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LAST LECTURE :

· H(X(4
, z) < H(X/z) <H(x)

"CONDITIONING REDUCES ENTROPY"

· HS1
, S2 .., Sn) CHAIN RULE

= H(S1) +H((z(S1) + H(5/s1,2)
+ H(S4/S1 ,S2 ,Sz) ...

+ H(Sn/S + , Sn, ... Sn - 1)



OUR MAIN SOURCE CODING RESULT, SO FAR

THEOREM (TEXTBOOK THM 3.3)

The per-letter average codeword-length of a D-ary Shannon-Fano code for
the random variable (S1,S2, . . . ,Sn) fulfills

HD(S1,S2, . . . ,Sn)
n


L((S1,S2, . . . ,Sn), �SF )

n
<

HD(S1,S2, . . . ,Sn)
n

+
1
n
.

As n ! 1, the left and the right bound coincide, thus leading to an exact
expression.

Earlier, we studied the IID source where:

I HD(S1,S2,...,Sn)
n = HD(S),

I and thus, HD(S) characterizes the minimum number of bits (more
precisely, of D-ary code symbols) per original source symbol we could
ever hope to spend to compress the source without loss.
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OUR MAIN SOURCE CODING RESULT, MORE GENERALLY

THEOREM (TEXTBOOK THM 3.3)

The per-letter average codeword-length of a D-ary Shannon-Fano code for
the random variable (S1,S2, . . . ,Sn) fulfills

HD(S1,S2, . . . ,Sn)
n


L((S1,S2, . . . ,Sn), �SF )

n
<

HD(S1,S2, . . . ,Sn)
n

+
1
n
.

As n ! 1, the left and the right bound coincide, thus leading to an exact
expression.

Now, more generally,

I if we suppose the R⇤(S) = limn!1
HD(S1,S2,...,Sn)

n exists,

I then R⇤(S) characterizes the minimum number of bits (more precisely, of
D-ary code symbols) per original source symbol we could ever hope to
spend to compress the source without loss.
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WHAT NEXT?

Therefore, for today, the main question is:

I For which sources does R⇤(S) = limn!1
HD(S1,S2,...,Sn)

n exist?

To this end, we will introduce a number of concrete source models and show
how to find R⇤(S) = limn!1

HD(S1,S2,...,Sn)
n .
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RANDOM PROCESSES

A
.
K
.
A. SOURCE MODELS .

Sa
,
S2
, 53 , 54 , 55 , 56 ...

↳ How To THINK ABOUT

Such Sequences
↳RKE

.



DEFINITION (COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . ,Sn of n coin flips.

So Si 2 A = {H,T}, where H stands for heads, T for tails, i = 1, 2, . . . , n.

pSi (H) = pSi (T ) = 1
2 for all i , and coin flips are independent.

Hence,

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2n for all (s1, s2, . . . , sn) 2 A

n

H

T n
0 10 20 30 40 50 60
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DEFINITION (SUNNY-RAINY SOURCE)

The source models a sequence S1,S2, . . . ,Sn of weather conditions.

So Si 2 A = {S,R}, where S stands for sunny, R for rainy, i = 1, 2, . . . , n.

The weather on the first day is uniformly distributed in A.

For all other days, with probability q = 6
7 the

weather is as for the day before.

S

R n
0 10 20 30 40 50 60

1 � q

q

1 � q

q
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S1 : is selected according
to Ps1(s) = & P : jEsum

I-p , rain
Ex : St E sum--



P(S2= sun/s= = sun) = q
P (S2 = rain) <1 = sun) = 1 -q

P (S2= sun/s1 = rain) = 1 q
P(S2 = rain/S1 = rain) = 9



p(Sz= sun/S+= Sun , S2=Sun)
= p(sz = sun/Su =sn) = q

MORE GENERALLY :

P(Sn (s , 52 , . San)=
P(su/Sn-)



EQUIVALENT
-

PICTURE
-

Dayk Day2 Day 3 Day 4
S &

D 9 D 9->->->

19 -E ---Xi "↳
ro--

19
- &

so

9
·
->

g

9 9



EXAMPLE

For the Sunny-Rainy source:

I pS1(S) = 1
2

I pS1,S2(R,R) = pS1(R)pS2|S1(R|R) = 1
2 q

I pS1,S2(R,S) = pS1(R)pS2|S1(S|R) = 1
2 (1 � q)

I pS1,S2,S3,S4(R,S,S,R) = 1
2 (1 � q)q(1 � q) = 1

2 q(1 � q)2

In general, if c is the number of weather changes (0  c  n � 1), then

pS1,S2,...,Sn (s1, s2, . . . , sn) =
1
2

qn�1�c(1 � q)c .
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p(s ,, 32 , sa ,34)
BAYES
I
x(s) p(sz(s.) p(sels,S2)p(aky,suc,)= 1

surdi↳-RAINT = p(si) p(sulsi) p(<y(sz)p(sqlsy)MODEL

p(x ,y) = p(x) p(y(x)
P(s1 ,52 ,( ,3x) = p(z)p(sy)z)m
Z



EXERCISE

Let i = 2, 3, . . .
For the Sunny-Rainy source:

I Find pSi (si)

I Find pSi |Si�1(si |si�1)

I Are Si and Si�1 independent?
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S1 - S2-S, - ..

P(Si) -> P(S== R) = "

p(S2) = [ p(s, si)
E

p(S2= R) = P (s ,=R , 5 = R)
+ 4(5 ,=S,S

=R)
= Eq + E(l- q)
= E(q + 1 -q) =t



P(S = 1) = & p(sz , 5=
= Ep(s)p(s=R(sz)
= p(s=3)P(( =R)s=5)
+P(x= R)p(s,=R(sn=R)

= -(l-q) + 5 .

q = "2



SOLUTION (SUNNY-RAINY SOURCE)

By definition, pSi |Si�1(j|k) = q if j = k and (1 � q) otherwise.

Hence Si�1 and Si are not independent.

To determine the statistic of the marginals, we use the law of total probability
and induction to show that pSi is uniform.

It is true by definition for i = 1.

Suppose that pSi is uniform for i = 1, . . . , n � 1. We show that it is uniform
also for i = n:

pSn (j) =
X

k2{S,R}

pSn|Sn�1(j|k)pSn�1(k) =
1
2

X

k2{S,R}

pSn|Sn�1(j|k)

=
1
2
�
q + (1 � q)

�
=

1
2
.

Hence the marginals are uniformly distributed (like for the Coin-Flip source).
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EXERCISE

Let i = 2, 3, . . .
For the Coin-Flip (CF ) and Sunny-Rainy (SR) sources:

I Compute H(Si)

I Compute H(Si |S1, . . . ,Si�1)

H

T n
0 10 20 30 40 50 60

S

R n
0 10 20 30 40 50 60
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SOLUTION (H(Si))

The entropy depends only on the distribution, and for a uniform distribution, it
is the log of the alphabet’s cardinality. Hence

HCF (Si) = HSR(Si) = log 2 = 1
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SOLUTION (H(Si |S1, . . . , Si�1) FOR THE COIN-FLIP SOURCE)

Si is independent of S1, . . . ,Si�1

Hence, H(Si |S1, . . . ,Si�1) = H(Si).
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SOLUTION (H(Si |S1, . . . , Si�1) FOR THE SUNNY-RAINY SOURCE)

Si depends only on Si�1. Hence

HSR(Si |S1 = s1, . . . ,Si�1 = si�1) = HSR(Si |Si�1 = si�1).

When Si�1 = k 2 {S,R}, the probabilities for Si are q and (1 � q). Hence

HSR(Si |Si�1 = si�1) = �q log q � (1 � q) log(1 � q).

Taking the average on both sides yields

HSR(Si |Si�1) = �q log q � (1 � q) log(1 � q).

For q = 6
7 , we have

HSR(Si |Si�1) = �q log q � (1 � q) log(1 � q) = 0.592.
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BACK TO THE THEORY

The main question is:

I For which sources does R⇤(S) = limn!1
HD(S1,S2,...,Sn)

n exist?

I We now introduce an alternative criterion.
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TERMINOLOGY

The current (French) version of the textbook makes a difference between

I "source" S

I "source composée" S1,S2, . . . ,Sn

I "source étendue" S = S1,S2, . . .

This distinction has its merits, but we will not work with it in our class.

We will instead think of a source as described by its statistical property, and
from it, it is implicit whether it produces one, n, or 1 symbols.

For convenience, we do reserve the symbol S (calligraphic version of S) for
sources that produce infinite sequences.
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DEFINITION

The source S = (S1,S2, . . . ) is said to be regular if

H(S)
def
= lim

n!+1
H(Sn) and

H⇤(S)
def
= lim

n!+1
H(Sn|S1,S2, . . . ,Sn�1)

exist and are finite.

For a regular source S, H(S) is called the entropy of a symbol, and H⇤(S) the
entropy rate.

Exercise: We have H⇤(S)  H(S), with equality if the symbols are
independent.
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EX : COIN FLIP

H(8) = 1 bit

H
*/S) = 1 bit



EX : FUNNY-RAIN

H() = MH(52) = 1 bit

H(8) = lin H(Sn/S .
Sn
.., Sn-2)

n+
H(Sn(Sn- 1)
= 0. 592



ENGLISH - FRENCH TRANSLATION

symbol English French
H(S) entropy of a symbol entropie d’un symbole
H⇤(S) entropy rate entropie par symbole
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EXERCISE

Which of the following sources is regular?

1. The Coin-Flip source

2. The Sunny-Rainy source

3. Both
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SOLUTION

Both
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MAIN THEOREM

THEOREM

For any regular source,

lim
n!1

HD(S1,S2, . . . ,Sn)
n

= H⇤
D(S).
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PROOF OF THE MAIN THEOREM

To prove this theorem, we need the following result that you have likely
encountered earlier:

THEOREM (CESARO MEANS)

Let a1, a2, . . . be a real-valued sequence and let c1, c2, . . . be the sequence
of running averages defined by

cn =
a1 + a2 + · · · + an

n
.

If limn!1 an exists, then limn!1 cn also exists and

lim
n!1

cn = lim
n!1

an.
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PROOF OF THE MAIN THEOREM

By the chain rule of entropy,

HD(S1,S2, . . . ,Sn)
n

=
HD(S1) + HD(S2|S1) + · · · + HD(Sn|S1, . . . ,Sn�1)

n

and by the Cesàro means theorem, both sides converge to the limit of

HD(Sn|S1, . . . ,Sn�1)

which is
H⇤

D(S),

which thus completes the proof.
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THE CLASS OF STATIONARY SOURCES

I The class of regular sources is a bit too abstract to most people’s taste.
It does not really give a good intuition for the types of sources for which
the limit exists.

I One important subclass of regular sources are so-called Stationary
Sources.

I This class is more intuitive and instructive. Therefore, we now discuss
this class in more detail.
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DEFINITION (STATIONARY SOURCE)

A source S1,S2, . . . is stationary if, for all positive integers n and k , the blocks
(S1,S2, . . . ,Sn) and (Sk+1,Sk+2, . . . ,Sk+n) have the same statistic.

This implies

I pS1 = pSm for all m

I pS1,S2 = pSm,Sm+1 for all m

I pS1,S2,S3 = pSm,Sm+1,Sm+2 for all m

I pSm,St = pSm+`,St+`
for all m, t , ` (Can you prove this?)

I etc.

I (For any subset I of indices, pSI = pSk+I .)

A source is stationary if its distribution is unaffected by an index shift (time
shift).
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I Coin-Flip and Sunny-Rainy are stationary.

THEOREM

Stationary sources are regular, implying that

lim
n!1

HD(S1,S2, . . . ,Sn)
n

= H⇤
D(S).

Moreover, for stationary sources,

HD(S1,S2, . . . ,Sn)
n

is non-increasing in n.
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↑

PROOF : "REGULAR" MEANS :

1) H(S) = Sin H(Sn) exists ~
n->N

2) H (6) = lin H(Sn/St .., Sun) exists

H(S_) H(sulSt) a , SzH(S4/S, Suk),..3
- S

=H(z) =H(Sz(S2) = H((4)S2/2)
: = H(q/Sn) =

...

= H(S2) = H(S2(a-1) =H(sulu- , < ..Z = Su-2)



Proof: HD(S) = limn!1 HD(Sn) is well since HD(Sn) is constant.

Moreover, we know that HD(S2|S1)  HD(S2) but since the source is
stationary, we also have that HD(S2) = HD(S1), thus,

HD(S2|S1)  HD(S1).

Next, we know that HD(S3|S1,S2)  HD(S3|S2) but since the source is
stationary, we also have that HD(S3|S2) = HD(S2|S1), thus,

HD(S3|S1,S2)  HD(S2|S1).

Continuing in this manner, we find that

HD(S1),HD(S2|S1), . . . ,HD(Sn|S1, . . . ,Sn�1)

is a non-increasing sequence. Moreover, it is bounded from below by zero.

Hence H⇤
D(S) = limn!1 HD(Sn|S1, . . . ,Sn�1) is well defined.

Hence a stationary source is regular.
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It remains to be shown that HD(S1,...,Sn)
n in non-increasing, i.e., that

HD(S1, . . . ,Sn)
n

�
HD(S1, . . . ,Sn+1)

n + 1
.

We prove that

(n + 1)HD(S1, . . . ,Sn) � nHD(S1, . . . ,Sn+1),

or equivalently, that

HD(S1, . . . ,Sn) � nHD(Sn+1|S1, . . . ,Sn).
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Namely :
It (S1 , S2, .. Sn)
= #(S1) + H(52(S1) + H(5> /S1 ,S2)+ ...

+H(Sn (=.Suff
= H(sn) + H(S2(Sn-1) + H(SalSu-2Snf

.. H (S2/s... Suf
& H (S2/S...Sn-1) + H(Suls... Sn+1) ..

= n H(S2/s .. Sn - 1)
= n H(S + 1) Sas .., Sal ZnH(Sm/S,Sel



HD(S1, . . . ,Sn) = HD(S1) + HD(S2|S1) + · · · + HD(Sn|S1, . . . ,Sn�1)

(?)
= HD(Sn+1) + HD(Sn+1|Sn) + · · · + HD(Sn+1|S2, . . . ,Sn)

(??)

� HD(Sn+1|S1, . . . ,Sn) + · · · + HD(Sn+1|S1, . . . ,Sn)

= nHD(Sn+1|S1, . . . ,Sn),

where

(?) follows from the source stationarity;

(??) holds because "conditioning reduces entropy".
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Coin-Flip source.

SOLUTION

The source produces independent and identically distributed symbols. Hence

H(S1,S2, . . . ,Sn)
(indep.)

= H(S1) + H(S2) + · · · + H(Sn)

(identically distributed)
= nH(S1)

Moreover, the distribution is uniform, therefore H(S1) = 1 bit. Putting things
together,

H(S1,S2, . . . ,Sn) = n bits
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EXERCISE

Determine H(S1,S2, . . . ,Sn) for the Sunny-Rainy source with q = 6
7 .

SOLUTION

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · · + H(Sn|S1, . . . ,Sn�1)

For i = 2, 3, . . . , n, the statistic of Si depends only on Si�1. Hence

H(Si |S1,S2, . . . ,Si�1) = H(Si |Si�1)

H(S1,S2, . . . ,Sn) = H(S1) + H(S2|S1) + · · · + H(Sn|Sn�1)

We have already determined that H(S1) = 1 bit and H(Si |Si�1) = 0.592 bits.
Therefore

H(S1,S2, . . . ,Sn) = 1 + 0.592(n � 1) bits
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We summarize a main result of source coding.

THEOREM

Let S1,S2, . . . be the infinite sequence produced by a regular source S

(which, in particular, includes stationary sources).

1. By encoding blocks of symbols into D-ary codewords, the average
codeword-length per symbol of a uniquely decodable code can be made
as close as desired to H⇤

D(S).

2. No uniquely decodable D-ary code can achieve a smaller average
codeword-length.
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The above result justifies considering H⇤
D(S) as a measure of information.

In particular, H⇤
2 (S) is a measure for the number of bits per source symbol

produced by the source S.

For an iid source S, H⇤
D(S) = HD(S).
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Time permitting, we will cover additional source examples, as presented in
the following slides.

In any case, some of these (and yet further examples) will be covered in the
homework.

251 / 821



DEFINITION (GREEN-BLUE SOURCE)

The source models a sequence S1,S2, . . . ,Sn of a person’s votes from the
alphabet A = {G,B}.

I The first vote is chosen uniformly in A.

I The next votes are always identical to the initial vote, i.e., Si = S1,
i = 2, . . . , n.

G

B n
0 10 20 30 40 50 60
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EXERCISE

Let n = 1, 2, . . .
For the Green-Blue source S = S1,S2, . . . :

1. Find pSn (sn)

2. Find HGB(Sn)

3. Find HGB(Sn|Sn�1)

4. Is the source regular ? If yes, determine its symbol entropy HGB(S) and
its entropy rate H⇤

GB(S).

G

B n
0 10 20 30 40 50 60
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SOLUTION

S1 is uniformly distributed in A = {G,B}.

Sn = S1. Hence Sn is uniformly distributed in A = {G,B}. Hence
HGB(Sn) = 1.

For n = 2, 3, . . . , the value of Sn is a deterministic function of Sn�1. Hence,
HGB(Sn|Sn�1) = 0.

The source is regular, with HGB(S) = 1 and H⇤
GB(S) = 0.
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DEFINITION (WEEKLY-COIN-FLIP SOURCE)

The source models a sequence S1,S2, . . . of coin flips in A = {H,T} such
that

pSi+7k (T ) =
1
i
, i = {1, 2, . . . , 7}, k 2 N.

H

T n
0 8 16 24 32 40 48 56
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EXERCISE

Let n = 1, 2, . . . and S = S1,S2, . . . be a Weekly-Coin-Flip source.

I Is it a regular source?

I If yes, determine its symbol entropy HWCF (S) and its entropy rate
H⇤

WCF (S).

H

T n
0 8 16 24 32 40 48 56
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SOLUTION

H(S1) = H(S8) = · · · = H(S1 + 7k) = 0 bits

H(S2) = H(S9) = · · · = H(S2 + 7k) = 1 bits

. . .

limn!1 HWCF (Sn) does not exist (because 0 6= 1), hence the source is not
regular.
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SOURCE CODING / COMPRESSION : OUTLOOK

Additional Questions of interest include:

I What if the source alphabet is not finite?

I What if we do not know the source distribution pX (x)? (Universal source
coding)
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WHAT IF THE SOURCE ALPHABET IS INFINITE?

I In all of our previous discussion on actual codes, we have assumed that
the source alphabet is discrete and finite.

I What if it is discrete but infinite?

I ... is this just an academic endeavour?

I In this class, we only touch the top of this iceberg...
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BINARY PREFIX-FREE CODE FOR POSITIVE INTEGERS

The set of positive integers is infinite and no probability is assigned to its
elements. Hence we cannot use Huffman’s construction to encode integers.

First Attempt to Encode Positive Integers: “Standard Method"

n c(n)

1 1
2 10
3 11
4 100
5 101
...

...

The code is not prefix-free.

The length of c(n) is l(n) = blog2 nc + 1.

Note: The first digit is always 1.
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Second Attempt: “Elias Code 1"

We prefix code c(n) with l(n) � 1 zeros.

n c1(n)

1 1
2 010
3 011
4 00100
5 00101
...

...

The code is prefix-free. (Codewords of different length cannot have the same
number of leading zeros.)

The length of c1(n) is

l1(n) = l(n) � 1 + l(n) = 2blog2 nc + 1.

Note: we are essentially doubling the length to make the code prefix-free.
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Third Attempt: “Elias Code 2"

Instead of l(n) � 1 zeros followed by a 1, we prefix with c1
�
l(n)

�
, which is

also prefix-free (hence can be identified). Like the zeros, it tells the length of
the codeword.

Notation: c̃(n) is c(n) without the leading 1.

n c(n) l(n) c1(n) c1
�
l(n)

�
c̃(n)

1 1 1 1 c1(1) = 1
2 10 2 010 c1(2) 0 = 010 0
3 11 2 011 c1(2) 1 = 010 1
4 100 3 00100 c1(3) 00 = 011 00
5 101 3 00101 c1(3) 01 = 011 01
...

...

The code is prefix-free.

The codeword length is
l2(n) = l1

�
l(n)

�
+ l(n) � 1 = 2blog2(blog2 nc + 1)c + 1 + blog2 nc.
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WHAT IF THE SOURCE DISTRIBUTION IS NOT KNOWN?

I Universal source coding.

I Practically important algorithms: “Lempel-Ziv” (LZ77, LZ78). Time
permitting, we briefly discuss how they work. An analysis is beyond the
scope of AICC-2.
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CHALLENGE FOR NEXT LECTURE

EXERCISE

There are 14 billiard balls numbered as shown:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Among balls 1 - 13, at most one could be heavier/lighter than the others.

What is the minimum number of weightings to simultaneously determine:

I if one ball is different . . .

I if there is such a ball, which one, . . .

I and whether the different ball is heavier/lighter.
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