

Prof. M. C. Gastpar
Advanced information, computation, communication II - MAN
22 June 2023
Duration: 180 minutes

1

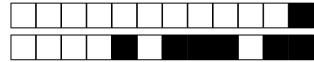
Student One

SCIPER: 111111

Do not turn the page before the start of the exam. This document is double-sided, has 12 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- **No other paper materials** are allowed to be used during the exam.
- Using a **calculator** or **any electronic device** is not permitted during the exam.
- For each question there is **exactly one** correct answer. We assign **negative points** to the **wrong answers** in such a way that a person that chooses uniformly at random over the possible options gains 0 points on average.
- Use a **black or dark blue ballpen** and clearly erase with **correction fluid** if necessary.
- Unless specified otherwise, all the entropies are in bits.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
ce qu'il ne faut PAS faire what should NOT be done was man NICHT tun sollte		



First part: Source Coding

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 1

[4 points] Let S_1 be a random variable taking values in $\{a, b\}$ with probability $p_{S_1}(a) = \frac{1}{4}$ and $p_{S_1}(b) = \frac{3}{4}$. Let S_2 be a random variable, independent of S_1 , taking values in $\{c, d\}$ with probability $p_{S_2}(c) = q$ and $p_{S_2}(d) = 1 - q$, for some $q \in [0, 1]$. Let Γ_H be the binary Huffman code for the sequence $S = S_1S_2$, and let $L(S, \Gamma_H)$ be the average codeword-length of Γ_H . Answer the following true/false questions.

$1 \leq L(S, \Gamma_H) \leq 2$ for all $q \in [0, 1]$.

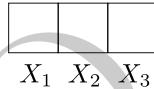
VRAI FAUX

$\text{length}(\Gamma_H(bc)) = 3$ for all $q < \frac{1}{4}$.

VRAI FAUX

Question 2

[4 points] Consider the following three boxes.



We fill the three boxes with bits with the following procedure:

- We select one box uniformly at random and we fill it with 1;
- For each of the remaining two boxes, we fill it with either 0 or 1 independently and uniformly at random.

We denote the value in the i -th box with the random variable X_i , as in the figure. What is $H(X_1, X_2, X_3)$?

- $\log 7$
- $\frac{3}{2} + \frac{3}{4} \log 3$
- $2 + \log 3$
- $\log 7 - \frac{6}{7} \log 3$

Question 3

[4 points] Let S be a random variable taking values in $\{a, b, c, d, e\}$ with the following probabilities.

	a	b	c	d	e
$p_S(\cdot)$	1/3	1/3	1/9	1/9	1/9

Let Γ_D be the D -ary Huffman code for S . Let $L(S, \Gamma_D)$ be the average codeword-length of Γ_D , and let $H_D(S)$ be the D -ary entropy of S . Answer the following true/false questions.

$L(S, \Gamma_D) > H_D(S)$ for every $D > 3$.

VRAI FAUX

If $D = 3$, then $L(S, \Gamma_D) = H_D(S)$.

VRAI FAUX

Question 4

[4 points] Let X_1, X_2, \dots be i.i.d. binary random variables with $p_{X_i}(1) = \frac{1}{4}$ for every $i \geq 1$. Let Y_1 be a uniform binary random variable, and let

$$Y_i = Y_{i-1} \oplus X_{i-1}$$

for every $i \geq 2$, where \oplus denotes the modulo-2 sum. For any given $n \geq 1$, what is the value of $H(Y_1, Y_2, \dots, Y_n)$? [Hint: what is the value of $H(Y_i | Y_1, \dots, Y_{i-1})$?]

- n
- $(2 - \frac{3}{4} \log 3) n + \frac{3}{4} \log 3 - 1$
- $(2 - \frac{3}{4} \log 3) n + 1$
- $(3 - \frac{3}{4} \log 3) n + \frac{3}{4} \log 3 - 2$

Question 5

[2 points] Let E and F be two events. Suppose that they satisfy $p(E|F) = p(E) > 0$.

Claim: Then we must have $p(F|E) = p(F)$.

VRAI FAUX

Question 6

[4 points] Consider the source S_1, S_2, \dots such that S_1 is uniformly distributed on $\mathbb{Z}/10\mathbb{Z}^*$, and for every $n \geq 1$, S_{n+1} is distributed uniformly on $\mathbb{Z}/(S_n + 1)\mathbb{Z}^*$. Let $H(\mathcal{S}) = \lim_{n \rightarrow \infty} H(S_n)$. Answer the following true/false questions.

$$H(\mathcal{S}) = 0$$

VRAI FAUX

The source is stationary.

VRAI FAUX

Question 7

[2 points] A binary prefix-free code Γ is made of four codewords. The first three codewords have codeword lengths $\ell_1 = 2$, $\ell_2 = 3$ and $\ell_3 = 3$. What is the minimum possible length for the fourth codeword?

- 2
- 3
- 1
- 4

PROJET

Second part: Cryptography and Number Theory

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 8:

[3 points] Consider an RSA encryption where the (p, q) are determined as $(53, 61)$. Check if the following encoding and decoding exponent pairs are valid.

$(e, d) = (319, 23)$ are valid exponents.

VRAI FAUX

$(e, d) = (123, 79)$ are valid exponents.

VRAI FAUX

$(e, d) = (7, 223)$ are valid exponents.

VRAI FAUX

Question 9

[4 points] Find all solutions of $24x + [9]_{45} = [13]_{45}$ in the range $[0, 44]$. How many different solutions are there?

- 0
- 3
- 2
- 1

Question 10:

[4 points] Let $n \geq 2$ be a positive integer, and M a uniformly distributed binary message of length $2n$. Let $P_K(M)$ denote the one-time pad encryption of M with key K . Let K_1 be a uniformly distributed binary key length n . Let K_2 be the complement of K_1 . Let K_3 be the reverse of K_1 . Let $K_i||K_j$ denote the concatenation of the two keys. Answer the following true/false questions.

Encryption with the key $K_5 = (K_1||K_2)$, $P_{K_5}(M)$ provides perfect secrecy.

VRAI FAUX

Encryption with the key $K_4 = (K_1||K_1)$, $P_{K_4}(M)$ provides perfect secrecy.

VRAI FAUX

Encryption with the key $K_6 = (K_1||K_3)$, $P_{K_6}(M)$ provides perfect secrecy.

VRAI FAUX

Let K_7 be a key that is either equal to K_2 or K_3 with uniform probability. Encryption with the key $K_8 = (K_1||K_7)$, $P_{K_8}(M)$ provides perfect secrecy.

VRAI FAUX

Question 11

[3 points] Find x such that $10x = [38]_{56}$.

- 49
- 28
- 41
- 15

Question 12:

[2 points] Let G be a set and $*$ a commutative operation on pairs of elements from G . Suppose there exists an element $e \in G$ such that $a * e = e * a = a$ for all $a \in G$. Also, suppose there exist elements $b, c, d \in G$ such that $b * c = d * c$.

If $b \neq d$, then $(G, *)$ cannot be a group.

VRAI FAUX

$(G, *)$ is a group if and only if $b = d$.

VRAI FAUX

Question 13

[4 points] Consider the group $(\mathbb{Z}/153\mathbb{Z}^*, \cdot)$. Find how many elements are in the group.

- 128
- 127
- 96
- 97

Question 14

[4 points] Passing on secrets: Alice has posted her RSA credentials as (m, e) , with m the modulus and e the encoding exponent. As required by RSA, she keeps her decoding exponent d preciously secret. Bob has a message t_1 , RSA-encrypts it using (m, e_1) and passes the resulting cryptogram c_1 on to Carlos. Carlos has a message t_2 , RSA-encrypts it using (m, e_2) to obtain the cryptogram c_2 . Then, Carlos multiplies the two cryptograms, $(c_1 \cdot c_2) \bmod m$, and passes this to Alice. Alice applies her regular RSA decryption to $(c_1 \cdot c_2) \bmod m$. Under what condition is the result of this decryption exactly equal to the product $(t_1 \cdot t_2) \bmod m$?

- If d is prime and $(e_1 + e_2) \bmod m = 1$.
- If for some integer ℓ , we have $e_1 e_2 d = \ell \phi(m) + 1$, where $\phi(\cdot)$ denotes Euler's totient function.
- If $e_1 = e_2 = e$.
- If $e_1 + e_2 = e$.

Question 15

[4 points] Find $[5263^{79359}]_{15}$.

- 13
- 7
- 8
- 12

PROJET

Third part: Coding Theory

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 16:

[4 points] Let \mathbb{F} be a field of cardinality q and let $0 < k < n \leq q$ be unspecified integers. As seen in the lecture, we generate a (n, k, d_{min}) Reed-Solomon code with the following mapping:

$$\mathbb{F}^k \rightarrow \mathbb{F}^n, \quad \vec{u} \mapsto \vec{c} = (P_{\vec{u}}(a_1), P_{\vec{u}}(a_2), \dots, P_{\vec{u}}(a_n))$$

for $a_i \in \mathbb{F}$ all distinct and P a polynomial of degree $k - 1$ with coefficient vector $\vec{u} \in \mathbb{F}^k$.

Now, we construct a (n, k', d'_{min}) code \mathcal{C}' similarly to the above one by assigning $a_1 \leftarrow a_2$ while leaving n, P and a_2, \dots, a_n unchanged. As before, the code is generated by evaluating $P_{\vec{u}}(a_2, a_2, a_3, \dots, a_n)$ over all possible coefficients vectors $\vec{u} \in \mathbb{F}^k$. This is by definition not an RS code, however it is still a well-defined linear block code.

Answer the following true/false questions.

We know for certain that $d'_{min} = d_{min} - 1$.

VRAI FAUX

We know for certain that $k' = k - 1$.

VRAI FAUX

Question 17

[3 points] Let \mathcal{C}_1 be a (n_1, k) linear block code over \mathbb{F}_p with p prime and $|\mathcal{C}_1| = 27$. Let \mathcal{C}_2 be a (n_2, k) linear block code over \mathbb{F}_2 of the same dimension k . Which of the following is true?

- $|\mathcal{C}_2| = 21$
- $|\mathcal{C}_2| = 27$
- $|\mathcal{C}_2| = 8$
- $|\mathcal{C}_2| = 16$

Question 18:

[4 points] Let $G_i, i \in \{1, \dots, 8\}$, be valid generator matrices of dimensions $\mathbb{F}^{k_i \times n_i}$, all over the same field \mathbb{F} . Which of the following are always valid generator matrices?

Hint: recall that "valid" means that for all i , $k_i \leq n_i$ and $\text{rank}(G_i) = k_i$.

$$\left(\begin{array}{c|c} G_3 & \left| \begin{array}{c} G_4 \\ 0 \end{array} \right. \\ \hline & G_5 \end{array} \right) \text{ where } k_3 = k_4 + k_5.$$

VRAI FAUX

$$\left(\begin{array}{c} G_1 \\ \hline G_2 \end{array} \right) \text{ where } n_1 = n_2 \text{ and } k_1 + k_2 \leq n_1.$$

VRAI FAUX

$D_1 \cdot G_6 \cdot D_2$, where $D_1 \in \mathbb{F}^{k_6 \times k_6}$ and $D_2 \in \mathbb{F}^{n_6 \times n_6}$ are diagonal matrices with non-zero diagonal elements.

VRAI FAUX

$G_7 + G_8$ with $k_7 = k_8$ and $n_7 = n_8$.

VRAI FAUX

Question 19:

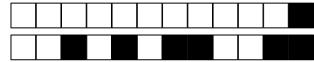
[4 points] Let \mathcal{C}_1 be a linear code over \mathbb{F}_3^n , and let \mathcal{C}_2 be a linear code over \mathbb{F}_2^n . Answer the following true/false questions.

$\mathcal{C}_1 \cap \mathcal{C}_2$ is necessarily a linear code over \mathbb{F}_2^n .

VRAI FAUX

$\mathcal{C}_1 \cup \mathcal{C}_2$ is necessarily a linear code over \mathbb{F}_3^n .

VRAI FAUX

**Question 20**

[3 points] A colleague challenges you to create a $(n-1, k, d_{min})$ code \mathcal{C}' from a (n, k, d_{min}) code \mathcal{C} as follows: given a generator matrix G that generates \mathcal{C} , drop one column from G . Then, generate the new code with this truncated $k \times (n-1)$ generator matrix.

The catch is that your colleague only gives you a set $\mathcal{S} = \{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ of 3 columns of G that you are allowed to drop, where \vec{s}_1 is the all-zeros vector, \vec{s}_2 is the all-ones vector, and \vec{s}_3 is a canonical basis vector. From the length of the columns s_i you can infer k . You do not know n , neither do you know anything about the $n-3$ columns of G that are not in \mathcal{S} . However, your colleague tells you that G is in systematic form, i.e., $G = [I \ P]$ for some unknown P , and that all of the elements in \mathcal{S} are columns of P .

Which of the following options in \mathcal{S} would you choose as the column of G to drop?

- \vec{s}_3 (one of the canonical basis vectors).
- \vec{s}_1 (the all-zeros vector).
- \vec{s}_2 (the all-ones vector).
- It is impossible to guarantee that dropping a column from \mathcal{S} will not decrease the minimum distance.

Question 21

[4 points] Let \mathcal{C} be a (n, k) linear block code over \mathbb{F}_2 of block length n such that n is even and minimum distance $d_{min} = 3$. We construct a new code \mathcal{C}' by appending onto each codeword $\vec{x} \in \mathcal{C}$ three parity bits as follows:

$$x_{n+1} = x_1 \oplus x_3 \oplus x_5 \oplus \dots \oplus x_{n-1},$$

$$x_{n+2} = x_2 \oplus x_4 \oplus x_6 \oplus \dots \oplus x_n,$$

$$x_{n+3} = x_1 \oplus x_2 \oplus x_3 \oplus \dots \oplus x_n.$$

Denote the minimum distance of this new linear block code by d'_{min} . Which of the following is true?

- $d'_{min} = 3$
- $d'_{min} = 4$
- We cannot tell with certainty what d'_{min} is; it depends on \mathcal{C} .
- $d'_{min} = 5$

Question 22:

[6 points] Let

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

be the generator matrix of a $(6, 4)$ linear code \mathcal{C} over \mathbb{F}_2 .

Answer the following true/false questions.

$d_{min} = 2$.

VRAI FAUX

Performing an arbitrary column permutation on G yields a generator matrix of a linear code with the same parameters n, k, d_{min} .

VRAI FAUX

If one substitutes the last row of G by $(1, 0, 0, 1, 1, 1)$, the thereby obtained matrix generates the same code \mathcal{C} .

VRAI FAUX

G admits a systematic form (i.e., it can be put into systematic form via elementary row operations).

VRAI FAUX

PROJET