
Advanced Information, Computation, Communication II Homework - 9
Spring 2025 Exercise session on Wednesday, April 16

Problem 9.1.

1. Simplify the following congruence classes and decide if they are invertible (multiplica-
tive). If they are, compute their inverse. If they are not, for each [a]m find a congruence
class [b]m such that [a]m[b]m = [0]m and 0 < b < m.

(a) [13]380
(b) [27]9999
(c) [3431]29
(d) [28899]28925

2. Solve for x:

(a) 22x+ [63]132 = [19]132
(b) (9999)x+ [35]100 = [56]100

Problem 9.2.

1. For each of the following RSA parameters, determine if they are valid, and if they are,
compute a valid decoding exponent d.

(a) p = 29, q = 41, e = 9.

(b) p = 67, q = 97, e = 11.

(c) p = 5, q = 73, e = 127.

2. For the first valid case that you found, what is the ciphertext corresponding to the
plaintext t = 48? Check that the decryption gives you back the correct plaintext.

3. For the last valid case that you found, what is the plaintext corresponding to the ci-
phertext c = 84? Hint: You may use a calculator.

Problem 9.3.

Consider the map from class:

ψ : Z/mnZ → Z/mZ× Z/nZ

that maps each integer 0 ≤ k < mn to ψ(k) = (k mod m, k mod n).

1. Consider the pair (m,n) = (5, 7). Fill the 5× 7 table for the map ψ just like we did in
class (for other numbers m and n).

2. Find 3546458 mod 5.

3. Find 3546458 mod 7.

4. Using your table from 9.3.1, find 3546458 mod 35.
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Problem 9.4.

In this problem we develop an explicit formula for computing ϕ(n) for any positive integer n
in terms of the prime factorization of n.
Recall that by the Chinese Remainder Theorem, if m and n are coprime, then the function

ψ : Z/mnZ → Z/mZ× Z/nZ

that maps each integer 0 ≤ k < mn to ψ(k) = (k mod m, k mod n), is a bijection.

1. Show that if k is coprime to mn, then k mod m is comprime to m and k mod n is
coprime to n.

2. Show that if 0 < a < m is coprime to m and 0 < b < n is coprime to n, then ψ−1(a, b)
is coprime to mn.

3. Conclude that if m and n are coprime, then ϕ(mn) = ϕ(m)ϕ(n).

4. Using this result and the fact (seen in class) that ϕ(pk) = pk − pk−1 for any prime p and
any positive integer k, prove that for any positive integer n,

ϕ(n) = n
∏
p

(
1− 1

p

)
where the product is over all prime factors of n.

Hint: write n as a product of prime powers, that is, n = pk11 p
k2
2 · · · pkmm .

Problem 9.5.

In this problem, we study the computational complexity of the decrypting operation in RSA.
Let m = p · q be an RSA modulus where p and q are some large prime numbers. Let e be a
valid RSA encoding exponent, and let d be the corresponding decoding exponent. You know d,
and you receive a ciphertext c for an unknown plaintext t (i.e., [c]m = [t]em). We are interested
in finding a fast way to decrypt c.
In the following, suppose that for any non-negative integers x, y and z with x < z and y < z,
the exponentiation xy mod z can be computed with (log2 z)

3 elementary operations.

1. About how many elementary operations are performed by the decryption method given
in class? (Hint: only exponentiations are costly, the rest can be neglected.)

2. In an attempt to go faster, one can try to perform the decryption modulo p and modulo
q, and combine the results with the Chinese Remainders Theorem (instead of decryp-
ting directly modulo m). To do so, we replace the decoding exponent d by the pair of
exponents dp = d mod (p− 1) and dq = d mod (q − 1).

(a) Show that [c]
dp
p = [t]p and [c]

dq
q = [t]q.

(b) Describe how to recover [t]m from [t]p and [t]q.

(c) About how many elementary operations are performed by this decryption method?
(Hint: again, only exponentiations are costly, the rest can be neglected.)

3. How do these two methods compare, assuming that p and q are of the same size (i.e.,
log2 p ≈ log2 q).
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