Advanced Information, Computation, Communication II Homework - 9
Spring 2025 Exercise session on Wednesday, April 16

1. Simplify the following congruence classes and decide if they are invertible (multiplica-
tive). If they are, compute their inverse. If they are not, for each [a],, find a congruence
class [b],, such that [a]m,[b]m = [0]m and 0 < b < m.

(a) [13]as0
(b) [27]9999
(c) [38%]a
(d) [28899]28925

2. Solve for z:

(a) 22z aF [63]132 = [19]132
(b) (9999)LE T [35]10() = [56]100

1. For each of the following RSA parameters, determine if they are valid, and if they are,
compute a valid decoding exponent d.
(a) p=29,g=41,e=9.
(b) p=167, ¢q =97, e =11.
(¢c) p=5,q="T73,e=12T7.

2. For the first valid case that you found, what is the ciphertext corresponding to the
plaintext ¢ = 487 Check that the decryption gives you back the correct plaintext.

3. For the last valid case that you found, what is the plaintext corresponding to the ci-
phertext ¢ = 847 Hint: You may use a calculator.

Consider the map from class:
Y Z/mnZ — Z/mZ X L/nZ

that maps each integer 0 < k < mn to ¥(k) = (kK mod m, k mod n).

1. Consider the pair (m,n) = (5,7). Fill the 5 x 7 table for the map v just like we did in
class (for other numbers m and n).

2. Find 3°46%58 mod 5.
3. Find 3%4645% mod 7.
4. Using your table from [9.3|[1] find 3°464%% mod 35.




In this problem we develop an explicit formula for computing ¢(n) for any positive integer n
in terms of the prime factorization of n.
Recall that by the Chinese Remainder Theorem, if m and n are coprime, then the function

Y Z/mnZ — Z/mZ X Z/nZ

that maps each integer 0 < k < mn to ¥(k) = (k mod m, k mod n), is a bijection.

1. Show that if k is coprime to mn, then & mod m is comprime to m and k£ mod n is
coprime to n.

2. Show that if 0 < a < m is coprime to m and 0 < b < n is coprime to n, then ¥~*(a, b)
is coprime to mn.

3. Conclude that if m and n are coprime, then ¢(mn) = ¢(m) ¢(n).

4. Using this result and the fact (seen in class) that ¢(p*) = p* — p*~! for any prime p and
any positive integer k, prove that for any positive integer n,

w=rTI(1-5)

where the product is over all prime factors of n.
Hint: write n as a product of prime powers, that is, n = p’flpg2 cophm

In this problem, we study the computational complexity of the decrypting operation in RSA.
Let m = p-q be an RSA modulus where p and ¢ are some large prime numbers. Let e be a
valid RSA encoding exponent, and let d be the corresponding decoding exponent. You know d,
and you receive a ciphertext ¢ for an unknown plaintext ¢ (i.e., [c],, = [t]¢,). We are interested
in finding a fast way to decrypt c.

In the following, suppose that for any non-negative integers x,y and z with z < z and y < z,
the exponentiation z¥ mod z can be computed with (log, 2)® elementary operations.

1. About how many elementary operations are performed by the decryption method given
in class? (Hint: only exponentiations are costly, the rest can be neglected.)

2. In an attempt to go faster, one can try to perform the decryption modulo p and modulo
¢, and combine the results with the Chinese Remainders Theorem (instead of decryp-
ting directly modulo m). To do so, we replace the decoding exponent d by the pair of
exponents d, = d mod (p — 1) and d, = d mod (¢ — 1).

(a) Show that [c]y” = [t], and [c]g" = [t],-

(b) Describe how to recover [t],, from [t], and [¢],.

(c) About how many elementary operations are performed by this decryption method?
(Hint: again, only exponentiations are costly, the rest can be neglected.)

3. How do these two methods compare, assuming that p and ¢ are of the same size (i.e.,
logy p ~ log; q).




