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Prof. M. Gastpar

Quiz 4 (Homeworks 7, 8 & 9)

Due on Moodle

on Monday, April 28, 2024, at 23:59.

Quiz 4
SCIPER : 111111

• This quiz is to be solved individually.

• Try not to use any of the course materials other than the formula collection on a first attempt.

• Once you are done, enter your answers into Moodle. Moodle will give you feedback. You can update

your answers as many times as you want before the deadline.

• For each question there is exactly one correct answer. We assign negative points to the wrong

answers in such a way that a person who chooses a wrong answer loses 25 % of the points given

for that question.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 1

[2 points] Consider the group (Z/207Z∗, ·). Find how many elements are in the group.

128

127

100

132

Solution: The number of elements in the group Z/mZ∗ is given by ϕ(m), where ϕ(.) is Euler’s totient

function. To find ϕ(207), we first need the prime factorization of 153. It is quick to see that 153 is divisible

by 3, that is, 207 = 3× 69. But 69 = 3× 23, hence we can write 207 = 23× 32. This is neither a prime power

nor the product of two distinct primes, so the two basic formulas for ϕ(m) from the lecture notes will not

work. To continue, we can leverage what we did in the homework. There, we saw that the CRT directly

implies that if m and n are relatively prime, we have ϕ(mn) = ϕ(m)ϕ(n). Clearly, 23 and 9 are relatively

prime, meaning that we have ϕ(207) = ϕ(23)ϕ(9). For any prime p and positive integer k, we know that

ϕ(pk) = pk − pk−1, and thus ϕ(23) = 22, ϕ(9) = 32 − 3 = 6. Combining all of the above, we find that the

number of elements in (Z/207Z∗, ·) is 22× 6 = 132.

Note that alternatively, we could have found the answer directly by starting from the full list {1, 2, . . . , 207}

and removing all multiples of three and all multiples of seventeen. Specifically, start by removing the 69

multiples of 3. Also, there are 9 multiples of 23, but of these, 3 have already been removed since they are

also multiples of 3. Hence, ϕ(m) = 207− 69− 9 + 3 = 132.

Question 2

[3 points] Passing on secrets: Alice has posted her RSA credentials as (m, e), with m the modulus and e

the encoding exponent. As required by RSA, she keeps her decoding exponent d preciously secret. Bob has

a message t1, RSA-encrypts it using (m, e1) and passes the resulting cryptogram c1 on to Carlos. Carlos has

a message t2, RSA-encrypts it using (m, e2) to obtain the cryptogram c2. Then, Carlos multiplies the two

cryptograms, (c1 · c2) mod m, and passes this to Alice. Alice applies her regular RSA decryption to (c1 · c2)

mod m. Under what condition is the result of this decryption exactly equal to the product (t1 · t2) mod m?

If d is prime and (e1 + e2) mod m = 1.

If for some integer ℓ, we have e1e2d = ℓϕ(m) + 1, where ϕ(·) denotes Euler’s totient function.

If e1 + e2 = e.

If e1 = e2 = e.

Solution: The final cryptogram c = (c1 · c2) mod m = (te11 · te22 ) mod m, and therefore, the decryption

recovered by Alice is given as (te11 · te22 )d mod m = (te1d1 · te2d2 ) mod m. This is exactly equal to (t1 · t2)

mod m when e1 = e2 = e.

Question 3

[6 points] Note: This is an open question. In the real exam, we will grade your arguments. Here for

the quiz, we do not have the capacity to do this. Therefore, you will merely enter your final answer into a

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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multiple choice grid on Moodle. However, do make sure to carefully look at the solution and compare to your

answer. How many points would you have given yourself?

Consider the source S1, S2, . . . such that S1 is uniformly distributed on Z/10Z∗, and for every n ≥ 1,

Sn+1 is distributed uniformly on Z/(Sn + 1)Z∗. Answer the following questions.

(a) (3 pts) Calculate the marginal distribution of S2.

(b) (1 pt) Is the source stationary? Fully justify your answer

(c) (2 pts) Show that H(Sn|S1, . . . , Sn−1) ≤
(
pSn−1(3) + pSn−1(5)

)
log 2 +

(
pSn−1(7) + pSn−1(9)

)
log 4.

(d) [Difficult, and not graded on the Moodle interface] Show that the probabilities in the right hand side

of the above inequality converge to zero as n increases.

Solution: For (a), we need to find the marginal distribution of S2. To do this, we first find the conditional

distribution of S2 given S1. We know that S1 ∈ {1, 3, 7, 9}. When S1 = 1, then S2 is uniformly distributed

on Z/2Z∗ = {1}. Which is the same as saying that in that case, we must have S2 = 1. Next, when S1 = 3,

then S2 is uniformly distributed on Z/4Z∗ = {1, 3}. Next, when S1 = 7, then S2 is uniformly distributed on

Z/8Z∗ = {1, 3, 5, 7}. Finally, when S1 = 9, then S2 is uniformly distributed on Z/10Z∗ = {1, 3, 7, 9}. Hence,

the joint distribution of (S1, S2) can be expressed as

pS1,S2
(s1, s2) = pS1

(s1)pS2|S1
(s2|s1) =



1
4 , if s1 = 1, s2 = 1

1
4 · 1

2 , if s1 = 3, s2 = 1

1
4 · 1

2 , if s1 = 3, s2 = 3

1
4 · 1

4 , if s1 = 7, s2 = 1

1
4 · 1

4 , if s1 = 7, s2 = 3

1
4 · 1

4 , if s1 = 7, s2 = 5

1
4 · 1

4 , if s1 = 7, s2 = 7

1
4 · 1

4 , if s1 = 9, s2 = 1

1
4 · 1

4 , if s1 = 9, s2 = 3

1
4 · 1

4 , if s1 = 9, s2 = 7

1
4 · 1

4 , if s1 = 9, s2 = 9,

(1)

while all other choices for pairs (s1, s2) have probability zero. From the joint distribution, it is now a simple

matter to find the marginal distribution of S2 simply by summing over all values of S1 (for a fixed values of

S2), hence,

pS2
(s2) =



1
2 , if s2 = 1

1
4 , if s2 = 3

1
16 , if s2 = 5

1
8 , if s2 = 7

1
16 , if s2 = 9

(2)

For (b), observe that the marginal distribution of S2 is not the same as the marginal distribution of S1.

This already implies that the source cannot be stationary.y For your examination, preferably print documents compiled from auto-
multiple-choice.

y
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For (c), we may start by recalling that conditioning cannot increase entropy, hence

H(Sn|S1, . . . , Sn−1) ≤ H(Sn|Sn−1). (3)

(In fact, for the process at hand, you can even show that these two conditional entropies are equal, but this

is not important for the property we are about to prove.) Next, let us write out the conditional entropy as

we have done in class:

H(Sn|Sn−1) =
∑
sn−1

pSn−1
(sn−1)H(Sn|Sn−1 = sn−1). (4)

From Part (a), extending to general Sn, we can see that Sn ∈ {1, 3, 5, 7, 9}. No other values can show up

(since also Z/6Z∗ = {1, 5}). Moreover, H(Sn|Sn−1 = 1) = 0 since when Sn−1 = 1 we have Sn = 1 with

probability one. Therefore,

H(Sn|S1, . . . , Sn−1) ≤ pSn−1(3)H(Sn|Sn−1 = 3) + pSn−1(5)H(Sn|Sn−1 = 5)

+ pSn−1
(7)H(Sn|Sn−1 = 7) + pSn−1

(9)H(Sn|Sn−1 = 9) (5)

≤ pSn−1(3) log 2 + pSn−1(5) log 2 + pSn−1(7) log 4 + pSn−1(9) log 4, (6)

where for the last inequality, we have used the fact that when Sn−1 = 3 or Sn−1 = 5, then Sn only has 2

possible values, and when Sn−1 = 7 or Sn−1 = 9, then Sn has 4 possible values.

For part (d), we have to study the conditional distribution pSn|S1,...,Sn−1
(sn|s1, . . . , sn−1). To get there,

let us imagine the process a bit further into the future. In particular, let us suppose that for some i, we end

up with the sample Si = 1. Then, we know that for all n ≥ i, we must have Sn = 1 with probability one.

That is, the process becomes fully deterministic. To be more formal, we have the following recursions:

pSn
(9) =

1

4
pSn−1

(9) (7)

pSn
(7) =

1

4
pSn−1

(7) +
1

4
pSn−1

(9) (8)

pSn
(5) =

1

2
pSn−1

(5) +
1

4
pSn−1

(7) (9)

pSn
(3) =

1

2
pSn−1

(3) +
1

4
(pSn−1

(7) + pSn−1
(9)). (10)

Recall the distribution of S1. From (7), we have

pSn
(9) =

1

4n
. (11)

From (8), we have

pSn
(7) =

1

4
pSn−1

(7) +
1

4n
(12)

=
1

4n−1
pS1

(7) + (n− 1)
1

4n

=n
1

4n
. (13)

From (9), we have

pSn
(5) =

1

2
pSn−1

(5) + (n− 1)
1

4n
. (14)

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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This (roughly) tells us that pSn

(5) behaves similarly to 1/2n asymptotically. Let pSn
(5) = f(n)/2n. Then

we have

f(n)− f(n− 1) =
n− 1

2n
(15)

=⇒ f(n) =f(1) +

n∑
k=2

k − 1

2k
(16)

=0 +

(
1− n+ 1

2n

)
= 1− n+ 1

2n
(17)

=⇒ pSn
(5) =

(
1− n+ 1

2n

)
1

2n
(18)

From (10), we have

pSn(3) =
1

2
pSn−1(3) + n

1

4n
(19)

Once again, letting pSn
(3) = g(n)/2n,

g(n)− g(n− 1) =
n

2n
(20)

=⇒ g(n) =g(1) +

n∑
k′=2

k′

2k′ (21)

=
1

2
+

n∑
k′=2

k′

2k′ (22)

=

n∑
k′=1

k′

2k′ (23)

=2− n+ 2

2n
(24)

=⇒ pSn(3) =

(
2− n+ 2

2n

)
1

2n
. (25)

Clearly, all of these probabilities converge to 0 as n grows large.

Grading Notes: For Part (a), 1 point for correctly identifying the support of S2, 1 point for the right

answer (the probabilities) and 1 point for the correct derivation logic. For Part (b), 1 point for the correct

justification and answer. For Part (c), 1 point for the correct derivation of the conditional entropy, including

dropping the conditioning and 1 point for the entropy upper bounds as logarithm of the alphabet size.

Question 4

[6 points] Consider an RSA encryption where the (p, q) are determined as (67, 53). Check if the following

encoding and decoding exponent pairs are valid.

(a) (e, d) = (123, 79) are valid exponents.

VRAI FAUX

(b) (e, d) = (631, 223) are valid exponents.

VRAI FAUX

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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(c) (e, d) = (319, 23) are valid exponents.

VRAI FAUX

Solution: As we have seen in class, the necessary and sufficient condition for (e, d) to be a valid pair is

that we must have at the same time

ed = ℓ1(p− 1) + 1 (26)

ed = ℓ2(q − 1) + 1 (27)

for some positive integers ℓ1 and ℓ2. Of course, this is the same as asking [ed]p−1 = [1]p−1 and [ed]q−1 = [1]q−1.

(a) [123 · 79]66 = [15]66, which means game over: this cannot be a valid exponent pair. (No need to check

[123 · 79]52.)

(b) [631 · 223]66 = [1]66 and [631 · 223]52 = [1]52, thus this is a valid exponent pair.

(c) [319 · 23]66 = [11]66, so again, game over: This cannot be a valid exponent pair.

Question 5

[3 Points] How many x ∈ {0, 1, 2, . . . , 34} satisfy the equation x2 − 5x+ 4 mod 35 = 0?

2

0

1

4

Solution: Probably the fastest is to go via the Chinese Remainder Theorem. Write 35 = 5 · 7. Recall

that x2 − 5x+ 4 mod 35 = 0 if and only if x2 − 5x+ 4 mod 5 = 0 and x2 − 5x+ 4 mod 7 = 0.

The mod 5 part is particularly easy: x2−5x+4 ≡ x2+4 mod 5. Moreover, 4 ≡ −1 mod 5. So, clearly,

we have two solutions here: x = 1 and x = 4.

For the mod 7 part, it is perhaps clever to observe that x2−5x+4 = (x−1)(x−4). (This holds always,

and of course also mod 7.) So we can see that x = 1 and x = 4 both work.

To combine, thinking about the grid representation of the Chinese Remainder Theorem, we have 4

solutions (two choices for the row and two choices for the column in the grid representation). Namely,

(1, 1), (1, 4), (4, 1), (4, 4).

You are not asked to find the actual solutions. You could find those by the usual inversion formula for

the Chinese Remainder Theorem. Numbers in this example are so small that we can probably guess the

solutions... The first solution is a number x such that x mod 5 = 1 and x mod 7 = 1. This is simply x = 1.

Next, we need a number x such that x mod 5 = 4 and x mod 7 = 4. This is simply x = 4. Now it gets more

interesting: Another solution is x such that x mod 5 = 1 and x mod 7 = 4. A moment’s reflection gets us

to x = 11. And finally, we are looking for x such that x mod 5 = 4 and x mod 7 = 4. Here, we have to

perhaps scratch our head a little longer (or actually draw up the Chinese Remainder Theorem table). Then,

we find x = 29.

So, the four solutions are x ∈ {1, 4, 11, 29}. (It is not hard to verify that these four numbers are indeed

solutions to the original equation.)y For your examination, preferably print documents compiled from auto-
multiple-choice.
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