

EPFL

Ens. : TEACHER NAME

EXAM NAME - MAN

DATE

Durée : XXX minutes

1

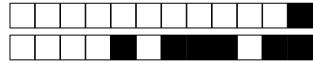
Student One

SCIPER: **111111**

Do not turn the page before the start of the exam. This document is double-sided, has 12 pages, the last ones possibly blank. Do not unstaple.

- Place your student card on your table.
- **No other paper materials** are allowed to be used during the exam.
- Using a **calculator** or **any electronic device** is not permitted during the exam.
- For each question there is **exactly one** correct answer. We assign **negative points** to the **wrong answers** in such a way that a person that chooses uniformly at random over the possible options gains 0 points on average.
- Use a **black or dark blue ballpen** and clearly erase with **correction fluid** if necessary.
- Unless specified otherwise, all the entropies are in bits.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
ce qu'il ne faut PAS faire what should NOT be done was man NICHT tun sollte		



First part: Source Coding

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 1

[6 points] Consider a source S with some distribution P_S over the alphabet $\mathcal{A} = \{a, b, c, d, e, f\}$. Bob designs an encoding map Γ for a uniquely decodable code \mathcal{C} over a code alphabet \mathcal{D} of size D with the following codeword lengths.

	a	b	c	d	e	f
$l(\Gamma(\cdot))$	1	1	2	2	3	3

Answer the following true/false questions.

There exist a positive integer D and a distribution P_S over \mathcal{A} such that the average codeword length of Bob's code is equal to $H_D(S)$.

VRAI FAUX

The average codeword length of the code is necessarily greater than or equal to $H_D(S)$.

VRAI FAUX

D can be 2.

VRAI FAUX

Question 2

[4 points] You are given an i.i.d source with symbols taking value in the alphabet $\mathcal{A} = \{a, b, c, d\}$ and probabilities $\{1/8, 1/8, 1/4, 1/2\}$. Consider making blocks of length n and constructing a Huffman code that assigns a binary codeword to each block of n symbols. Choose the correct statement regarding the average codeword length per source symbol.

- None of the others.
- In going from n to $n + 1$, for some n it stays constant and for some it strictly decreases.
- It is the same for all n .
- It strictly decreases as n increases.

Question 3

[4 points] Let X_1, X_2 be two independent random variables taking values in $\{0, 1\}$ such that $P(X_1 = 0) = P(X_2 = 0) = 1/2$. Let $Y = X_1 + X_2 \bmod 2$. Answer the following true/false questions.

$$H(X_1, X_2, Y) = H(X_1) + H(X_2) + H(Y) .$$

VRAI FAUX

$$H(Y, X_1) = H(Y) + H(X_1).$$

VRAI FAUX

If I change the distribution of X_1 (while keeping the alphabet the same) I can obtain a new random variable \hat{X}_1 such that $H(\hat{X}_1) > H(X_2)$.

VRAI FAUX

$$H(X_1, X_2) = H(X_1) + H(X_2) .$$

VRAI FAUX

Question 4

[4 points] Let $\mathcal{C}_1 = \{00, 01, 100, 101, 110, 111\}$ and $\mathcal{C}_2 = \{00, 01, 100, 101, 111\}$ be two source codes (We exclude the possibility of source symbols of zero probability.) Check the correct statement.

- \mathcal{C}_1 can be a Huffman code but not \mathcal{C}_2 .
- Neither \mathcal{C}_1 nor \mathcal{C}_2 can be a Huffman code.
- Both codes can be Huffman codes.
- \mathcal{C}_2 can be a Huffman code but not \mathcal{C}_1 .

Question 5

[3 points] Consider the i.i.d. source $S_1S_2S_3\dots$ where for all i , S_i models a loaded dice with distribution $P(S_i = 6) = 5/6$ and $P(S_i = x) = 1/30$ for $x \in \{1, 2, 3, 4, 5\}$. Answer the following true/false questions.

$H(S_n|S_{n-1}) \neq H(S_n)$.

VRAI FAUX

$\lim_{n \rightarrow \infty} H(S_n) = \log_2(6)$.

VRAI FAUX

The source is regular.

VRAI FAUX

$H(S_n, S_{n+1}) = H(S_n) + H(S_{n+1})$.

VRAI FAUX

The source is stationary.

VRAI FAUX

$H(S_n) = H(S_{n-1})$.

VRAI FAUX

Question 6

[5 points] A bag contains the letters of LETSPLAY. Someone picks at random 4 letters from the bag without revealing the outcome to you. Subsequently you pick one letter at random among the remaining 4 letters. What is the entropy (in bits) of the random variable that models your choice? Check the correct answer.

- $\log_2(7)$.
- $\frac{11}{4}$.
- 2.
- $\log_2(8)$.

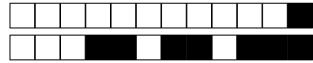
Question 7

[5 points] Let $0 \leq \alpha \leq 1$ be an unknown constant. Let X be a random variable taking values in $\mathcal{X} = \{0, 1, 2\}$ with probability $p_X(0) = p_X(1) = \alpha$ and $p_X(2) = 1 - 2\alpha$. Let Y be a random variable defined as follows

$$Y = \begin{cases} 1, & \text{if } X = 2 \\ 0, & \text{if } X \neq 2 \end{cases}.$$

You also know that $H(X|Y) = \frac{1}{2}$. Choose the correct value of α .

- 1.
- $\frac{1}{2}$.
- $\frac{1}{4}$.
- $\frac{1}{8}$.



Second part: Cryptography and Number Theory

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 8

[5 points] If we compute $\gcd(70, 51)$ via Euclid's extended algorithms, we produce a sequence of (u, v) pairs, the last of which satisfies $\gcd(70, 51) = 70 \times u + 51 \times v$. Check the correct sequence.

- (1, 0), (0, 1), (1, -2), (-2, 3), (3, -8), (-8, 11).
- (1, 0), (0, 1), (1, -2), (-2, 5), (5, -8), (-8, 11).

Question 9:

[6 points] Answer the following true/false questions.

$(\mathbb{Z}/8\mathbb{Z}^*, \cdot)$ is isomorphic to $(\mathbb{Z}/k\mathbb{Z}, +)$ for some k .

- VRAI
- FAUX

$(\mathbb{Z}/9\mathbb{Z}, +)$ is isomorphic to $((\mathbb{Z}/3\mathbb{Z})^2, +)$.

- VRAI
- FAUX

$(\mathbb{Z}/6\mathbb{Z}, +) \times (\mathbb{Z}/3\mathbb{Z}, +)$ is isomorphic to $((\mathbb{Z}/2\mathbb{Z})^2, +) \times (\mathbb{Z}/2\mathbb{Z}, +)$.

- VRAI
- FAUX

Question 10

[4 points] How many integers n between 1 and 2021 satisfy $10^n \equiv 1 \pmod{11}$? Check the correct answer.

- 1010.
- 183.
- 505.
- 990.

Question 11:

[6 points] Answer the following true/false questions.

$[3^{10}2^514]_{19}$ has a multiplicative inverse.

VRAI FAUX

$[60]_{15}$ has a multiplicative inverse.

VRAI FAUX

$[126]_{147}$ has a multiplicative inverse.

VRAI FAUX

$[169]_9$ has a multiplicative inverse.

VRAI FAUX

Question 12

[6 points] Consider the Diffie-Hellman secret-key-exchange algorithm performed in the cyclic group $(\mathbb{Z}/11\mathbb{Z}^*, \cdot)$. Let $g = 2$ be the chosen group generator. Suppose that Alice's secret number is $a = 5$ and Bob's is $b = 3$. Which common key k does the algorithm lead to? Check the correct answer.

- $k = 10$.
- $k = 7$.
- $k = 9$.
- $k = 2$.

Question 13:

[7 points] Consider an RSA encryption scheme with parameters $m = 55$, $e = 3$ and $k = \phi(m)$. Answer the following true/false questions.

Both $d = 27$ and $d = 67$ are valid decryption exponents.

VRAI FAUX

The encryption of $t = 18$ is $c = 4$.

VRAI FAUX

Third part: Coding Theory

For each question, mark the box corresponding to the correct answer. Each multiple choice question has **exactly one** correct answer.

Question 14:

[6 points] A generator matrix G for a binary $(6, 3)$ linear code maps the information vectors $m_1 = (1, 0, 1)$ and $m_2 = (1, 1, 1)$ into the codewords $c_1 = (1, 1, 0, 0, 0, 1)$ and $c_2 = (1, 0, 0, 0, 1, 0)$ respectively. Answer the following true/false questions.

G is in systematic form.

VRAI FAUX

The second row of G is $(0, 1, 0, 0, 1, 1)$.

VRAI FAUX

$d_{\min} = 3$.

VRAI FAUX

Question 15

[2 points] What is the minimum distance of a linear block code over \mathbb{F}_7 that has

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 6 \\ 0 & 1 & 0 & 0 & 6 & 6 \\ 0 & 0 & 1 & 0 & 6 & 3 \end{pmatrix}$$

as the parity check matrix? Check the correct answer.

- 5.
- 4.
- 1.
- 3.
- 2.
- 0.

Question 16

[5 points] How many $x \in \mathbb{Z}/23\mathbb{Z}$ satisfy the equation $0 = 1 - x + x^2 - x^3 + \dots - x^{21} + x^{22} - x^{23}$, when all operations are with respect to the field $(\mathbb{Z}/23\mathbb{Z}, +, \cdot)$? Check the correct answer.

- 2.
- 23.
- 22.
- 0.
- 1.

Question 17

[4 points] Consider a $(k+1, k)$ block code that to a binary sequence x_1, \dots, x_k associates the codeword x_1, \dots, x_k, x_{k+1} , where $x_{k+1} = x_1 + \dots + x_k \bmod 2$. This code can detect all the errors of odd weight.

VRAI FAUX

Question 18

[6 points] Let E be a subspace of \mathbb{F}_7^4 which consists of elements $\vec{x} = (x_1, x_2, x_3, x_4)$ satisfying,

$$\begin{aligned}x_1 + 6x_2 + 3x_3 + 4x_4 &= 0 \\3x_1 + 6x_2 + x_3 + 3x_4 &= 0 \\5x_1 + 2x_2 + x_3 + 3x_4 &= 0\end{aligned}$$

What is the dimension of E ? Check the correct answer.

- 3.
- 1.
- 2.
- 4.
- 0.

Question 19

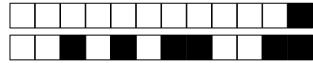
[4 points] Consider an (n, k) RS code. If you delete up to $n - k$ columns of the generator matrix, the result is still an RS code (for some choice of parameters).

VRAI FAUX

Question 20

[3 points] Consider a communication system consisting of a binary block code, an error channel, and a minimum-distance decoder. Check the correct statement about the minimum-distance decoder.

- None of the others can be stated with certainty due to missing information.
- It always minimizes the error probability.
- It minimizes the error probability if the channel is a binary symmetric channel.
- It minimizes the error probability if the channel is a binary symmetric channel with crossover (flip) probability smaller than $1/2$.

**Question 21:**

[2 points] Consider a standard-array-based decoder. Answer the following true/false questions.

The syndrome of a specific coset depends on the choice of the coset leader.

VRAI FAUX

For the same input, the decoder output depends on the choice of the coset leader.

VRAI FAUX

Question 22

[3 points] Consider a $(7, 4)$ Reed-Solomon code \mathcal{C} over \mathbb{F}_q . Let $\vec{x} \neq \vec{y}$ be two different information vectors. The corresponding codewords $c(\vec{x})$ and $c(\vec{y})$ match in at most:

- 3 places.
- 2 places.
- 0 places.
- None of the others is correct.

