefix-free code

▶ The probabilities of the leaf nodes induce probabilities to the
intermediate notes (like in Huffman’s construction).

▶ The result is called a tree with probabilities.

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1
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LEMMA (PATH-LENGTH LEMMA)

The average path length of a tree with probabilities is the sum of the
probabilities of the intermediate nodes (root included):∑

i

pi li =
∑

j

qj

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1
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Proof: Define the indicator function

Ij,i =

{
1, if node j is on the path to leaf i
0, otherwise.

Notice that

qj =
∑

i

piIj,i .

Hence ∑
j

qj =
∑

j

∑
i

piIj,i

=
∑

i

pi

∑
j

Ij,i

=
∑

i

pi li .
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EXAMPLE

The following example mirrors the proof.

q1

p1 q2

p2 q3

p3 p4

q1 = p1 + p2 + p3 + p4

q2 = + p2 + p3 + p4

q3 = + p3 + p4

q1 + q2 + q3 = p1 × 1 + p2 × 2 + p3 × 3 + p4 × 3
= p1 × l1 + p2 × l2 + p3 × l3 + p4 × l4
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The average codeword-length of a prefix-free code can be computed
efficiently using the Path-Length Lemma.

EXAMPLE

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

L(S, Γ) = 0.2 + 0.4 + 0.6 + 1 = 2.2.
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THEOREM (HUFFMAN’S CONSTRUCTION IS OPTIMAL)

If ΓH is a Huffman code (prefix-free by construction) and Γ is another uniquely
decodable code for the same source S, then it is guaranteed that

L(S, ΓH) ≤ L(S, Γ).
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Proof: For simplicity, we consider only binary codes. Let L = maxi li . The
proof is based on the following three facts.

Fact 1: In the decoding tree of an optimal binary code, each intermediate
node has exactly two offsprings.

Examples:

p1

p2 p3

This is OK

p1 p2

This is OK

p1

p2

This is NOT OK

In particular, any leaf at depth L has a sibling.
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Fact 2: An optimal encoder assigns shorter codewords to higher-probability
letters.

Examples: Suppose that p5 ≤ p4 ≤ p3 ≤ p2 ≤ p1.

p1

p2 p3 p4 p5

This is OK

p4

p2 p3 p1 p5

This is NOT OK

This and Fact 1 imply that two of the least likely codewords have length L.
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Fact 3: Based on Fact 2, without loss of optimality, we may require that two
of the least-likely leaves be siblings at depth L.

Example: Suppose that p5 ≤ p4 ≤ p3 ≤ p2 ≤ p1.

p1

p4 p2 p3 p5

If this is optimal . . .

p1

p3 p2 p4 p5

. . . then this is also optimal
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Code Construction:

We seek an optimal (minimum average-length) code for the given
probabilities (in increasing order from left to right).

pM pM−1 pM−2

· · ·
p1
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We do the first step as in the figure.

pM pM−1

q1 = pM + pM−1

pM−2

· · ·
p1

Suppose that we construct a code Γ̃ for q1, pM−2, . . . , p1.

In Γ̃, q1 is a leaf node.

By extending q1 as in the above figure, the code Γ̃ becomes a code Γ for
pM , pM−1, pM−2, . . . , p1.

Fact 3 above guarantees the existence of a code Γ̃ such that Γ is optimal.
The question is how to find Γ̃.
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Let L and L̃ be the average length of Γ and Γ̃, respectively.

Except for q1, codes Γ and Γ̃ have the same intermediate nodes.

pM pM−1

q1 = pM + pM−1

pM−2

· · ·
p1

By the path-length lemma, L = L̃ + q1.

Hence, L is as small as possible iff L̃ is as small as possible.

We are done if we find an optimal code Γ̃ for q1, pM−2, . . . , p1.

This is progress: we have reduced the size of the alphabet from M to M − 1.
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Continuing the same way, after M − 2 steps we are left with the problem of
constructing an optimal code for an alphabet of two letters.

An optimal code is to assign codeword 0 to one letter, and codeword 1 to the
other letter.

qj qi

qi + qj = 1

1 0

We have described Huffman’s code construction. No binary code Γ has a
smaller average codeword-length.
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MAIN RESULT

The expected codeword length of any useful source code satisfies the
following bounds:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code Γ for S must
satisfy

HD(S) ≤L(S, Γ)

and there exists a uniquely decodable code ΓSF satisfying

L(S, ΓSF ) < HD(S) + 1.
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KEY IDEA

▶ Pack multiple symbols into “supersymbols”!

▶ (S1,S2,S3, . . . ,Sn)

▶ Now, apply our Main Result to such supersymbols:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code Γ for S must
satisfy

HD(S1,S2, . . . ,Sn) ≤L((S1,S2, . . . ,Sn), Γ)

and there exists a uniquely decodable code ΓSF satisfying

L((S1,S2, . . . ,Sn), ΓSF ) < HD(S1,S2, . . . ,Sn) + 1.

▶ Why is this clever?

▶ Let us study the entropy of the supersymbol HD(S1,S2, . . . ,Sn) next.

162 / 798



RECALL: JOINT ENTROPY

Recall from the first week: The formula for the entropy of a random
variable S extends to any number of random variables. If X and Y are two
discrete random variables, with (joint) probability distribution pX ,Y then

HD(X ,Y ) = E[− logD pX ,Y (X ,Y )],

which means

HD(X ,Y ) = −
∑

(x,y)∈X×Y

pX ,Y (x , y) logD pX ,Y (x , y).
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RECALL: JOINT ENTROPY

Now suppose that X and Y are independent.

This means that pX ,Y (x , y) = pX (x)pY (y).

HD(X ,Y ) = −
∑

(x,y)∈X×Y

pX (x)pY (y) logD pX (x)pY (y)

= −
∑

(x,y)∈X×Y

pX (x)pY (y) logD pX (x)−
∑

(x,y)∈X×Y

pX (x)pY (y) logD pY (y)

= −
∑
x∈X

pX (x) logD pX (x)−
∑
y∈Y

pY (y) logD pY (y)

= HD(X ) + HD(Y ).
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MAIN RESULT

▶ Pack multiple symbols into “supersymbols”!

▶ Consider the case where Si are all independent and follow the same
distribution.

▶ Then, HD(S1,S2,S3, . . . ,Sn) = nHD(S).

THEOREM (TEXTBOOK THM 3.3)

Suppose that S1,S2, . . . ,Sn are independent and follow the same distribution.
The average codeword-length of a uniquely decodable code Γ for
(S1,S2, . . . ,Sn) must satisfy

nHD(S) ≤L((S1,S2, . . . ,Sn), Γ)

and there exists a uniquely decodable code ΓSF satisfying

L((S1,S2, . . . ,Sn), ΓSF ) < nHD(S) + 1.
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MAIN RESULT

▶ Pack multiple symbols into “supersymbols”!

▶ Consider the case where Si are all independent and follow the same
distribution.

▶ Then, HD(S1,S2,S3, . . . ,Sn) = nHD(S).

THEOREM (TEXTBOOK THM 3.3)

Suppose that S1,S2, . . . ,Sn are independent and follow the same distribution.
The average codeword-length of a uniquely decodable code Γ for
(S1,S2, . . . ,Sn) must satisfy

HD(S) ≤L((S1,S2, . . . ,Sn), Γ)

n

and there exists a uniquely decodable code ΓSF satisfying

L((S1,S2, . . . ,Sn), ΓSF )

n
< HD(S) +

1
n
.
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WEEK 3: CONDITIONAL ENTROPY

(BOOK CHAPTER 4)

Prof. Michael Gastpar
Slides by Prof. M. Gastpar and Prof. em. B. Rimoldi

Spring Semester 2025
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OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

Probability Review

Sources and Entropy

The Fundamental Compression Theorem: The IID Case

Conditional Entropy

Entropy and Algorithms

Prediction, Learning, and Cross-Entropy Loss

Summary of Chapter 1

CRYPTOGRAPHY

CHANNEL CODING
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KEY IDEA

▶ Pack multiple symbols into “supersymbols”!

▶ (S1,S2,S3, . . . ,Sn)

▶ Now, apply our Main Result to such supersymbols:

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code Γ for S must
satisfy

HD(S1,S2, . . . ,Sn) ≤L((S1,S2, . . . ,Sn), Γ)

and there exists a uniquely decodable code ΓSF satisfying

L((S1,S2, . . . ,Sn), ΓSF ) < HD(S1,S2, . . . ,Sn) + 1.

▶ Why is this clever?

▶ Let us study the entropy of the supersymbol HD(S1,S2, . . . ,Sn) next.
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OUR NEXT NUGGET

▶ Understand the behavior of

HD(S1,S2, . . . ,Sn)

when S1,S2, . . . ,Sn are not independent random variables following the
same distribution.

Key steps to get there:

▶ Understand conditional entropy

▶ Understand how to model “many” random variables (a.k.a. random
processes)
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OUR NEXT NUGGET

Example: Standard text.

▶ After a letter “q”, we have a letter “u” with very high probability
(probability 1 in some languages).

▶ After a letter “c”, we have a letter “h” with higher probability than many
other letters.

▶ After a letter “i”, it is extremely unlikely to have yet another letter “i”. And
so on.
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OUR NEXT NUGGET

Example: Audio recoding.

▶ Why?

Example: Image.

Example: Video recording.
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KEY (SIMPLE) EXAMPLE 1 : INDEPENDENT

DEFINITION (COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . ,Sn of n coin flips.

So Si ∈ A = {H,T}, where H stands for heads, T for tails, i = 1, 2, . . . , n.

pSi (H) = pSi (T ) = 1
2 for all i , and coin flips are independent.

Hence,

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2n for all (s1, s2, . . . , sn) ∈ An

H

T n
0 10 20 30 40 50 60
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KEY (SIMPLE) EXAMPLE 2 : NOT INDEPENDENT

DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence S1,S2, . . . ,Sn of weather conditions.

So Si ∈ A = {S,R}, where S stands for sunny, R for rainy, i = 1, 2, . . . , n.

The weather on the first day is uniformly distributed in A.

For all other days, with probability q = 6
7 the

weather is as for the day before.

S

R n
0 10 20 30 40 50 60

1− q

q

1− q

q
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CONDITIONAL PROBABILITY

Recall how to determine the conditional probability:

pX |Y (x |y) def
=

pX ,Y (x , y)
pY (y)

.

It gives the probability of the event X = x , given that the event Y = y has
occurred.

It is defined for all y for which pY (y) > 0.
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CONDITIONAL PROBABILITY

EXAMPLE (“BIT FLIPPER CHANNEL”)

1
1− δ 1

0
1− ϵ

0

XY

ϵ

δ

⇐⇒
p(x |y) y = 0 y = 1

x = 0 1− ϵ δ

x = 1 ϵ 1− δ

Suppose Y is uniformly distributed. Then, the joint distribution of X ,Y is

p(x , y) y = 0 y = 1

x = 0 1
2 (1− ϵ) 1

2δ

x = 1 1
2 ϵ

1
2 (1− δ)
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CONDITIONAL PROBABILITY

EXERCISE (“BIT FLIPPER CHANNEL”)

As we have seen, for the bit flipper channel with uniform input Y , the joint
distribution of X ,Y is

p(x , y) y = 0 y = 1

x = 0 1
2 (1− ϵ) 1

2δ

x = 1 1
2 ϵ

1
2 (1− δ)

▶ Find the conditional distribution p(y |x) (input given the output).
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CONDITIONAL PROBABILITY

SOLUTION (“BIT FLIPPER CHANNEL”)

The general formula is

p(y |x) = p(x , y)
p(x)

.

Hence, we need the marginal distribution of X :

p(x , y) y = 0 y = 1 Marginal distribution p(x)

x = 0 1
2 (1− ϵ) 1

2δ
1
2 (1− ϵ) + 1

2δ

x = 1 1
2 ϵ

1
2 (1− δ) 1

2 ϵ+
1
2 (1− δ)

Hence, we find the desired object:

p(y |x) y = 0 y = 1

x = 0 1−ϵ
1−ϵ+δ

δ
1−ϵ+δ

x = 1 ϵ
1−δ+ϵ

1−δ
1−δ+ϵ

▶ Convince yourself that
indeed, p(y |x) is a valid
probability distribution for
each fixed value of x .
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CONDITIONAL EXPECTATION OF X GIVEN Y = y

pX |Y (·|y) is a probability distribution on the alphabet of X , just like pX (·)

DEFINITION

The conditional expectation of X given Y = y is defined as

E[X |Y = y ] def
=
∑
x∈X

xpX |Y (x |y).
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CONDITIONAL EXPECTATION OF X GIVEN Y = y

EXERCISE (“BIT FLIPPER CHANNEL”)

1
1− δ 1

0
1− ϵ

0

XY

ϵ

δ

⇐⇒
p(x |y) y = 0 y = 1

x = 0 1− ϵ δ

x = 1 ϵ 1− δ

▶ Find the conditional expectations E[X |Y = y ] for y = 0 and for y = 1.
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CONDITIONAL ENTROPY OF X GIVEN Y = y

pX |Y (·|y) is a probability distribution on the alphabet of X , just like pX (·)

Every probability distribution has an entropy associated to it:

▶ pX (·) −→ H(X )

▶ pX |Y (·|y) −→ H(X |Y = y)

DEFINITION

The conditional entropy of X given Y = y is defined as

HD(X |Y = y) def
= −

∑
x∈X

pX |Y (x |y) logD pX |Y (x |y).
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CONDITIONAL ENTROPY OF X GIVEN Y = y

EXERCISE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel with uniform input, calculate:

▶ H(X |Y = y) for each fixed y ,

▶ H(Y |X = x) for each fixed x .

SOLUTION
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ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y = y)

The conditional entropy of a discrete random variable X ∈ X conditioned on
Y = y satisfies

0 ≤ HD(X |Y = y) ≤ logD |X |,

with equality on the left iff pX |Y (x |y) = 1 for some x , and with equality on the
right iff pX |Y (x |y) = 1

|X| for all x .

The proof is identical to our proof of the basic entropy bounds.
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ENTROPY BOUNDS

EXAMPLE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel, verify the entropy bounds.
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ENTROPY BOUNDS

Question: Do we also have the following entropy bound:

HD(X |Y = y)
???

≤ HD(X )?

Answer: No!

EXAMPLE (BIT FLIPPER WITH UNIFORM INPUT Y )

(Or “counterexample,” if you prefer). Just for ease of calculation, let us set
δ = 0 (but this is not necessary for the example to work!). Then, we have:

HD(X |Y = 0) = hD(ϵ) and HD(X |Y = 1) = 0.

where hD(·) is the binary entropy function (with logD(·)). But we have

HD(X ) = hD

(
1− ϵ

2

)
.

(Set, for example, ϵ = 3/8, thus 1−ϵ
2 = 5/16.)
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CONDITIONAL ENTROPY OF X GIVEN Y

The most useful and impactful definition is the average conditional entropy of
X given Y = y , averaged over all values of y under the marginal distribution
pY (y). Formally, we thus define:

DEFINITION

The conditional entropy of X given Y is defined as

HD(X |Y )
def
=
∑
y∈Y

pY (y)

(
−
∑
x∈X

pX |Y (x |y) logD pX |Y (x |y)
)
.
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CONDITIONAL ENTROPY OF X GIVEN Y

EXAMPLE (“BIT FLIPPER CHANNEL”)

For the Bit flipper channel, we have

HD(X |Y ) = p(Y = 0)HD(X |Y = 0) + p(Y = 1)HD(X |Y = 1).

We have already calculated

HD(X |Y = 0) = hD(ϵ) and HD(X |Y = 1) = hD(δ).

For example, when Y is uniform, we have

HD(X |Y ) =
hD(ϵ) + hD(δ)

2
.
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ENTROPY BOUNDS

THEOREM (BOUNDS ON CONDITIONAL ENTROPY OF X GIVEN Y )

The conditional entropy of a discrete random variable X ∈ X conditioned on
Y satisfies

0 ≤ HD(X |Y ) ≤ logD |X |,

with equality on the left iff for every y there exists and x such that
pX |Y (x |y) = 1, and with equality on the right iff pX |Y (x |y) = 1

|X| for all x and
all y .

This follows directly from our bounds on HD(X |Y = y).

Note: Having pX |Y (x |y) = 1
|X| for all x and all y implies that X and Y are

independent random variables.
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ENTROPY BOUNDS

EXERCISE (“BIT FLIPPER CHANNEL”)

Verify the bounds for the bit-flipper channel.
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

The following bound is important and impactful (and also intuitively pleasing!):

THEOREM (CONDITIONING REDUCES ENTROPY)

For any two discrete random variables X and Y ,

HD(X |Y ) ≤ HD(X )

with equality iff X and Y are independent random variables.

In words: On average, the uncertainty about X can only become smaller if
we know Y .

Note Bene: As we have seen, this is not true point-wise: We may have
HD(X |Y = y) > HD(X ) for some values of y .
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Proof [Conditioning reduces entropy]:

HD(X |Y )− HD(X ) = E
[
logD

1
pX |Y (X |Y )

]
+ E[logD pX (X )]

= E
[
logD

pX (X )

pX |Y (X |Y )

]

= E
[
logD

pX (X )pY (Y )

pX |Y (X |Y )pY (Y )

]
= E

[
logD

pX (X )pY (Y )

pX ,Y (X ,Y )

]
(IT-Inequality)
≤ E

[
pX (X )pY (Y )

pX ,Y (X ,Y )
− 1
]
logD(e)

=
∑

(x,y)∈X×Y

[
pX (x)pY (y)− pX ,Y (x , y)

]
logD(e)

= [1− 1] logD(e) = 0.

The condition for equality is pX (x)pY (y)
pX,Y (x,y) = 1 for all x and y , i.e., equality holds iff

X and Y are independent random variables.
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

A generalization of the previous bound is also of interest to us:

THEOREM (CONDITIONING REDUCES ENTROPY)

For any three discrete random variables X ,Y and Z ,

HD(X |Y ,Z ) ≤ HD(X |Z )

with equality iff X and Y are conditionally independent random variables
given Z (that is, if and only if p(x , y |z) = p(x |z)p(y |z) for all x , y , z).
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Proof [Conditioning reduces entropy, generalized version]:

HD(X |Y , Z ) − HD(X |Z ) = E
[
logD

1
pX|Y ,Z (X |Y , Z )

]
+ E[logD pX|Z (X |Z )]

= E
[
logD

pX|Z (X |Z )

pX|Y ,Z (X |Y , Z )

]

= E
[
logD

pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX|Y ,Z (X |Y , Z )pY |Z (Y |Z )pZ (Z )

]

= E
[
logD

pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X , Y , Z )

]

(IT-Inequality)
≤ E

[ pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X , Y , Z )
− 1

]
logD(e)

=
∑
x∈X

∑
y∈Y

∑
z∈Z

[
pX|Z (x|z)pY |Z (y|z)pZ (z) − pX,Y ,Z (x, y, z)

]
logD(e)

= [1 − 1] logD(e) = 0.

The condition for equality is
pX|Z (X |Z )pY |Z (Y |Z )pZ (Z )

pX,Y ,Z (X ,Y ,Z )
= 1 for all x , y , z, i.e.,

equality holds iff X and Y are conditionally independent random variables
given Z .
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ENTROPY BOUNDS: “CONDITIONING REDUCES ENTROPY”

Recall: When we simply write H(X ), suppressing the subscript D, then we
mean D = 2.

EXAMPLE

Let X ∈ {0, 1} be uniformly distributed and let Y = X . Then

H(X |Y ) = 0 and H(X ) = 1.

EXAMPLE

Let X ∈ {0, 1} and Y ∈ {0, 1} be uniformly distributed and independent.
Then

H(X |Y ) = 1 and H(X ) = 1.
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LISA ROLLS TWO DICE

EXERCISE (LISA ROLLS TWO DICE)

▶ Lisa rolls two dice and announces the sum L written as a two digit
number.

▶ The alphabet of L = L1L2 is {02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12}.
▶ The alphabet of L1 is {0, 1}.

▶ The alphabet of L2 is {0, 1, . . . , 9}.

▶ Determine the probability that L2 = 2, knowing that L1 = 1, that is,

pL2|L1(2|1).
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LISA ROLLS TWO DICE

SOLUTION

Using the definition (and calculations from Lecture 1),

pL2|L1(2|1) =
pL1,L2(1, 2)

pL1(1)
=

1/36
1/6

=
1
6
.
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LISA ROLLS TWO DICE

After running over all possible values for (i, j), we obtain

L1 = i 0 1
L2 = j pL1,L2 (i, j) pL2 (j)

0 0 3/36 3/36
1 0 2/36 2/36
2 1/36 1/36 2/36
3 2/36 0 2/36
4 3/36 0 3/36
5 4/36 0 4/36
6 5/36 0 5/36
7 6/36 0 6/36
8 5/36 0 5/36
9 4/36 0 4/36

pL1 (i) 5/6 1/6

pL2|L1
(j|0) pL2|L1

(j|1)
L2 = j

0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0
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LISA ROLLS TWO DICE

EXAMPLE

H(L2|L1 = 1)=
3
6
log

6
3
+

2
6
log

6
2
+

1
6
log 6

= 1.459 bits

H(L2|L1 = 0)= · · · = 2.857 bits

pL2|L1
(j|0) pL2|L1

(j|1)
L2 = j

0 0 3/6
1 0 2/6
2 1/30 1/6
3 2/30 0
4 3/30 0
5 4/30 0
6 5/30 0
7 6/30 0
8 5/30 0
9 4/30 0
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LISA ROLLS TWO DICE

EXAMPLE

H(L2|L1) = pL1(0)H(L2|L1 = 0) + pL1(1)H(L2|L1 = 1)

=
5
6
× 2.857 +

1
6
× 1.459 = 2.624 bits

Now, we can observe that

2.624 = H(L2|L1) ≤ H(L2) = 3.22,

exactly like it has to be according to our theorems.
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THE CHAIN RULE FOR ENTROPY

Recall that the joint entropy of two random variables X ,Y is completely
naturally defined as

HD(X ,Y ) = −
∑

x

∑
y

pX ,Y (x , y) logD pX ,Y (x , y).

Using the fact that pX ,Y (x , y) = pX (x)pY |X (y |x), we can write this as

HD(X ,Y ) = −
∑

x

pX (x)

(∑
y

pY |X (y |x) logD

(
pX (x)pY |X (y |x)

))

= −
∑

x

pX (x)

(∑
y

pY |X (y |x)
(
logD pX (x) + logD pY |X (y |x)

))

= −
∑

x

pX (x)

{ (∑
y

pY |X (y |x) logD pX (x)

)

+

(∑
y

pY |X (y |x) logD pY |X (y |x)
)}
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THE CHAIN RULE FOR ENTROPY

But now, we observe:

HD(X ,Y ) = −
∑

x

pX (x)

{ (∑
y

pY |X (y |x) logD pX (x)

)

+

(∑
y

pY |X (y |x) logD pY |X (y |x)
)}

= −
∑

x

pX (x)

(∑
y

pY |X (y |x) logD pX (x)

)
︸ ︷︷ ︸

HD(X)

+
∑

x

pX (x)

(
−
∑

y

pY |X (y |x) logD pY |X (y |x)
)

︸ ︷︷ ︸
HD(Y |X)

= HD(X ) + HD(Y |X ).
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THE CHAIN RULE FOR ENTROPY

Let us write this once more and enjoy it properly:

HD(X ,Y ) = HD(X ) + HD(Y |X ).

In words: To find the joint entropy of two random variables, we can first
calculate the entropy of one of the two, and then add to it the conditional
entropy of the second, given the first.

Of course, what we could do once, we can do again!
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THE CHAIN RULE FOR ENTROPY

THEOREM (CHAIN RULE FOR ENTROPIES)

Let S1, . . . ,Sn be discrete random variables. Then

HD(S1,S2, . . . ,Sn) = HD(S1) + HD(S2|S1) + · · ·+ HD(Sn|S1, . . . ,Sn−1).

The above result says that the uncertainty of a collection of random variables
(in any order) is the uncertainty of the first, plus the uncertainty of the second
when the first is known, plus the uncertainty of the third when the first two are
known, etc.
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Proof [Chain rule for entropy]:

pS1,S2,...,Sn (s1, . . . , sn) = pS1(s1)
n∏

i=2

pSi |S1,...,Si−1(si |s1,...,si−1)

− logD

(
pS1,S2,...,Sn (s1, . . . , sn)

)
= − log pS1(s1)−

n∑
i=2

logD

(
pSi |S1,...,Si−1(si |s1,...,si−1)

)

The expected value of the LHS is HD(S1,S2, . . . ,Sn).

The expected value of the RHS is
HD(S1) + HD(S2|S1) + · · ·+ HD(Sn|S1, . . . ,Sn−1).
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THE CHAIN RULE FOR ENTROPY

EXAMPLE

Let X , Y , Z be discrete random variables. We have:

H(X ,Y ,Z ) = H(X ) + H(Y |X ) + H(Z |X ,Y )

= H(X ) + H(Z |X ) + H(Y |X ,Z )

= H(Y ) + H(X |Y ) + H(Z |X ,Y )

= H(Y ) + H(Z |Y ) + H(X |Y ,Z )

= H(Z ) + H(X |Z ) + H(Y |X ,Z )

= H(Z ) + H(Y |Z ) + H(X |Y ,Z ),

where we omitted the subscript D for compact notation, but these
relationships hold for all integers D ≥ 2.
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THE CHAIN RULE FOR ENTROPY

The chain rule for entropy and the fact that conditioning reduces entropy,
proves the following theorem which was stated last week without proof:

THEOREM

Let S1, . . . ,Sn be discrete random variables. Then

H(S1,S2, . . . ,Sn) ≤ H(S1) + H(S2) + · · ·+ H(Sn),

with equality iff S1, . . . ,Sn are independent.
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THE CHAIN RULE FOR ENTROPY

Sometimes it is convenient to compute the conditional entropy using the
chain rule for entropies. For instance:

H(X |Y ) = H(X ,Y )− H(Y ).
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THE CHAIN RULE FOR ENTROPY

COROLLARY

H(X ,Y ) ≥ H(X );

H(X ,Y ) ≥ H(Y ).

The above inequalities follow from the chain rule for entropies and the fact
that entropy (conditional or not) is nonnegative.
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LISA ROLLS TWO DICE

EXAMPLE (LISA ROLLS TWO DICE)

From

H(L1, L2) = 3.2744 bits

H(L1) = 0.6500 bits

H(L2) = 3.2188 bits,

we compute

H(L2|L1) = H(L1, L2)− H(L1) = 3.2744− 0.6500 = 2.624 bits

H(L1|L2) = H(L1, L2)− H(L2) = 3.2744− 3.2188 = 0.056 bits,

and verify that indeed

H(L1|L2) ≤ H(L1) ≤ H(L1, L2)

H(L2|L1) ≤ H(L2) ≤ H(L1, L2).
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LISA ROLLS TWO DICE

EXERCISE

Determine H(L1, L2|S1,S2).

SOLUTION

L1 and L2 are deterministic functions of S1 and S2.
Hence H(L1, L2|S1,S2) = 0.
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LISA ROLLS TWO DICE

EXAMPLE

Determine H(S1,S2|L1, L2) knowing that H(S1,S2) = 5.1699 bits and
H(L1, L2) = 3.2744 bits.

SOLUTION

H(S1,S2|L1, L2) = H(S1,S2, L1, L2)− H(L1, L2).

But H(S1,S2, L1, L2) = H(S1,S2). (Can you say why?)

Hence H(S1,S2|L1, L2) = H(S1,S2)− H(L1, L2) = 1.896 bits.
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DEFINITION (COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . ,Sn of n coin flips.

So Si ∈ A = {H,T}, where H stands for heads, T for tails, i = 1, 2, . . . , n.

pSi (H) = pSi (T ) = 1
2 for all i , and coin flips are independent.

Hence,

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2n for all (s1, s2, . . . , sn) ∈ An

H

T n
0 10 20 30 40 50 60
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence S1,S2, . . . ,Sn of weather conditions.

So Si ∈ A = {S,R}, where S stands for sunny, R for rainy, i = 1, 2, . . . , n.

The weather on the first day is uniformly distributed in A.

For all other days, with probability q = 6
7 the

weather is as for the day before.

S

R n
0 10 20 30 40 50 60

1− q

q

1− q

q
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EXAMPLE

For the Sunny-Rainy source:

▶ pS1(S) = 1
2

▶ pS1,S2(R,R) = pS1(R)pS2|S1(R|R) = 1
2 q

▶ pS1,S2(R,S) = pS1(R)pS2|S1(S|R) = 1
2 (1− q)

▶ pS1,S2,S3,S4(R,S,S,R) = 1
2 (1− q)q(1− q) = 1

2 q(1− q)2

In general, if c is the number of weather changes (0 ≤ c ≤ n − 1), then

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2

qn−1−c(1− q)c .

214 / 798



EXERCISE

Let i = 2, 3, . . .
For the Sunny-Rainy source:

▶ Find pSi (si)

▶ Find pSi |Si−1(si |si−1)

▶ Are Si and Si−1 independent?

215 / 798



SOLUTION (SUNNY-RAINY SOURCE)

By definition, pSi |Si−1(j|k) = q if j = k and (1− q) otherwise.

Hence Si−1 and Si are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that pSi is uniform.

It is true by definition for i = 1.

Suppose that pSi is uniform for i = 1, . . . , n − 1. We show that it is uniform
also for i = n:

pSn (j) =
∑

k∈{S,R}

pSn|Sn−1(j|k)pSn−1(k) =
1
2

∑
k∈{S,R}

pSn|Sn−1(j|k)

=
1
2
(
q + (1− q)

)
=

1
2
.

Hence the marginals are uniformly distributed (like for the Coin-Flip source).
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EXERCISE

Let i = 2, 3, . . .
For the Coin-Flip (CF ) and Sunny-Rainy (SR) sources:

▶ Compute H(Si)

▶ Compute H(Si |S1, . . . ,Si−1)

H

T n
0 10 20 30 40 50 60

S

R n
0 10 20 30 40 50 60
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SOLUTION (H(Si))

The entropy depends only on the distribution, and for a uniform distribution, it
is the log of the alphabet’s cardinality. Hence

HCF (Si) = HSR(Si) = log 2 = 1
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SOLUTION (H(Si |S1, . . . ,Si−1) FOR THE COIN-FLIP SOURCE)

Si is independent of S1, . . . ,Si−1

Hence, H(Si |S1, . . . ,Si−1) = H(Si).
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SOLUTION (H(Si |S1, . . . ,Si−1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on Si−1. Hence

HSR(Si |S1 = s1, . . . ,Si−1 = si−1) = HSR(Si |Si−1 = si−1).

When Si−1 = k ∈ {S,R}, the probabilities for Si are q and (1− q). Hence

HSR(Si |Si−1 = si−1) = −q log q − (1− q) log(1− q).

Taking the average on both sides yields

HSR(Si |Si−1) = −q log q − (1− q) log(1− q).

For q = 6
7 , we have

HSR(Si |Si−1) = −q log q − (1− q) log(1− q) = 0.592.
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Coin-Flip source.

SOLUTION

The source produces independent and identically distributed symbols. Hence

H(S1,S2, . . . ,Sn)
(indep.)
= H(S1) + H(S2) + · · ·+ H(Sn)

(identically distributed)
= nH(S1)

Moreover, the distribution is uniform, therefore H(S1) = 1 bit. Putting things
together,

H(S1,S2, . . . ,Sn) = n bits
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Sunny-Rainy source with q = 6
7 .

SOLUTION

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · ·+ H(Sn|S1, . . . ,Sn−1)

For i = 2, 3, . . . , n, the statistic of Si depends only on Si−1. Hence

H(Si |S1,S2, . . . ,Si−1) = H(Si |Si−1)

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · ·+ H(Sn|Sn−1)

We have already determined that H(S1) = 1 bit and H(Si |Si−1) = 0.592 bits.
Therefore

H(S1,S2, . . . ,Sn) = 1 + 0.592(n − 1) bits
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SUMMARY : THE MAIN RESULT OF SOURCE CODING / DATA

COMPRESSION

THEOREM (TEXTBOOK THM 3.3)

The average codeword-length of a uniquely decodable code Γ for S must
satisfy

HD(S1,S2, . . . ,Sn) ≤L((S1,S2, . . . ,Sn), Γ)

and there exists a uniquely decodable code ΓSF satisfying

L((S1,S2, . . . ,Sn), ΓSF ) < HD(S1,S2, . . . ,Sn) + 1.

▶ And in many cases, as n becomes large, the upper and the lower bound
are arbitrarily close!
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SOURCE CODING / COMPRESSION : OUTLOOK

Additional Questions of interest include:

▶ What if the source alphabet is not finite?

▶ What if we do not know the source distribution pX (x)? (Universal source
coding)
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WHAT IF THE SOURCE ALPHABET IS INFINITE?

▶ In all of our previous discussion on actual codes, we have assumed that
the source alphabet is discrete and finite.

▶ What if it is discrete but infinite?

▶ ... is this just an academic endeavour?

▶ In this class, we only touch the top of this iceberg...

225 / 798



BINARY PREFIX-FREE CODE FOR POSITIVE INTEGERS

The set of positive integers is infinite and no probability is assigned to its
elements. Hence we cannot use Huffman’s construction to encode integers.

First Attempt to Encode Positive Integers: “Standard Method"

n c(n)
1 1
2 10
3 11
4 100
5 101
...

...

The code is not prefix-free.

The length of c(n) is l(n) = ⌊log2 n⌋+ 1.

Note: The first digit is always 1.
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Second Attempt: “Elias Code 1"

We prefix code c(n) with l(n)− 1 zeros.

n c1(n)
1 1
2 010
3 011
4 00100
5 00101
...

...

The code is prefix-free. (Codewords of different length cannot have the same
number of leading zeros.)

The length of c1(n) is

l1(n) = l(n)− 1 + l(n) = 2⌊log2 n⌋+ 1.

Note: we are essentially doubling the length to make the code prefix-free.
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Third Attempt: “Elias Code 2"

Instead of l(n)− 1 zeros followed by a 1, we prefix with c1
(
l(n)

)
, which is

also prefix-free (hence can be identified). Like the zeros, it tells the length of
the codeword.

Notation: c̃(n) is c(n) without the leading 1.

n c(n) l(n) c1(n) c1
(
l(n)

)
c̃(n)

1 1 1 1 c1(1) = 1
2 10 2 010 c1(2) 0 = 010 0
3 11 2 011 c1(2) 1 = 010 1
4 100 3 00100 c1(3) 00 = 011 00
5 101 3 00101 c1(3) 01 = 011 01
...

...

The code is prefix-free.

The codeword length is
l2(n) = l1

(
l(n)

)
+ l(n)− 1 = 2⌊log2(⌊log2 n⌋+ 1)⌋+ 1 + ⌊log2 n⌋.
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WHAT IF THE SOURCE DISTRIBUTION IS NOT KNOWN?

▶ Universal source coding.

▶ Practically important algorithms: “Lempel-Ziv” (LZ77, LZ78). Time
permitting, we briefly discuss how they work. An analysis is beyond the
scope of AICC-2.
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CHALLENGE FOR NEXT LECTURE

EXERCISE

There are 14 billiard balls numbered as shown:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

▶ if one ball is different . . .

▶ if there is such a ball, which one, . . .

▶ and whether the different ball is heavier/lighter.
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ENTROPY AND ALGORITHMS

In today’s lecture, we explore the role of entropy in algorithms beyond data
compression.

Specifically, we will briefly look at the following examples:

▶ “20 Questions Problem”

▶ Sorting

▶ “Billiard Balls” Puzzle
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THE 20 QUESTIONS PROBLEM

Let X be a random variable.

What is the minimum number of "Yes/No questions" needed to identify X?

And which questions should be asked?
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SOLUTION

▶ Consider a binary code Γ for X ∈ X .

▶ Once Γ is fixed, we know x ∈ X iff we know the codeword Γ(x).

▶ The strategy consists in asking the i th question so as to obtain the i th bit
of the codeword Γ(x).

▶ The average number of questions is L(X , Γ), which is minimized if Γ is
the encoding map of a Huffman code.

▶ We will see that we cannot do better.

First an example.
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EXAMPLE

Let X be a random variable in A = {a, b, c, d , e} having distribution pX :

X a b c d e
pX 0.1 0.1 0.2 0.2 0.4
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EXAMPLE (CONT.)

We construct a binary Huffman code for X :

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A ΓH

a 000
b 001
c 010
d 011
e 1

Suppose that the realization is X = b (but we do not know it).
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EXAMPLE (CONT.)

The strategy is to identify b via its binary codeword.

With the first question we try to find the first letter of the codeword:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A ΓH

a 000
b 001
c 010
d 011
e 1

We ask the question: Is X ∈ {e}?

The answer is NO. We know that the first letter of the codeword is 0.
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EXAMPLE (CONT.)

With the second question we find the second codeword letter:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A ΓH

a 000
b 001
c 010
d 011
e 1

We ask the question: Is X ∈ {c, d}?

The answer is NO. We know that the second letter of the codeword is 0.
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EXAMPLE (CONT.)

With the third question we find the third codeword letter:

a b c d e
.1 .1 .2 .2 .4

0.2 0.4

0.6

1
0

1

A ΓH

a 000
b 001
c 010
d 011
e 1

We ask the question: is X = b?

The answer is Yes. We know that the third letter of the codeword is 1 and that
X = b.
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OPTIMALITY OF THE HUFFMAN QUERYING STRATEGY

We have seen that a prefix-free code for X ∈ X leads to a querying strategy
to find the realization of X .

Similarly, a deterministic querying strategy leads to a binary prefix-free code
for X . Here is why:

▶ Before the first question we know that x ∈ X .

▶ Without loss of generality, the first question can be formulated in terms of
“Is x ∈ A?” for some A ⊂ X . (The choice of A is determined from the
strategy, that we fix once and for all.)

▶ If the answer is YES, then we know that x ∈ A ⊂ X . Otherwise
x ∈ Ac ⊂ X . Either way we have reduced the size of the set that
contains x .

▶ We continue asking similar questions until the value of x is fully
determined, then we stop.
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▶ The sequence of YES/NO answers is a binary codeword associated to x .

▶ The code obtained when we consider all possible values of x is a binary
prefix-free code.

▶ Since the tree is prefix-free, its average codeword-length cannot be
smaller than that of a Huffman code.
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ENTROPY AND SORTING

▶ Sorting by pairwise comparisons with binary output.
That is, for each comparison, the answer is either “ < ” or “ ≥ ”.

▶ Suppose we have an unordered list of n objects that need to be sorted.

▶ How many binary comparisons are needed?

▶ Let us tackle this question via entropy.
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BILLIARD BALLS

EXERCISE

There are 14 billiard balls numbered as shown:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

▶ if one ball is different . . .

▶ if there is such a ball, which one, . . .

▶ and whether the different ball is heavier/lighter.
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BILLIARD BALLS

EXERCISE

Can we use the 20 questions approach to solve the 14 billiard balls riddle?

SOLUTION

No, because the kind of questions that we can "ask", when we are weighing,
is quite limited.

For instance, the first question cannot be "is 1 or 2 heavy?"
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BILLIARD BALLS

Here is a way to formalize the Billiard Balls problem.

Let us identify the solution with the variable X :

“all balls equal” X = 0
“Ball 1 heavy” X = 1
“Ball 1 light” X = −1
“Ball 2 heavy” X = 2
“Ball 2 light” X = −2
...

...
“Ball 13 heavy” X = 13
“Ball 13 light” X = −13

Hence, X ∈ X = { −13,−12, . . . ,−1, 0, 1, . . . , 12, 13}.

Evidently, |X | = 27.
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BILLIARD BALLS

The results of the weighings uniquely specify the value of X .

Hence, in the billiard balls problem, we implicitly specify a ternary code
for a certain source.

We know that the number of ternary symbols needed to represent the source
is at least

N ≥ HD=3(X ).

Our code should work irrespective of the source distribution. In other words, it
must work for all source distributions, thus

N ≥ max
p(x)

HD=3(X ) = log3 |X | = log3 27 = 3.

Hence, conclusion: We need at least 3 weighings.
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BILLIARD BALLS : STRATEGIES

But is there a strategy that requires only 3 weighings?

From source compression, we can establish the following facts:

▶ For each weighing, the three outcomes must be equally likely.

▶ The weighings must be independent of each other.

In class, we will together formally prove these two statements.

Then, leveraging these two insights, we will construct the weighing strategy.

Remark: It is because we carefully selected the numbers (alphabet size of
27; each weighing has 3 possible outcomes) that there is a strategy that
exactly matches the entropy lower bound of 3 weighings. If you change the
numbers, it will not generally be true that there is a strategy that exactly
matches the lower bound.
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PREDICTION, LEARNING, AND CROSS-ENTROPY LOSS

In today’s lecture, we explore the role of entropy in prediction and learning
problems.
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EXAMPLE : CLASSIFY IMAGES

?

Image

Neural Network

?

Label

Label Probability
Ibex 0.98
Kangaroo 0.005
Lynx 0.002
Wombat 0.002
Dog 0.001
Cat 0.001
Turtle 0.001
Dolphin 0.001
Elephant 0.001
Kookaburra 0.001
Other 0.005
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EXAMPLE : CLASSIFY IMAGES

▶ Our Neural Network produces

Pmachine(label|image).

▶ The true label distribution is

Ptrue(label|image) =

{
1, correct label,
0, wrong label.

(assuming for simplicity that for each image, there is a single correct
label).

▶ Ideally, we would like

Pmachine(label|image) = Ptrue(label|image)

for every pair (image, label).

▶ Clearly, this is not going to happen in the real world!

253 / 798



EXAMPLE : CLASSIFY IMAGES

▶ Instead, people like to consider cross entropy loss.

▶ That is, we wish for our Pmachine(label|image) to minimize

L(Ptrue(label|image),Pmachine(label|image))

= −
∑
label

Ptrue(label|image) logD Pmachine(label|image)

▶ Given training data (imagei , labeli), for i = 1, 2, . . . , n, we select
Pmachine(label|image) to minimize the cross entropy loss.
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CROSS ENTROPY LOSS

▶ Cross Entropy Loss:

L(P,Q) = −
∑

y

P(y) logD Q(y).

where
▶ P is the true distribution
▶ Q is our approximation (via the neural network).

Why is it popular?

▶ Good properties for training with “gradient descent” in certain standard
architectures.

▶ Theoretical properties.

We will now discuss these in turn.
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

▶ The Neural Network takes in an image. Let us call this x .

▶ It outputs a label distribution Q(y |x) over the set of labels.

▶ Let us restrict to just two labels. Only “Ibex” (y = 0) and “Kangaroo”
(y = 1).

▶ In simplified terms, the Neural Network outputs:

Q(y = 0|x) = ez0

ez0 + ez1
,

Q(y = 1|x) = ez1

ez0 + ez1
= 1−Q(y = 0|x).

where

z0 = w0x + b0

z1 = w1x + b1

where w0 and w1 are called weights and b0 and b1 are called biases.

▶ The key is to select the weights and biases cleverly.

▶ This is done by training with data.
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Label = 0
(“Ibex”)

Label = 1
(“Kangaroo”)
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

▶ For fixed weights and biases, calculate the loss over all n training
samples:

Ltraining = −
n∑

i=1

(
P(y = 0|xi) logD

ez0,i

ez0,i + ez1,i
+ P(y = 1|xi) logD

ez1,i

ez0,i + ez1,i

)
where z0,i = w0xi + b0 and z1,i = w1x + b1.

▶ Suppose images i = 1, 2, . . . , k are ibexes (label 0), and images
i = k + 1, k + 2, . . . , n are kangaroos (label 1). Then, we can write

Ltraining = −
k∑

i=1

logD
ew0xi+b0

ew0xi+b0 + ew1xi+b1
−

n∑
i=k+1

logD
ew1xi+b1

ew0xi+b0 + ew1xi+b1

▶ Now minimize this over all weights and biases!
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EXAMPLE : CLASSIFY IMAGES, TRAINING WITH CROSS ENTROPY LOSS

Ltraining = −
k∑

i=1

logD
ew0xi+b0

ew0xi+b0 + ew1xi+b1
−

n∑
i=k+1

logD
ew1xi+b1

ew0xi+b0 + ew1xi+b1

▶ Find gradient (derivative) with respect to weights (and biases).
▶ Most commonly, gradient descent is used.

▶ Start with a random choice of the weights.
▶ Then, proceed in “small” steps against the gradient.
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CROSS ENTROPY LOSS : THEORETICAL PROPERTIES

▶ Cross Entropy Loss:

L(P,Q) = −
∑

y

P(y) logD Q(y).

THEOREM

For a fixed probability distribution P, the minimum

min
Q

L(P,Q)

is attained if and only if we select Q∗ = P, and in this case,

L(P,Q∗) = L(P,P) = H(P),

where H(P) is the entropy of the probability distribution P.

The proof, which will be done in class, uses once again the “IT inequality.”
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SUMMARY OF CHAPTER 1

Entropy:
HD(X ) = −

∑
x

p(x) logD p(x).

For D = 2, we simply write H(X ), and we call the unit bits.

Entropy has many useful properties, including:

▶ 0 ≤ HD(X ) ≤ logD |X |

▶ HD(X |Y ) ≤ HD(X ) with equality if and only if X and Y are independent.

▶ HD(X ,Y ) = HD(X ) + HD(Y |X )
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SUMMARY OF CHAPTER 1

Data Compression:

▶ Every uniquely decodable binary code must use at least H(X ) bits per
symbol on average.

▶ There exists a binary code that uses between H(X ) and H(X ) + 1 bits
per symbol on average.

▶ Hence, for a source string of length n :
▶ every uniquely decodable binary code must use at least

H(S1,S2, · · · ,Sn)/n bits per source symbol, and
▶ there exists a binary code that uses between H(S1,S2, · · · ,Sn)/n and

H(S1,S2, · · · ,Sn)/n + 1/n bits per source symbol.
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SUMMARY OF CHAPTER 1

Entropy and Algorithms

▶ We explored examples where entropy can give a lower bound on
algorithmic performance.
▶ Example: in search-type problems, give a lower bound on the minimum

number of necessary queries.

Cross-Entropy Loss

▶ Machine (e.g., Neural Network) outputs a distribution Q(y) over all
possible labels.

▶ Cross-Entropy Loss: Select Q(y) to minimize
L(P,Q) = −∑y P(y) logD Q(y).
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WHY CRYPTOGRAPHY

Cryptography serves two purposes:

▶ Privacy: Preventing that sensitive information lands in the wrong hands.

▶ Authenticity: Preventing that information is falsified.
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Before the Internet:

▶ Cryptography was essentially a tool for diplomats and generals.

▶ Common people would sign a letter (for authenticity), put it in an
envelope (for privacy) and trust the postal service for the delivery to the
intended recipient (reliability).
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The Internet has changed that:

▶ Now we send sensitive information over public channels on a daily basis.
We need to control who can decipher such information (privacy). People
and businesses can be destroyed if private information leaks out.

▶ We have the ability to post information that can be read by anybody —
hence that can have a huge impact. We need to be able to verify who is
posting (authenticity). People and businesses can be destroyed if
information is falsified.
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Cryptography gives us the tools to:

▶ authenticate the sender and the receiver

▶ verify the integrity of the message

▶ keep the message confidential

All these problems are related. Our initial focus is on how to keep a message
confidential.
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BASIC SETUP FOR CONFIDENTIALITY

Encryption
algorithm

Plaintext t

kA

Alice

EkA (t)

Decryption
algorithm

t

kB

Bob

DkB (EkA (t))

Trudy

Ciphertext c

Alice wants to sent the plaintext t to Bob:

▶ She encrypts t using her key kA. The result is the ciphertext c = EkA(t).

▶ She sends c to Bob over a public channel.

▶ Bob decrypts c using his key kB . The result is DkB (EkA(t)) = t .

▶ For Trudy, it is nearly impossible to recover t from c without knowing kB .
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BASIC TERMINOLOGY

▶ plaintext, ciphertext (also called cryptogram), key, encrypter, decrypter:
already defined.

▶ cryptography: the art of composing cryptograms.

▶ cryptanalysis: the art of breaking cryptograms.

▶ a cryptanalyst has broken the system when he can quickly determine the
plaintext from the cryptogram, no matter what key is used.

▶ attacker: same as cryptanalyst.
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ANCIENT CRYPTOGRAPHY

Caesar’s Cipher (Julius Caesar (1st century BC))

Suppose that we are using the English alphabet augmented by a few special
characters, say "space", "comma", and "period".

An alphabet of 29 characters, represented by the integers 0, 1, . . . , 28.

▶ the key k is an integer between 0 and 28, known to Alice and Bob and to
nobody else.

▶ the encryption algorithm substitutes the i-th letter of the alphabet with
the (i + k)-th letter (mod 29).

▶ the decryption algorithm substitutes the j-th letter with the (j − k)-th
(mod 29).
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EXAMPLE (CAESAR’S CIPHER)

The alphabet is

{A,B,C,D,E , . . . ,W ,X ,Y ,Z , space, comma, period}
E

N
C

R
Y

P
T

k = 1

I CAME, I SAW, I CONQUERED.

J,DBNF.,J,TBX.,J,DPORVFSFEA
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Monoalphabetic Cipher

Caesar’s cipher is a special case of a monoalphabetic cipher. A more general
monoalphabetic cipher uses an arbitrary permutation of the alphabet.

EXAMPLE (MONOALPHABETIC CIPHER)

E
N

C
R

Y
P

T

k

COWARDS DIE MANY TIMES

XTHPFKIBKLDBGPMQBALGDI

k
A → P
B → V
C → X
D → K
E → D
F → C
G → O
H → J
I → L
J → W
K → Z
L → E
M → G
N → M
O → T
P → Y
Q → S
R → F
S → I
T → A
U → N
V → U
W → H
X → R
Y → Q

Z → space
space → B
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Polyalphabetic Cipher

A monoalphabetic cipher uses a fixed substitution table over the entire
message. A polyalphabetic cipher uses multiple substitution tables.

A key specifies which table is used for which position of the message.

EXAMPLE (POLYALPHABETIC CIPHER: VIGENÈRE’S CIPHER)

▶ It uses multiple Caesar ciphers.

▶ So if the key is 5,9,20, it means
▶ the offset for the first letter of the message is 5

▶ that for the second letter is 9

▶ for the third letter it is 20

▶ for the fourth letter it is 5 (we start over with the first offset of the key)

▶ etc.
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KEY ASSUMPTION IN MODERN CRYPTOGRAPHY

The security is based on the secret key (not on the secrecy of the algorithm).

EXAMPLE (COUNTEREXAMPLE)

Caesar was evidently relying on the secrecy of the algorithm.

E
N

C
R

Y
P

T

k = 1

I CAME, I SAW, I CONQUERED.

J,DBNF.,J,TBX.,J,DPORVFSFEA
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VARIOUS ATTACKS POSSIBLE

We distinguish between the following attacks:

▶ ciphertext-only: one or more cryptograms available to the cryptanalyst,
known to have been encrypted with the same key.

▶ known plaintext: the cryptanalyst has one or more plaintexts and the
resulting cryptograms, known to have been encrypted with the same key.

▶ chosen plaintext: for any plaintext that he requires, the cryptanalyst can
obtain the cryptogram under the same key.
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WHAT KIND OF SECURITY DO WE EXPECT?

▶ Ideally, a cryptographic system should be secure against a chosen
plaintext attack.

▶ At the very least, it should be secure against a ciphertext-only attack.
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HOW SECURE WERE THE ANCIENT CRYPTOSYSTEMS?

EXAMPLE (CAESAR’S CIPHER)

▶ chosen plaintext attack: encrypt one letter and you get the key

▶ known plaintext attack: compare one letter and get the key

▶ ciphertext-only attack: try all the 29 possible keys

Caesar’s cipher is not at all secure against a contemporary attacker.
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EXAMPLE (GENERIC MONOALPHABETIC CIPHER)

▶ chosen plaintext attack: encrypt each letter of the alphabet

▶ known plaintext attack: compare input/output over a text that uses all
letters

▶ ciphertext-only attack:
▶ brute-force approach: try all 29! = 8.84 × 1030 permutations
▶ letter-frequency approach: use the fact that for a given language we know

the frequency of each letter

A brute-force approach is challenging.

With a modern computer, the key can easily be found using the
letter-frequency attack.

How to make the letter-frequency attack unfruitful?
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EXAMPLE (VIGENÈRE’S CIPHER, WITH AN n-LENGTH KEY)

▶ chosen plaintext attack: encode the same letter until you have the
n-length key

▶ known plaintext attack: compare input/output until you have the n-length
key

▶ ciphertext-only attack:
▶ brute-force approach: try all 29n keys if you know n. (Many more otherwise.)

▶ for n = 21, the number of keys is 5.1330

▶ for n = 100, the number of keys is 1.73146

▶ if you know n, you can partition input/output into n parts, each of which is a
Caesar cipher with its own key.

▶ letter-frequency approach: effective if the plaintext-length to key-length ratio
is sufficiently large.
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THE ONE-TIME PAD

Preliminary assumptions:

▶ The plaintext t , the key k and the cryptogram c are n-length binary
sequences over the alphabet A = {0, 1}.

▶ The key k is produced by selecting each bit independently and with
uniform distribution.

▶ Alice and Bob use a private channel to exchange the key ahead of time.

Encryption: c = t ⊕ k (component-wise binary sum)

Decryption: c ⊕ k = (t ⊕ k)⊕ k = t ⊕ (k ⊕ k) = t
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EXAMPLE (ONE-TIME PAD)

Encryption:

t = 1 0 1 1 0 1
k = 0 1 0 0 0 1
c = 1 1 1 1 0 0

Decryption:

c = 1 1 1 1 0 0
k = 0 1 0 0 0 1
t = 1 0 1 1 0 1

We get back the plaintext because b + b = 0 (mod 2) for b ∈ {0, 1}.

Generalizing to a non-binary alphabet is straightforward.
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PERFECT SECRECY

DEFINITION (PERFECT SECRECY)

A cryptosystem has perfect secrecy if the plaintext T and the cryptogram C
are statistically independent.

Perfect secrecy is the ultimate kind of security against a ciphertext-only
attack: The attacker cannot do better than guessing the plaintext T .
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PERFECT SECRECY OF THE ONE-TIME PAD

▶ The n-length key k is selected at random (uniform distribution over
{0, 1}n).

▶ The key k and the message t are selected independently.

▶ The ciphertext is c = t ⊕ k .

pC|T (c|t) = pK |T (c ⊖ t |t) = pK (c ⊖ t) =
1
2n .

(n is known by assumption.)

Hence C and T are independent: knowledge of C is useless in guessing T .
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A WEAKNESS OF THE ONE-TIME PAD

EXAMPLE (ONE-TIME PAD)

An cryptanalyst that has the plaintext t and the corresponding cryptogram c,
immediately gets the key:

k = c ⊖ t

Hence the pad (the key) should be used only once.
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ONE-TIME PAD: ADVANTAGES AND DRAWBACKS

+ very simple algorithm

+ as secure as it gets against a ciphertext-only attack and key used once

+ of instructional value to prove that perfect secrecy is possible

- the key is as long as the plaintext (this is fundamental, see later)

- the key needs to be exchanged ahead of time over a private channel

- a ciphertext-only attack can break the system if the key is used twice
(see homework)

- a known plaintext attack reveals the key

The "one-time pad" has been used extensively in diplomatic and espionage
circles.
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PERFECT SECRECY REQUIRES HIGH-ENTROPY KEYS

The following Theorem makes no assumption on the encryption algorithm.

E
N

C
R

Y
P

T

k

t

c

THEOREM (PERFECT SECRECY)

Perfect secrecy implies
H(T ) ≤ H(K ).
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Proof:

Perfect secrecy
(
H(T ) = H(T |C)

)
and decodability

(
H(T |K ,C) = 0

)
imply

H(T ) = H(T |C)

≤ H(T ,K |C)

= H(K |C) + H(T |K ,C)

= H(K |C)

≤ H(K ).

NB: Entropy plays a key role also in cryptography.
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EXERCISE

Determine the minimum average length of the binary key for a cryptosystem
that has the following characteristics:

▶ the message is an uncompressible binary string of length n

▶ the system achieves perfect secrecy
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SOLUTION

▶ H(T ) must be (essentially) n bits (otherwise further compression is
possible).

▶ perfect secrecy requires H(T ) ≤ H(K ).

▶ hence H(K ) is at least n.

▶ the average blocklength of the binary key is at least n bits.
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SYMMETRIC-KEY CRYPTOSYSTEMS: KEY-DISTRIBUTION PROBLEM

A symmetric-key cryptosystem is one for which both ends use the same key
(kA = kB = k ). All examples considered so far rely on a symmetric key.

There exists fast (and secure) symmetric-key cryptosystems, but:

▶ Anybody that has the key can encrypt and/or decrypt.

▶ The key cannot be sent over an insecure channel.

▶ In an n-user network, each user needs n − 1 keys to communicate
privately with every other user. Key distribution is a problem as it has to
be done over a secure channel. And keys have to be changed frequently!

▶ We have a real problem: see e.g. the first 6 min. and 20 sec. of
http://www.youtube.com/watch?v=YEBfamv-_do&sns=em
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PUBLIC KEY-DISTRIBUTION (DIFFIE AND HELLMAN)

Is there a way to distribute keys over a public channel?

In 1976, Diffie and Hellman came up with a solution.
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Setup:

▶ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p − 1} and arithmetic is modulo p (more on it later).

▶ Pick a generator g. A generator has the property that g i generates all
elements in {1, 2, . . . , p − 1} when i = 0, 1, . . . , p − 2.

▶ Note: Towards the end of this chapter, after introducing all of the algebra
necessary, we will see that a generator always exists since we are in
what is called a cyclic group.

EXAMPLE

p = 5. The numbers are {0, 1, 2, 3, 4}.

g = 2 is a generator. Indeed:
i g i

0 1
1 2
2 4
3 3
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▶ Alice picks a number a, kept secret.

▶ Bob picks a number b, kept secret.

▶ Alice and Bob send the number A = ga and B = gb to the public
directory, respectively. This can be done over a non-private channel.

The public directory, readable by everyone, looks like this

User Public Key
Alice A
Bob B
...

...
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Shared key generation:

Suppose that Alice and Bob want to communicate using a symmetric-key
cryptosystem (the only kind of cryptosystem that we have studied so far).

Alice’s Space

Public Channelt c

Bob’s Space

t

kk

E D

They need a shared key k that nobody else knows.

Here is how they proceed:

▶ Alice gets B from the public directory and computes k = Ba = gba.

▶ Bob gets A from the public directory and computes k = Ab = gab.

We see that Alice and Bob have come up with a shared key k .
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Eve wants to listen in:

Assuming that the cryptosystem used by Bob and Alice is secure, the best
option for Eve is to find the key k .

She knows p, g, A, and B.

In general, there seems to be no better way than finding the number a for
which ga = A, and then compute k = Ba.
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This is a problem. Let us check out some numbers: Suppose p is a 2048-bit
number. (It must be prime, but let us neglect this and assume p = 22048.)

▶ It takes roughly
2 log2 p = 4096

multiplications to perform a→ ga (called discrete exponentiation). With a
computer that performs 1010 multiplications per second, the
exponentiation is done seamlessly.

▶ It takes roughly

exp

((
64
9

) 1
3

(ln p)
1
3 ln ln p)

2
3

)
≈ 1035

multiplications to perform ga → a (called discrete logarithm to the base
g). With the same computer, it takes about 1025 seconds, which is about
7× 107 times the age of the Earth. (The age of the Earth is about
4.5× 109 years, i.e., 14.3× 1016 seconds.)

Conclusion: Diffie and Hellman’s public key-distribution scheme is clever,
efficient, and it seems to be secure.
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A PARADIGM SHIFT

The perceived security of the DH public key-distribution algorithm relies on
the solution to a problem considered to be difficult to solve.

We call this computational security. Even though it seems unlikely, someone
could find a very fast algorithm to compute the discrete logarithm. The DH
system would instantly become insecure.

To the contrast, perfect secrecy offers provable security even when the
enemy has infinite time and computing power.

Most cryptographic systems rely on computational security.

This leads to the notion of a one-way function.
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ONE-WAY FUNCTIONS

Discrete exponentiation is an example of a one-way function: a function for
which a fast algorithm exists and no fast algorithm is known for the function’s
inverse.

(More precisely, to be considered as a one-way function, the modulus p
needs to be a large prime number such that n = p − 1 has a large prime
factor.)
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In the DH protocol:

▶ Alice uses the function fa : g 7→ ga (with a kept secret)

▶ Bob uses the function fb : g 7→ gb (with b kept secret)

The functions commute: fa(fb(g)) = fb(fa(g)). Hence

fa(B) = fb(A).

An attacker needs to invert the map a 7→ ga (or, equivalently, invert the map
b 7→ gb). This is hard to do, because discrete exponentiation is believed to be
a one-way function.
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The following is another application of a one-way function.

EXAMPLE (APPLICATION OF A ONE-WAY FUNCTION)

If a computer were to save user’s names and passwords, a system manager
would have access to both.

This is not the case if the operating system stores, along the name, a
one-way function f of our password. (The password itself is never stored.)

Operating 
System

Alice

k

[ Alice, f(k) ]
Log Files

Computer System
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TRAPDOOR ONE-WAY FUNCTIONS

A trapdoor one-way function is a one-way function with an extra feature called
the trapdoor information: with this information, the hard-to-carry-out inverse
computation becomes easy.

Diffie and Hellmann realized that with such a tool the key-distribution problem
would disappear.

Let us first take a look at what Diffie and Hellman proposed to do with a
trapdoor one-way function (if such a function could be found).
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PUBLIC-KEY CRYPTOGRAPHY (ASYMMETRIC CRYPTOGRAPHY)

Suppose that Alice wants to send private information to Bob.

Bob has a trapdoor one-way function, implemented by an algorithm EB that
he publishes in a open directory.

He is the only one who has the trapdoor information kB . Hence he has the
algorithm DB that implements the inverse function.

Alice and Bob no longer need a shared key (see figure).

Alice’s Space

Public Channel
EB DB

kB

t c

Bob’s Space

t
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The first trapdoor one-way function was found by Rivest, Shamir, and
Adleman in 1978.

We start with ElGamal’s trapdoor one-way function because, as for the DH
protocol, it relies only on the assumption that the exponentiation is a one-way
function.
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ElGamal’s trapdoor one-way function

Setup: (same as for the DH protocol)

▶ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p − 1} and arithmetic is modulo p (more on it later).

▶ Pick a generator g.

▶ Pick randomly selected numbers x and y . Unlike p and g, x and y are
kept secret.

Here is a trapdoor one-way function, with trapdoor information x .

x = randomly selected number
y = randomly selected number

t
(
gy , gyx t

)

Given the trapdoor information x , we can invert the function as follows:

▶ compute the inverse of
(
gy)x

= gyx .

▶ multiply the result with gyx t . The result is t .
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ElGamal’s Encryption Scheme

It is based on the above trapdoor one-way function. Let p and g be fixed and
known to everyone.

Here is how Alice sends encrypted text to Bob:

Alice:
t = plaintext, t ;
y = random number, y ;

Bob:
x = random number, x ;

Bob sends gx to Alice

Alice sends the cryptogram (gy , gyx t) to Bob

Note: x and y are transaction specific.
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Next goal: The RSA public key cryptosystem. It will take two weeks to build
up the necessary background.
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WHY NUMBER THEORY

Much of public-key cryptography is based on number theory.

More generally, in the digital world, the information is represented by the
elements of a finite set, and we should be able to do math with them. Which
means that the finite set should be a finite field. Our bigger goal of the next
few lectures is to develop the tools to understand when and how we can turn
a finite set into a finite field.
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OPERATIONS WITH INTEGERS

Within Z (the set of integers) we can

▶ add, subtract, multiply

▶ but not divide: 7
2 is not an integer

▶ what comes closest to the (regular) division is the Euclidean division
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EUCLIDEAN DIVISION

The Division Algorithm: Given integers a (the dividend) and m (the divisor),
there exist unique integers q (quotient) and r (remainder), such that

a = mq + r , 0 ≤ r < |m|.

Note: The computation of q and r as above is called Euclidean division.
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In spite of its name, the above should be seen as a theorem. It’s proof is
obvious from a drawing: find the mq to the left of a.

Z
0 |m| 2|m| 3|m| 4|m| 5|m|

a > 0

r

Z
|m|0−|m|−2|m|−3|m|−4|m|

a < 0

r
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▶ The Euclidean division of 8 by 3 yields

8 = 3× 2 + 2

▶ The Euclidean division of −8 by 3 yields

−8 = 3× (−3) + 1

▶ The Euclidean division of 8 by −3 yields

8 = −3× (−2) + 2

▶ The Euclidean division of −8 by −3 yields

−8 = −3× 3 + 1
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EUCLIDEAN DIVISION IN MAINSTREAM PROGRAMMING LANGUAGES

In C/C++/Java/Python we use the operator % to compute r as follows.

If a and m are both positive, then r = a%m.

If one or the other or both are negative, different languages behave
differently, but the general rule is:

▶ if a%m is nonnegative, then r = a%m;

▶ if a%m is negative, then r = a%m+m.
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More precisely about the value of a%m:

▶ C/C++/Java: a%m has the same sign as a.

▶ Python: a%m has the same sign as m.

EXAMPLE

a m a%m in C/C++/Java a%m in Python r

8 3 2 2 2
−8 3 −2 1 1

8 −3 2 −1 2
−8 −3 −2 −2 1
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USEFUL INTERNET TOOLS

▶ Wolfram Alpha: https://www.wolframalpha.com

EXAMPLE

5%3

▶ Python in browser: https://trinket.io/python

EXAMPLE

a= 5%3

print a

Both behave like Python, i.e., the sign of a%m is that of m.
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mod OPERATION

From now on, unless otherwise specified, the divisor will be a positive integer
m.

By
r = a mod m,

we denote the remainder r when the integer a is divided by m.
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EXAMPLE

A pie that has 7 slices has to be divided evenly among 3 people. Then 7
mod 3 is the number of slices left over.

EXAMPLE

The arrival time of a trip that starts at time 13 h and lasts 40 hours is
5 = 13 + 40 mod 24.
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CONGRUENCE

Sometimes we are interested in knowing if two numbers have the same
remainder when divided by m.

DEFINITION

Two integers a and b are said to be congruent modulo m, denoted

a ≡ b (mod m),

if m | a− b.
(Read m divides a− b.)

Note: do not confuse the relation a ≡ b (mod m) and the function
a→ a mod m.
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EXAMPLE

▶ 23 ≡ 21 (mod 2)

▶ 23 ≡ 3 (mod 5)

▶ x ≡ 0 (mod 5) means that x is a multiple of 5
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EXERCISE

Which of these are true statements?

1. If x ≡ 3 (mod 5), then x is not a multiple of 5.

2. If x ≡ 25 (mod 5), then x is not a multiple of 5.

3. If x ≡ 0 (mod 5), then x is a multiple of 5.
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SOLUTION

1. (true:) x ≡ 3 (mod 5) means that x − 3 is divisible by 5.
⇒ x is not a multiple of 5.

2. (false:) x ≡ 25 (mod 5) means that x − 25 is divisible by 5.
⇒ x is divisible by 5.

3. (true:) x ≡ 0 (mod 5) means that x is divisible by 5.
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The following statements are equivalent:

▶ a ≡ b (mod m)

▶ (a− b) mod m = 0

▶ a mod m = b mod m
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CONGRUENCE IS AN EQUIVALENCE RELATION

A binary relation ∼ on a set is an equivalence relation iff the following three
axioms are satisfied:

▶ a ∼ a (reflexivity)

▶ if a ∼ b then b ∼ a (symmetry)

▶ if a ∼ b and b ∼ c then a ∼ c (transitivity)

Substitute a ∼ a with a ≡ a (mod m) etc. to see that congruence is an
equivalence relation.

One of the consequences is that we can form equivalence classes and we
can work with one representative of each class. (This will become useful
later.)
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USEFUL RULES (THM 7.9 OF TEXTBOOK)

If

a ≡ a′ (mod m)

b ≡ b′ (mod m)

then

a + b ≡ a′ + b′ (mod m)

ab ≡ a′b′ (mod m)

an ≡ (a′)n (mod m)
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In particular, if a′ = (a mod m) and b′ = (b mod m), then we obtain the
following facts (useful in mod calculations)

▶ (a + b) ≡
(
(a mod m) + (b mod m)

)
(mod m)

▶ hence

▶ (a + b) mod m =
(
(a mod m) + (b mod m)

)
mod m

▶ ab ≡
(
(a mod m)(b mod m)

)
(mod m)

▶ hence

▶ (ab) mod m =
(
(a mod m)(b mod m)

)
mod m

▶ an ≡
(
a mod m

)n
(mod m)

▶ hence

▶ an mod m =
(
a mod m

)n
mod m

Bottom line: If the final result is mod m, then intermediate results can be
reduced mod m.
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EXAMPLE

▶ 23 ≡ 3 (mod 5)

▶ 2 ≡ 2 (mod 5)

▶ Hence 23 + 2 ≡ 5 (mod 5)
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EXAMPLE

▶ (123 + 97) (mod 2) = (1 + 1) (mod 2) = 0

▶ (123 · 97) (mod 2) = (1 · 1) (mod 2) = 1

▶
(
(1234 · 333) + 41(76 + 5)

)
mod 2 =

(
(0 · 1) + 1(0 + 1)

)
mod 2 = 1
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EXERCISE

Which of these is/are correct?

1. 23 ≡ 3 (mod 5)

2. −23 ≡ −3 (mod 5)

3. −23 ≡ 2 (mod 5)

SOLUTION

1. 23 ≡ 3 (mod 5) is correct: 23− 3 is divisible by 5

2. −23 ≡ −3 (mod 5) is correct: multiply the above on both sides by −1

3. −23 ≡ 2 (mod 5) is correct: use item 2 and 0 ≡ 5 (mod 5).
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LESS TRIVIAL EXAMPLE

EXAMPLE
(
IS 2 + 21000 DIVISIBLE BY 3?

)
▶ 2 ≡ −1 (mod 3)

▶ 21000 ≡ (−1)1000 ≡ 1 (mod 3)

▶ 2 + 21000 ≡ −1 + 1 ≡ 0 (mod 3)

Hence 2 + 21000 is divisible by 3.

Attention: we cannot reduce the exponent!

22 mod 2 = 0 ̸= 20 mod 2 = 1.
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EXERCISE

Is 91000 + 9106
divisible by 5?

SOLUTION

▶ 9 ≡ −1 (mod 5)

▶ 91000 + 9106 ≡ (−1)1000 + (−1)106 ≡ 1 + 1 ≡ 2 (mod 5)

Hence 91000 + 9106
is not divisible by 5.
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EVEN NUMBERS

▶ 10 ≡ 0 (mod 2)

▶ 10n ≡ 0n ≡ 0 (mod 2), n positive integer

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4

≡ 1 · 0 + 2 · 0 + 3 · 0 + 4 (mod 2)

≡ 4 (mod 2)

≡ 0 (mod 2)

Hence 1234 is divisible by 2.

We see that a decimal number is divisible by 2 iff the last digit is divisible by
2. (Not new to us, but the method generalizes.)
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REMAINDER AFTER DIVISION BY 9

▶ 10 ≡ 1 (mod 9)

▶ 10n ≡ 1n ≡ 1 (mod 9), n positive integer

1234 = 1 · 103 + 2 · 102 + 3 · 101 + 4

≡ 1 · 1 + 2 · 1 + 3 · 1 + 4 (mod 9)

≡ 1 + 2 + 3 + 4 (mod 9)

≡ 10 (mod 9)

≡ 1 (mod 9)

Hence the remainder after division of 1234 by 9 is 1.

To obtain the rest after division of a decimal number by 9, we can substitute
the number with the sum of its digits.
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EXAMPLE (MOD 9)

1234567890 ≡ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 (mod 9)

≡ 45 (mod 9)

≡ 0 (mod 9)
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CHECK DIGITS MOD 97

▶ Write down an integer in decimal notation, e.g.,

021 235 1234

▶ Compute its remainder after division by 97:

021 235 1234 mod 97 = 95

▶ Append the remainder to the number, as a check digit:

021 235 1234 95

▶ A common mistake consists in transposing two digits:

021 253 1234 95

▶ The check digits are no longer consistent:

021 253 1234 mod 97 = 63
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PROCEDURE MOD 97 − 10

It is a variant of the previous one:

1. Append 00 (i.e., multiply the number by 100)

2. Let r be the remainder after division by 97

3. The check digits are c = 98− r (written as a 2-digit number, e.g., 03)

4. Replace 00 with c

5. Check: the resulting number mod 97 equals 1
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PROCEDURE MOD 97 − 10: WHY THE CHECK IS AS STATED

Encoding:
n 7−→ 100n + 98− (100n mod 97)︸ ︷︷ ︸

check digits

Check: we compute the resulting number mod 97:

100n + 98− (100n mod 97) mod 97

= 100n + 98− 100n mod 97

= 98 mod 97

= 1
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EXAMPLE (MOD 97 − 10)

1. n = 212351234

2. n 7−→ 21235123400 + (98− 91)︸ ︷︷ ︸
check digits

= 21235123407

3. Check: 21235123407 mod 97 = 1. Check passed

4. If we transpose: 21253123407

5. Check: 21253123407 mod 97 = 2. Check not passed

Next lecture we will see why Mod 97− 10 always detects a transposition.
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IBAN (INTERNATIONAL BANK ACCOUNT NUMBER)

Main difference to MOD 97− 10: The check digits are in position 3 and 4

Example:

1. Account number:

bank, 5 digits︷ ︸︸ ︷
00243

account, 12 digits︷ ︸︸ ︷
0001 2345 6789

2. Append CH (for a Swiss bank account): 00243 0001 2345 6789 CH

3. Convert into numbers according to: A 7→ 10, . . . ,Z 7→ 35:

00243 0001 2345 6789 1217

4. MOD 97− 10 procedure:

00243 0001 2345 6789 121754

5. Reposition:
CH54 00243 0001 2345 6789

6. To verify, we undo the repositioning and do the MOD 97− 10 check.
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IBAN CONSTRUCTION

00243 0001 2345 6789 CH

00243 0001 2345 6789 1217

MOD 97− 10

00243 0001 2345 6789 121754

CH︸︷︷︸
country

54︸︷︷︸
check

00243︸ ︷︷ ︸
bank

0001 2345 6789︸ ︷︷ ︸
account
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EXERCISE

Is the following statement correct?

2 + x ≡ 2 + y (mod 12) =⇒ x ≡ y (mod 12)

SOLUTION

We are allowed to add and multiply on both sides as we do when we solve
equations over the reals.

By adding −2 on both sides:

2 + x ≡ 2 + y (mod 12) ⇒ x ≡ y (mod 12)

The statement is true.

(Which property of the "useful rules" have we used?)
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EXERCISE

Is the following statement correct?

2x ≡ 2y (mod 12) =⇒ x ≡ y (mod 12)

SOLUTION

No. The multiplicative inverse of 2 does not exist (mod 12).

For instance
2× 9 ≡ 2× 3 (mod 12),

however
9 ̸≡ 3 (mod 12)

(Why can’t we say that 1
2 ≡ 1

2 (mod 12) and multiply both sides by 1
2 ?)
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PRIME NUMBERS

DEFINITION

A prime number (or a prime) is an integer > 1 that has no positive divisors
other than 1 and itself.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . . are prime numbers.

Non-primes are called composites.
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EXERCISE

Many people forget if 1 is prime or not. Why is it not?

SOLUTION

Because if we declare 1 to be a prime number, then the following
fundamental theorem is no longer valid.
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PRIME NUMBERS

THEOREM (PRIME FACTORIZATION: SHORT VERSION)

Every integer greater than 1 has a unique prime factorization (except for
order).
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EXAMPLE

100

2 50

2 25

5 5

⇒ 100 = 2× 2× 5× 5
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PRIME FACTORIZATION: A DIFFICULT TASK

▶ a number as big as 2700 (700 bits) can be factored

▶ a 1000 bits number cannot be factored (with today’s technology)

“Among the b-bit numbers, the most difficult to factor in practice us-
ing existing algorithms are those that are products of two primes of
similar size. For this reason, these are the integers used in crypto-
graphic applications. The largest such semiprime yet factored was
RSA-250, an 829-bit number with 250 decimal digits, in February
2020. The total computation time was roughly 2700 core-years of
computing using Intel Xeon Gold 6130 at 2.1 GHz. Like all recent
factorization records, this factorization was completed with a highly
optimized implementation of the general number field sieve run on
hundreds of machines.”

[Wikipedia, March 23, 2023]
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THEOREM (TEXTBOOK THM 7.3)

Let a and b be positive integers. a divides b iff all prime factors of a are
present in the prime factorization of b with an equal or greater exponent.

352 / 798



EXAMPLE

168 = 23 · 3 · 7
12 = 22 · 3

Hence 12 divides 168.

EXAMPLE

30 = 2 · 3 · 5
12 = 22 · 3

Hence 12 does not divide 30.
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DEFINITION

Let a and b be integers, not both zero. The largest integer that divides both is
called the greatest common divisor of a and b. It is denoted by gcd(a, b).
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THEOREM (TEXTBOOK THM 7.4)

Let a and b be positive integers, not both zero, and let p1 < p2 < · · · < pk be
the sequence of prime numbers that divide a or b. Write

a = pα1
1 · · · p

αk
k

b = pβ1
1 · · · p

βk
k ,

with 0 ≤ αi and 0 ≤ βi . Then

gcd(a, b) = pγ1
1 · · · p

γk
k ,

with γi = min(αi , βi).

355 / 798



EXAMPLE

12 = 22 · 3 = 22 · 31 · 50

30 = 2 · 3 · 5 = 21 · 31 · 51

gcd(12, 30) = 21 · 31 · 50 = 6
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It is an immediate consequence of the above theorem that gcd(a, b) = 1 iff a
and b have no common factor.

DEFINITION

When gcd(a, b) = 1, we say that a and b are coprime (or relatively prime,
or mutually prime).
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EXAMPLE

9 = 32

100 = 22 · 52

gcd(9, 100) = 1

9 and 100 are thus coprime.
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THEOREM (TEXTBOOK THM 7.6)

Let p be a prime number and let a be an integer such that 0 < a < p. Then

gcd(p, a) = 1

PROOF

The prime factorization of a cannot contain p.
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EXERCISE (TRUE OR FALSE?)

If ab | c, then a | c and b | c.

SOLUTION

If ab | c, then we can write c = abd for some integer d .

Clearly both a and b divide c.
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EXERCISE (TRUE OR FALSE?)

If a | c and b | c, then ab | c.

SOLUTION

a | c and b | c does not imply ab | c.

In fact, ab could exceed c.

Example: a = b = c.
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HOWEVER

THEOREM

If a | c and b | c and gcd(a, b) = 1, then ab | c.

PROOF

▶ the prime factorization of c contains all the prime factors of a.

▶ the prime factorization of c contains all the prime factors of b.

▶ a and b have distinct prime factors.

⇒ c
a is an integer that has all the prime factors of b in it.

⇒ Hence it is divisible by b.

▶ This proves that ab | c.
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EXAMPLE

▶ a = 2 · 3
▶ b = 5 · 7
▶ c = 2 · 3 · 5 · 7 · 11
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WHY MODULAR ARITHMETIC

Modular arithmetic is a foundation of number theory.

We need number theory for cryptography and for channel coding.
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INTRODUCING Z/mZ

Instead of considering integers and congruences (mod m), and write
“equations” like

a + b ≡ c (mod m)

a · b ≡ d (mod m),

we would like to write the “usual” kind of equations like

a + b = c

a · b = d ,

even when the operations are mod m.

This can be done, if we give new meaning to a, b, c and d , namely we make
them the congruence classes [a]m, [b]m, [c]m and [d ]m.
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DEFINITION (CONGRUENCE CLASSES)

Let m > 1 be an integer, called the modulus.

The set of all integers congruent to a (mod m) is called the congruence
class of a modulo m.

It is denoted by [a]m.
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EXAMPLE

▶ [24]2 is the set of even integers. Same as [0]2, [2]2, etc.

▶ [23]2 is the set of odd integers. Same as [1]2, [3]2, etc.

▶ [a]m = [b]m iff a ≡ b (mod m).
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DEFINITION (Z/mZ)

The set of all congruence classes modulo m is denoted by Z/mZ (which is
read “Z mod m”) .

Note: Some authors use the notation Zm.

EXAMPLE

▶ Z/2Z = {[0]2, [1]2}.
▶ Z/3Z = {[0]3, [1]3, [2]3}.
▶ etc.
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NB: An element of Z/mZ can be written in many ways

[a]m = [a + m]m = [a + 2m]m = · · ·

In particular:

▶ if a = mq + r , with 0 ≤ r ≤ m − 1, then

[a]m = [r ]m.

We say that [r ]m is in reduced form.

▶ every element of Z/mZ has a unique representation in reduced form;

▶ [b]m is in reduced form iff 0 ≤ b ≤ m − 1.
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EXAMPLE

Which statements are correct?

1. [−13]9 = [5]9

2. [13]9 = [−5]9

3. [13]9 = [5]9

4. [−13]9 = [−5]9
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SOLUTION

1. [−13]9 = [5]9 is correct: 9 | −18

2. [13]9 = [−5]9 is correct: 9 | 18

3. [13]9 = [5]9 is incorrect: 9 does not divide 8

4. [−13]9 = [−5]9 is incorrect: 9 does not divide −8
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In Z/mZ we define the sum and the product as follows:

▶ [a]m + [b]m = [a + b]m

▶ [a]m[b]m = [ab]m

The result is the same regardless the choice of representatives. In fact:

▶ If we choose [a + km]m instead of [a]m

▶ and [b + lm] instead of [b]m

▶ then we obtain [a + km]m + [b + lm]m = [a + km + b + lm]m which is the
same as [a + b]m.

Idem for multiplication.
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/3Z)

If the value of m is implicit, e.g. m = 3, then we may write a instead of [a]3.

The addition and multiplication tables are:

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Z/3Z × 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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EXAMPLE (ADDITION AND MULTIPLICATION IN Z/4Z)

Z/4Z + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z/4Z × 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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PROPERTIES OF + IN Z/mZ
The sum has the following properties:

▶ associativity:

[a]m + ([b]m + [c]m) = ([a]m + [b]m) + [c]m;

▶ there exists an additive identity, namely [0]m:

[a]m + [0]m = [0]m + [a]m = [a]m;

▶ there exists an inverse with respect to addition: every [a]m has an
inverse, denoted (−[a]m), such that

[a]m + (−[a]m) = (−[a]m) + [a]m = [0]m;

the inverse of [a]m is [−a]m;
▶ commutativity:

[a]m + [b]m = [b]m + [a]m;
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PROPERTIES OF × IN Z/mZ

The multiplication has the following properties:

▶ associativity:
[a]m([b]m[c]m) = ([a]m[b]m)[c]m;

▶ multiplicative identity, namely [1]m:

[a]m[1]m = [1]m[a]m = [a]m;

▶ commutativity:
[a]m[b]m = [b]m[a]m;
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MIXED PROPERTY IN Z/mZ

The two operations have the following property:

▶ distributivity:

[a]m([b]m + [c]m) = [a]m[b]m + [a]m[c]m;
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THE NOTATION k [a]m IN Z/mZ

For an arbitrary positive integer k , k [a]m is a short hand for
[a]m + [a]m + · · ·+ [a]m︸ ︷︷ ︸

k times

.

We can easily verify that

k [a]m = [ka]m = [k ]m[a]m.
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THE MULTIPLICATIVE INVERSE

Some elements of Z/mZ have the multiplicative inverse.

The multiplicative inverse of [a]m, if it exists, is an element [b]m such that

[a]m[b]m = [b]m[a]m = [1]m.

The multiplicative inverse, if it exists it is unique, and it is denoted by ([a]m)−1.

Furthermore
(
([a]m)−1)−1

= [a]m.
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Proof that the inverse, if it exists, is unique:

▶ Suppose ab = 1 and ac = 1.

▶ Then ab = ac. Multiplying both sides by b yields

▶ bab = bac. But ba = ab = 1. Hence b = c.

Proof that if b is the inverse of a, then the inverse of b is a.

If b is the inverse of a, then ab = ba = 1, which implies that a is the inverse
of b.
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EXERCISE (Z/4Z)

Which elements of Z/4Z have the
multiplicative inverse? What is it?

Z/4Z × 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

SOLUTION

We see that

▶ [1]4 and [3]4 have the inverse ([1]4 and [3]4, respectively).

▶ [2]4 has no inverse.

▶ [0]m has no inverse, regardless of m.
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POWERS IN Z/mZ

For any positive integer k ,

▶ ([a]m)k is a short hand for [a]m[a]m · · · [a]m︸ ︷︷ ︸
k times

;

▶ ([a]m)0 = [1]m (empty product).

▶ Note that we do not consider negative exponents ([a]m)−k because it is
problematic in general, with the exception of ([a]m)−1, if course, which is
simply the multiplicative inverse of [a]m whenever it exists.
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EXAMPLE

([3]7)12 =
(
([3]7)2)6

= ([2]7)6 =
(
([2]7)3)2

= ([1]7)2 = [1]7.
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SOLVING EQUATIONS

An equation of the form
[a]mx = [b]m

has a unique solution iff [a]m has the inverse. In this case,

x = ([a]m)−1[b]m.

We prove a more general statement.

First a brief terminology review.
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TERMINOLOGY REVIEW

Recall that for a function f : E → F

▶ E is the domain

▶ F is the codomain

▶ f (E) is the image

▶ (the word range is sometimes used for the codomain, and sometimes for
the image)
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PIGEONHOLE PRINCIPLE
PIGEONHOLE PRINCIPLE

injective
(one-to-one)

surjective
(onto)

bijective
(one-to-one and onto)

Let f : E ! F , where E and F are finite sets.

f injective) |E|  |F|
f surjective) |E| � |F|

f bijective) |E| = |F|

367 / 759

Let f : E → F , where E and F are finite sets.

▶ f injective⇒ |E| ≤ |F|
▶ f surjective⇒ |E| ≥ |F|
▶ f bijective⇒ |E| = |F|
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THEOREM

In Z/mZ, the following statements are equivalent:

(1) [a]m has the inverse;

(2) For all [b]m, [a]mx = [b]m has a unique solution;

(3) There exists a [b]m, such that [a]mx = [b]m has a unique solution.
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Proof:

(1)⇒ (2): We multiply both sides of [a]mx = [b]m by [a]−1
m and obtain the equivalent

equation x = [a]−1
m [b]m, showing that there is a solution and the solution

is unique.

(2)⇒ (1): For [b]m = [1]m we obtain [a]mx = [1]m, which has a solution by
assumption. The solution is the inverse of a.

(2)⇒ (3): True since (3) is a weaker statement than (2).
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(3)⇒ (2): We prove the contrapositive, i.e., we assume that there is a [b̃]m such
that [a]mx = [b̃]m has either no solution or multiple solutions, and we
prove that for no [b]m, [a]mx = [b]m has a unique solution.

▶ So suppose that [a]mx = [b̃]m has no solution or multiple solutions.

▶ By the pigeonhole principle, the map x → ax is neither injective nor
surjective.

▶ We can find a [b∗]m such that [a]mx = [b∗]m has multiple solutions, say
x1 and x2. Define x3 = x1 − x2 ̸= [0]m.

▶ Hence, [a]mx3 = [a]mx1 − [a]mx2 = [b∗]m − [b∗]m = [0]m.

▶ So the equation [a]mx = [0]m has at least two solutions, x3 and [0]m.

▶ If [a]mx = [b]m has a solution, say x4, then x4 + x3 is also a solution.

▶ We conclude that for no [b]m, [a]mx = [b]m has a unique solution.
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EXERCISE (Z/9Z)

If it exists, find the solution of [4]9x = [3]9

SOLUTION

x 0 1 2 3 4 5 6 7 8

[4]9x 0 4 8 3 7 2 6 1 5

Pedestrian solution: From the above table we see that the solution is [3]9.
This approach requires having the above [4]9x table.

Preferable solution (when possible): If it exists, we find the inverse of [4]9. For
now, we use the table to find ([4]9)−1 = [7]9. Hence

x = [7]9[3]9 = [3]9.

We will see how to find the inverse without constructing the table.
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EXAMPLE

If it exists, find the solution of [2]7x + [3]7 = [1]7

1. ⇔ [2]7x = [1]7 + (−[3]7) (adding on both sides the negative of [3]7 — always exists)

2. ⇔ [2]7x = [−2]7

3. ⇔ x = ([2]7)−1[5]7 (multiplying both sides by the inverse of [2]7, which exists)

4. ⇔ x = [4]7[5]7 (([2]7)−1 = [4]7)

5. ⇔ x = [20]7

6. ⇔ x = [6]7
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EXAMPLE

If it exists, find the solution of [3]9x + [2]9 = [5]9

1. ⇔ [3]9x = [5]9 + [−2]9

2. ⇔ [3]9x = [3]9

([3]9)−1 does not exist (see table below).

x 0 1 2 3 4 5 6 7 8

[3]9x 0 3 6 0 3 6 0 3 6

Yet, from the above table, we see that there are three solutions, namely

x = [1]9, x = [4]9, x = [7]9.
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THEOREM

Let m > 1 be integer.

The element [a]m ∈ Z/mZ has a multiplicative inverse iff gcd(a,m) = 1.

The proof is postponed (see Bézout’s identity).
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EXAMPLE (MULTIPLICATIVE INVERSES IN Z/4Z)

Z/4Z × 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

gcd(a, 4) = 1 for a = 1, 3.
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THEOREM (Z/pZ WITH p PRIME)

If p is prime, all elements of Z/pZ except [0]p have a multiplicative inverse.

Proof:

gcd(a, p) = 1 for a = 1, 2, . . . , p − 1

gcd(0, p) = p.
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RECALL THE MOD 97 − 10 PROCEDURE

1. Append 00 (i.e., multiply the number by 100)

2. Let r be the remainder after division by 97

3. The check digits are c = 98− r (written as a 2-digit number)

4. Replace 00 with c

5. Check: the resulting number mod 97 equals 1
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Recall the example

1. n = 212351234

2. n 7−→ 21235123400 + 98− 91 = 21235123407

3. Check: 21235123407 mod 97 = 1. Check passed

4. If we transpose: 21253123407

5. Check: 21253123407 mod 97 = 2. Check not passed
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WHY IT DETECTS TRANSPOSITIONS

Let us use the new notation to remind ourselves why an unmodified number
passes the check:

Recall that n→ 100n + 98− (100n mod 97).

The test is passed if [number with check digits]97 = [1]97

This is the case:

[100n+98−(100n mod 97)]97 = [[100n]97+98−[100n]97]97 = [98]97 = [1]97.
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Two consecutive digits ba of a decimal number are worth 10k (a + 10b) for
some nonnegative integer k .

After we transpose them they are worth 10k (b + 10a).

The check detects the transposition, unless

[10k (b + 10a)− 10k (a + 10b)]97 = [0]97

⇔ [10k (9a− 9b)]97 = [0]97

⇔ [10k 9(a− b)]97 = [0]97

⇔ ([10]97)
k [9]97[a− b]97 = [0]97

⇔ [a− b]97 = [0]97 (all non-zero elements of Z/97Z have an inverse)

We conclude that the transposition is not detected iff a = b, i.e., if there is no
transposition.
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EUCLID AND BÉZOUT

What for?

▶ Recall that [a]m has an inverse (in Z/mZ) iff gcd(a,m) = 1.

▶ The Euclidean algorithm is a technique for quickly finding the gcd of two
integers. (Much faster than via the prime factor decomposition, which is
hard to do for large numbers.)

▶ When gcd(a,m) = 1, Bézout’s identity gives us the inverse of [a]m.
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EUCLIDEAN ALGORITHM

THEOREM (EUCLID, TEXTBOOK THM 8.3)

Let a and b be integers, not both zero. Then, for any integer k

gcd(a, b) = gcd(b, a− kb)

Proof:

If d divides a and b, then it divides b and a− kb.

Similarly, if d divides both b and a− kb, then it divides b and a− kb + kb = a.

Since the set of divisors of a and b is the same as the set of divisors of b and
a− kb, the greatest divisor is the same in both cases.
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BASIC INGREDIENTS TO COMPUTE THE gcd

▶ gcd(a, b) = gcd(±a,±b) = gcd(b, a).

▶ Hence we can focus on the computation of gcd(a, b) with
0 ≤ b ≤ a.

▶ If a = qb + r is the Euclidean division, then

gcd(a, b) = gcd(b, a− qb) = gcd(b, r),

with 0 ≤ r < b. This is progress.

▶ Hence gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn, 0) = rn, where

a = bq1 + r1, 0 ≤ r1 < b

b = r1q2 + r2, 0 ≤ r2 < r1

ri = ri+1qi+2 + ri+2, 0 ≤ ri+2 < ri+1.
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EXAMPLE

gcd(a, b)

= gcd(b, r)

a = bq + r

= gcd(122, 22)

= gcd(22, 12)

= gcd(12, 10)

= gcd(10, 2)

= gcd(2, 0)

= 2

122 = 22× 5 + 12

22 = 12× 1 + 10

12 = 10× 1 + 2

10 = 2× 5 + 0
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EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 1 gcd(a, b : positive integers)
1: if a < b then

return gcd(b, a)
2: else if b = 0 then

return a
3: else

return gcd(b, a% b)
4: end if
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EXERCISE

Compute gcd(12345678906, 12345678901)

SOLUTION

gcd(12345678906, 12345678901) = gcd(12345678901, 5)
(∗)
= gcd(5, 1)

= gcd(1, 0)

= 1,

where in (∗) we use the fact that a number xxxxxxx0 is divisible by 5.

407 / 798



BÉZOUT

THEOREM (BÉZOUT’S IDENTITY (TEXTBOOK THEOREM 8.4))

Let a and b be integers, not both zero.

There exist integers u and v , such that

gcd(a, b) = au + bv
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We prove Bézout’s identity by means of the extended Euclidean algorithm,
which finds solutions to Bézout’s identity

gcd(a, b) = au + bv ,

where a and b are given, and u, v and gcd(a, b) are returned by the algorithm.

Note: if gcd(a, b) = au + bv , then gcd(−a, b) = au + bv and
gcd(a,−b) = au + bv .

Hence it suffices that we consider nonnegative numbers a, b, not both zero.
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Proof:

▶ Iteration step: Suppose a ≥ b.
▶ gcd(a, b) = gcd(b, r), where a = bq + r ;

▶ suppose we have found ũ and ṽ such that gcd(b, r) = bũ + r ṽ ;

▶ use r = (a − bq) to rewrite

gcd(a, b) = gcd(b, r) = bũ+r ṽ = bũ+(a − bq)ṽ = aṽ+b(ũ−qṽ) !
= au+bv ;

▶ comparing terms: u = ṽ and v = (ũ − qṽ).

▶ Final step: gcd(a, 0) = a⇒ ũ = 1, ṽ = 0.
Note: in this last step, ṽ is not unique.

▶ Via successive applications of the above iteration, eventually we reach
the form gcd(a, b) = au + bv .
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EXAMPLE

gcd(a, b) a = bq + r u = ṽ v = (ũ − qṽ)
gcd(122, 22) 122 = 22× 5 + 12
gcd(22, 12) 22 = 12× 1 + 10
gcd(12, 10) 12 = 10× 1 + 2
gcd(10, 2) 10 = 2× 5 + 0
gcd(2, 0) = 2
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ − qṽ)
gcd(122, 22) 122 = 22× 5 + 12
gcd(22, 12) 22 = 12× 1 + 10
gcd(12, 10) 12 = 10× 1 + 2
gcd(10, 2) 10 = 2× 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ − qṽ)
gcd(122, 22) 122 = 22× 5 + 12
gcd(22, 12) 22 = 12× 1 + 10
gcd(12, 10) 12 = 10× 1 + 2 1 (0− 1× 1) = −1
gcd(10, 2) 10 = 2× 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ − qṽ)
gcd(122, 22) 122 = 22× 5 + 12
gcd(22, 12) 22 = 12× 1 + 10 −1 (1− 1(−1)) = 2
gcd(12, 10) 12 = 10× 1 + 2 1 −1
gcd(10, 2) 10 = 2× 5 + 0 0 1
gcd(2, 0) = 2 1 0
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EXAMPLE (CONT.)

gcd(a, b) a = bq + r u = ṽ v = (ũ − qṽ) sporadic checks
gcd(122, 22) 122 = 22 × 5 + 12 2 −1 − 5 × 2 = −11

gcd(22, 12) 22 = 12 × 1 + 10 −1 2 −22 + 12 · 2 ✓
= 2

gcd(12, 10) 12 = 10 × 1 + 2 1 −1 12 − 10 ✓
= 2

gcd(10, 2) 10 = 2 × 5 + 0 0 1
gcd(2, 0) = 2 1 0

gcd(122, 22) = 122 × 2 + 22 × (−11)
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EXTENDED EUCLIDEAN ALGORITHM (RECURSIVE)

Algorithm 2 Euclid(a, b : nonnegative integers, not both zero)
1: if a < b then

(u, v , d) = Euclid(b, a)
return (v , u, d)

2: else if b = 0 then
return (1, 0, a)

3: else
(q, r)← quotient & remainder
(u, v , d) = Euclid(b, r)
return (v , u − v ∗ q, d)

4: end if
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Now we are in the position to prove the following result (stated earlier without
proof).

THEOREM

Let m > 1 be integer.

The element [a]m ∈ Z/mZ has a multiplicative inverse iff gcd(a,m) = 1.
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Proof: gcd(a,m) = 1 implies the existence of integers u and v such that
1 = au + mv (Bézout). Hence

[1]m = [au + mv ]m = [au]m = [a]m[u]m,

proving that [u]m is the inverse of [a]m in Z/mZ.

For the other direction, if [u]m is the inverse of [a]m in Z/mZ, then
[a]m[u]m = [1]m or, equivalently, [au]m = [1]m. This implies that

au + mv = 1

for some integer v . If d is a divisor of both a and m, then we can write

a
d

u − m
d

v =
1
d
.

The left hand side is an integer, whereas the right hand side is an integer iff
d = ±1. Hence 1 is the greatest integer that divides a and m.
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COROLLARY

gcd(a,m) = 1 iff there exist integers u and v such that 1 = au + mv .

Proof:

If gcd(a,m) = 1, by Bézout, there exist integers u and v such that
1 = au + mv .

For the other direction, suppose that 1 = au + mv , where u and v are
integers. Then [1]m = [au + mv ]m = [au]m = [a]m[u]m, showing that [u]m is
the inverse of [a]m in Z/mZ.

By the theorem that we just proved, gcd(a,m) = 1.
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After Z/mZ we could proceed in two directions:

▶ focus on finite groups, which are finite sets with one operation, like
(Z/mZ,+). We do so now because we need them for cryptography.

▶ focus on finite fields, which are finite sets with two operations, like
(Z/mZ,+, ·), with the extra property that every non-zero element has a
multiplicative inverse. We do so later as we need finite fields for channel
coding.
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We care about commutative groups because:

▶ they lead to exponentiation and logarithms

▶ which are the building blocks of various cryptographic algorithms,
including DH, RSA, and ElGamal’s encryption scheme.
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DEFINITION (COMMUTATIVE GROUP)

A commutative group (also called Abelian group) is a set G endowed with a
binary operation ⋆ that combines any two elements a and b to form another
element denoted a ⋆ b. The group operation ⋆ must satisfy the following five
axioms:

▶ (Closure:) For all a, b ∈ G, the result of the operation a ⋆ b is also in G.

▶ (Associativity:) For all a, b ∈ G, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

▶ (Identity element:) There exists an element e ∈ G, such that for all
a ∈ G, a ⋆ e = e ⋆ a = a.

▶ (Inverse element:) For all a ∈ G, there exists b ∈ G, such that
a ⋆ b = b ⋆ a = e.

▶ (Commutativity:) For all a, b ∈ G, a ⋆ b = b ⋆ a.
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EXERCISE

Which are commutative groups?

1. (R,+)

2. (R, ·)

3. (R\{0}, ·)

4. (C,+)

5. (Z/mZ,+)

6. (Z/mZ, ·)

7. (Z/mZ\{[0]m}, ·)

8. (N,+)

9. (Z,+)

10. (Z\{0}, ·)
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SOLUTION

Which are commutative groups?

1. (R,+): Yes.

2. (R, ·): No, 0 has no inverse.

3. (R\{0}, ·): Yes.

4. (C,+): Yes.

5. (Z/mZ,+): Yes.

6. (Z/mZ, ·): No, [0]m has no inverse.

7. (Z/mZ\{[0]m}, ·): Only if m is prime.

8. (N,+): No.

9. (Z,+): Yes.

10. (Z\{0}, ·): No, only 1 is invertible.
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(Z/mZ∗, ·)

To obtain a commutative group with the modulo multiplication, we take only
the elements of Z/mZ that have a multiplicative inverse. The resulting set is
denoted Z/mZ∗.

THEOREM (TEXTBOOK THM 9.1)

For every integer m > 1, (Z/mZ∗, ·) is a commutative group.

PROOF

Check the axioms: closure, associativity, identity element, inverse element,
commutativity.
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DEFINITION (TEXTBOOK DEF. 8.5)

Euler’s ϕ(n) function (also called Euler’s totient function) is the number of
positive integers in {1, . . . , n} that are relatively prime to n.

Observations:

▶ Recall that two integers a and b are relatively prime iff gcd(a, b) = 1.

▶ Hence 1 is relatively prime with every integer.

▶ ϕ(m) is the cardinality of Z/mZ∗.

▶ If p is prime, ϕ(p) = p − 1.
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EXAMPLE

▶ ϕ(1) = 1

▶ ϕ(2) = 1, Z/2Z∗ = {1}

▶ ϕ(3) = 2, Z/3Z∗ = {1, 2}

▶ ϕ(4) = 2, Z/4Z∗ = {1, 3}

▶ ϕ(5) = 4, Z/5Z∗ = {1, 2, 3, 4}

▶ ϕ(6) = 2, Z/6Z∗ = {1, 5}

▶ ϕ(7) = 6, Z/7Z∗ = {1, 2, 3, 4, 5, 6}
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EXERCISE

Prove the following:

▶ If p is prime and k is a positive integer, ϕ(pk ) = pk − pk−1.

▶ If p and q are distinct primes, ϕ(pq) = ϕ(p)ϕ(q) = (p − 1)(q − 1).
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SOLUTION (OUTLINE)

▶ In {1, 2, . . . , pk}, only the numbers p, 2p, 3p, . . . , pk−1p are divisible by p.

Hence pk − pk−1 elements of {1, 2, . . . , pk} are not divisible by p.

▶ In {1, 2, . . . , pq}, only pq is divisible by both, p and q.

Hence, there are q elements that are divisible by p, p elements that are
divisible by q, and one which is divisible by both.

pq − p − q + 1 = (p − 1)(q − 1) elements are divisible by neither.
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EXERCISE

Below is the multiplication table of (Z/5Z∗, ·). Every element of Z/5Z∗ shows
up exactly once in every row. Is it surprising?

Z/5Z∗ × 1 2 4 3

1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4
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SOLUTION

We have seen that in Z/mZ, when a−1 exists, the map Z/mZ→ Z/mZ

x → ax

is a bijection.

Each row of the above table is such a map. (The same is true for each
column.)
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Nota Bene:

▶ In (Z/mZ,+), the identity element is [0]m.

▶ In (Z/mZ∗, ·), the identity element is [1]m.
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CARTESIAN PRODUCTS

Recall that if A1 and A2 are sets, the cartesian product A = A1 ×A2 is the
set

A = A1 ×A2 = {(a1, a2) : a1 ∈ A1, a2 ∈ A2}.

Similarly, (G, ⋆) = (G1, ⋆1)× (G2, ⋆2) is the set G = G1 ×G2 endowed with
the binary operation ⋆ defined by

(a1, a2) ⋆ (b1, b2) = (a1 ⋆1 b1, a2 ⋆2 b2).
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EXAMPLE ((Z/2Z,+)× (Z/3Z,+))

Z/2Z + 0 1

0 0 1
1 1 0

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

+ 00 01 02 10 11 12

00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01
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THE CARTESIAN PRODUCT OF COMMUTATIVE GROUPS IS A

COMMUTATIVE GROUP

Recall the axioms of a commutative group:

▶ (Closure:) For all a, b ∈ G, the result of the operation a ⋆ b is also in G.

▶ (Associativity:) For all a, b ∈ G, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

▶ (Identity element:) There exists an element e ∈ G, such that for all
a ∈ G, a ⋆ e = e ⋆ a = a.

▶ (Inverse element:) For all a ∈ G, there exists b ∈ G, such that
a ⋆ b = b ⋆ a = e.

▶ (Commutativity:) For all a, b ∈ G, a ⋆ b = b ⋆ a.

and check that they apply to elements of the form
(a1, a2) ∈ (G1, ⋆1)× (G2, ⋆2).

(G1, ⋆1)× (G2, ⋆2) is called the product group.

437 / 798



EXERCISE

Consider (G, ⋆) = (G1, ⋆1)× (G2, ⋆2), where (G1, ⋆1) = (Z/4Z,+) and
(G2, ⋆2) = (Z/3Z∗, ·):

▶ evaluate (3, 2) ⋆ (1, 2);

▶ find the identity element;

▶ find the inverse element of (3, 2).
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SOLUTION

In (Z/4Z,+)× (Z/3Z∗, ·):

▶ (3, 2) ⋆ (1, 2) = (0, 1);

▶ e = (0, 1);

▶ the inverse of (3, 2) is (1, 2).
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The operation ⋆ of a product group is called product operation.

NB: The product operation can be a component-wise addition, as in

EXAMPLE ((Z/2Z,+)× (Z/3Z,+))

Z/2Z + 0 1

0 0 1
1 1 0

Z/3Z + 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

+ 00 01 02 10 11 12

00 00 01 02 10 11 12
01 01 02 00 11 12 10
02 02 00 01 12 10 11
10 10 11 12 00 01 02
11 11 12 10 01 02 00
12 12 10 11 02 00 01
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EXERCISE

Which of the following are product groups?

▶ (Z/2Z, ·)× (Z/3Z, ·).
▶ (Z/2Z∗, ·)× (Z/3Z∗, ·).

SOLUTION

▶ (Z/2Z, ·)× (Z/3Z, ·): Not a commutative group, because (0, 0) has no
inverse.

▶ (Z/2Z∗, ·)× (Z/3Z∗, ·): Indeed a commutative group.
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EXERCISE

Let m and n be integers greater than 1.

▶ Is it true that the subset of (Z/mZ, ·)× (Z/nZ, ·) that consists of
elements that have an inverse is a commutative group?

▶ If yes, is it the same commutative group as (Z/mZ∗, ·)× (Z/nZ∗, ·)?
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SOLUTION

Yes to both questions.

In fact, (G1, ⋆1)× (G1, ⋆1) is a group iff both (G1, ⋆1) and (G1, ⋆1) are groups.

The subset of (Z/mZ, ·) that contains all the elements of (Z/mZ, ·) that have
an inverse is a group, denoted (Z/mZ∗, ·).

Similarly, . . . (same argument with n instead of m).
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ISOMORPHISM

Some sets endowed with an operation might look different, but they are
actually the same once their elements are re-labeled.

DEFINITION

Let (G, ⋆) and (H,⊗) be sets, each endowed with a binary operation.

An isomorphism from (G, ⋆) to (H,⊗) is a bijection ψ : G→ H such that

ψ(a ⋆ b) = ψ(a)⊗ ψ(b)

holds for all a, b ∈ G.

We say that (G, ⋆) and (H,⊗) are isomorphic if there exists an isomorphism
between them.
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Suppose that ψ is an isomorphism from (G, ⋆) to (H,⊗). The following
properties hold:

▶ If (G, ⋆) is a commutative group, so is (H,⊗).

▶ If e is the identity element of (G, ⋆), then ψ(e) is the identity element of
(H,⊗).

▶ If a, b are inverse of one another in (G, ⋆), then ψ(a), ψ(b) are inverse of
one-another in (H,⊗).

From a group-theoretic viewpoint, isomorphic groups are the same object.
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Proofs: For the first point, we show that if (G, ⋆) is a commutative group, so
is (H,⊗). To do so, each element of H is written as ψ(x) for some x ∈ G.

▶ Closure: ψ(a)⊗ ψ(b) = ψ(a ⋆ b) ∈ H;

▶ Associativity: No matter in which order we perform the operations on the
LHS (left-hand side), ψ(a)⊗ ψ(b)⊗ ψ(c) = ψ(a ⋆ b ⋆ c);

▶ Identity Element: ψ(e)⊗ ψ(a) = ψ(e ⋆ a) = ψ(a), proving that ψ(e) is
the identity element in (H,⊗);

▶ Inverse Element: ψ(a)⊗ ψ(a−1) = ψ(a ⋆ a−1) = ψ(e), showing that the
inverse of ψ(a) is ψ(a−1);

▶ Commutativity: ψ(a)⊗ ψ(b) = ψ(a ⋆ b) = ψ(b ⋆ a) = ψ(b)⊗ ψ(a).

We have also proved the other two points of the previous slide.
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EXAMPLE

(Z/2Z,+) and (Z/4Z∗, ·) are isomorphic.

Z/2Z + 0 1

0 0 1
1 1 0

Z/4Z∗ × 1 3

1 1 3
3 3 1

ψ : Z/2Z→ Z/4Z∗

0→ 1

1→ 3

▶ Check that ψ([0]2) is the identity element in (Z/4Z∗, ·).
▶ Check that ψ(−[1]2) is the (multiplicative) inverse of ψ([1]2) in (Z/4Z∗, ·).
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EXERCISE

Are (Z/4Z,+) and (Z/5Z∗, ·) isomorphic?

Z/4Z + 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z/5Z∗ × 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

▶ Hint 1: match up identity elements.

▶ Hint 2: [2]4 is the inverse of itself in (Z/4Z,+).
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SOLUTION

The following correspondence is not negotiable:

▶ 0→ 1 (identity elements must match);

▶ 2→ 4 (inverses must match).

There are two ways to complete:

▶ 1→ 2 and 3→ 3

or

▶ 1→ 3 and 3→ 2.

Both form an isomorphism.
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EXERCISE

Say why the following cannot be isomorphic:

▶ (Z/2Z,+)× (Z/2Z,+) and (Z/3Z,+);

▶ (Z/2Z,+)× (Z/2Z,+) and (Z/4Z,+).
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SOLUTION

▶ (Z/2Z,+)× (Z/2Z,+) and (Z/3Z,+):
They do not have the same cardinality.

▶ (Z/2Z,+)× (Z/2Z,+) and (Z/4Z,+):
They do have the same cardinality.
In (Z/2Z,+)× (Z/2Z,+), the inverse of x is x .
Not the case for (Z/4Z,+).
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EXERCISE

Find an isomorphism from ((0,+∞), ·) to (R,+).

SOLUTION

An isomorphism from ((0,+∞), ·) to (R,+) is:

ψ : (0,+∞)→ R

x 7→ log(x)

ψ : (x · y) 7→ log(x) + log(y).
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THEOREM (TEXTBOOK THM 9.4)

Let (G, ⋆) be a finite commutative group with identity element e.

For every a ∈ G, there exists an integer k ≥ 1, such that

a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

= e.
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For the proof, we use the notation ak := a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

.

For instance, in (Z,+), a3 = a + a + a.

Proof:

▶ The commutative group is finite, hence the sequence

a, a2, a3, a4, . . .

must contain repetitions.

▶ Suppose ai = aj with i < j .

▶ By multiplying both sides by (a−1)i we obtain e = aj−i .
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THE ORDER OF A GROUP ELEMENT

DEFINITION (TEXTBOOK DEFINITION 9.4)

Let (G, ⋆) be a finite commutative group with identity element e, and let
a ∈ G.

The smallest positive integer k such that

a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

= e

is called the order of a.

Sometimes it is called the period of a. ("Période de a" in French.)
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EXAMPLE

The order of [a]12 ∈ (Z/12Z,+) is the smallest k such that

[a]12 + [a]12 + · · ·+ [a]12︸ ︷︷ ︸
k terms

= [0]12.

▶ For a = 3, the order is 4.

▶ For a = 4, the order is 3.

▶ For a = 5, the order is 12.
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EXAMPLE

The order of [a]8 ∈ (Z/8Z∗, ·) is the smallest k such that

[a]8 · [a]8 · · · [a]8︸ ︷︷ ︸
k terms

= [1]8.

Mind that Z/8Z∗ = {[1]8, [3]8, [5]8, [7]8}).

▶ For a = 1, the order is 1.

▶ For a = 3, the order is 2.

▶ For a = 5, the order is 2.

▶ For a = 7, the order is 2.
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EXERCISE

Find the order of every element in ((Z/2Z)2,+).

SOLUTION

In ((Z/2Z)2,+), the identity is ([0]2, [0]2).

▶ ([0]2, [0]2) has order 1.

▶ ([0]2, [1]2) has order 2.

▶ idem for ([1]2, [0]2).

▶ idem for ([1]2, [1]2).
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EXAMPLE

Z/10Z∗ = {1, 3, 7, 9}. Find the order of each element in (Z/10Z∗, ·).

Hint: it is recommended to reduce intermediate results.

SOLUTION

x x2 x3 x4 order
1 1
3 9 7 1 4
7 9 3 1 4
9 1 2

or, for instance,

x x2 x3 x4 order
1 1
3 -1 -3 1 4
7 -1 3 1 4
9 1 2
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▶ Recall: An isomorphism ψ from (G, ⋆) to (H,⊗) maps the identity
element of (G, ⋆) to the identity element of (H,⊗).

▶ This implies that the order of g ∈ (G, ⋆) is the same as the order of
ψ(g) ∈ (H,⊗).

EXAMPLE

▶ In (Z/2Z2,+), the orders are 1, 2, 2, 2.

▶ In (Z/10Z∗, ·), the orders are 1, 4, 4, 2.

▶ Hence the two commutative groups cannot be isomorphic.
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The following result is given without proof:

THEOREM

Two finite commutative groups are isomorphic iff they have the same set of
orders.
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Let e be the identity element of a commutative group (G, ⋆) and let a ∈ G.

Find the integers k such that a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

= e.

EXAMPLE (ADDITION)

(G, ⋆) = (Z/12Z,+), e = [0]12, a = [2]12

k 1 2 3 4 5 6 7 8 9 · · ·
([2]12)

k = k [2]12 2 4 6 8 10 0 2 4 6 · · ·

The values of k are the integer multiples of the order of a, which is 6.
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EXAMPLE (MULTIPLICATION)

(G, ⋆) = (Z/10Z∗, ·), e = [1]10, a = [3]10

k 1 2 3 4 5 6 7 8 9 · · ·
([3]10)

k 3 9 7 1 3 9 7 1 3 · · ·

The values of k are the integer multiples of the order of a, which is 4.

It is always like that: For a ∈ (G, ⋆), ak = e when k is an integer multiple of
the order of a.

This is not surprising: if q is the order of a and k = qn, we can write
ak = (aq)n = en = e. The following theorem states an even stronger result.
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THEOREM

Let (G, ⋆) be a commutative group and a ∈ G.

An integer k satisfies a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

= e iff the order of a divides k .
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PROOF

Recall the notation: ak means a ⋆ a ⋆ · · · ⋆ a︸ ︷︷ ︸
k terms

.

▶ Let p be the order of a and write k = pq + r , 0 ≤ r < p.

▶ e = ak = apq+r = (ap)q ⋆ ar = ar .

▶ r = 0, because p is the smallest positive integer such that ap = e.

▶ Hence k is a multiple of p.
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EXAMPLE

▶ the order of [2]12 ∈ (Z/12Z,+) is 6:

l 1 2 3 4 5 6 7 8 · · ·
l[2]12 2 4 6 8 10 0 2 4 · · ·

▶ the order of [3]10 ∈ (Z/10Z∗, ·) is 4:

l 1 2 3 4 5 6 · · ·
([3]10)

l 3 9 7 1 3 9 · · ·

Z/12Z has cardinality 12 and the cardinality of Z/10Z∗ = {1, 3, 7, 9} is 4.

In both cases, the order divides the cardinality of the commutative group. A
coincidence?
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THEOREM (LAGRANGE, TEXTBOOK THM 9.3)

Let (G, ⋆) be a finite commutative group of cardinality n. The order of each of
its elements divides n.
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EQUIVALENCE RELATION AND EQUIVALENCE CLASSES

To be ready for the elegant proof of Lagrange’s theorem, we review the
concept and the implication of an equivalence relation .

Relationships occur in many contexts in life. In math, they are represented by
the structure called a binary relation.

EXAMPLE

To relate people to their car, we can define

▶ a set A of all people;

▶ a set B of all cars;

▶ a set R ⊂ A× B that contains (a, b) iff person a owns car b.

The set R is called a binary relation from A to B.

The shorthand notations a ∼ b and a R b mean the same as (a, b) ∈ R.
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If the sets A and B are the same, then we speak of a relation on A.

An equivalence relation is a special case of a relation on a set. It is used to
relate objects that are similar in some way, like in Z, we may relate a and b if,
for a specified m, [a]m = [b]m.

DEFINITION

A relation on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive.
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EXAMPLE

Let A be the set of all EPFL students.

Define R =
{
(a, b) ∈ A× A : a and b graduated from the same high school

}
R is an equivalence relation. In fact

▶ a ∼ a (reflexive);

▶ if a ∼ b then b ∼ a (symmetric);

▶ if a ∼ b and b ∼ c then a ∼ c (transitive).
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EXERCISE

Let A be a set of people.

Define R =
{
(a, b) ∈ A× A : a trusts b

}
.,

Is this an equivalence relation?

SOLUTION

No, this relation on A is not symmetric.

471 / 798



EXERCISE

Let A be the students of AICC-II.

Define
R =

{
(a, b) ∈ A× A : a and b got the same score in AICC-I or AICC-II

}
.

Is this an equivalence relation?

SOLUTION

No, this relation on A is not transitive.
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Let R be an equivalence relation on A and a ∈ A.

By [a] we denote the equivalence class of a:

[a] =
{

b ∈ A : b ∼ a
}
.

Any element of an equivalence class can be used to represent the class: if
b ∈ [a] then [b] and [a] are the same class.

Every a ∈ A is in one and only one equivalence class. In fact, if a ∈ [b] and
a ∈ [c] then [b] = [a] = [c].

To say it in a different way, an equivalence relation on A partitions A into
equivalence classes: they are disjoint subsets of A and their union is A.
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EXAMPLE (CONTINUATION)

Let A be the set of all EPFL students.

Define R =
{
(a, b) ∈ A× A : a and b graduated from the same high school

}
.

We can partition A into sets of students that graduated from the same high
school. Each student is in exactly one such subset.
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The following example is a special case of the construction used in the proof
of Lagrange’s Theorem.

EXAMPLE

Let (G, ⋆) be the group
(
Z/20Z∗,×

)
=
(
{1, 3, 7, 9, 11, 13, 17, 19},×

)
.

Pick an arbitrary group element, e.g., h = 7.

Let H = {7, 9, 3, 1} be the set that consists of all the powers of h.

We use H to define an equivalence relation on G = {1, 3, 7, 9, 11, 13, 17, 19}:

a ∼ b if ahi = b for some hi ∈ H.

(This is an equivalence relation. We prove it later.) Let us construct the
equivalence classes:

▶ [1] = H = {7, 9, 3, 1};
▶ [11] = {17, 19, 13, 11}.

G = [1] ∪ [11]. It is not a coincidence that all equivalence classes have the
same cardinality. The cardinality of G must be a multiple of the cardinality of
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Proof of Lagrange’s Theorem:

▶ Let (G, ⋆) be a finite commutative group of cardinality n.

▶ Let p be the order of h ∈ G.

▶ Let H = {h, h2, h3, . . . , hp = e}. (Note that (H, ⋆) is itself a group, and is
called a subgroup of G of cardinality p.)

▶ Define a relation on G:

a ∼ b ⇔ ∃hi ∈ H such that a ⋆ hi = b.

▶ It is reflexive (H contains the identity element), symmetric (H contains
the inverse of each of its elements), and transitive (the product of
elements of H is in H) — hence ∼ is an equivalence relation.

▶ An equivalence relation splits G into equivalence classes.

▶ H is one such equivalence class.
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▶ It suffices to show that each equivalence class has the same cardinality
p. Then p must divide n.

▶ We show that there is a one-to-one map between H and each
equivalence class.

▶ The equivalence class of b is [b] = {b ⋆ h, b ⋆ h2, . . . , b ⋆ hp}.

▶ Clearly the cardinality of [b] is at most p.

▶ It is p because the map f : H → [b] that sends hi to b ⋆ hi is one-to-one.

▶ Proof by contradiction: b ⋆ hi = b ⋆ hk implies hi = hk (b has an inverse).
But for 1 ≤ i, k ≤ p, hi = hk holds if and only if i = k .

▶ Hence all equivalence classes have the same cardinality p, which must
divide n.
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EXAMPLE (SOMETHING OLD)

▶ The cardinality of (Z/mZ,+), is m.

▶ For each element [a]m ∈ Z/mZ, m[a]m = [0]m.

▶ Hence the period of each element of (Z/mZ,+) divides m.

In (Z/mZ,+), Lagrange’s Theorem says nothing new to us.
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In (Z/mZ∗, ·), Lagrange’s Theorem is non-trivial.

Using the fact that the cardinality of Z/mZ∗ is Euler’s ϕ(m), we obtain:

COROLLARY (EULER’S THEOREM, TEXTBOOK COROLLARY 9.4)

Let m ≥ 2 be an integer. For all a ∈ (Z/mZ∗, ·)

aϕ(m) = [1]m.

Equivalently, for all integers a that are relatively prime with m,

aϕ(m) ≡ 1 (mod m).

The above theorem underlies the cryptographic method studied in the next
chapter.
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COROLLARY (FERMAT’S THEOREM, TEXTBOOK COROLLARY 9.5)

Let p be prime. For all a ∈ (Z/pZ, ·)

ap = a.

Equivalently, for all integers a ,

ap ≡ a (mod p).
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Proof: It follows from Euler’s Theorem, and ϕ(p) = p − 1, that

a(p−1) = [1]p

holds for all a ∈ (Z/pZ, ·), except for a = [0]p.

By multiplying both sides by a we obtain

ap = a,

which holds also for a = [0]p.
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EXAMPLE

▶ 23 ≡ 2 (mod 3)

▶ 43 ≡ 4 (mod 3)

▶ 53 ≡ 5 (mod 3)

▶ etc.
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RECALL THE DIFFIE-HELLMAN SETUP

▶ Fix a large prime number p. Hereafter all the numbers are in
{0, 1, . . . , p − 1} and arithmetic is modulo p (more on it later).

▶ Pick a generator g. A generator has the property that g i generates all
elements in {1, 2, . . . , p − 1} when i = 0, 1, . . . , p − 2.

▶ Note: Towards the end of this chapter, after introducing all of the algebra
necessary, we will see that a generator always exists since we are in
what is called a cyclic group.

EXAMPLE

p = 5. The numbers are {0, 1, 2, 3, 4}.

g = 2 is a generator. Indeed:
i g i

0 1
1 2
2 4
3 3
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DISCRETE LOGARITHMS AND CYCLIC GROUPS

We are now in a position to deliver on this.

Specifically: Exponentiation can be defined on any finite group, but its
inverse, the logarithm, is well-defined only for cyclic groups.

Next, we define cyclic groups and study their properties.
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CYCLIC GROUPS

Given a finite commutative group (G, ⋆), we can take any of its elements, say
g ∈ G, and compute g2, g3, . . . , until for some n (the order of g), gn = e,
where e is the identity in G.

The result is the group H = {e, g, g2, . . . , gn−1}.

H is the cycle of a single element, g. Any finite group of cardinality n, that
consists of the cycle of a group element g is called a cyclic group of order
n, and g is called a generator. A generator is not necessarily unique.

Note: even if (G, ⋆) is infinite and non-commutative, (H, ⋆) is finite (by
construction) and commutative. Indeed, g i ⋆ gk = g i+k = gk ⋆ g i .
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EXAMPLE (CYCLIC GROUP)

(C, ·) is an infinite group that contains j =
√
−1.(

H =
{

j, j2, j3, j4 = 1
}
, ·
)

is a cyclic group, and j as well as −j are generators.
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EXAMPLE (CYCLIC GROUP)(
Z/mZ,+

)
is a cyclic group of order m and g = 1 is one of its generators.
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EXAMPLE (CYCLIC GROUP)(
Z/5Z∗,×

)
is a finite commutative group. Its elements are {1, 2, 3, 4}. The

group can be generated by the powers of 2. Hence the group is a cyclic
group of order n = 4 and g = 2 is one of its generators.
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All cyclic groups that have the same order are isomorphic.

Proof: Let (G, ⋆) and (H, ∗) be cyclic groups of order n generated by g and
h, respectively.

The map
ψ : G → H

g i 7→ hi .

is an isomorphism: In fact

▶ it is a bijection and

▶ for a = g i and b = g j we have

ψ(a ⋆ b) = ψ(g i ⋆ g j) = ψ(g i+j) = hi+j = hi ∗ hj = ψ(a) ∗ ψ(b).
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Let (G, ⋆) be a cyclic group of order n generated by g.

Let b = g i be one of its elements, 1 ≤ i ≤ n.

The order of b is the smallest k such that bk = g ik equals e.

ik is the smallest multiple of n and i , i.e.,

k =
lcm(i, n)

i
=

n
gcd(i, n)

.
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EXAMPLE(
Z/5Z∗,×

)
is a cyclic group of order n = 4, and g = 2 is a generator.

Let i = 2 and consider the group element b = g i = 4. The order of b is

n
gcd(i, n)

=
4

gcd(2, 4)
= 2.

(Let us verify: b2 =
(
22)2

= 1, as it should.)
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g i is another generator iff it has order n, i.e. iff gcd(i, n) = 1.

The number of such i in {1, . . . , n} is Euler’s ϕ(n).

EXAMPLE

The elements of
(
Z/5Z∗,×

)
are {1, 2, 3, 4}, and g1 = 2 is a generator.

Hence
(
Z/5Z∗,×

)
is a cyclic group of order 4.

There are ϕ(4) = 2 generators, one for each i such that gcd(i, 4) = 1. Those
i are i = 1 and i = 3. The other generator is g2 = g3

1 = 3.
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Recall that we have proved the following: a cyclic group of order n has ϕ(n)
generators.

However, not all groups are cyclic.

EXAMPLE (A NON-CYCLIC GROUP)

The elements of the group
(
Z/24Z∗,×

)
are {1, 5, 7, 11, 13, 17, 19, 23}.

The cardinality of this group is n = 8. However, it would be a mistake to
conclude that the group has ϕ(8) = 4 generators.

All we can say is that if it has a generator (in this case the group is a cyclic
group of order 8), then it has 4 generators.

But in fact, this group has no generator: except for 1, all the elements have
order 2.
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DISCRETE LOGARITHMS

For any element h of a finite commutative group (G, ⋆), the discrete
exponentiation hi is well-defined for any integer i . (Note that i is an integer,
not an element of (G, ⋆).)

The discrete logarithm to the base b ∈ G of h ∈ G is the integer i such that
bi = h. This is well-defined (for every h ∈ G) iff (G, ⋆) is a cyclic group, and
b is one of its generators.
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Let (G, ⋆) be a cyclic group of order n generated by b. The discrete
exponentiation to the base b is the map

f : Z/nZ → G
[i]n 7→ bi .

We prove that it is well-defined and that it is an isomorphism from (Z/nZ,+)

to (G, ⋆).
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Proofs:

We show that the map is well-defined: suppose that [i]n = [j]n, then
j = i + nk for some integer k , and

f ([j]n) = g i+nk = g i ⋆ gnk = g i = f ([i]n).

Next we show tha the map is one-to-one: If f ([i]n) = f ([j]n), then:

▶ g i = g j ;

▶ g i−j = e;

▶ i − j ∈ {0, n, 2n, . . . };

▶ [i]n = [j]n.

By the pigeonhole principle, the map is also onto, hence it is a bijection.
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Finally we prove that f : Z/nZ→ G is an isomorphism:

f ([i]n + [j]n) = g i+j = g i ⋆ g j = f ([i]n) ⋆ f ([j]n).

The inverse map
f−1 : G → Z/nZ

a = bi 7→ [i]n,

is called the discrete logarithm to the base b. Naturally, we write

[i]n = logb a.
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Note that the usual rules for exp and log apply: Specifically, for any group
generator b of order n, we have:

▶
(
ai)j

= aij ;

▶ aiaj = ai+j ;

▶ logb(c ⋆ d) = logb c + logb d ;
Mind that on the RHS we have elements of (Z/nZ,+, ·);

▶ logb ak = [k ]n logb a.
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COMPLEXITY OF THE DISCRETE EXPONENTIATION

For an element of a group of order n, discrete exponentiation requires at
most 2 log2 n operations. Let us count them:

▶ to compute ak , 1 < k < n, we write k in binary form using L = log2 n bits:

k =
L−1∑
i=0

bi2i , with bi ∈ {0, 1};

▶ now

ak = a
∑L−1

i=0 bi 2
i
=

L−1∏
i=0

abi 2
i

=
L−1∏
i=0

(
a2i
)bi

=
L−1∏
i=0

abi
i ,
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where ai = a2i
is computed as follows:

a0 = a

a1 = a2
0

a2 = a4
0 = a2

1

a3 = a8
0 = a2

2

...

aL−1 = a2L−1

0 = a2
L−2.

▶ It takes L− 1 operations to compute a1, . . . , aL−1 It takes at most L− 1
operations to compute

∏L−1
i=0 abi

i . (No computation required to perform
abi

i .)

▶ The total number of operations is at most 2(L− 1) < 2 log2 n.
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FINDING THE INVERSE

Recall that in ElGamal’s scheme, to invert the function we compute the
inverse of gyx . To compute the multiplicative inverse of a number
[b]m ∈ (Z/mZ∗, ·), we can proceed two ways:

1. we use Bézout to write 1 = gcd(b,m) = bu + mv , hence [u]m is the
inverse;

2. we use the fact that [b]ϕ(m)
m = 1, hence [b]ϕ(m)−1

m is the inverse.

Often Bézout is more efficient, but if m is prime, we know that ϕ(m) = m − 1.
Exponentiation can be done efficiently.

If we are in a cyclic group of order n, then we know that bn = 1. Hence the
inverse of b is bn−1.
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THE CHINESE REMAINDERS THEOREM

▶ Consider filling a table, going down diagonals, following the "torus rule"

▶ i.e., you start on the main diagonal . . .

▶ and when you drop off from an edge, you re-enter from the opposite
edge.
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EXAMPLE (FILLED TABLE)

Consider filling the table with the integers 0, 1, 2, . . . , 23, . . .

0,12 4,16 8,20
9,21 1,13 5,17
6,18 10,22 2,14
3,15 7,19 11,23
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EXAMPLE (UNFILLED TABLE)

Consider filling the table with the integers 0, 1, 2, . . . , 7, . . .

0,4 2,6
1,5 3,7

In this case, the table will never be filled.

Question: under which conditions will the table eventually fill?
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Mathematical formulation:

▶ we have m1m2 numbers to be placed in m1 ×m2 drawers
(m1 rows and m2 columns, matrix convention);

▶ we can see the numbers as elements of Z/m1m2Z;

▶ and we can index the drawers with the elements of Z/m1Z× Z/m2Z.

The placing
[k ]m1m2 7→

(
[k ]m1 , [k ]m2

)
can be seen as the action of a map

ψ : Z/m1m2Z→ Z/m1Z× Z/m2Z.

Is this map onto? (In which case it is a bijection).
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EXAMPLE (m1 = 3, m2 = 4)

[0]4 [1]4 [2]4 [3]4
[0]3 [0]12 [9]12 [6]12 [3]12

[1]3 [4]12 [1]12 [10]12 [7]12

[2]3 [8]12 [5]12 [2]12 [11]12

map ψ
[0]12 7→ ([0]3, [0]4)
[1]12 7→ ([1]3, [1]4)
[2]12 7→ ([2]3, [2]4)
[3]12 7→ ([3]3, [3]4) = ([0]3, [3]4)

...
[7]12 7→ ([7]3, [7]4) = ([1]3, [3]4)
[8]12 7→ ([8]3, [8]4) = ([2]3, [0]4)

...

508 / 798



THEOREM (CHINESE REMAINDERS)

If m1 and m2 are relatively prime, the map ψ defined by

ψ : Z/m1m2Z→ Z/m1Z× Z/m2Z

[k ]m1m2 7→ ([k ]m1 , [k ]m2)

is

1. bijective

2. an isomorphism with respect to "+" and with respect to "·".

If m1 and m2 are not relatively prime, ψ is neither onto nor one-to-one.
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EXAMPLE (BIJECTIVE YES/NO)

gcd(m1,m2) = gcd(4, 3) = 1
⇒ bijective ψ

gcd(m1,m2) = gcd(2, 4) ̸= 1
⇒ ψ is neither surjective nor injective

0 1 2
0 0 4 8
1 9 1 5
2 6 10 2
3 3 7 11

0 1 2 3
0 0,4 2,6
1 1,5 3,7
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EXAMPLE (BIJECTION ⇒ ISOMORPHISM)

0 1 2 3 4 5 6 7 8 9 10 11

Z/12Z
0 1 2

0 0 4 8
1 9 1 5
2 6 10 2
3 3 7 11

Z/4Z× Z/3Z

isomorphism w.r.t. "+":

[8]12 + [10]12 = [6]12

([0]4, [2]3) + ([2]4, [1]3) = ([2]4, [0]3)

isomorphism w.r.t. "·":

[8]12 · [2]12 = [4]12

([0]4, [2]3) · ([2]4, [2]3) = ([0]4, [1]3)
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Proof that: m1 and m2 coprime ⇒ ψ is bijective.

First we prove that ψ is one-to-one:

▶ suppose [k ]m1 = [k ′]m1 and [k ]m2 = [k ′]m2 ;

▶ ⇔ m1 and m2 divide (k − k ′);

▶ because m1 and m2 have no common factors, m1m2 divides (k − k ′);

▶ hence [k ]m1m2 = [k ′]m1m2 ;

▶ the map is one-to-one.

The function is bijective because it is one-to-one and the co-domain has the
same cardinality as the domain.
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Proof that: m1 and m2 coprime ⇒ Isomorphism w.r.t. "+"

By the definition of ψ and the modulo arithmetic,

[k + l]m1m2 7→ ([k + l]m1 , [k + l]m2)

([k ]m1 + [l]m1 , [k ]m2 + [l]m2)

([k ]m1 , [k ]m2) + ([l]m1 , [l]m2)
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Proof that: m1 and m2 coprime ⇒ Isomorphism w.r.t. "·"

By the definition of ψ and the modulo arithmetic,

[k · l]m1m2 7→ ([k · l]m1 , [k · l]m2)

([k ]m1 · [l]m1 , [k ]m2 · [l]m2)

([k ]m1 , [k ]m2) · ([l]m1 , [l]m2).
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Proof that: gcd(m1,m2) ̸= 1 ⇒ neither One-To-One nor Onto

We show that if m1 = aq and m2 = bq, the map is not one-to-one.

▶ Consider k = abq

▶ Properties of k : 0 < k < m1m2 = abq2; k = m1b; k = m2a

▶ Hence ψ maps [k ]m1m2 7→ ([0]m1 , [0]m2)

▶ But it maps also [0]m1m2 7→ ([0]m1 , [0]m2)

▶ ψ is not one-to-one

Since the co-domain has the same cardinality as the domain, the map is not
onto either.
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EXAMPLE

Find all solutions of x3 = [7]12, x ∈ Z/12Z.
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SOLUTION

Since 12 = 3× 4 and gcd(3, 4) = 1, ψ : Z/12Z→ Z/3Z× Z/4Z is an
isomorphism w.r.t. + and ×.

Instead of solving x3 = [7]12, we can work in Z/3Z× Z/4Z and solve

(x1, x2)
3 = ([7]3, [7]4).

Same as solving x3
1 = [1]3 x ∈ Z/3Z

x3
2 = [3]4 x ∈ Z/4Z.

The solution (by inspection) isx1 = [1]3

x2 = [3]4
⇒ x = [7]12.
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EXAMPLE (RECALLING SOME OLD STUFF)

Recall the following: ([x ]96)
2 = [0]96 ̸⇒ [x ]96 = [0]96.

Reason:

▶ 96 = 25 · 3

▶ We can find a number, such as k = 23 · 3, which fulfills k < 96 and k2 is
a multiple of 96.

▶ Hence [k ]96 ̸= [0]96 and [k2]96 = [0]96.

However, for a prime modulus, like 97: ([x ]97)
2 = [0]97 ⇒ [x ]97 = [0]97.

Reason:

▶ If [x ]97 = 0 we are done. Otherwise,⇒ [x ]97 has an inverse;

▶ ⇒ [x ]97 · [x ]97 = [0]97 implies [x ]97 = [0]97.
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EXAMPLE (HOW ABOUT THIS ONE)

([x ]77)
2 = [0]77 implies [x ]77 = [0]77?
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SOLUTION

▶ 77 = 7 · 11

▶ (Z/77Z, ·) is isomorphic to (Z/7Z, ·)× (Z/11Z, ·)

▶ Hence [x ]77 · [x ]77 = [0]77

⇔ ([x ]7, [x ]11) · ([x ]7, [x ]11) = ([0]7, [0]11)

⇔ ([x ]7 · [x ]7, [x ]11 · [x ]11) = ([0]7, [0]11)

▶ We are back to the prime modulus case

which implies [x ]7 = [0]7 and [x ]11 = [0]11

which implies [x ]77 = [0]77.
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CONCLUSION

If gcd(m1,m2) = 1,

the Chinese remainders theorem says that

we can calculate in Z/m1m2Z

or in Z/m1Z× Z/m2Z

whichever is more convenient.
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THE INVERSE MAP

The map to

ψ : Z/m1m2Z→ Z/m1Z× Z/m2Z

[k ]m1m2 7→ ([k ]m1 , [k ]m2),

is easy to compute.

How about the inverse map?

ψ−1 : Z/m1Z× Z/m2Z→ Z/m1m2Z.
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We use the extended Euclid’s algorithm to find integers u and v such that

1 = gcd(m1,m2) = m1u + m2v .

Let

a = m2v ,

b = m1u.

Notice that

[a]m2 = [m2v ]m2 = [0]m2 ,

[a]m1 = [m2v ]m1 = [1−m1u]m1 = [1]m1 .

Similarly,

[b]m1 = [m1u]m1 = [0]m1 ,

[b]m2 = [m1u]m2 = [1−m2v ]m2 = [1]m2 .
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Hence, for any integers k1 and k2,

ψ
(
[ak1 + bk2]m1m2

)
= ([k1]m1 , [k2]m2),

implying that

ψ−1 : Z/m1Z× Z/m2Z→ Z/m1m2Z

([k1]m1 , [k2]m2) 7→ ([ak1 + bk2]m1m2)

is the inverse map.
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FERMAT + CHINESE REMAINDERS

▶ Let p and q be distinct primes

▶ let k be a multiple of both (p − 1) and (q − 1)

▶ for all non-negative integers l ,

([a]p)lk+1 = [a]p

([a]q)lk+1 = [a]q

▶ using the Chinese remainders theorem, we combine into

([a]pq)
lk+1 = [a]pq .
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We have proved the following result:

THEOREM (TEXTBOOK THM 10.3)

Let p and q be distinct prime numbers and let k be a multiple of both (p − 1)
and (q − 1).

For every integer a, and every non-negative integer l ,

([a]pq)
lk+1 = [a]pq .
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BACK TO CRYPTOGRAPHY

▶ RSA: Rivest, Shamir, Adleman, 1977 (first public-key cryptosystem).

Encryption
algorithm

Plaintext t

kA

Alice

EkA (t)

Decryption
algorithm

t

kB

Bob

DkB (EkA (t))

Trudy

Ciphertext c
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RSA HIGH-LEVEL: THE VERY ESSENCE OF IT

Suppose that we can find:

▶ integer m (modulus),

▶ integer e (encoding exponent),

▶ integer d (decoding exponent),

such that, for all integers t ∈ Z/mZ (plaintext),

[(te)d ]m = [t ]m.
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Then:

▶ the receiver generates m, e, d (we will see how).

▶ (m, e) is the public encoding key — announced in a phone-like public
directory.

▶ (m, d) is the private decoding key — d never leaves the receiver.

▶ To send the plaintext t ∈ Z/mZ,

▶ the encoder forms the cryptogram c = te mod m. Exponentiation is
easy.

▶ The intended decoder performs cd mod m and obtains the plaintext t .
Again, this is easy.
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EXAMPLE

m = 33, e = 7, d = 3

▶ suppose that the plaintext is t = 2

▶ encryption: c = te mod m = 27 mod 33 = 128 mod 33 = 29

▶ decryption: cd mod m = 293 mod 33 = · · · = 2, as expected.

It works similarly with any t ∈ {0, . . . , 32}.

NB: we may want to exclude t = 0, because from c = 0 we immediately infer
t = 0.
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RSA: KEYS GENERATION (AT THE RECEIVER)

▶ generate large primes p and q at random

▶ m = pq is the modulus used for encoding and decoding

▶ let k be a multiple of (p − 1) and (q − 1), to be kept secret

▶ for instance, k = ϕ(pq) or k = lcm(p − 1, q − 1)

▶ produce the public (encoding) exponent e such that gcd(e, k) = 1

▶ (a common choice is e = 65537 = 216 + 1 which is a prime number. No
need for e to be distinct for each recipient)

▶ the public key is (m, e)

▶ k is kept secret. Using Bézout, the receiver produces the positive
decoding exponent d such that

de + kl = 1.

▶ (m, d) is the private key.
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RSA: HOW DECODING WORKS

[t ]m ∈ Z/mZ, with m = pq. Hence(
[t ]em
)d

= [t ]ed
m

= [t ]1−kl
pq

= [t ]pq Fermat + CRs

= [t ]m.
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EXAMPLE (“TOY-KEY” GENERATION)

▶ p = 3, q = 11, m = 33, k = lcm(2, 10) = 10

▶ e = 7 which is relatively prime with k

▶ d = 3 (check that ed mod k = 1)

▶ the public key is (m, e) = (33, 7)

▶ the private key is (m, d) = (33, 3)
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EXAMPLE (ENCRYPTING AND DECRYPTING WITH THE “TOY KEY”)

▶ Each letter of the alphabet is converted into a number in
{1, 2, . . . ,m − 1 = 32} (we avoid 0, to avoid c = 0 = t).

▶ we use the natural order: a 7→ 1, b 7→ 2, etc.

▶ suppose we want to send the letter “b”

▶ the encoder maps it into the plaintext t = 2

▶ and encrypts: c = te mod 33 = 29

▶ the decoder decrypts: t = cd mod m = 2

▶ and maps back t = 2 to the letter b.

In practice, m is very large, and the mapping

text 7→ Z/mZ

is done in blocks of letters.
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RSA: POSSIBLE ATTACKS

How to decrypt not knowing d? Here the possibilities (that we know of):

▶ factor m to find p and q. Very hard to do if m is large (say ≈ 2500).

▶ in Z/mZ, solve c = xe for x . Very hard to do if m is large.

▶ guess k (good luck!)

▶ guess t (good luck!)

▶ guess d (good luck!)
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THE TRAPDOOR ONE-WAY FUNCTION BEHIND RSA

▶ The trapdoor one-way function is

t 7→ c = te mod m,

where e is called the encoding exponent.

▶ Instead of publishing the function, it suffices to publish (m, e). This is
called the public key.

▶ Someone that knows (m, d) can perform

c 7→ t = cd mod m,

where d is called the decoding exponent.

▶ Hence the trapdoor information is (m, d). It is called the private key.
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We have used trapdoor one-way functions for privacy.

In conjunction with hash functions, they are equally suited for authenticity.
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HASH FUNCTION

A hash function is a many-to-one function, used to map a sequence of
arbitrary length to a fixed-length bit sequence of, say, 200 bits.

What we expect from a hash function, is that even the smallest change in the
input produces a different output.

Ideally it should be so that one has to try about 2200 alternative inputs to hope
to find a sequence that produces a given output.
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DIGITAL SIGNATURE

To sign a document, we append to the document a hash function of the
document in such a way that only the signee could have done it. This is done
using a trapdoor one-way function as follows:

▶ let t be Alice’s plaintext that she wants to sign;

▶ let fA be Alice’s trapdoor one-way function (publicly available);

▶ let h be a hash function (publicly available, the same function for
everyone);

▶ the digital signature is s = f−1
A (h(t));

▶ the signed document is (t , s).
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Alice sends t and signature:(
t , s = f−1

A

(
h(t)

))
(t , s)

Bob verifies:
h(t) ?

= fA(s)

If h(t) equals fA(s), Bob trusts that the plaintext t is authentic, since for
anybody other than Alice, it is nearly impossible to compute s.

Note 1: For privacy, Alice can encrypt (t , s) using Bob’s trapdoor one-way
function fB .

Note 2: Privacy relies on fB ; authenticity relies on fA.
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TRUSTED AGENCY

How do we know that the directory storing all the public keys has not been
tampered with?

EXAMPLE

Alice queries the public directory for Bob’s public key.

The directory sends the message "Bob’s public key is k".

Eve, who is sitting on the wire, substitutes "Bob’s public key is k" with "Bob’s
public key is k̃", where k̃ is her own public key.

By using k̃ to encrypt, Alice believes that only Bob will be able to decrypt.

But in fact, Eve is the only person that can decrypt.

How to prevent this from happening?
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The directory information is signed by a trusted agency, say Symantec. Here
is how:

▶ Symantec’s public key is distributed once and for all via a channel that
cannot be tampered with (e.g. hard-coded into the crypto hardware).

▶ Each directory entry is digitally signed by Symantec. We call the result a
certificate.

▶ Anybody that has Symantec’s public key can verify that the information
received from the directory is authentic.

▶ Once verified, Alice can be confident that she is using Bob’s public key.
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STANDARDS

Here are examples of widely-used standards:

▶ SHA-1 through SHA-3 (Secure Hash Algorithm) family: cryptographic
hash functions.

▶ DSA (Digital Signature Algorithm), ECDSA (Elliptic Curve DSA):
standards for digital signature.

▶ DES (Data Encryption Standard), AES (Advanced Encryption Standard):
symmetric-key encryption standards. They are faster than RSA and
require less memory.

▶ RSA (Rivest Shamir Adleman): public-key crypto.
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WHY NOT JUST RSA?

With RSA we can encrypt (provide privacy) and sign (verify authenticity).
Why do we need other cryptographic standards?

▶ DSA is faster than RSA in signing (and ECDSA a more recent standard
than DSA). When keys have the same length, DSA leads to a shorter
signature. RSA 512 bits has been cracked, only a DSA 280 bits has
been cracked.

▶ The symmetric-key standards (DES, AES) are faster than RSA and
require less memory. Most CPUs now include hardware that makes AES
very fast.

Cryptographic implementations, such as PGP (Pretty Good Privacy),
available as a computer program, use symmetric-key and public-key
cryptography, as well as digital-signature algorithms.
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A COMPREHENSIVE EXAMPLE: HOW APPLE SENDS IMESSAGES

Apple uses all of the four standards mentioned above (SHA-1, ECDSA, AES,
RSA). Let’s see how.

To send an iMessage, Apple uses three services:

▶ IDS (Apple’s directory service): It is here that public keys and device
addresses are stored.

▶ APNs (Apple’s Push Notification Service): outgoing messages are sent
to this service. It is designed for short messages (like SMS).

▶ iCloud: to temporarily store what exceeds a maximum length. (Typically
the case for a photo attachment.)
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User 2User 1

IDS

Public key
and APNs token

for user 1

Public key
and APNs token

for user 2

Attachment
encrypted with

random key

Signed and encrypted
message for user 2 with

universal resource identifier (URI)
and key for attachment
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When the iMessage service is enabled on an Apple device (iPhone, iPad,
Mac):

▶ The device produces the RSA keys (public, private, each 1280 bits) and
the ECDSA keys (public, private, each 256 bits).

▶ The two public keys are sent to the IDS.

▶ IDS associates the keys to the device’s APN address, and lists the APN
address(es) under the user’s email address (or phone number).
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We can think that Bob’s IDS entry looks like this:

bob.cryptoexpert@epfl.ch APN addr. (iMac) RSA pub k
ECDSA pub k

APN addr. (iPhone) RSA pub k
ECDSA pub k

APN addr. (iPad) RSA pub k,
ECDSA pub k

APN addr. (MacBook Pro) RSA pub k
ECDSA pub k
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When Alice sends a message to Bob using her Apple device, the following
happens:

▶ The app looks in her contacts to find Bob’s email address (or phone
number),

▶ The app sends a request to the IDS, asking for Bob’s APN addresses
and corresponding RSA public keys.
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For each of Bob’s APN addresses, the following is done:

▶ The text, say t , is AES-encrypted with a randomly-generated symmetric
key k to produce the cryptogram ct ;

▶ the key k is RSA-encrypted using Bob’s public key, producing ck ;

▶ (ct , ck ) are SHA-1-hashed and the result ECDSA-signed using Alice’s
private key, producing s;

▶ (ct , ck , s) is dispatched to the APN for delivery to the intended device.
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Upon reception of (ct , ck , s), Bob’s device does the following:

▶ Using Alice’s public ECDSA key, the integrity of (ct , ck ) is verified;

▶ using Bob’s private RSA key, the cryptogram ck is decrypted to obtain
the AES symmetric key k ;

▶ the cryptogram ct is AES-decrypted to obtain the message t .
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The APN can only relay messages up to a certain size (4 KB or 16 KB,
depending on iOS).

What exceeds this length, (e.g. a photo attachment), is AES-encrypted with a
randomly-generated symmetric key, and the cryptogram is uploaded to
iCloud.

The key, the URL, and the SHA-1 hash of the cryptogram are part of an
iMessage sent to the recipient.

For further details, see the document: iOS Security, iOS 9.0 or later, Sept.
2015.
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ANOTHER EXAMPLE: HTTPS

https (Hyper Text Transfer Protocol Secure) is the protocol used to exchange
data between a browser and a web server. Sample transaction:

Browser Web Server
service request

algorithm negotiation

certificate
(check the lock icon on your browser)

symmetric key
(encrypted using the server’s public key)

secure channel

identification

offer

payment
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SUMMARY OF CHAPTER 2

Perfect secrecy is possible, but requires long keys.

▶ One-time pad

Cryptogram = PlainText⊕ SharedKey

▶ If the SharedKey is perfectly (uniformly) random and shared between
encrypter and decrypter ahead of time

▶ and the SharedKey is kept secret from anyone else,
▶ then the One-time Pad offers perfect secrecy.
▶ Hence: It is expensive to implement. Only worth it for spies and such.
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SUMMARY OF CHAPTER 2

▶ Practical cryptography is based on algorithmic/computational complexity.
▶ Public-key cryptography. Most public-key cryptographic algorithms fall

into one of the following two categories:
▶ those that are based on the belief that discrete exponentiation (in a

multiplicative cyclic group) is a one-way function (e.g. Diffie-Hellman and
ElGamal);

▶ those that are based on the difficulty of factoring (e.g. RSA).

▶ To understand RSA and Diffie-Hellman, we need Number Theory and
Algebra.
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SUMMARY OF CHAPTER 2
Number Theory and Algebra

▶ Modulo operation, Euclid’s algorithm
▶ Groups.

▶ Z/mZ with addition is always a group.
▶ Z/mZ with multiplication: need to retain only those elements that have a

multiplicative inverse: Z/mZ∗

▶ Finding multiplicative inverses in Z/mZ : Bézout’s identity; Extended Euclid
algorithm.

▶ How many elements in Z/mZ have a multiplicative inverse? Euler’s totient
function.

▶ Group isomorphism.
▶ Order of group elements. Lagrange’s theorem: Order of any group element

must divide the cardinality of the group.

▶ Product Groups. Main theorem: Cartesian product of groups is again a
group.

▶ The special isomorphism between Z/m1m2Z and Z/m1Z× Z/m2Z when
m1 and m2 are coprime.
▶ Holds for both addition and multiplication, including for elements that do not

have a multiplicative inverse.
▶ Hence, this is more than just a group isomorphim.
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SUMMARY OF CHAPTER 2

Computationally hard problem 1: Discrete logarithm.

▶ leads to Diffie Hellman (and, by slight extension, El Gamal)

▶ Encryption: A = ga,B = gb.

▶ Leads to a shared key: C = Ab = Ba.

▶ To understand that it works, we need cyclic groups.

558 / 798



SUMMARY OF CHAPTER 2

Computationally hard problem 2: Factorization of large integers.

▶ leads to Cocks/RSA

▶ Encryption: te mod m, where t is the plaintext and m = pq, where p and q
are primes.

▶ Decryption: (te)d mod m

▶ To understand that it works (meaning that (te)d mod m = t for all plaintexts
t), we need to understand Z/pZ× Z/qZ.
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SUMMARY OF CHAPTER 2

▶ Authenticity: Digital Signatures.
▶ Can be done with the same algorithm!

▶ In practice, so-called symmetric-key cryptosystems are important. The
common secret key is typically only a few hundred bits, distributed e.g.
via Diffie-Hellman. Encryption/decryption can be implemented more
efficiently (faster algorithms, smaller hardware). Think: one-time pad, but
with an imperfect key. There is no proof that the resulting algorithm is
secure.
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MOTIVATION / CHANNEL MODEL

▶ The Internet often drops packets due to congestion.

▶ Not all the bits on a storage device can be retrieved.

▶ Wireless signals are very noisy.

We consider two types of channel models:

0100111

0100111

Erasure

Channel
0?001?1

Error

Channel
1000101

(The channel input alphabet is not necessarily binary.)
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We define the erasure weight p (resp. error weight p) as the total number
of erasures (resp. errors).

0100111

0100111

Erasure

Channel
0?001?1 p = 2 [erasures]

Error

Channel
1000101 p = 3 [errors]

Erasures are easier to deal with: they are essentially channel errors of known
location.

565 / 798



CHANNEL CODING TO DEAL WITH ERASURES

Suppose that the source outputs 2 bits, and we store them as is (no channel
coding):

01

message
Erasure

Channel
0?

If any bit is erased, there is no way to determine the original message. (All
hypotheses are equally valid.)
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Now suppose that we do some channel coding:

Encoder
00 7→ 000000
01 7→ 000111
10 7→ 111000
11 7→ 111111

Erasure

Channel

Decoder

00
01

11

01 00
01

11

0?
0?

11

01

The decoder is able to fill the erased positions, because only one codeword is
consistent with the observed channel output.
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CHANNEL CODING TO DEAL WITH ERRORS

Suppose that the source outputs 2 bits, and we store them as is (no channel
coding):

01

message
Error

Channel
00

There is no way to tell that the channel flipped a bit.
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Now suppose that we do channel coding:

Encoder
00 7→ 000000
01 7→ 000111
10 7→ 111000
11 7→ 111111

Error

Channel

Decoder

00
01

11

01 00
01

11

00
01

01

01

The channel output is not a valid codeword. The decoder recognizes it, and
assumes that the transmitted codeword is the one that agrees in most
positions with the observed channel output.
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WE STUDY ONLY BLOCK CODES

The above is an (n, k) block code with n = 6 and k = 2: each k source
symbols are substituted by n channel symbols over the same alphabet.

Since the alphabet is {0, 1}, we call it a binary (n, k) block code.

We consider only block codes.
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EXAMPLE OF A NON-BLOCK CODE

The following is a convolutional encoder: every encoder input symbol
produces two encoder output symbols.

The output pair produced at any given time is a linear function of the
corresponding encoder input and encoder state (the previous two inputs).

bj bj−1 bj−2

⊕

⊕⊕

x2j−1 = bj ⊕ bj−2

x2j = bj ⊕ bj−1 ⊕ bj−2

(The name comes from linear system theory, done in your second year.)
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TERMINOLOGY

▶ The code C is the set of codewords.

▶ A codeword c is an element of An.
(The alphabet A is {0, 1} in our
example).

▶ The block-length is n.

▶ Each codeword carries k = log2 |C|
information bits. (k = log2 8 = 3 bits
in our example.)

▶ The rate is k
n bits per symbol.

Encoder
k = 3 n = 7
000 7→ 0000000
001 7→ 0011100
010 7→ 0111011
100 7→ 1110100
011 7→ 0100111
101 7→ 1101000
110 7→ 1001111
111 7→ 1010011
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The Hamming distance d(x , y) between two n-tuples x and y is the number
of positions in which they differ.

EXAMPLE (HAMMING DISTANCE)

▶ x = (101110), y = (100110), d(x , y) = 1

▶ x = (0427222), y = (1227986), d(x , y) = 5

▶ x = (0427222), y = (0427222), d(x , y) = 0

▶ x = (00), y = (22), d(x , y) = 2
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THE HAMMING DISTANCE IS INDEED A DISTANCE

In math, a function of two variables is a distance if it satisfies the following
axioms:

DEFINITION (DISTANCE AXIOMS)

1. non-negativity: d(x , y) ≥ 0 with equality iff x = y .

2. symmetry: d(x , y) = d(y , x).

3. triangle inequality: d(x , z) ≤ d(x , y) + d(y , z).

x

y

z
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Proof: We need to check that the triangle inequality holds.

Let x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn).

The Hamming distance is additive in the sense d(x , z) =
∑n

i=1 d(xi , zi)︸ ︷︷ ︸
0 or 1

.

▶ if d(xi , zi) = 0, then d(xi , zi) ≤ d(xi , yi) + d(yi , zi).

▶ if d(xi , zi) = 1, then either d(xi , yi) = 1 or d(yi , zi) = 1 or both.

▶ Hence d(xi , zi) ≤ d(xi , yi) + d(yi , zi).

▶ By adding over all i ,

d(x , z) =
n∑

i=1

d(xi , zi) ≤
n∑

i=1

(
d(xi , yi) + d(yi , zi)

)
= d(x , y) + d(y , z).
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GEOMETRICAL INTERPRETATION

An n-length sequence of integers may be seen as an element of Rn.

00

01

10

11

d(00, 11) ≤ d(00, 10) + d(10, 11)

000

010

001

011

100

110

101

111

d(011, 100) ≤ d(011, 001) + d(001, 100)
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MINIMUM-DISTANCE DECODER

▶ The decoder guesses the encoder input based on the channel output.

▶ Here we consider only minimum-distance decoders.

Encoder
00 7→ 000000
01 7→ 000111
10 7→ 111000
11 7→ 111111

Error

Channel

Decoder

00
01

11

01 00
01

11

00
01

01

01
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Let y be the channel output observed by the decoder. A minimum-distance
decoder decides that the channel input is (one of) the ĉ ∈ C for which d(y , ĉ)
is minimized:

ĉ = argmin
x∈C

d(y , x)

The justification is that a small error weight is more likely than a large one.
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EXAMPLE (MINIMUM-DISTANCE DECODER)
Let y = (0110111) be the channel output.
The encoder decides that the channel input was
ĉ = (0100111).

Encoder
k = 3 n = 7
000 7→ 0000000
001 7→ 0011100
010 7→ 0111011
100 7→ 1110100
011 7→ 0100111
101 7→ 1101000
110 7→ 1001111
111 7→ 1010011
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DEFINITION (MINIMUM DISTANCE)

The minimum distance of a code C is

dmin(C) = min
x,y∈C;x ̸=y

d(x , y)

EXAMPLE

C = {000000, 100110, 011001, 111111} =⇒ dmin(C) = 3.
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WHAT TO EXPECT FROM A DECODER

For an error channel:

(1) channel-error correction: the best is if the decoder recognizes and
corrects the channel errors. In this case, the encoder input is recovered
error-free.

(2) channel-error detection: in some circumstances, the encoder is able to
detect the presence of channel errors but it is unable to correct them.
The receiver may or may not ask for retransmission.

(3) decoding error: the worse is if the decoder tries to do as in (1) and
makes the wrong decision.
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For an erasure channel:

(1) erasure-correction: the best is if the decoder is capable of filling in the
erased positions. In this case, the encoder input is recovered error-free.

(2) (erasure detection: unlike errors, erasures are always detected.)

(3) decoding error: the worse is if the decoder fills-in one or more erased
positions with incorrect symbols.
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ERROR DETECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERROR DETECTION: TEXTBOOK THEOREM 11.2)

1. Channel errors of weight p < dmin(C) do not lead to a codeword. Hence
they are detected.

2. Some channel errors of weight p ≥ dmin(C) do lead to another codeword.
Hence they cannot be detected by a minimum-distance decoder.

Note: Erasures are always detected (by definition).
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Proof:

1. ▶ Let c ∈ C be transmitted and y be received.

▶ If p = d(c, y) < dmin(C), y cannot be a codeword, therefore the error is
detected.

2. ▶ We construct an example in which a channel error of weight p = dmin(C)
cannot be detected.

▶ Let c and c′ be codewords at distance dmin(C).

▶ Suppose that c is the channel input and the channel output is y = c′.

▶ y is a codeword. A minimum-distance decoder will decide that no channel
error has occurred.

584 / 798



EXAMPLE (ERROR DETECTION)

Let the encoding map be the MOD 97-10 procedure:

u 7→ v = (100 · u) +
(
98− [100 · u]97

)
Recall that v is considered as valid if [v ]97 = 1.

For example, u = 0216936631 7→ v = 021693663165.

Suppose v is transmitted and v ′ is received, d(v , v ′) = 1.

We can always write v ′ = v + a10k with a ∈ {−9, . . . ,−1, 1, . . . , 9}.

The only way for v ′ to be a valid codeword is if
[
a10k]

97 = 0.

Since [10]97 is invertible, so is [10k ]97, hence a = 0.

Therefore all weight 1 errors are detected, implying that the minimum
distance is at least 2.
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ERASURE CORRECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERASURE CORRECTION: TEXTBOOK THEOREM 11.3)

A minimum-distance decoder for a code C corrects (fills in) all the erasures
of weight p iff p < dmin(C).
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PROOF

⇐: Suppose that p < dmin(C).

Let c and y be the input and the output of an erasure channel,
respectively, with d(c, y) = p.

We show that there is only one way to fill in the erased positions.

Let c ∈ C and c̃ ∈ C be two codewords that agree with y in the
non-erased positions.

Clearly d(c, c̃) ≤ p < dmin(C). This is possible only if c = c̃.
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PROOF

⇒: We use contraposition.

Suppose that p = dmin(C).

We construct an example where the decoder will not always decode
correctly.

Let c and c′ be codewords at distance dmin(C).

Let c be the channel input, and suppose that the channel outputs the y
obtained by erasing the p components of c that differ from c′.

Notice that d(c, y) = p = d(c′, y).

If c is a minimum-distance codeword, then so is c′.
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ERROR CORRECTION: HOW IT RELATES TO dmin(C)?

THEOREM (ERROR CORRECTION: TEXTBOOK THEOREM 11.4)

A minimum-distance decoder for a code C corrects all channel errors of
weight p iff p < dmin(C)

2 .
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Proof of⇐:

Let c and y be the input and the output of an error-channel, and suppose that
d(c, y) = p < dmin(C)

2 .

Let ĉ ∈ C be the guess made by a minimum-distance decoder that observes
y .

We prove that ĉ = c.

d(y , ĉ) ≤ p because d(y , c) = p.

By the triangle inequality, d(c, ĉ) ≤ d(c, y) + d(y , ĉ) ≤ 2p < dmin(C).

Hence ĉ = c.
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Proof of⇒: We use contraposition.

We have seen that if p = dmin, then the channel output can be a different
codeword.

Hence it suffices to consider dmin > p ≥ dmin(C)
2 .

We construct an error pattern of weight p that cannot be corrected.

Let c and c′ be codewords at distance dmin(C).

Let y be obtained as follows: of the dmin(C) positions where c and c′

disagree, p positions are chosen as in c′. All the remaining positions are
chosen as in c. By construction,

d(c, y) = p

d(c′, y) = dmin(C)− p ≤ 2p − p = p.

We see that c′ is at least as close to y as c.
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DETECTION/CORRECTION SUMMARY

detection
guaranteed if

correction
guaranteed if

erasure channel (not applicable) p < dmin

error channel p < dmin p < dmin
2
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EXERCISE
What is the minimum distance of code C?

SOLUTION
dmin = d(c0, c1) = 3.

(Many other pairs (ci , cj) satisfy d(ci , cj) = 3 as well.)

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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Note: For notational convenience, we often write codewords without
parenthesis or commas. For instance, 0000000 is a shorthand notation for
(0, 0, 0, 0, 0, 0, 0).

EXERCISE (CONT.)
How many erasures can C correct?

If y1 =?01110?, what was the transmitted codeword?
If y2 = 11???00, what was the transmitted codeword?
If y3 =???0011, what was the transmitted codeword?

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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SOLUTION
dmin(C) = 3, so the code can correct all erasures of weight
p < dmin(C) = 3.

For y1, p = 2 < dmin(C): correction is guaranteed. y1 is
decoded to c1.
For y2, p = 3 ̸< dmin(C): correction is not guaranteed in
general. In fact, y2 cannot be corrected by a
minimum-distance decoder, because c3 and c5 are at the
same distance from y .
For y3, p = 3 ̸< dmin(C): correction is not guaranteed in
general, but only one codeword is compatible with this y ,
namely c7.

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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EXERCISE (CONT.)
How many errors can C correct?

If y1 = c1 + 0100000, what codeword is decoded?
If y2 = c4 + 0010100 = 0110011, what codeword is
decoded?

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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SOLUTION
dmin(C) = 3, so the code can correct all errors of weight
p < dmin(C)

2 = 1.

p(y1) = 1 ⇒ argminĉ∈C d(y1, ĉ) = 0011100 = c1.
p(y2) = 2 ⇒ argminĉ∈C d(y2, ĉ) = c2 ̸= c4.

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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EXERCISE

Let |C| = M. How many distances do we have to check to determine dmin(C)
via a brute-force approach?
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SOLUTION

Consider the following M ×M matrix, with as many rows and columns as the
number of codewords.

1 2 3 M − 1 M
1 x

√ √ · · · √ √

2 x x
√ · · · √ √

...
...

...
M − 1 x x · · · x

√

M x x · · · x x

A "
√

" at position (i, j) means that ci and cj need to be compared, whereas
"x" means that they don’t need to be compared.

There are 1
2 (M

2 −M) = 1
2 M(M − 1) =

(
M
2

)
of them.
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▶ The code used in CDs has M = 21024 ≈ 10300 codewords.

▶ A brute-force approach requires on the order of 10600 comparisons.

▶ (There are about 1050 atoms on Earth, about 1080 atoms in the universe,
and about 5× 1029 picoseconds since the big bang.)

▶ We need codes that have structure, for which we can tell the minimum
distance via analytical means, rather than by brute-force computation.

▶ First, we derive an upper bound to dmin(C).
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UPPER BOUND TO dmin(C)

Recall the important parameters of a block code C over a D-ary alphabet:

▶ n, the block length.

▶ k = logD |C|, the number of information symbols carried by a codeword.
(Equivalently, |C| = Dk .)

▶ dmin is the minimum distance.
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THEOREM (SINGLETON’S BOUND: TEXTBOOK THEOREM 11.5)

Regardless of the alphabet size, the minimum distance of a block code
satisfies

dmin − 1 ≤ n − k

Block codes that satisfy the Singleton bound with equality are called
Maximum Distance Separable codes. (MDS codes.)
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TERMINOLOGY REVIEW

Recall that for a function f : E → F

▶ E is the domain

▶ F is the codomain

▶ f (E) is the image

▶ (range is sometimes used for the codomain, and sometimes for the
image)

603 / 798



PIGEONHOLE PRINCIPLE

injective
(one-to-one)

surjective
(onto)

bijective
(one-to-one and onto)

Let f : E → F , where E and F are finite sets.

f injective⇒ |E| ≤ |F|
f surjective⇒ |E| ≥ |F|

f bijective⇒ |E| = |F|
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Proof of the Singleton Bound:

Consider the map f : C → An−(dmin−1) that removes the last dmin − 1
components of a codeword

f : (c0, . . . , cn−dmin , cn−(dmin−1), . . . , cn−1︸ ︷︷ ︸
dmin−1 components

) 7→ (c0, . . . , cn−dmin )

The code has minimum distance dmin, so f is injective (one-to-one).

By the pigeonhole principle, the cardinality of its domain cannot exceed the
cardinality of the codomain:

|C| ≤ |A|n−(dmin−1)

Dk ≤ Dn−(dmin−1)

k ≤ n − (dmin − 1).
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EXERCISE
Write down dmin − 1 and n − k for this code. Verify that
Singleton’s bound is satisfied.

SOLUTION
dmin − 1 = 2.
n − k = 7− log2 8 = 4.

Since dmin − 1 ≤ n − k , Singleton’s bound is satisfied.

code C
c0 = 0000000
c1 = 0011100
c2 = 0111011
c3 = 1110100
c4 = 0100111
c5 = 1101000
c6 = 1001111
c7 = 1010011
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FINITE FIELDS, VECTOR SPACES, AND LINEAR CODES

▶ Our next goal is to bring algebraic structure into code design and
decoding.

▶ Encoding, decoding, and computing dmin become easier if the code
forms a vector space.

▶ Vector spaces are defined over fields.

▶ For coding, we care about finite fields.
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DEFINITION OF A FIELD

A field is the triplet (K,+,×) where K is a set, and +, × are two binary
operators called addition and multiplication, such that the following axioms
hold:

1. Associativity: ∀a, b, c ∈ K,

a + (b + c) = (a + b) + c

a× (b × c) = (a× b)× c

2. Commutativity: ∀a, b ∈ K,

a + b = b + a

a× b = b × a
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3. Identity under +: K contains an element, typically denoted by 0, such
that ∀a ∈ K,

a + 0 = a

4. Inverse under +: ∀a ∈ K, there exists a unique b ∈ K such that

a + b = 0

b is the additive inverse of a, typically denoted by −a.
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5. Identity under ×: K contains an element, typically denoted by 1, such
that ∀a ∈ K,

a× 1 = a

6. Inverse under ×: ∀a ∈ K, a ̸= 0, there exists a unique b ∈ K, such that

a× b = 1

b is the multiplicative inverse of a, typically denoted by a−1.

7. Distributivity: ∀a, b, c ∈ K,

a× (b + c) = (a× b) + (a× c).
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Some remarks:

▶ If K is finite, then (K,+,×) is a finite field.

▶ Instead of (+,×) the binary operations of a field may be denoted by
(+, ·), (⋆, ◦), (⊕,∧), . . .

▶ ab is a short hand for a× b.

▶ a− b is a short hand for a + (−b).

▶ If n is a positive integer and b ∈ K, nb means b + b + · · ·+ b︸ ︷︷ ︸
n times

.

▶ If k is a positive integer and a ∈ K, ak means a× a× · · · × a︸ ︷︷ ︸
k times

.
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EXAMPLE

Well-known examples of fields:

▶ (R,+, ·), the (field of) real numbers

▶ (C,+, ·), the (field of) complex numbers

▶ (Q,+, ·), the (field of) rational numbers

Well-known examples that are not fields:

▶ (N,+, ·), the (set of) non-negative integers

▶ (Z,+, ·), the (set of) integers
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EXERCISE

Are these finite fields?

▶ (Z/16Z,+, ·), the integers modulo 16

▶ (Z/17Z,+, ·), the integers modulo 17

SOLUTION

▶ (Z/16Z,+, ·) is not a field because some non-zero elements do not have
the multiplicative inverse.

▶ (Z/17Z,+, ·) is a field because all its non-zero elements have an
inverse.
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USEFULNESS OF FINITE FIELDS

Any algebraic manipulation in a finite field behaves similarly to R. For
instance:

▶ we can solve equations

▶ we can do linear algebra (define vectors and matrices, compute
determinants, etc.)
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EXAMPLES OF CALCULATIONS OVER FINITE FIELDS

The following statements can be deduced from the field axioms:

▶ if x ∈ K \ 0, then x · y = 0⇒ y = 0

▶ ∀x ∈ K, 0 · x = 0

▶ ∀x ∈ K, k ∈ N, xk = 0⇒ x = 0

▶ (−1) · x = −x

▶ (a + b)2 = a2 + 2ab + b2
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EXAMPLE

Find the solution of 3x + 6 = 4 in (Z/7Z,+, ·).

SOLUTION

3x + 6 = 4⇔ 3x + 6 + (−6) = 4 + (−6)

⇔ 3x = 5

⇔ 3−1 · 3x = 3−1 · 5
⇔ x = 5 · 5 = 25 = 4
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EXAMPLE

In (Z/7Z,+, ·), we have
1 + 1 + · · ·+ 1︸ ︷︷ ︸

7 times

= 0

Hence, the order of 1 with respect to + is 7.
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CHARACTERISTIC OF A FINITE FIELD

▶ Every field contains the special number 1.

▶ For a finite field, the order of 1 with respect to + is a prime number p
called the field characteristic.

EXAMPLE

Let p be prime, so that (Z/pZ,+, ·) is a finite field. Its characteristic is p.
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EXERCISE

Can you prove that the characteristic of a finite field (F ,+, ·) is a prime
number?

Hint: (F ,+) is a commutative group, hence there exists a smallest integer
m > 1 such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

= 0.
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SOLUTION

▶ Let m be the smallest number such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

= 0

▶ Suppose that m = ab with a > 1 and b > 1

▶ One of the field axioms (distributivity) implies

(1 + 1 + · · ·+ 1)︸ ︷︷ ︸
a times

· (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
b times

= 0

▶ Hence, either

1 + 1 + · · ·+ 1︸ ︷︷ ︸
a times

= 0 or 1 + 1 + · · ·+ 1︸ ︷︷ ︸
b times

= 0

▶ Contradiction: Hence the smallest m is a prime number.
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DEFINITION

An isomorphism between two finite fields F = (F ,+,×) and K = (K,⊕,⊗)
is a bijection

ϕ : F → K

such that, for all a, b ∈ F ,

ϕ(a + b) = ϕ(a)⊕ ϕ(b)
ϕ(a× b) = ϕ(a)⊗ ϕ(b).

We say F and K are isomorphic if there exists an isomorphism between
them.
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PROPERTIES OF FINITE FIELDS

THEOREM (TEXTBOOK THEOREM 12.1, WITHOUT PROOF)

1. The cardinality of a finite field is an integer power of its characteristic.
(Hence all finite fields have cardinality pm for some prime p and some
positive integer m.)

2. All finite fields of the same cardinality are isomorphic.

3. For every prime number p and positive integer m, there is a finite field of
cardinality pm.
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USEFUL FOR US TO KNOW

▶ (Z/kZ,+, ·) is a finite field iff k = p for some prime p.

▶ A field that has p elements is isomorphic to (Z/pZ,+, ·).

▶ In (Z/pZ,+, ·), we know how to add and multiply without tables.

▶ A field with pm elements is denoted by Fpm .

▶ Rather than developing the theory that allows us to add and multiply in
Fpm , in most of our examples we stick to (Z/pZ,+, ·), keeping in mind
that all we do generalizes to arbitrary finite fields.

625 / 798



EXAMPLE (F2)

The smallest finite field is (Z/2Z,+, ·), denoted by F2. Its elements are 0 and
1 and the operations are

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1
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EXERCISE (F3)

Define the finite field of cardinality 3.

SOLUTION (F3)

F3 is isomorphic to (Z/3Z,+, ·), with addition and multiplication defined as
follows:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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EXAMPLE (F4)

Because 4 is of the form pm, there exists a finite field with 4 elements.

Let us denote the elements 0, 1, a, b.

The axioms associated to 0 and 1 imply

+ 0 1 a b

0 0 1 a b
1 1
a a
b b

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a
b 0 b
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EXAMPLE (CONT.)

The field characteristic is p = 2, therefore 1 + 1 = 0.
Similarly, x + x = x · (1 + 1) = x · 0 = 0 for all x , so we can complete the
diagonal of the + table:

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

Finally, we can complete the remaining blanks knowing that each element
has to show up exactly once in each row and each column.
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EXAMPLE (CONT.)

Similarly, the · table is completed using the fact that F∗
4 = ({1, a, b}, ·) is a

group.

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a
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EXERCISE

Is F4 isomorphic to (Z/4Z,+, ·)?

SOLUTION

It cannot be, because (Z/4Z,+, ·) is not a field.

Other reason: in F4, the characteristic is p = 2. Hence a + a = 0 for all
a ∈ F4. Not the case for (Z/4Z,+, ·).
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EXAMPLE (GROUP ISOMORPHISM?)

Let (F4,+) be F4 without multiplication. Is (F4,+) isomorphic to
((Z/2Z)2,+)?

Recall: (Z/2Z)2 = Z/2Z× Z/2Z with addition component-wise over
(Z/2Z,+).

SOLUTION

The answer is YES: both are finite commutative groups. In both cases, all
nonzero elements have order 2. Since they have the same set of orders, they
are isomorphic.

The isomorphism is: 0⇒ 00, 1⇒ 11, a⇒ 01, b ⇒ 10
or 0⇒ 00, 1⇒ 11, a⇒ 10, b ⇒ 01.
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EXAMPLE (FIELD ISOMORPHISM?)

Is F4 isomorphic to ((Z/2Z)2,+, ·)?

SOLUTION

The answer is NO, because ((Z/2Z)2,+, ·) is not a field: (0, 1) is a non-zero
element that has no multiplicative inverse.

However, since they have the same number of elements, we can redefine the
multiplication of ((Z/2Z)2,+, ·) so that the result is a field. It suffices to use
the multiplication table from F4 and substitute 0⇒ 00, 1⇒ 11, a⇒ 01,
b ⇒ 10. (We are just re-labeling the elements of a previously established
field.)

633 / 798



SOLUTION (CONT.)

F4 ((Z/2Z)2,+,⊗)

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

+ 00 11 01 10

00 00 11 01 10
11 11 00 10 01
01 01 10 00 11
10 10 01 11 00

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

⊗ 00 11 01 10

00 00 00 00 00
11 00 11 01 10
01 00 01 10 11
10 00 10 11 01
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FINITE-DIMENSIONAL VECTOR SPACES

This is a review, since you should know everything that we need from linear
algebra. (MATH-111e.)

We review only what we need for the chapter on linear block codes (next
week).

For missing proofs, see e.g.

▶ Sheldon Axler, “Linear Algebra Done Right”, Springer

▶ Tom M. Apostol, “Linear Algebra: A First Course with Applications to
Differential Equations”, Wiley.

▶ David C. Lay, “ Linear Algebra and Its Applications”, Addison-Wesley.
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VECTOR SPACES

DEFINITION (VECTOR SPACE)

A nonempty set V is said to be a vector space over a finite field F if:

I. there exists an operation called addition that associates to each pair
u⃗, v⃗ ∈ V a vector u⃗ + v⃗ ∈ V called the sum of u⃗ and v⃗ ;

II. there exists an operation called scalar multiplication that associates to
each α ∈ F and v⃗ ∈ V a new vector αv⃗ ∈ V called the product of α and
v⃗ ;

and these operations satisfy the following axioms:
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DEFINITION (CONT.)

▶ u⃗ + v⃗ = v⃗ + u⃗ for all u⃗, v⃗ ∈ V ;

▶ (u⃗ + v⃗) + w⃗ = u⃗ + (v⃗ + w⃗) for all u⃗, v⃗ , w⃗ ∈ V ;

▶ There exists an element 0⃗ ∈ V such that 0⃗ + v⃗ = v⃗ for all v⃗ ∈ V ;

▶ For all v⃗ ∈ V , there exists an element −v⃗ ∈ V such that v⃗ + (−v⃗) = 0⃗;

▶ α(u⃗ + v⃗) = αu⃗ + αv⃗ for all α ∈ F and all u⃗, v⃗ ∈ V ;

▶ (α+ β)v⃗ = αv⃗ + βv⃗ for all α, β ∈ F and all v⃗ ∈ V ;

▶ α(βv⃗) = (αβ)v⃗ for all α, β ∈ F and all v⃗ ∈ V ;

▶ 1v⃗ = v⃗ for all v⃗ ∈ V , where 1 is the (multiplicative) identity in F.
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DEFINITION (EQUIVALENT, COMPACT DEFINITION)

(V ,+,×) is a vector space over a field F if:

▶ (V ,+) is a commutative (abelian) group;

▶ The binary operator × is between an element of V and one of F, with the
following properties:

▶ (associativity) ∀v⃗ ∈ V and α, β ∈ F, α(βv⃗) = (αβ)v⃗ ;

▶ (identity) 1v⃗ = v⃗ ;

▶ (distributivity) α(u⃗ + v⃗) = αu⃗ + αv⃗ and (α+ β)v⃗ = αv⃗ + βv⃗ .
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EXAMPLE (VECTOR SPACE)

For every field F and every positive integer n, V = Fn is the vector space of
n-tuples.

Vector-addition is done component-wise according to the addition rule of F:

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

Multiplication of a vector by a scalar is also done component-wise according
to the multiplication rule of F:

α(v1, . . . , vn) = (αv1, . . . , αvn)
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EXAMPLE (VECTOR SPACE)

For every field F and positive integer n, the set of polynomials of the form
p(x) = a0 + a1x + · · ·+ anxn with coefficients a0, . . . , an ∈ F is a vector
space, where the addition of polynomials and the multiplication of a
polynomial by a scalar are done according to the “usual rules”.
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EXAMPLE (VECTOR SPACE)

Let p be a prime number and consider the field F = (Z/pZ,+, ·).

Let n be a positive integer and consider the vector space V = Fn. This is a
vector space over (the finite field) F.

It turns out that for all vector spaces of the form V = Fn, F finite field, we can
define a multiplication among vectors that fulfills all the axioms of a field.

Hence Fn, where F = (Z/pZ,+, ·), is a vector space that can be made into
the finite field Fpn .

In fact it has pn elements, and its characteristic is p, and there is only one
such field (up to isomorphism).

All finite fields can be put in this form. We have already seen ((Z/2Z)2,+, ·).

We are not proving the above result, because we will not make use of it in
this course.
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SUBSPACE OF A VECTOR SPACE

If V is a vector space and S ⊆ V with the property that S is closed under
vector addition and multiplication by a scalar, then S is itself a vector space.

(Closure of S with respect to vector addition and multiplication of a vector by
a scalar are required by two axioms. Verify for yourself that the other axioms
that S has to fulfill to be a vector space are automatically inherited from V .)

We call such an S a subspace of V .
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EXAMPLE

Let V = R2, v⃗ ∈ V , and define S = {s⃗ ∈ V : s⃗ = av⃗ , a ∈ R}.

▶ If u⃗ ∈ S, then bu⃗ = b(av⃗) = (ba)v⃗ ∈ S for all b ∈ R

▶ If u⃗, w⃗ ∈ S, then u⃗ + w⃗ = a1v⃗ + a2v⃗ = (a1 + a2)v⃗ ∈ S

Hence S is a subspace of V .

R2 Sv⃗
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EXAMPLE

Let V = F3
7 and define S = {(x1, x2, x3) : xi ∈ F7 and x1 + 2x2 + 3x3 = 0}.

S is a subspace of V . (Be sure that you see why.)

NB: there are four kinds of operations in a vector space:

1. scalar addition,

2. scalar multiplication,

3. vector addition,

4. multiplication of a vector with a scalar.

The one used is always clear from the context.

For instance, it is clear that the above equation x1 + 2x2 + 3x3 = 0 involves
additions and multiplications in F7.
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A linear combination of a list (v⃗1, . . . , v⃗n) of vectors in V is a vector of the
form

∑n
i=1 λi v⃗i , where λ1, . . . , λn ∈ F.

The set of all linear combinations of (v⃗1, . . . , v⃗n) is called the span of
(v⃗1, . . . , v⃗n), denoted span(v⃗1, . . . , v⃗n).

If span(v⃗1, . . . , v⃗n) = V , we say that (v⃗1, . . . , v⃗n) spans V .

A vector space is called finite-dimensional if some list of vectors in it spans
the whole space. (A list has finite length by definition.)

The vectors v⃗i , i = 1, . . . , n are said to be linearly independent iff∑n
i=1 λi v⃗i = 0 implies λ1 = · · · = λn = 0.

A basis of V is a list of vectors in V that is linearly independent and spans V .
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THEOREM

A list (v⃗1, . . . , v⃗n) of vectors in V is a basis of V iff every v⃗ ∈ V can be written
uniquely in the form

v⃗ =
n∑

i=1

λi v⃗i
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EXERCISE (PROOF OF ⇒)

Prove that if (v⃗1, . . . , v⃗n) is a basis of V , then for every vector v⃗ ∈ V , there is
a unique set of coefficients λ1, . . . , λn, such that

v⃗ =
n∑

i=1

λi v⃗i .
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SOLUTION

(v⃗1, . . . , v⃗n) is a basis of V , hence it spans V (by definition), which means that
every v⃗ ∈ V can be written as

v⃗ =
n∑

i=1

λi v⃗i .

We need to prove uniqueness. Suppose that
∑n

i=1 λi v⃗i =
∑n

i=1 βi v⃗i .

Then
∑n

i=1 λi v⃗i −
∑n

i=1 βi v⃗i = 0.

Using the axioms, we rewrite as
∑n

i=1(λi − βi)v⃗i = 0.

The linear independence of the basis vectors implies λi − βi = 0, i.e., λi = βi

for all i .
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EXERCISE (PROOF OF ⇐)

Prove that if every vector v⃗ ∈ V has a unique set of coefficients λ1, . . . , λn,
such that

v⃗ =
n∑

i=1

λi v⃗i ,

then (v⃗1, . . . , v⃗n) is a basis of V .
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SOLUTION

By assumption, (v⃗1, . . . , v⃗n) spans V . It remains to be shown that the list
(v⃗1, . . . , v⃗n) is of linearly independent vectors.

Write the zero vector as 0 =
∑n

i=1 λi v⃗i . The uniqueness of the coefficients
implies that λi = 0 for all i .

Hence the vectors v⃗1, . . . , v⃗n are linearly independent.
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THEOREM

Every spanning list in a vector space can be reduced to a basis of the vector
space.

PROOF (OUTLINE)

Remove all the zero-elements of the list.

Of the new list, remove the second element if it is in the linear span of the
first. Repeat the same until we have a list in which the second element is not
in the linear span of the first.

Of the new list, remove the third element if it is in the linear span of the first
two.

Continue similarly.

The result is a list of vectors that span the vector space and are linearly
independent (or else one vector can be written as the linear combination of
vectors with smaller index).
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The above theorem implies that every finite-dimensional vector space has a
basis.

THEOREM (WITHOUT PROOF)

Any two bases of a finite-dimensional vector space have the same length.

The dimension of a finite-dimensional vector space V , denoted by dim(V ), is
defined to be the length of any basis of V .
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A FEW PROPERTIES OF THE DIMENSION OF A VECTOR SPACE

Let V be a vector space and suppose that dim(V ) = n.

▶ If (v⃗1, . . . , v⃗n) is a list of linearly independent vectors in V , then it is a
basis of V .

▶ If (v⃗1, . . . , v⃗n) spans V , then it is a basis of V .

▶ A list of m > n vectors in V cannot be linearly independent.

▶ A list of m < n vectors cannot span V .

m = n

V

v⃗1

v⃗2

m > n

V

v⃗1

v⃗2

v⃗3

m < n

V

v⃗1
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EXAMPLE

Let F be a finite field. A basis of Fn is(
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

)
.

It is called canonical basis.

dim(Fn) = n.
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EXAMPLE

Let S be the subspace of F3
7 spanned by v⃗ = (4, 3, 1).

Define S by means of equations.
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SOLUTION

(x , y , z) ∈ S implies (x , y , z) = αv⃗ for some α ∈ F7. Equivalently,
(x , y , z) = (4α, 3α, α) or 

x = 4α

y = 3α

z = α

After eliminating α, x = 4z

y = 3z

or, using the fact that −4 = 3, x + 3z = 0

y + 4z = 0
(1)
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SOLUTION (CONT.)

Conversely, suppose that (x , y , z) ∈ F3
7 satisfies (1). Let α be the value of z.

Then 
x = −3α

y = −4α

z = α

or, equivalently 
x = 4α

y = 3α

z = α,

which can be written as (x , y , z) = αv⃗ for some α ∈ F7.

We have proved that a vector (x , y , z) ∈ F3
7 is in S iff it satisfies the system of

equations (1).
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EXAMPLE (FINDING A BASIS)

Let V ⊆ F3
7 such that

V = {(x1, x2, x3) ∈ F3
7 : 3x1 + 2x2 + x3 = 0}

Find dim(V ).

The above equation can be described by the vector of coefficients
(3, 2, 1) ∈ F3

7.

Specifically, the equation is satisfied for (x1, x2, x3) iff (3, 2, 1)(x1, x2, x3)
T = 0.
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SOLUTION

We must obtain a basis of V . The equation 3x1 + 2x2 + x3 = 0 has two free
variables, say x1 and x2.

Choose x1 = α and x2 = β.

(x1, x2, x3) = (α, β,−3α− 2β) = (α, β, 4α+ 5β)

= (1, 0, 4)α+ (0, 1, 5)β

Clearly v⃗1 = (1, 0, 4) and v⃗2 = (0, 1, 5) are linearly independent and are in V .

Moreover, since (x1, x2, x3) is an arbitrary vector in V , the equation above
clearly shows that V = span(v⃗1, v⃗2).

(v⃗1, v⃗2) is both linearly independent and spans V , so it is a basis of V .

Therefore dim(V ) = 2.
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THEOREM (WITHOUT PROOF)

The set of solutions in V = Fn of m linear homogeneous equations in n
variables is a subspace S of V .

Let r be the dimensionality of the vector space spanned by the coefficient
vectors. Then dim(S) = n − r .

In particular, if the m vectors of coefficients are linearly independent, then
dim(S) = n −m.

Conversely, if S is a subspace of V = Fn with dim(S) = k , there exists a set
of n − k linear equations with coefficients that form linearly independent
vectors in V , the solution of which are the vectors in S.
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EXAMPLE (REVISITED)

Let V ⊆ F3
7 such that

V = {(x1, x2, x3) ∈ F3
7 : 3x1 + 2x2 + x3 = 0}

Find dim(V ), and then find a basis for V .

SOLUTION

There is only one vector v⃗ = (3, 2, 1) of coefficients. It spans a vector space
of dimension r = 1. Hence dim(V ) = 3− 1 = 2.

If we choose v⃗1 = (1, 0, v11) and v⃗2 = (0, 1, v21), then we are guaranteed that
they are linearly independent. We choose v11 so as to satisfy the above
equation, i.e., v11 = −3 = 4. Hence v⃗1 = (1, 0, 4)

Similarly we obtain v⃗2 = (0, 1, 5).
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EXAMPLE (REVISITED)

Let S be the subspace of F3
7 spanned by v⃗ = (4, 3, 1).

Define S by means of equations.
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SOLUTION

S is a one-dimensional subspace of V = F3
7, hence it can be described by

3− 1 = 2 equations.

Let us find two linearly independent vectors c⃗1, c⃗2 ∈ V such that∑3
j=1 cijvj = 0, i = 1, 2. (The above theorem implies that they exist.)

We can choose c⃗1 = (1, 0, c13) and c⃗2 = (0, 1, c23) and complete to fulfill the
above equation.

Hence, c⃗1 = (1, 0,−4) = (1, 0, 3) and c⃗2 = (0, 1,−3) = (0, 1, 4).

Therefore S is the set of vectors (x1, x2, x3) that satisfyx1 + 3x3 = 0

x2 + 4x3 = 0
.
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RANK OF A MATRIX

For any matrix with entries in a field F:

▶ the dimension of the vector space spanned by its rows . . .

▶ equals the dimension of the vector space spanned by its columns.

It is called the rank of the matrix.
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EXAMPLE

Let S be the subspace of V = F3
7 whose elements (x1, x2, x3) verify4x1 + x2 = 0

x1 + x3 = 0

▶ The coefficient matrix is A =

[
4 1 0
1 0 1

]
.

▶ Its rank is r = 2.

▶ dim(S) = dim(V )− r = 3− 2 = 1.
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CARDINALITY AND DIMENSION

THEOREM (12.2 OF TEXTBOOK)

An n-dimensional vector space V over a finite field F:

▶ is finite,

▶ has cardinality
card(V ) = [card(F)]n.
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Proof:

Let (v⃗1, . . . , v⃗n) be a basis of V . For every v⃗ ∈ V , there is a unique n-tuple
(λ1, . . . , λn) ∈ Fn such that v⃗ =

∑
i λi v⃗i .

Hence the mapping

Fn → V

(λ1, . . . , λn) 7→ v⃗ =
∑

i

λi v⃗i

is a bijection.

By the pigeonhole principle,

card(V ) = card(Fn) = [card(F)]n.
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OUTLINE

INTRODUCTION AND ORGANIZATION

ENTROPY AND DATA COMPRESSION

CRYPTOGRAPHY

CHANNEL CODING

Error Detection and Error Correction

Finite Fields and Vector Spaces

Linear Codes

Reed Solomon Codes

Summary of Chapter 3
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Why do we care about linear codes?

Linear codes have more structure.

We use that structure to simplify our tasks, notably:

▶ To determine the code’s performance (dmin in particular).

▶ To simplify the encoding.

▶ To simplify the decoding.
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DEFINITION (TEXTBOOK DEF. 13.1)

A block code is a linear code if the codewords form a subspace of Fn for
some finite field F.
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EXAMPLE

Let C ⊂ F7
2 be the block code that consists of the listed

codewords. Is it linear?

SOLUTION

We have

c⃗4 = c⃗1 + c⃗2

c⃗5 = c⃗1 + c⃗3

c⃗6 = c⃗2 + c⃗3

c⃗7 = c⃗1 + c⃗2 + c⃗3

Therefore C = span(c⃗1, c⃗2, c⃗3) ⊂ F7
2 is a linear code (over

the finite field F2).

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011

672 / 798



EXAMPLE
What is the dimension of code C (i.e., the dimension of
the subspace formed by the codewords)?

SOLUTION
The set (c⃗1, c⃗2, c⃗3) is a basis of C. Hence dim(C) = 3.

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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SIZE VS DIMENSION

We have seen that a k -dimensional subspace of Fn has cardinality [card(F)]k .
(Count the number of linear combinations you can form with the vectors that
form the basis, with coefficients in F.)

EXAMPLE

If the size of a binary block code is not of the form 2k , then the code is not
linear.
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HAMMING WEIGHT

DEFINITION

Let x⃗ = (x1, . . . , xn) be an n-tuple with components in a finite field.

The (Hamming) weight of x⃗ , denoted w(x⃗), is the number of its non-zero
components in (x1, . . . , xn), i.e.

w(x⃗) = d
(
(0, . . . , 0), (x1, . . . , xn)

)
.
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EXERCISE ("ACADEMIC" QUESTION)

In the definition of Hamming weight, we are requiring that the components of
x⃗ take value in a (finite) field F. Why?

SOLUTION

Otherwise there is no guarantee that the alphabet contains the 0 element.

Recall that in a finite field F, no matter how we label its elements, one is the 0
element (the identity element with respect to addition). Hence the Hamming
weight is well-defined.
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EXAMPLE

▶ The weight of (1, 0, 1, 1, 0) is 3.

▶ The weight of (3, 0, 4, 1, 1, 2) is 5.
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THEOREM

The minimum distance of a linear code C is the smallest weight of a
codeword in C, zero-vector excluded, i.e.,

dmin(C) = min
c⃗∈C ;⃗c ̸=0⃗

w(c⃗)
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In the proof that follows, we use the following two facts:

▶ For all u⃗, v⃗ ∈ Fn,
d(u⃗, v⃗) = w(u⃗ − v⃗)

(Reason: u⃗ and v⃗ are different at position i iff u⃗ − v⃗ is non-zero at
position i .)

▶ Let f : B → R be an arbitrary function and A ⊆ B be finite sets. Then

min
x∈A

f (x) ≥ min
x∈B

f (x)

(We might find a smaller minimum if we enlarge the set.)
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Proof:

dmin(C) = min
u⃗,⃗v∈C ;⃗u ̸=v⃗

d(u⃗, v⃗)

= min
u⃗,⃗v∈C ;⃗u ̸=v⃗

w(u⃗ − v⃗)

≥ min
c⃗∈C ;⃗c ̸=0⃗

w(c⃗) (reason: C is a vector space, so u⃗ − v⃗ ∈ C).

min
c⃗∈C ;⃗c ̸=0⃗

w(c⃗)= min
c⃗∈C ;⃗c ̸=0⃗

d(c⃗, 0)

≥ min
c⃗,⃗v∈C ;⃗c ̸=v⃗

d(c⃗, v⃗) (reason: we have equality with v⃗ = 0)

= dmin(C).
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EXERCISE

Find the minimum distance of the linear code C.

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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SOLUTION

▶ Compute the weight of each non-zero codeword:

w1 = w(0011100) = 3

w2 = w(0111011) = 5

w3 = w(1110100) = 4

w4 = w(0100111) = 4

w5 = w(1101000) = 3

w6 = w(1001111) = 5

w7 = w(1010011) = 4

▶ dmin(C) = 3.

▶ Note: compare this to the work needed to compute
d(v⃗i , v⃗j) for all i ̸= j .

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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EXERCISE ((BINARY) PARITY-CHECK CODE)

The parity-check code C ⊂ Fn
2 consists of those elements of Fn

2 that have an
even number of 1s, i.e.,

C =
{
(c1, . . . , cn) ∈ Fn

2 :
∑

i

ci = 0
}
.

(Addition is in F2, i.e., mod 2.)

Determine k and dmin.

683 / 798



SOLUTION

▶ The code is a subset of Fn
2 that satisfies an homogeneous linear

equation.

▶ Hence the code is linear, and k = n − 1.

▶ (We can also tell that k = n − 1, by observing that we are free to choose
the first n − 1 bits and satisfy the constraint with the last symbol. )

▶ For a linear code, dmin is the minimum non-zero weight.

▶ It is achieved by any codeword that has exactly two 1s.

▶ Hence dmin = 2.

Note: In this example, linearity allows us to determine dmin via deductive
reasoning rather than by inspection.
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EXERCISE ((BINARY) REPETITION CODE)

It is the subset of Fn
2 that consists of two codewords, namely (0, . . . , 0) and

(1, . . . , 1).

Determine k and dmin.

SOLUTION

▶ The code is linear: it is the subspace of Fn
2 spanned by (1, . . . , 1).

▶ k = 1.

▶ dmin = n (the weight of the only non-zero codeword).
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The above two codes are not terribly useful, but they have an interesting
property shared by the next code which is even less useful.

EXERCISE (THE CODE Fn
2)

Fn
2 satisfies the definition of a linear code.

Determine k and dmin.

SOLUTION

▶ k = n.

▶ dmin = 1.
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The above three code families fulfill the Singleton bound with equality. Hence
they are MDS codes. Moreover, they are also linear codes.

No other family of binary linear codes is MDS.

But there are non-binary codes that are MDS, e.g., the family of
Reed-Solomon codes (studied next week).
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GENERATOR MATRIX

DEFINITION (TEXTBOOK DEFINITION 13.3)

Let (c⃗1, . . . , c⃗k ) be a basis of a linear code C ⊂ Fn over some finite field F.
The k × n matrix that has c⃗i as its i th row is called a generator matrix of C.
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EXAMPLE

(c⃗1, c⃗2, c⃗3) form a basis for C. Therefore

G =

c⃗1

c⃗2

c⃗3

 =

0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0


is a generator matrix of C.

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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ENCODING

A k × n generator matrix specifies an encoding map that sends an
information vector u⃗ ∈ Fk to the corresponding codeword c⃗ = u⃗G.

u⃗ G c⃗ = u⃗G

EXAMPLE

u⃗ = (1, 0, 1)→ c⃗ = (1, 0, 1)

0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0


= (1, 1, 0, 1, 0, 0, 0).

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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We have seen the generator matrix

G1 =

c⃗1

c⃗2

c⃗3

 =

0 0 1 1 1 0 0
0 1 1 1 0 1 1
1 1 1 0 1 0 0

 .

Here is another one:

G2 =

 c⃗1

c⃗1 + c⃗2

c⃗1 + c⃗3

 =

0 0 1 1 1 0 0
0 1 0 0 1 1 1
1 1 0 1 0 0 0

 .

691 / 798



A linear code C has as many generator matrices as the number of bases of
the vector space C.

Each generator matrix determines an encoding map:

u⃗ → u⃗G1

000 → 0000000 = c⃗0

001 → 1110100 = c⃗3

010 → 0111011 = c⃗2

011 → 1001111 = c⃗6

100 → 0011100 = c⃗1

101 → 1101000 = c⃗5

110 → 0100111 = c⃗4

111 → 1010011 = c⃗7

u⃗ → u⃗G2

000 → 0000000 = c⃗0

001 → 1101000 = c⃗5

010 → 0100111 = c⃗4

011 → 1001111 = c⃗6

100 → 0011100 = c⃗1

101 → 1110100 = c⃗3

110 → 0111011 = c⃗2

111 → 1010011 = c⃗7
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EXERCISE

How many generator matrices for a binary linear code of block-length n = 7
and dimension k = 3?

SOLUTION

It is the number of lists that form a basis. A q-ary linear code of dimension k
has qk codewords and the number of bases is

(qk − 1)(qk − q) · · · (qk − qk−1).

For a binary code (q = 2) we have

(23 − 1)(23 − 2)(23 − 22) = 7× 6× 4 = 168.
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THE BIG PICTURE (TRANSMITTER)

Source

Source Coding

(D = 2)

Channel Coding

c⃗ = u⃗G

(n = 7, k = 3)

dinner is served

000︸︷︷︸
d

0111111︸ ︷︷ ︸
i

00101︸ ︷︷ ︸
n

. . .

00000001001111101001100111001101000


000
011
111
100
101

G−→

0000000
1001111
1010011
0011100
1101000
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EXERCISE

Is {c⃗2 + c⃗3, c⃗1 + c⃗2, c⃗1} a basis of C?

If yes,

▶ Specify the generator matrix.

▶ Explicitly specify the map u1u2u3 → c1c2c3c4c5c6c7.

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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SOLUTION (BASIS)

Let G′ =

c⃗2 + c⃗3

c⃗1 + c⃗2

c⃗1

 =

1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 0 0

.

▶ From the first three columns we see that rank (G′) =
3, so {c⃗2 + c⃗3, c⃗1 + c⃗2, c⃗1} are linearly independent.

▶ n linearly independent vectors of an n-dimensional
space always form a basis of the space.

▶ G′ is the generator matrix associated to this basis.

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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SOLUTION (ENCODING MAP)

G′ =

 1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 0 0


(c1, c2, c3, c4, c5, c6, c7) = (u1, u2, u3)G′

Therefore:

c1 = u1 c4 = u1 + u3

c2 = u2 c5 = u1 + u2 + u3

c3 = u3 c6 = u1 + u2

c7 = u1 + u2

c⃗ = (c1, c2, c3︸ ︷︷ ︸
message bits

, c4, c5, c6, c7︸ ︷︷ ︸
parity bits

).

code C
c⃗0 = 0000000
c⃗1 = 0011100
c⃗2 = 0111011
c⃗3 = 1110100
c⃗4 = 0100111
c⃗5 = 1101000
c⃗6 = 1001111
c⃗7 = 1010011
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SYSTEMATIC FORM

The above matrix G′ is in systematic form.

DEFINITION (SYSTEMATIC FORM)

A generator matrix Gs is in systematic form if

Gs =
(
Ik ,Pk×(n−k)

)
.

Notice that a systematic generator matrix is a matrix in reduced echelon form.

When the generator matrix is in systematic form, each codeword is written as

c⃗ = u⃗Gs = (u1, . . . , uk︸ ︷︷ ︸
u⃗I=u⃗

, ck+1, . . . , cn︸ ︷︷ ︸
u⃗P

).
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Given a linear code C, how does one find the systematic form Gs?

1. Find a basis {c⃗1, . . . , c⃗k} of C.

2. Form the generator matrix: G =


c⃗1

...
c⃗k

.

3. Row-reduce G (Gaussian elimination on rows) to obtain a matrix in
reduced echelon form.
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⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆ ⋆

0 0 0 0 ⋆ ⋆ ⋆




echelon form

1 0 ⋆ 0 0 ⋆ ⋆

0 1 ⋆ 0 0 ⋆ ⋆

0 0 0 1 0 ⋆ ⋆

0 0 0 0 1 ⋆ ⋆




reduced echelon form

pivots (leading coeff.)

This procedure uses the three operations below (that do not modify the
vector space spanned by the rows of G):

Tij : transpose (swap) rows i and j ;

αSi : scale row i by α;

αAij : scale row i by α and add to row j .
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The result is a generator matrix for the same code.

To make sure that we have the identity matrix on the left, we may have to
swap columns.

If we swap columns, we obtain a different code (different set of codewords)
that has the same parameters (n, k , dmin) as the original code.
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EXAMPLE (SYSTEMATIC FORM)

Let G be a generator matrix of a (5, 3) code on F5:

G =

0 1 2 3 4
4 3 2 1 0
1 1 0 1 1

 .
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ENCODING

EXAMPLE (SYSTEMATIC FORM (CONT.))

G =

(0 1 2 3 4
4 3 2 1 0
1 1 0 1 1

)
T13−→

(1 1 0 1 1
4 3 2 1 0
0 1 2 3 4

)

T23−→
(1 1 0 1 1

0 1 2 3 4
4 3 2 1 0

)
4A21−→

(1 0 3 3 2
0 1 2 3 4
4 3 2 1 0

)

A13−→
(1 0 3 3 2

0 1 2 3 4
0 3 0 4 2

)
2A23−→

(1 0 3 3 2
0 1 2 3 4
0 0 4 0 0

)

4S3−→
(1 0 3 3 2

0 1 2 3 4
0 0 1 0 0

)
3A32−→

(1 0 3 3 2
0 1 0 3 4
0 0 1 0 0

)

2A31−→
(1 0 0 3 2

0 1 0 3 4
0 0 1 0 0

)
= Gs.
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ENCODING

EXAMPLE (SYSTEMATIC FORM (CONT.))

With the generator matrix in systematic form

Gs =

1 0 0 3 2
0 1 0 3 4
0 0 1 0 0

 ,

the map (u1, u2, u3)︸ ︷︷ ︸
information word

7→ (c1, c2, c3, c4, c5)︸ ︷︷ ︸
codeword

is

c1 = u1

c2 = u2

c3 = u3

c4 = 3u1 + 3u2

c5 = 2u1 + 4u2
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EXAMPLE (SYSTEMATIC FORM)

Here an example where we have to swap columns.

Let

G =

(
1 1 1
1 1 2

)
.

The steps towards the reduced echelon form are(
1 1 1
0 0 1

)
∼

(
1 1 0
0 0 1

)
.

By swapping the second and third columns, we obtain the following generator
matrix of a different (but equivalent) code.

G̃ =

(
1 0 1
0 1 0

)
.
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DECODING

How to decode?

Decoding is about deciding the information word from the channel output.

If the channel output y⃗ is a codeword, then we assume that it equals the
channel input.

In this case decoding is about inverting the encoding map. This is trivial if the
generator matrix is in systematic form. (We read out the first k symbols of y⃗ .)

But how to know if the channel output is a codeword?

We use the fact that a linear block code, like every subspace of a vector
space, can be defined by a system of homogeneous linear equations.

The channel output is a codeword iff it satisfies those equations.
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EXAMPLEc4 = 3c1 + 3c2

c5 = 2c1 + 4c2

⇒

−3c1 − 3c2 + c4 = 0

−2c1 − 4c2 + c5 = 0
⇒

2c1 + 2c2 + c4 = 0

3c1 + c2 + c5 = 0

Therefore, y⃗ ∈ C iff 2y1 + 2y2 + y4 = 0

3y1 + y2 + y5 = 0

i.e., iff

(y1, y2, y3, y4, y5)


2 3
2 1
0 0
1 0
0 1


︸ ︷︷ ︸

HT

= 0⃗.
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PARITY-CHECK MATRIX

A parity-check matrix H for a linear (n, k) code is an (n − k)× n matrix that
contains the coefficients of a system of homogeneous linear equations that
defines the code.

EXAMPLE

(y1, y2, y3, y4, y5)


2 3
2 1
0 0
1 0
0 1


︸ ︷︷ ︸

HT

= 0⃗ ⇔

2y1 + 2y2 + y4 = 0

3y1 + y2 + y5 = 0
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THEOREM (TEXTBOOK THEOREM 13.1)

If G = (Ik ,P), where P is a k × (n − k) matrix, is a generator matrix (in
systematic form) of a linear (n, k) block code, then

H =
(
− PT, In−k

)
is a parity-check matrix of the same code.
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Proof:

H =
(
− PT, In−k

)
has rank (n − k), hence it defines a system of equations,

the solution of which is a subspace of Fn of dimension k .

We want to show that u⃗GHT = 0⃗ for all information vectors u⃗.

This is true iff GHT is the zero matrix (of size k × (n − k)).

GHT = (Ik ,P)

(
−P
In−k

)
= −P + P = 0.

710 / 798



EXAMPLE

G =

1 0 0 3 2
0 1 0 3 4
0 0 1 0 0

 is the generator matrix of a (5, 3) code over F5.

H =

(
−3 −3 0 1 0
−2 −4 0 0 1

)
=

(
2 2 0 1 0
3 1 0 0 1

)
is a corresponding parity-check matrix.
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SYNDROME

DEFINITION

Let H be the (n − k)× n parity-check matrix of a linear block code C ⊂ Fn

and let y⃗ ∈ Fn.

The syndrome of y⃗ is the vector

s⃗ = y⃗HT.

By definition,
y⃗ ∈ C ⇐⇒ s⃗ = 0⃗.
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EXAMPLE (HAMMING CODES)

For every integer m ≥ 2, there exists a binary Hamming code of parameters

n = 2m − 1,

k = n −m.

The parity-check matrix is the m × n matrix whose columns consist of all
non-zero vectors of length m.

Hamming codes are easy to encode and to decode.
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EXAMPLE (CONT.)

For instance, let m = 3.

A valid parity check matrix is

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ,

where, for convenience, the i th column is the binary representation of i .

The block-length is n = 2m − 1 = 7.

The rank of H is m, hence the code dimension is k = n −m = 4.

c⃗ = (1, 1, 1, 0, . . . , 0) is a codeword because c⃗HT = 0.

Hence dmin ≤ 3.

We show that dmin = 3 by showing how to correct all error patterns of weight
1.
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EXAMPLE (CONT.)

Let y⃗ = c⃗ + e⃗, be the channel output, where c⃗ ∈ C, e⃗ ∈ Fn
2, and w(e⃗) = 1.

s⃗ = y⃗HT = c⃗HT + e⃗HT = e⃗HT.

s⃗ = e⃗HT is the binary representation of the position of the error.

Hence we can correct the error.
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EXERCISE

For the (7, 4) Hamming code,

1. find a parity-check matrix of the form H =
(
− PT, I3

)
.

2. find the corresponding generator matrix G =
(
I4,P

)
.
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SOLUTION

1. By moving to the far right the first, second, and fourth columns of the
original parity-check matrix we obtain

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


which has the desired form. Notice that the result is a different code (we
have reordered the components) — still a Hamming code.

2.

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .
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EXERCISE

For the binary (4, 1) repetition code,

1. find a generator matrix in systematic form.

2. find a parity-check matrix.
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SOLUTION

1. The code consists of the two codewords (0, 0, 0, 0) and (1, 1, 1, 1). There
is only one basis of this code, hence there is only one generator matrix

G = (1, 1, 1, 1).

2. Since the generator matrix is of the form (I1,P), a corresponding
parity-check matrix is of the form (−PT , I3), namely

H =

1 1 0 0
1 0 1 0
1 0 0 1

 .
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THEOREM

Let H be any parity check matrix of a linear code. The minimum distance of
the code is the smallest positive integer d such that there are d columns of H
that are linearly dependent.
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Proof:

For a linear code, the minimum distance is the smallest weight of a non-zero
codeword. Let c⃗ ̸= 0 be a codeword of smallest weight d . The fact that
c⃗HT = 0 proves that H has d linearly dependent columns.

We need to argue that fewer than d columns of H are not linearly dependent.
Suppose that H has t < d linearly dependent columns. Then we could find a
non-zero codeword c⃗ of weight smaller than d such that c⃗HT = 0. This is a
contradiction.
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EXAMPLE

The following is a parity check matrix for a Hamming code of parameters
n = 7, k = 4.

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Clearly no two columns are linearly dependent.

Column 1, 2, and 3 are linearly dependent.

Hence dmin = 3.
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STANDARD ARRAY: BACKGROUND MATERIAL

Equivalence Relation (review):

▶ G a set;

▶ ∼ an equivalence relation on G;

▶ [a] the equivalence class of a ∈ G.

Key property that we will use: An equivalence relation on a set partitions the
set into disjoint equivalence classes.
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EXAMPLE

▶ G is the set of all students in Switzerland

▶ a ∼ b if a and b attend the same university

▶ [a] the subset of G that contains all the students that attend the same
university as a

Note: As in the above example, equivalence classes need not have the same
size.
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Special Case: Group-Theoretic Construction

When G forms a commutative group (G, ⋆) and (H, ⋆) is a subgroup, there is
a natural choice for ∼ defined as follows:

a ∼ b if there exists an h ∈ H such that b = a ⋆ h.

Equivalently:
a ∼ b if a−1 ⋆ b ∈ H.
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Claim: The above ∼ is indeed an equivalence relation:

Proof:

▶ (reflexive) a ∼ a:
true because a−1 ⋆ a ∈ H

▶ (symmetric) if a ∼ b then b ∼ a:
true because if a−1 ⋆ b = h ∈ H then b−1 ⋆ a = h−1 ∈ H

▶ (transitive) if a ∼ b and b ∼ c then a ∼ c:
true because if a−1 ⋆ b = h1 ∈ H and b−1 ⋆ c = h2 ∈ H, then H contains
also h1 ⋆ h2 which is a−1 ⋆ b ⋆ b−1 ⋆ c = a−1 ⋆ c
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Since in this case an equivalence class has the form

[a] = {a ⋆ h : h ∈ H} ,

it makes sense to write
[a] = a ⋆H.

For instance, if ⋆ is the addition, then [a] is H translated by a.
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EXAMPLE

Let (G,+) = (Z/10Z,+) and let H = {0, 5}.

Then (H,+) is a subgroup of (G,+), and the equivalence classes are:

[0] = H = {0, 5}
[1] = 1 +H = {1, 6}
[2] = 2 +H = {2, 7}
[3] = 3 +H = {3, 8}
[4] = 4 +H = {4, 9}.
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In the group theoretic language, [a] is called the coset of H with respect to a.

Claim: All cosets of H have the same cardinality card(H).

Proof:
h1, h2 ∈ H s.t. h1 ̸= h2 =⇒ a ⋆ h1 ̸= a ⋆ h2.

Hence a ⋆H has the same cardinality as H.
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Here is the group and subgroup of interest to us:

▶ The group (G, ⋆) is (Fn,+) for some finite field F and positive integer n;

▶ the subset H is a linear code C ⊂ Fn;

▶ then if x , y ∈ Fn, x ∼ y iff −x + y ∈ C;

▶ (equivalently, x ∼ y iff y = x + c for some c ∈ C).
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STANDARD ARRAY

The Standard Array is an array that has the elements of C in the top row,
starting with the 0 codeword, and each row forms a coset of C. Each element
of Fn shows up exactly once in the standard array.

c0 = 0 c1 c2 . . . cM−1 ← [C]
t1 t1 + c1 t1 + c2 . . . t1 + cM−1 ← [t1]
t2 t2 + c1 t2 + c2 . . . t2 + cM−1 ← [t2]
...

...
...

...
...

tL−1 tL−1 + c1 tL−1 + c2 . . . tL−1 + cM−1 ← [tL−1]

where for each j = 1, . . . , L− 1, tj is such that

tj ̸∈
(
C

j−1⋃
k=1

[tk ]

)
.

Later we will choose the coset leaders more carefully.
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DECODING REGIONS

Suppose that card(C) = M.

Think of the decoder as being specified by M decoding regions D0, . . . , DM−1

that partition Fn:

Di

⋂
Dj = ∅ if i ̸= j;

M−1⋃
i=0

Di = Fn.

Upon observing y ∈ Fn, the decoder finds the i such that y ∈ Di , and
declares

ĉ = ci .
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THE COSET DECODER : HOW TO DECODE WITH THE STANDARD ARRAY

We let Di be the i th column of the standard array.

c0 = 0 c1 c2 . . . cM−1

t1 t1 + c1 t1 + c2 . . . t1 + cM−1

t2 t2 + c1 t2 + c2 . . . t2 + cM−1

...
...

...
...

tL−1 tL−1 + c1 tL−1 + c2 . . . tL−1 + cM−1

↑ ↑ ↑ . . . ↑
D0 D1 D2 DM−1

Note that Di = ci +D0.
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Geometrical Interpretation:

D0

Di = D0 + ci

0

ci

The union of all the Di is Fn. Hence every y ∈ Fn is in exactly one decoding
region.
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THE COSET DECODER : HOW TO IMPLEMENT

To find the codeword associated to a channel output y , we could find y in the
standard array and read out the entry on top of the same column.

Storing the whole standard array is impractical (often impossible for large
codes).

The first column describes the geometry of all decoding regions. We should
be able to leverage on that.
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Claim: In the standard array, each element of a row has the same syndrome
as the coset leader.

Proof:

▶ the elements of [ti ] have the form ti + c for some c ∈ C

▶ the syndrome of such an element is

(ti + c)HT = tiHT + cHT = tiHT

which is the syndrome of the coset leader ti
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Claim: The syndrome uniquely identifies the coset leader.

Proof:

Let ti and tj be coset leaders.

Suppose that tiHT = tjHT .

Then (ti − tj)HT = 0.

Hence ti − tj = ck ∈ C.

It follows that ti and tj are in the same coset.

Since both are coset leaders, ti = tj .

737 / 798



In the previous slide, we have proved that the map

D0 → Fn−k

t 7→ tHT

is one-to-one.

We use the pigeonhole principle to prove that it is also onto, hence it is a
bijection. (We will not use this fact.)

Let F = Fq .

The standard array places the qn elements of Fn into card(C) = qk columns
and card(D0) =

qn

qk = qn−k rows.

The cardinality of Fn−k is also qn−k .
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Hence the coset decoder can be implemented as follows:

1. we precompute and store the coset leaders and the corresponding
syndrome;

2. to decode y , we compute its syndrom s = yHT ;

3. s encodes the row of y ;

4. we use the lookup table to determine the corresponding coset leader,
say, ti ;

5. ti and y uniquely determine the column of y , namely y = ti + cj ;

6. hence cj = y − ti ;

7. the decoder declares that the transmitted codeword is ĉ = y − ti .

739 / 798



To find the information word û that corresponds to ĉ we solve the linear
system

ûG = ĉ.

If G is in systematic form, then û consists of the first k components of ĉ.

740 / 798



CHOOSING COSET LEADERS

There are many ways to choose the coset leaders t1, t2, · · · .

In fact, every element of every row of the standard array can be chosen as
the coset leader.

THEOREM

In every row of the standard array:

▶ select the coset leader to be one of the minimum-weight vectors in that
row.

Then the coset decoder is a minimum-distance decoder.
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Proof:

Let y be in the i th row and j th column of the standard array, i.e., y ∈ [ti ] and
y ∈ Dj .

We want to show that d(y , cj) ≤ d(y , ck ) for every k .

On the LHS we have d(y , cj) = d(ti + cj , cj) = w(ti).

On the RHS we have d(y , ck ) = d(ti + cj , ck ) = w(ti + cj − ck ) = w(ti + cl)

for some l .

ti and ti + cl are in the same coset, and ti is the coset leader. By choice,
w(ti) ≤ w(ti + cl).
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EXAMPLE (STANDARD ARRAY FOR A TOY-CODE)

Let C = {(0, 0, 0)︸ ︷︷ ︸
c0

, (1, 1, 1)︸ ︷︷ ︸
c1

}

Standard Array:

c0 = (0, 0, 0) c1 = (1, 1, 1) ← C
t1 = (0, 0, 1) t1 + c1 = (1, 1, 0) ← t1 + C
t2 = (0, 1, 0) t2 + c1 = (1, 0, 1) ← t2 + C
t3 = (1, 0, 0)︸ ︷︷ ︸

D0

t3 + c1 = (0, 1, 1)︸ ︷︷ ︸
D1=

← t3 + C

D0 + c1
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EXAMPLE (DECODING FOR THE TOY-CODE)

Transposed parity-check matrix and corresponding syndrome lookup table:

HT =

1 1
1 0
0 1


t s

(0, 0, 0) (0, 0)
(0, 0, 1) (0, 1)
(0, 1, 0) (1, 0)
(1, 0, 0) (1, 1)

If y = (1, 0, 1) is received, the syndrome is s = yHT = (1, 0), the coset
leader is t = (0, 1, 0), and the decoded codeword is ĉ = y − t = (1, 1, 1).
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EXAMPLE ((6,3) BINARY LINEAR BLOCK CODE)

The code is defined by the following parity-check matrix

H =

0 1 1 | 1 0 0
1 0 1 | 0 1 0
1 1 0 | 0 0 1

 .

No two columns are linearly dependent. The first three columns are linearly
dependent. Hence dmin = 3.

H has the form (P, I). The generator matrix G has the form (I,−PT ):

G =

1 0 0 | 0 1 1
0 1 0 | 1 0 1
0 0 1 | 1 1 0

 .
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EXAMPLE (CONT.)

The standard array has 2k = 23 = 8 columns and 2n−k = 23 = 8 rows.

The top row of the standard array is the code, and the left column consists of
the elements of D0.

The code can correct all the errors of weight 1. Hence all the weight-1 words
are in D0.

This gives:

000000 001110 010101 011011 100011 101101 110110 111000
000001
000010
000100
001000
010000
100000

t7
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EXAMPLE (CONT.)

The next step is to fill in the rows for which we know the coset leader:

000000 001110 010101 011011 100011 101101 110110 111000
000001 001111 010100 011010 100010 101100 110111 111001
000010 001100 010111 011001 100001 101111 110100 111010
000100 001010 010001 011111 100111 101001 110010 111100
001000 000110 011101 010011 101011 100101 111110 110000
010000 011110 000101 001011 110011 111101 100110 101000
100000 101110 110101 111011 000011 001101 010110 011000

t7

As t7 we choose a weight-2 word that has not yet appeared in any row, i.e.,
anything except 001100, 001010, 000110, 010100, 010001, 000101, 100010,
100001, 000011, 110000, 101000, 011000.

We choose t7 = 100100.
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EXAMPLE (CONT.)

000000 001110 010101 011011 100011 101101 110110 111000
000001 001111 010100 011010 100010 101100 110111 111001
000010 001100 010111 011001 100001 101111 110100 111010
000100 001010 010001 011111 100111 101001 110010 111100
001000 000110 011101 010011 101011 100101 111110 110000
010000 011110 000101 001011 110011 111101 100110 101000
100000 101110 110101 111011 000011 001101 010110 011000
100100 101010 110001 111111 000111 001001 010010 011100

The code will correct all the weight-1 channel-error patterns and the weight-2
channel-error pattern 100100. All the other channel-error patterns will lead to
a decoding error.
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EXAMPLE (CONT.)

The syndrome lookup table, i.e., the table that associates the coset leader ti
to the syndrome si = tiHT is:

ti si

000000 000
000001 001
000010 010
000100 100
001000 110
010000 101
100000 011
100100 111

The code will correct all the weight-1 channel errors and the weight-2 channel
error 100100. All the other error patterns will lead to a decoding error.
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EXAMPLE (CONT.)

If y = 011000 is received, the decoder determines its syndrome

s = yHT = 011,

and the corresponding coset leader

t = 100000.

ti si

000000 000
000001 001
000010 010
000100 100
001000 110
010000 101
100000 011
100100 111

The decoded word is
ĉ = y − t = 111000,

which is indeed a codeword. 750 / 798



Disclaimer:

The procedure that we have described requires to store |F|(n−k) coset leaders
and the corresponding syndrome.

While the approach is theoretically appealing, a lookup table of that size is
prohibitive for most codes of practical interest.
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EXAMPLE (CD ROM)

The information on a CD Rom is encoded via two codes.

One code has parameters |F| = 28, n = 32 and k = 28.

For it, there are |F|(n−k) =
(
28)4

= 4.29× 109 coset leaders.

A coset leader is 8× 32 = 256 bits long.

A syndrome is 8× 4 = 32 bits long.

This requires more than 1012 bits — far more than the capacity of a CD Rom.
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ERROR PROBABILITY

There are many ways to choose D0.

In fact, every element of every row of the standard array can be chosen as
the coset leader.

Next, we learn how to choose the coset leaders so as to minimize the
decoding error-probability.
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Suppose that the channel is the following binary symmetric channel with
input alphabet X = {0, 1} and output alphabet Y = {0, 1}.

1
1− ϵ 1

0
1− ϵ

0

YX

ϵ

ϵ

The probability of the error pattern e ∈ Fn is

ϵw(e)(1− ϵ)n−w(e) =

(
ϵ

1− ϵ

)w(e)

(1− ϵ)n.

We assume ϵ < 1/2. Then ϵ
1−ϵ

< 1, and the above expression is a
decreasing function of w(e).
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Let PC(ci) be the probability that the decoder decodes correctly, given that
ci ∈ C was transmitted.

When c0 ∈ C is transmitted, the decoder makes the correct decision
whenever y ∈ D0. But when c0 is transmitted, the event y ∈ D0 is the same
as the event e ∈ D0. Hence,

PC(0) =
∑

e∈D0

ϵw(e)(1− ϵ)n−w(e) =
L−1∑
j=0

ϵw(tj )(1− ϵ)n−w(tj ),

where we have defined t0 = c0 = 0.

In conclusion, we maximize PC(0) if the coset leaders have the smallest
possible weights.
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EXAMPLE (CONT.)

The probability of error PE is 1− PC , where PC is the probability that the error
pattern e is in D0.

For the binary symmetric channel, this probability is

PC = (1− ϵ)6 + 6(1− ϵ)5ϵ+ (1− ϵ)4ϵ2.

ti
000000
000001
000010
000100
001000
010000
100000
100100

For ϵ = 0.1, PC = 0.8923.

(The probability that the channel output equals the channel input is (1− ϵ)6.
This is 0.531 when ϵ = 0.1.)
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We have assumed for simplicity a binary symmetric channel, but the same
idea applies to nonbinary channels (with input and output alphabet F) for
which the probability of an error pattern e ∈ Fn is decreasing with w(e).

PC(ci) is the probability that y ∈ Di when ci is transmitted.

This is the probability that ci + e︸ ︷︷ ︸
y

∈ ci +D0︸ ︷︷ ︸
Di

.

It is the same as the probability that e ∈ D0. But this is PC(0).

Hence, for all i , PC(ci) = PC(0).

Hence, the unconditional probability of correct decoding is PC = PC(0).
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We conclude that the error probability is minimized when the coset leaders
have the smallest weight.

This can be achieved by reordering each row of the standard array as follows.

Suppose that, in row j we have

w(tj) > w(tj + ci).

By making tj + ci the new coset leader of the j th row, the following happens:

1. the elements of that row are permuted;

2. the term of PC(0) that corresponds to the j th row increases whereas the
other terms of PC(0) are unaffected.
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To Summarize:

▶ A linear code C is a subspace of a vector space Fn.

▶ The code partitions Fn into cosets.

▶ We cannot chose the cosets, but we can choose the coset leaders.

▶ To maximize PC(0), we let the leader of each coset be one of the
smallest-weight elements of the coset.

▶ The cost leaders form D0, and Di = ci +D0.

▶ The error probability is the same and equal to PC(0), no matter which
codeword is transmitted.
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Today we learn about Reed Solomon Codes (Irving Reed and Gustave
Solomon, 1960).

Why do we care?

▶ They are powerful (MDS)

▶ They are linear

▶ They let us choose various parameters (arbitrary Fq and 0 < k < n ≤ q)

▶ They have a nice construction

▶ They have elegant and efficient decoding algorithms

762 / 798



▶ They are used in many applications, namely:

▶ Storage devices: tape, CDs, DVDs, bar codes, QR codes, . . .

▶ Digital radio/television broadcast

▶ High-speed modems: ADSL, xDSL, . . .

▶ Deep space exploration modems (including Voyager 2, 1977, Jupiter,
Saturn, Neptune)

▶ Wireless mobile comm., including cellular phones and microwave links
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POLYNOMIALS OVER FINITE FIELDS

Not surprisingly, the notion of polynomial extends to finite fields.

▶ Let u⃗ = (u1, . . . , uk ) ∈ Fk for some finite field F.

▶ We associate to u⃗ the polynomial

Pu⃗(x) = u1 + u2x + · · ·+ uk xk−1.

▶ Pu⃗(x) can be evaluated at any x ∈ F.

▶ The degree of a polynomial is the highest exponent i for which x i has a
non-zero coefficient.

▶ By convention, the zero polynomial has degree −∞.
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EXAMPLE

▶ F = F5;

▶ P(x) = 2 + 4x + 3x2 is a polynomial of degree 2 over F5;

▶ P(x) = Pu⃗(x) for u⃗ = (2, 4, 3) ∈ F3
5;

▶ a polynomial P(x) over a field F can be evaluated at any x ∈ F:
Pu⃗(2) = 2 + 4 · 2 + 3 · 22 = 2 + 3 + 2 = 2.
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EXAMPLE

▶ P(x) = 3x has degree 1.

▶ P(x) = 3 has degree 0.

▶ P(x) = 0 has degree −∞.
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INTERPOLATION VIA POLYNOMIALS

Problem: given a field F and k pairs (ai , yi) ∈ F2, where the ai are all distinct,
is there a polynomial P(x) over F of degree at most k − 1 (hence described
by at most k coefficients) such that

P(ai) = yi , i = 1, . . . , k?

The answer is yes, obtained via Lagrange’s interpolation polynomials.
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LAGRANGE’S INTERPOLATION POLYNOMIALS

To simplify notation, we demonstrate how it works by means of examples.

EXAMPLE

▶ Fix a field F and distinct field elements a1, a2, a3 as well as y1, y2, y3 (not
necessarily distinct).

▶ We seek a polynomial P(x) of degree at most 2 and coefficients in F
such that P(ai) = yi .

▶ Suppose we can find a polynomial Q1(x) of degree at most 2, such that

Q1(x) =

1, x = a1

0, x = ai ̸= a1
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EXAMPLE (CONT.)

▶ Suppose that Q2(x) behaves similarly for a2 and Q3(x) for a3.

▶ The desired polynomial is then P(x) = y1Q1(x) + y2Q2(x) + y3Q3(x).

▶ Back to the construction of Q1(x).

▶ (x − a2)(x − a3) is 0 at all the ai except at a1 where it is
(a1 − a2)(a1 − a3).

▶ Hence (x−a2)(x−a3)
(a1−a2)(a1−a3)

is the desired Q1(x).

▶ We construct Q2(x) and Q3(x) similarly.
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EXAMPLE (CONCRETE CASE)

Over F5, find the polynomial P(x) of degree not exceeding 2, for which
P(ai) = yi for

i (ai , yi)

1 (2, 3)
2 (1, 0)
3 (0, 4)
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SOLUTION

We find the Lagrange interpolation polynomials Q1(x) and Q3(x) and then
form P(x) = y1Q1(x) + y3Q3(x). (Notice that Q2(x) is not needed because
y2 = 0.)

Q1(x) = (x−1)(x−0)
(2−1)(2−0) = (x−1)x

2 = 3(x − 1)x ;

Q3(x) = (x−2)(x−1)
(0−2)(0−1) = (x−2)(x−1)

2 = 3(x − 2)(x − 1);

Finally

P(x) = 3(3(x − 1)x) + 4(3(x − 2)(x − 1))

= 4x2 − 4x + 2x2 − 6x + 4

= x2 + 4.
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CONCLUSION

It should be obvious from the above example that we can proceed similarly
for any field F, for any positive integer k , and for any given set of k points with
components in F.
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ROOTS OF POLYNOMIALS

Let P(x) be a polynomial over a field F. The roots of P(x) are those b ∈ F for
which P(b) = 0.

THEOREM (FUNDAMENTAL THM. OF ALGEBRA, TEXTBOOK THM 14.1)

Let P(x) be a polynomial of degree at most k − 1 over a field. If P(x) ̸= 0
then the number of its distinct2 roots is at most k − 1.

2The theorem holds even for non-distinct roots if we account for their multiplicities. The stated
version, which has an easier proof, is what we need.

773 / 798



EXAMPLE

Let the field be R and P(x) = ax + b, a ̸= 0. This polynomial has 1 root.

x

P(x)
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax2 + bx + c, a ̸= 0.

This polynomial has 0, 1, or 2 roots.

x
b2 − 4ac < 0

P(x)

x
b2 − 4ac = 0

P(x)

x
b2 − 4ac > 0

P(x)

Recall: The roots of P(x) in C are −b±
√

b2−4ac
2a .
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EXAMPLE (CONT.)

Let the field be R and P(x) = ax3 + bx2 + cx + d , a ̸= 0. This polynomial has
1, 2, or 3 roots.

x

P(x)

x

P(x)

x

P(x)
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EXAMPLE

P(x) = x2 + x + 1 has no roots in F5.

x P(x)

0 1
1 3
2 2
3 3
4 1
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EXAMPLE

P(x) = x2 − 3x + 2 has 2 roots in F5.

x P(x)

0 2
1 0
2 0
3 2
4 1
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Proof: Fundamental Theorem of Algebra

Let P(x) be a polynomial of degree at most k − 1. We prove that if it has
more than k − 1 distinct roots, then it is the zero polynomial (contraposition).

Let a1, . . . , ak ∈ F be k distinct numbers, and consider the map

ψ : Fk → Fk , u⃗ 7→
(
Pu⃗(a1), . . . ,Pu⃗(ak )

)
.

By Lagrange, for every y1, . . . , yk ∈ F, there exists at least one u⃗ ∈ Fk , such
that Pu⃗(ai) = yi , i = 1, . . . , k . Hence the above map is surjective (onto).

Because the domain of ψ and its co-domain have the same cardinality, by the
pigeonhole principle, ψ is bijective.

Hence there is a single u⃗ ∈ Fk for which a1, . . . , ak are roots of Pu⃗ : it is
u⃗ = 0⃗.
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REED SOLOMON (RS) CODE CONSTRUCTION

▶ Choose a finite field F and integers k , n, such that 0 < k ≤ n ≤ q, where
q = card(F).

▶ Choose n distinct elements a1, . . . , an ∈ F. They exist because n ≤ q.

▶ The codewords are defined via the following map:

Fk → Fn, u⃗ 7→ c⃗ =
(
Pu⃗(a1), . . . ,Pu⃗(an)

)
.

▶ This is a block code of length n over F.
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EXAMPLE

▶ Let (k , n, q) = (2, 3, 3). They fulfill 0 < k ≤ n ≤ q.

▶ So we are in F3.

▶ Define (a1, a2, a3) = (0, 1, 2).

Write down all the codewords of the corresponding RS
code.

SOLUTION

We are looking for qk = 32 = 9 codewords of length
n = 3.

u⃗ Pu⃗(x) c⃗

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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Proof: RS Codes are Linear

Let u⃗, v⃗ be in Fk and α ∈ F. Notice that

Pαu⃗(x) = αu1 + αu2x + · · ·+ αuk xk−1 = αPu⃗(x);

Pu⃗+v⃗ (x) = (u1 + v1) + (u2 + v2)x + · · ·+ (uk + vk )xk−1 = Pu⃗(x) + Pv⃗ (x).

Hence
Pαu⃗+v⃗ (x) = αPu⃗(x) + Pv⃗ (x).

This proves that if

u⃗ 7→ x⃗ ∈ C
v⃗ 7→ y⃗ ∈ C

then αu⃗ + v⃗ 7→ αx⃗ + y⃗ ∈ C.

Hence the code is linear.
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Proof: the design-parameter k is indeed the dimension of the RS-code

It suffices to prove that the encoding map is injective (one-to-one), implying
that there are [card(F)]k distinct codewords, hence that k is the dimension of
the code.

When proving the fundamental theorem of algebra, we showed that the map

ψ : Fk −→ Fk

u⃗ 7→
(
Pu⃗(a1), . . . ,Pu⃗(ak )

)
is one-to-one.

This guarantees that the encoding map

Fk −→ C, u⃗ 7→
(
Pu⃗(a1), . . . ,Pu⃗(ak ),Pu⃗(ak+1), . . . ,Pu⃗(an)

)
is one-to-one.
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Proof: RS codes are MDS

We want to prove that dmin = n − k + 1.

▶ Let u⃗ ∈ Fk be a non-zero information vector. Pu⃗(x) is a non-zero
polynomial of degree at most k − 1. Hence it has at most distinct k − 1
roots.

▶ The corresponding codeword c⃗ (obtained by evaluating Pu⃗(x) at n
distince values) has at most k − 1 zeros.

▶ Hence w(c⃗) ≥ n − (k − 1) = n − k + 1 for all c⃗.

▶ Since c⃗ is an arbitrary non-zero codeword, dmin ≥ n − k + 1.

▶ By the Singleton’s bound, dmin ≤ n − k + 1.

Hence dmin = n − k + 1.
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To summarize, we have proved the following:

THEOREM (TEXTBOOK THM. 14.3)

A Reed Solomon code with design parameters k and n is a linear (n, k) code
of minimum distance dmin = n − k + 1, i.e., it attains Singleton’s bound with
equality.

Note that the condition
card(F) ≥ n

is necessary or else we can’t find n distinct field elements a1, . . . , an.
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EXERCISE

Find a generator matrix G for this code over F3.

SOLUTION

We need to find two codewords that are linearly
independent.

Here are a few choices:

G =

(
0 1 2
1 1 1

)
G =

(
1 2 0
2 0 1

)
G =

(
2 1 0
1 0 2

)

u⃗ Pu⃗(x) c⃗

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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Recall that each generator matrix defines an input/output map.

The map that we originally used to define RS codes

u⃗ → Pu⃗(x)→ c⃗ = Pu⃗(a1), . . . ,Pu⃗(an)

is just one of many possible maps.

In fact there are (qk − 1)(qk − q) · · · (qk − qk−1) maps for a linear code of
dimension k over Fq .
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EXERCISE

Which of the following is a valid parity-check matrix?

1. A =

(
1 1 1
0 1 2

)
;

2. B =

(
0 1 2
1 0 2

)
;

3. C =
(

1 1 1
)

.

u⃗ Pu⃗(x) c⃗

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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SOLUTION

A parity-check matrix for this code has n − k = 1 row, so
only C is correctly sized.

Moreover, we can easily verify that g⃗iCT = 0, where g⃗i is
the i th row of G, hence c⃗CT = 0 for all codewords c⃗.

Therefore C is a parity-check matrix for the considered
code.

u⃗ Pu⃗(x) c⃗

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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How about if we want the generator matrix for a specific encoding map?

EXERCISE

Find the generator matrix G that can be used as the
encoder according to the given table.

SOLUTION

We want

▶ (1, 0)G = (1, 1, 1), so the first row of G is (1, 1, 1).

▶ (0, 1)G = (0, 1, 2), so the second row of G is (0, 1, 2).

Therefore

G =

(
1 1 1
0 1 2

)

u⃗ Pu⃗(x) c⃗

00 0 000
01 x 012
02 2x 021
10 1 111
11 1 + x 120
12 1 + 2x 102
20 2 222
21 2 + x 201
22 2 + 2x 210
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More generally:

▶ We want a generator matrix for a given encoding map.

▶ It suffices to find the codewords that correspond to the following length-k
information words:

(1, 0, 0, . . . , 0, 0)

(0, 1, 0, . . . , 0, 0)

(0, 0, 1, . . . , 0, 0)

...
(0, 0, 0, . . . , 1, 0)

(0, 0, 0, . . . , 0, 1)

▶ The corresponding codewords are linearly independent (proof below)
and are k in number. Hence they form a basis.
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We prove that a linear encoding map sends linearly independent information
vectors to linearly independent codewords.

Proof:

Let u⃗i ∈ Fk , i = 1, . . . , k , be a collection of linearly independent information
vectors and let c⃗i ∈ Fn be the corresponding codewords.

We prove that the the codewords are linearly independent.

Suppose, to the contrary, that the codewords are linearly dependent, i.e.,

k∑
i=1

λi c⃗i = 0,

with some of the λi non-zero.

Then
k∑

i=1

λi u⃗i = 0,

which contradicts the assumption that the information vectors are linearly
independent.
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In particular, the map that we used to define the code sends u⃗ ∈ Fk to

c⃗ =
(
Pu⃗(a1), . . . ,Pu⃗(an)

)
.

If u⃗ has 1 at position i and 0 elsewhere, then Pu⃗(x) = x i−1.

Hence, the map that we have used to defined RS codes has the generator
matrix

1 1 1 . . . 1
a1 a2 a3 . . . an

(a1)
2 (a2)

2 (a3)
2 . . . (an)

2

...
...

...
. . .

...

(a1)
k−1 (a2)

k−1 (a3)
k−1 . . . (an)

k−1




G = .
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EXAMPLE (CD-ROM)

CDs use Cross-Interleaved Reed-Solomon Codes (CIRC) as follows:

▶ Each byte of the source is seen as an element of F = F28 .

▶ Source symbols, are encoded using a (28, 24) RS code over F.

▶ The elements of a sequence of many codewords are interleaved.

▶ The result is encoded using a (32, 28) RS code over F.

Notice that both codes have dmin = 5, but this small distance is compensated
by the interleaver which distributes strings of errors among many codewords.

The end result is that error bursts up to 4000 bits can be corrected. We have
roughly that many bits in a track segment of length 2.5mm.

Source: Standard ECMA-130, "Data interchange on read-only 120mm optical data disks (CD-ROM)", 2nd Edition, 1996.
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SUMMARY OF CHAPTER 3

Basic Concepts of Error Detection and Correction:

▶ Two basic channel models: Erasure channel and Error channel.

▶ Code = subset of all possible sequences of length n (over D-ary
alphabet).
▶ Convenient to talk about the number of codewords via the parameter

k = logD |C|.

▶ Minimum Distance Decoding

▶ Minimum Distance of a code

▶ Singleton’s bound: dmin ≤ n − k + 1.

▶ A code satisfying this bound with equality is called MDS code.
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SUMMARY OF CHAPTER 3

Linear Codes: Basic Properties, Design, Decoding

▶ Finite field: A finite set with two operations (“sum” and “product”)
satisfying the “natural” properties (as you know them over the reals).
▶ Only exists if the cardinality of the finite set is a prime power, card(F) = pm.

▶ Vector spaces over finite fields. Subspaces. Basis.

▶ Linear Code = Subspace of a vector space over a finite field

▶ Generator matrix (= collection of vectors spanning the subspace)
▶ Particularly desirable form: Systematic generator matrix.

▶ Parity check matrix

▶ Key example: Hamming codes
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SUMMARY OF CHAPTER 3

Reed-Solomon Codes

▶ A very popular class of linear codes over a finite field F. They are MDS!

▶ Block length has to be n ≤ |F| (so we need large finite fields).

▶ They can be neatly described via polynomials.
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