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Résumé

Dès les premières utilisations des matériaux cimentaires, l’ajout de fibres a permis de ren-

forcer ces matrices fragiles. Ces fibres, comme pour tout autre type d’inclusions, modifient les

propriétés rhéologiques du matériau à l’état frais.

Dans un premier temps, nous étudions spécifiquement l’influence de l’ajout des fibres sur le

seuil d’écoulement de matériaux cimentaires. Nous considérons des écoulements suffisamment

brefs pour que l’orientation des fibres soit négligeable. Nous montrons que, comme dans le cas

d’inclusions sphériques, il existe une fraction volumique critique de fibres pour laquelle un réseau

percolé de contacts directs entre inclusions se forme. Nous déduisons de ce constat une méthode

permettant de prédire la quantité de fibres pour laquelle une augmentation de plusieurs ordres de

grandeurs du seuil du matériau a lieu. Nous dérivons de cette étude des critères de formulation

utilisables dans la pratique industrielle.

Nous étendons dans un deuxième temps notre étude aux systèmes anisotropes de façon à

prédire l’évolution de l’orientation des fibres lors de coulages industriels standards. Pour cela

nous construisons et comparons des outils expérimentaux, analytiques ou numériques permettant

respectivement de mesurer et de prédire l’orientation des fibres en fonction des caractéristiques

des fibres, du comportement rhéologique du mélange et du procédé de mise en œuvre. Nous

montrons que la majorité des écoulements industriels peut se réduire à des écoulements simples

pour lesquels le processus d’orientation est décrit en première approximation par les travaux

de Jeffery. Des zones mortes dans lesquelles la contrainte est inférieure au seuil du matériau

conservent leur isotropie initiale. Nous montrons qu’à l’échelle d’un coulage industriel, l’orienta-

tion des fibres peut être considérée comme instantanée. Les méthodes étudiées s’avèrent capables

de prédire l’orientation induite par les écoulements expérimentaux.

Mots clés : matériaux cimentaires, fibres, rhéologie, seuil d’écoulement, orientation.
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Abstract

Fibers have always been added to cementitious materials in order to reinforce the brittle

nature of the matrix. As for any other type of inclusions, fiber addition modifies the rheological

behavior of the material in the fresh state.

In a first part, we focus on the influence of fiber addition on the yield stress of cementitious

materials. We only consider flows which are too short or with no steady streamlines for orienta-

tion to affect the behavior of the material. We show that, as for spherical inclusions, a critical

fiber volume fraction leads to the formation of a percolation network between all the inclusions.

Predictions of this critical volume fraction can be derived from experimental measurements,

leading to a sudden increase of several orders of magnitude in yield stress. Industrial mix design

criteria are finally proposed.

This work is extended in a second part to anisotropic systems. We then focus on the pre-

diction of fiber orientation during standard industrial castings. Tools are built and compared

from experimental, analytical and numerical approaches in order to measure and predict fiber

orientation as a function of fiber characteristics, suspension rheological behavior and casting

process. It is shown that most industrial flows can be considered as simple flows during which

fiber orientation process is, as a first approximation, described by the Jeffery theory. In plug

flow zones, where stress is lower than the material yield stress, the initial isotropy is conserved.

We show that, at the time scale of the casting process, fiber orientation can be considered as

instantaneous. It is finally concluded that analytical and numerical methods used in this work

enable to predict orientation induced by the flows experimentally validated.

Keywords : cementitious materials, fibers, rheology, yield stress, orientation.
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Table de notations

lf [m] longueur d’une fibre

df [m] diamètre d’une fibre

r [-] facteur d’aspect (r = lf/df )

φc [-] fraction de percolation (ou fraction volumique lâche)

φm [-] fraction d’empilement dense (ou fraction volumique dense)

φM [-] fraction d’empilement maximale (ou fraction volumique maximale)

Ff [N] force de trainée appliquée à une fibre plongée dans un fluide Newtonien

a, b [-] coefficients de la force de trainée appliquée à une fibre

µN [Pa.s] viscosité Newtonienne

Vf [m.s−1] vitesse de sédimentation d’une fibre (par rapport au fluide)

τc [Pa] seuil d’écoulement

µp [Pa.s] viscosité plastique

γ̇ [s−1] taux de cisaillement

Fm [N] force de flottabilité d’une fibre

ρf [kg.m−3] masse volumique d’une fibre

ρfs [kg.m−3] masse volumique du fluide suspendant

g [kg.N−1] coefficient de pesanteur

η [Pa.s] viscosité apparente

η0 [Pa.s] viscosité du solvant

φ [-] fraction volumique d’inclusions rigides

φf [-] fraction volumique de fibres

f [m] flèche d’une fibre

E [Pa] module d’Young d’une fibre

I4 [m4] moment d’inertie d’une fibre

M [kg] masse d’un volume considéré de fibres

Ωavant [m3] volume apparent occupé par les fibres avant vibration

Ωapres [m3] volume apparent occupé par les fibres après vibration

αc [-] coefficient représentatif du nombre moyen de contacts par fibre nécessaires

pour atteindre la structure d’un réseau aléatoire lâche

αm [-] coefficient représentatif du nombre moyen de contacts par fibre nécessaires

pour atteindre la structure d’un réseau aléatoire dense

φfc [-] fraction de percolation des fibres

φfm [-] fraction d’empilement dense des fibres
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φfM [-] fraction d’empilement maximale des fibres

Vapp [m3] volume apparent occupé par une fibre

Nf [-] nombre de fibres correspondant à la concentration φf

H [m] hauteur de l’affaissement

R [m] rayon de l’étalement

Ω [m3] volume de matériau

φs [-] fraction volumique de sable

φsm [-] fraction d’empilement dense du sable

ds [m] diamètre d’un grain de sable

Ntheo [-] nombre de fibres traversant une section dans le cas d’une anisotropie parfaite

Ab [m2] aire de la section d’une structure

Af [m2] section d’une fibre

p [-] vecteur unitaire directeur d’une fibre (p = (px; py; pz) dans le système d’axes

(x, y, z) de l’Annexe C Figure C.2)

θ [rad] angle formé entre de la projection de la fibre dans le plan (x, y) et l’axe x

dans le système d’axes (x, y, z) donné au chapitre 5 Figure 5.6

ϕ [rad] angle formé entre la fibre et l’axe z dans le système d’axes (x, y, z) donné au

chapitre 5 Figure 5.6

ψ(p) [-] densité de probabilité de distribution des fibres

α [rad] angle formé entre l’axe z et l’axe y′ dans le système d’axes (x, y′, z′) donné à

l’Annexe C Figure C.2

β [rad] angle formé entre la fibre et l’axe x dans le système d’axes (x, y′, z′) donné à

l’Annexe C Figure C.2

Nexpe [-] nombre de fibres comptées sur une section

Pi [-] probabilité que la fibre fi coupe la section S

l∗f [m] longueur de la fibre dans un tronçon de structure

Ntotal [-] nombre total de fibres dans un tronçon de structure

αx [-] facteur d’orientation des fibres selon la direction x

α⊥w [-] facteur d’orientation moyen dans le plan perpendiculaire à la paroi et influencé

par cette paroi

α⊥ [-] facteur d’orientation selon le plan perpendiculaire à la paroi en fonction de y

la distance d’une fibre avec la paroi

α‖w [-] facteur d’orientation moyen dans le plan parallèle à la paroi et influencé par

cette paroi

e [m] largeur caractéristique de la section de la strucure

ᾱ⊥ [-] facteur d’orientation moyen sur la section d’une structure

ᾱ‖ [-] facteur d’orientation moyen sur un plan parallèle à la paroi de longueur L

ξ [-] facteur de réduction de la concentration en fibres dans la zone proche des parois

W [s−1] tenseur du taux de rotation induit par un écoulement (W = (wij)1≤i≤3,1≤j≤3)

D [s−1] tenseur du taux de déformation induit par un écoulement

λ [-] élancement d’une fibre (λ = (r2 − 1)/(r2 + 1))

Cϕ [-] constante orbitale caractéristique de l’excentricité de l’orbite suivie par la fibre
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Tp [s] période entre deux rotations d’unen fibre plongée dans un écoulement

de cisaillement

re [-] facteur d’aspect d’une fibre corrigé par rapport à un ellipsöıde

φtrans [-] concentration critique à partir de laquelle les interactions entre fibres

renforcent l’anisotropie

I [-] terme d’interactions

Dr [-] coefficient d’interactions

CI [-] coefficient empirique d’interactions ajusté sur des résultats expérimentaux

V [m.s−1] vecteur vitesse du matériau

h [m] taille caractéristique de la géométrie de l’écoulement

L1 [m] longueur d’une fibre immergée dans la zone en écoulement du matériau

L2 [m] longueur d’une fibre immergée dans la zone morte du matériau

q [-] paramètre d’intégration de l’évolution de l’orientation d’une fibre

θc [rad] angle critique en dessous duquel une fibre peut être considérée orientée

yc [m] épaisseur critique en dessous de laquelle le matériau ne s’écoule pas

τxy [Pa] contrainte de cisaillement due à l’écoulement

ε̇ [s−1] taux d’élongation d’un écoulement élongationnel

θ0 [rad] angle initial de la projection de la fibre dans le plan (x, y) avec l’axe x

ϕ0 [rad] angle initial de la fibre avec l’axe z

σxx [Pa] contrainte normale dans la direction x due à l’écoulement

Tθ [s] temps d’orientation relativement à l’angle θ

Tϕ [s] temps d’orientation relativement à l’angle ϕ

θ∗ [rad] angle θ représentatif de la fibre alignée avec l’écoulement

ϕ∗ [rad] angle ϕ représentatif de la fibre alignée avec l’écoulement

dtmax [s] pas de temps maximal renseigné dans le code Flow 3D c©
Vmax [m.s−1] vitesse maximale du matériau dans l’écoulement

Vmoy [m.s−1] vitesse moyenne du matériau dans l’écoulement

aij [-] coefficient du tenseur d’orientation d’ordre 2

aijkl [-] coefficient du tenseur d’orientation d’ordre 4

µ [rad] moyenne d’orientation de la fonction de distribution d’une population

de fibres

µx [rad] moyenne d’orientation de la fonction de distribution selon l’axe x

σ [-] variance de la fonction de distribution d’une population de fibres

σx [rad] variance de la fonction de distribution selon l’axe x

H [-] fonctions de Heaviside

Bm [-] nombre de Bingham

G [Pa] module de cisaillement du matériau

γcrit [-] déformation critique du matériau

Vseau [m.s−1] vitesse moyenne de versement d’un volume de matériau dans un canal

Av [m2] section à travers laquelle un volume de matériau est versé dans un canal

R [Ohm] résistance électrique du matériau

ρi [Ohm.m] résistivité électrique du matériau dans la direction i
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σe [S.m−1] conductivité électrique du matériau

Anρi [-] valeur représentative de l’anisotropie de la résistivité électrique dans

la direction i

Anσi [-] valeur représentative de l’anisotropie de la conductivité électrique dans

la direction i

βc [rad] angle critique formé entre la fibre et l’axe x limité par la présence d’une paroi
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Introduction générale

Dès les premières utilisations des matériaux cimentaires, des fibres ont été ajoutées au mé-

lange pour renforcer ses propriétés à l’état durci. Aujourd’hui, l’ajout de fibres dans les mortiers

ou les bétons est une pratique courante qui fait l’objet de normes et de recommandations.

De nombreux types de fibres sont utilisés dans la construction. Elles peuvent être organiques,

minérales ou métalliques. En fonction de leur nature, de leur forme et de l’application, elles

peuvent être rigides ou souples.

De nombreuses recherches et les progrès associés ont eu lieu dans le domaine de la formulation,

de l’amélioration des propriétés mécaniques, de l’allongement de la durée de vie et du calcul

d’éléments constructifs ou de structures. Cependant, l’ajout de fibres, comme tout autre type

d’inclusions, modifie les propriétés rhéologiques du matériau à l’état frais. Dans ce domaine et

dans celui, connexe, de la mise en œuvre de ce type de matériaux, les connaissances sont plus

rares et plus empiriques.

Ainsi, que ce soit sur chantier ou en usine de préfabrication, de nombreux incidents de mise

en œuvre apparaissent encore régulièrement malgré l’utilisation industrielle de matériaux

cimentaires de plus en plus fluides. Par ailleurs, dans le cas spécifique des matériaux fibrés

qui nous intéressent ici, les fibres peuvent se voir imposer une orientation privilégiée lors

de l’écoulement du matériau. Cette orientation préférentielle des fibres a des conséquences

importantes (positives ou négatives suivant la compatibilité des directions d’orientation des

fibres et de sollicitation de l’élément) sur les propriétés mécaniques futures de l’élément réalisé.

Les progrès récents dans le domaine de la rhéo-physique des matériaux cimentaires et dans

celui des simulations numériques d’écoulement des mortiers et bétons nous amènent à proposer

dans ce travail de thèse d’étudier la façon dont les fibres affectent le comportement rhéologique

des matériaux cimentaires. Nous proposons par ailleurs de construire à partir des données de la

littérature des outils de prédiction analytique et numérique à même de fournir une cartographie

d’orientation des fibres dans le cas d’écoulement industriels réels.

Dans une première partie, nous précisons le cadre de notre travail et insistons sur les

spécificités du problème à traiter. Tout d’abord, chacun des constituants des matériaux

cimentaires fibrés est présenté. De nature et de taille très variées, ces constituants ne sont pas

régis par les mêmes phénomènes physiques et mécaniques dominants. Chacun influence ainsi

le comportement macroscopique du mélange d’une manière qui lui est propre. Nous justifions

à partir de cette étude l’approche bi-phasique retenue ici consistant à considérer un matériau

cimentaire fibré comme une suspension de fibres et d’inclusions granulaires dans une pâte de
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ciment. Nous précisons enfin ce que nous entendons par le terme d’écoulement industriel en

termes de typologies d’écoulement.

Dans une seconde partie, nous étudions la façon dont les fibres affectent le comportement

rhéologique des matériaux cimentaires. Nous rappelons d’abord que de nombreux auteurs ont

mesuré une réduction de la fluidité avec l’ajout de fibres. Ces auteurs ont constaté que cet

effet crôıt avec un paramètre empirique, le ” facteur de fibres ”, défini comme le produit de la

concentration de fibres par le facteur d’aspect des fibres utilisées. Ce facteur de fibres ne doit

pas dépasser une valeur critique pour permettre la mise en œuvre d’un matériau cimentaire

fibré.

Ensuite, de façon à pouvoir distinguer sans ambigüité fibres rigides et fibres souples et ainsi

préciser le domaine d’applicabilité de nos résultats, nous proposons un critère de rigidité, défini

à partir de la nature et de la géométrie d’une fibre et du comportement rhéologique du fluide

dans lequel elle est plongée.

Nous mesurons par ailleurs, dans le cas de fibres d’acier rigides couramment utilisées en génie

civil, la fraction volumique d’empilement dense de ce type d’inclusions et vérifions la validité

des modèles prédictifs de la littérature. Ce paramètre nous permet d’estimer l’encombrement

de la suspension (i.e. le ratio entre le volume de fibres et la fraction volumique d’empilement

dense). Nous réalisons ensuite des mesures de seuil d’écoulement sur des matériaux renforcés en

inclusions (fibres et sable), pour des valeurs d’encombrement variant dans la plage typique des

matériaux de construction. Nous utilisons pour cela des mesures au rhéomètre sur des systèmes

isotropes ou des essais suffisamment brefs pour qu’aucune ligne de courant ne puisse s’établir

et entrainer l’orientation des fibres. Nous montrons dans cette partie que, comme dans le cas

d’inclusions sphériques, il existe une fraction volumique critique de fibre (i.e. un encombrement

critique) pour laquelle un réseau percolé de contacts directs entre inclusions apparâıt dans

la suspension. Lors de l’apparition de ce réseau percolé, le seuil d’écoulement du mélange

augmente de plusieurs ordres de grandeurs et des problèmes de mise en œuvre peuvent avoir

lieu.

Nous montrons par ailleurs que le facteur de fibres empirique de la littérature est une autre

façon d’exprimer l’encombrement et que sa valeur critique correspond à l’apparition du réseau

percolé de contacts directs.

Nous élargissons nos conclusions au cas de matériaux cimentaires fibrés contenant d’autres

inclusions de tailles caractéristiques inférieures à la longueur des fibres. Nous dérivons enfin de

cette étude des critères de formulation utilisables dans une pratique industrielle. Ils permettent

de maximiser la concentration en fibres (et ainsi les propriétés mécaniques) tout en conservant

aux mélanges une fluidité suffisante pour être coulés sans difficulté.

Dans une troisième partie, nous construisons et comparons des outils expérimentaux,

analytiques ou numériques permettant respectivement la mesure et la prédiction de l’orientation

des fibres en fonction des caractéristiques des fibres, du comportement rhéologique du mélange

et du procédé de mise en œuvre.

2

te
l-0

05
98

52
1,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

11



Nous rappelons d’abord que l’orientation de fibres en suspension peut être due à la

présence de parois ou induites par l’écoulement. Nous rappelons les considérations géométriques

permettant la modélisation de l’effet de paroi et décrivons les travaux fondateurs de Jeffery

traitant du processus d’orientation d’un ellipsöıde induit par un écoulement. Nous rappelons par

ailleurs la définition du ” facteur d’orientation ”, scalaire couramment utilisé dans le domaine

de la construction pour décrire l’orientation d’une population de fibres sans avoir recours à une

description tensorielle.

Nous dérivons ensuite des résultats d’arrachement d’une fibre ancrée dans un matériau

cimentaire un angle critique au delà duquel une fibre peut être considérée comme orientée

puisque participant de manière optimale au renforcement du matériau à l’état durci. Puis,

les techniques permettant de mesurer expérimentalement cette orientation sont brièvement

exposées. Nous illustrons nos propos par des mesures d’orientation par comptage sur un

écoulement dans un canal.

Nous montrons ensuite que la majorité des écoulements industriels peut se réduire à des

écoulements simples pour lesquels le processus d’orientation peut être décrit en première ap-

proximation par les travaux de Jeffery. Cette approche peut permettre d’accéder à des prédic-

tions qualitatives simples mais suffisantes pour estimer l’influence des fibres sur le matériau à

l’état durci. Pour cela, les écoulements induits par l’étape de mise en œuvre sont réduits aux

deux situations génériques de déformation que sont le cisaillement et l’élongation. La spécificité

du comportement de fluide à seuil des matériaux cimentaires est discutée. Nous distinguons

ainsi des zones en écoulement dans lesquelles les fibres s’orientent des zones ” mortes ” dans

lesquelles la contrainte est inférieure au seuil d’écoulement du matériau et l’isotropie initiale est

conservée. Dans les zones en écoulement, un temps d’écoulement nécessaire à l’orientation des

fibres est défini de manière dimensionnelle pour un taux de déformation donné. Nous montrons

à cette occasion qu’à l’échelle de la durée d’un coulage industriel, l’orientation des fibres peut

être considérée comme instantanée. Enfin, un profil analytique de facteur d’orientation en ré-

gime permanent est défini dans le cas d’un écoulement de fluide à seuil entre deux plans infinis

parallèles.

Nous proposons ensuite pour des écoulements plus complexes dans lesquels de nombreux pa-

ramètres influençant l’orientation macroscopique (comportement rhéologique du matériau, in-

teractions entre les inclusions, géométrie complexe des coffrages, procédé de coulage, effets de

paroi... ) sont potentiellement couplés d’utiliser un outil numérique de type Computational Fluid

Dynamics. Nous comparons alors deux méthodes. La première méthode, fortement présente dans

la littérature, prend en compte la probabilité de distribution de l’orientation d’une population de

fibres. L’état d’orientation est alors exprimé à travers un tenseur d’orientation issu de l’équation

de Jeffery. Cette méthode nécessite de considérer une relation de fermeture créée pour rendre

artificiellement le système d’équations isostatique. La deuxième méthode, appelée ”approche mul-

tifibres”, consiste à suivre l’évolution d’un nombre fini de fibres initialement réparties de manière

isotrope. L’état d’orientation à chaque instant est alors déduit de la moyenne de l’orientation de

ces fibres. Pour les deux méthodes, un terme d’interactions est pris en compte pour représenter
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l’effet diffusif des interactions hydrodynamiques entre fibres. Les résultats obtenus avec ces deux

méthodes dans le cas d’un écoulement de fluide à seuil entre deux plans infinis parallèles sont

comparés avec les mesures expérimentales sur canal et les prédictions analytiques. L’influence

du seuil d’écoulement et des interactions entre fibres sur l’orientation finale est discutée.

Enfin, nous appliquons les outils de prédiction développés à un écoulement représentatif d’une

mise en œuvre industrielle d’un point de vue forme du coffrage, mode de remplissage, concen-

tration en fibres et effets des parois. Dans un premier temps, nous décrivons la mise en place

numérique du problème à modéliser. Nous montrons ensuite que nous retrouvons les caractéris-

tiques principales mises en évidence précédemment : une orientation des fibres quasi instantanée

dans les zones en écoulement, la présence de zones non cisaillées dans lesquelles le phénomène

d’orientation est peu marqué et des valeurs très élevées du facteur d’orientation dans les zones

proches des parois. Dans un deuxième temps, nous comparons nos résultats numériques aux

résultats expérimentaux d’une campagne d’essais réalisée dans le cadre d’une collaboration avec

le GHYMAC à Bordeaux. L’orientation macroscopique de fibres dans un matériau cimentaire

coulé dans la même géométrie que celle décrite précédemment est déduite de mesures de résis-

tivité électrique locale après prise du matériau. D’autre part, le comptage de fibres sur sections

découpées permet de compléter ces résultats. Les résultats obtenus montrent l’adéquation de

nos méthodes prédictives au cahier des charges que nous nous étions fixés.
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Première partie

Avant propos
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Chapitre 1

Les bétons de fibres : composition et

comportement

1.1 Introduction

Le comportement rhéologique des matériaux cimentaires est très complexe. Leur sensibilité

à de nombreux paramètres, comme la température, la composition de la matrice cimentaire, les

inclusions, le mode et le temps de malaxage, les rend difficiles à analyser et comprendre. Sur

chantier, il est fréquent d’observer des comportements différents d’une gâchée à l’autre, pour

des formulations de matériaux variant pourtant peu. Une part importante de cette complexité

découle du nombre de constituants entrant dans la formulation (cf. Figure 1.1).

fibres

granulats

sable

pâte de ciment

Figure 1.1 – Coupe d’un béton renforcé en fibres.

De nature et de taille très variées (cf. Figure 1.2), ces constituants ne sont pas régis par les

mêmes phénomènes physiques et mécaniques dominants. Chacun influence le comportement ma-

croscopique du mélange d’une manière qui lui est propre.

L’ajout de fibres dans un matériau cimentaire en modifie les propriétés à l’état frais au même
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1.2 Approche biphasique

titre que chacun des autres constituants. Pour pouvoir étudier plus précisément l’influence des

fibres sur la rhéologie d’un composite cimentaire, un certain nombre de notions liées à cette

rhéologie sont à définir préalablement.

Dans ce chapitre, nous nous intéressons aux propriétés rhéologiques d’un matériau cimentaire,

et aux modèles de la littérature qui permettent de les décrire.

Tout d’abord, chacun des constituants des composites cimentaires est détaillé. L’approche bi-

phasique adoptée dans toute la suite de ce travail est alors justifiée. Dans une deuxième partie,

le comportement macroscopique des matériaux cimentaires à l’état frais induit par les conditions

industrielles de mise en œuvre est exposé. L’évolution de ce comportement est ensuite détaillée

à travers les modèles de prédiction des propriétés rhéologiques de suspensions granulaires clas-

siquement utilisés en rhéologie des matériaux cimentaires. Enfin, la problématique de la mise en

œuvre des bétons fibrés en écoulements industriels est mise en place dans le cadre de ce travail.

1.2 Approche biphasique

1.2.1 Polydispersité

Les constituants des matériaux cimentaires s’échelonnent des polymères des superplastifiants

de taille nanométrique aux graviers ou aux cailloux de taille centimètrique (Figure 1.2). Diffé-

rentes échelles d’observation dérivent de cet étalement de la granulométrie. A chacune d’entre

elles, le béton est un matériau hétérogène dont le comportement est dominé par des phénomènes

physiques très différents.

Forces colloidales Interactions hydrodynamiques 

ou contacts directs frictionnels

Dissipations hydrodynamiques

Forces stériques

Fibres

1 µm 1 mm 10 cm100 nm10 nm1 nm 10 µm 100 µm 1 cm

GranulatsEau

Grains de ciment

Filler calcaire Sable

Polymères

Fumée de silice

Agitation thermique

Figure 1.2 – Echelle de tailles des particules constituant les matériaux cimentaires.

De manière générale, une échelle d’observation englobe une phase continue et une phase dis-

persée. Les matériaux cimentaires induisent donc trois échelles d’observation potentielles, dont

les phases continues sont l’eau, la pâte de ciment ou le mortier, et dont les phases dispersées

associées sont respectivement les grains de ciment, le sable ou les gravillons.

Dans le cadre de cette étude, la séparation d’échelles la plus naturelle distingue les fibres et

toutes les inclusions de taille millimétrique à centimétrique (sable, graviers) avec lesquelles les

fibres peuvent interagir. Ces inclusions sont en suspension dans la pâte de ciment. Le compor-

tement des particules fines constituant la pâte est alors dominé par des interactions de type
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Les bétons de fibres : composition et comportement

colloidale et de type hydrodynamique qui dicteront le comportement de la phase continue. Cette

approche repose donc sur l’hypothèse d’une suspension biphasique composée d’une phase conti-

nue (la matrice cimentaire, supposée homogène) constituant le fluide suspendant, et d’une la

phase dispersée (les inclusions).

Cette séparation d’échelle est cependant discutable du fait de l’étalement de la granulométrie

du sable. Nous choisissons ici de négliger les particules fines du sable dont la taille les assimile à

des particules de ciment.

L’approche biphasique considérée requiert maintenant de s’intéresser au comportement de la

matrice cimentaire, et à l’influence des inclusions sur les propriétés rhéologiques du matériau.

1.2.2 Matrice cimentaire

La matrice cimentaire se compose d’une phase solide, principalement constituée de grains de

ciment, et d’une phase liquide, principalement constituée d’eau. D’autres composants viennent

cependant se rajouter à chacune des deux phases. Pour la phase solide, dans un souci de mi-

nimisation du coût et de l’impact environnemental, une partie du ciment peut être remplacée

par d’autres produits, par exemple du filler calcaire, des laitiers (déchets de l’industrie métal-

lurgique), des cendres volantes (déchets de l’industrie énergétique) ou encore de la fumée de

silice. Ces produits, dont les grains sont de natures chimiques, de tailles et de formes différentes,

peuvent jouer un rôle sur le comportement rhéologique des matériaux qu’ils composent. Dans la

phase liquide, des polymères permettent de modifier les propriétés macroscopiques d’écoulement

du matériau en assurant la dispersion des grains de ciment par adsorption sur leur surface ou

par depletion en solution [1],[2],[3],[4],[5],[6],[7],[5],[6],[8],[9]. Il a été prouvé que le comporte-

ment à cette échelle était dominé par les interactions colloidales entre les particules en solution

[1],[8],[10],[11] et par les dissipations hydrodynamiques.

Le résultat d’une formulation de la matrice cimentaire si variée est un comportement complexe

évoluant selon différentes échelles de temps.

1.2.3 Inclusions

L’industrie actuelle offre un large panel d’inclusions permettant d’optimiser la formulation

des matériaux cimentaires (résistances mécaniques, prix, comportement à l’état frais). Toutes

ces inclusions varient selon leur forme, leur état de surface, leur densité, leur rigidité, ou encore

leur polydispersité.

Le sable et les graviers, de taille supérieure de plusieurs ordres de grandeur à toutes les

particules constituant le fluide suspendant, ne sont pas régis par les mêmes phénomènes

physiques dominants. Elles participent cependant à la dissipation d’énergie lors de la mise en

écoulement du matériau via des interactions hydrodynamiques au sein de la phase continue et

des contacts directs frictionnels [10],[12].
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1.2 Approche biphasique

1.2.3.1 Sable et gravillons

Le sable et les gravillons, généralement inorganiques, occupent près des trois quart du volume

du béton. Ils sont ajoutés au matériau dans le but de diminuer la quantité de ciment utilisée et

ainsi de réduire les coûts de fabrication. Mais l’ajout d’inclusions dans un matériau en change

le comportement à l’état frais. Leur influence dépend d’un certain nombre de caractéristiques

de ces inclusions, influençant l’empilement granulaire dans le volume de pâte telles que leur

polydispersité ou leur diamètre.
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Figure 1.3 – Courbe granulométrique d’un sable et d’un gravier standards.

Les diamètres des granulats s’étalent de la centaine de microns à la dizaine de centimètres. Les

proportions types d’une formulation de béton sont 60% de graviers et 40% de sable, dont un peu

plus de 10% sont des particules très fines, de diamètre inférieur à 500 microns.

La forme des inclusions, liée au procédé d’obtention, influence la compacité de ces matières

granulaires et leur effet sur les propriétés du mélange. Une distribution plus homogène des grains

dans le cas de surfaces régulières se rapproche du cas idéal sphérique, à l’inverse des formes plus

accidentées et irrégulières des granulats concassés.

Enfin, l’état de surface des granulats conditionne les contacts frictionnels entre les grains.

1.2.3.2 Fibres

Depuis que le béton existe, des fibres sont couramment ajoutées aux matériaux cimentaires

dans l’industrie du génie civil. Elles participent d’une part à l’augmentation des résistances

mécaniques à l’état durci, et jouent d’autre part un rôle important sur la ductilité. De même

que dans le cas des autres inclusions, de nombreux paramètres liés aux fibres influencent le

comportement rhéologique du matériau auquel elles sont ajoutées. Elles peuvent tout d’abord

être de diverses natures : fibres naturelles (chanvre, tournesol), fibres synthétiques d’origine

minérale (verre, carbone, fibres métalliques), et fibres synthétiques organiques (polypropylène,

acrylique, aramide cf. Figure 1.4).

Mais c’est leur forme élancée qui différencie ces inclusions de toutes les autres. L’élancement d’une
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Les bétons de fibres : composition et comportement

(a) Fibres synthétiques (cf.

http ://www.planete-tp.com)

(b) Fibres métalliques (cf.

http ://www.infociments.fr)

Figure 1.4 – Différentes natures de fibres utilisées dans l’industrie pour renforcer les matériaux cimen-

taires.

fibre de longueur lf et de diamètre df est caractérisé dans la littérature par le facteur d’aspect

r = lf/df . Différentes formes de fibres sont disponibles. Les plus courantes sont les fibres droites,

mais il en existe aussi à crochets, en trombone, circulaires, ondulées, ou encore à bouts évasés.

Il a cependant été montré que ces différentes géométries n’avaient qu’effet négligeable sur la

rhéologie des composites [13].

Enfin, de l’état de surface de ces fibres, principalement de type lisse ou traité (abrasé), dépend

la force du lien fibre/matrice. Cette notion est très importante pour le calcul de la résistance du

matériau à l’état durci, mais ne joue qu’un rôle négligeable sur le matériau à l’état frais.

Nous choisissons dans ce travail de nous focaliser sur les fibres les plus courament utilisées dans

l’industrie du génie civil, des fibres d’acier droites et rigides.

1.2.3.3 Fraction(s) volumique(s) des inclusions

On parle principalement de fraction volumique lâche, dense et maximale (cf. Figure 1.5).

La première, la fraction volumique lâche, ou fraction de percolation φc, correspond à la fraction

volumique critique pour laquelle se forme un réseau de contacts entre toutes les inclusions capable

de transmettre un effort. La deuxième, la fraction volumique dense φm, correspond à la fraction

volumique pour laquelle ce réseau de contacts entre inclusions est stable même sous l’effet d’une

énergie apportée au système. Enfin, la fraction volumique maximale φM correspond au cas d’un

empilement optimal des inclusions dans le volume donné. Il est représentatif de la meilleure

configuration géométrique possible, même si elle est particulièrement difficile à obtenir pour

certaines particules. Ces notions de concentrations critiques ont déjà été fréquemment adaptées

aux inclusions sphériques monodisperses. Dans ce cas asymptotique, la fraction d’empilement

lâche est de l’ordre de φc ' 50%, alors que la fraction d’empilement dense est proche de φm '
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1.2 Approche biphasique

Milieu 

dilué

Milieu 

semi - dilué

Fraction de

percolation

Fraction 

dense

Fraction

maximale

Fraction volumique en inclusions

cφ

mφ Mφ

Figure 1.5 – Fractions volumiques de transition pour des sphères [14].

64%. Dans le cas de sphères adoptant une configuration cubique centrée, elle atteint la valeur

de φM = 74%.

Des modèles de la littérature permettent de prendre en compte la polydispersité dans le calcul

de φm [15],[16]. Un modèle plus général traitant du cas d’inclusions polydisperses, représentatif

du génie civil, est proposé par Stovall et al. [17], amélioré par la suite par de Larrard [18]. Il

permet d’obtenir la fraction volumique dense d’un mélange polydisperse à partir de la fraction

volumique dense de chacun des granulats de la formulation et de leur concentration dans le

mélange. De Larrard ajoute à son modèle l’effet de desserrement induit par les parois sur les

granulats placés à proximité, et traite la présence des fibres comme des effets de paroi localisés

au niveau des granulats. On peut aussi citer le modèle de Lee, similaire au modèle linéaire de

de Larrard [19].

1.2.3.4 Mécanismes de dissipation d’énergie

Les inclusions contribuent au comportement macroscopique d’un matériau cimentaire à tra-

vers deux mécanismes principaux de dissipation d’énergie. D’une part, cette énergie est dissipée

par friction entre les grains en contact durable, c’est à dire en contact dont la durée est plus

longue que le temps caractéristique de l’écoulement [12],[20]. L’intensité de ces dissipations dé-

pend fortement de la concentration en inclusions. Les contacts frictionnels dominent ainsi le

comportement du matériau pour des fractions volumiques en inclusions suffisamment élevées.

On parle alors de réseau de contacts quand la fraction volumique d’inclusions atteint une valeur

critique, appelée fraction de percolation, ou compacité lâche, φc.

D’autre part, l’énergie est dissipée par interactions hydrodynamiques. La présence d’inclusions

dans le fluide suspendant perturbe l’écoulement. Les contraintes de cisaillement sont concentrées

dans le fluide, ce qui a pour effet d’augmenter les dissipations d’énergie additionnelles, entrainant

une hausse de la viscosité apparente [21].

1.2.4 Stabilité du mélange biphasique

Le problème majeur lié à l’ajout d’inclusions millimétriques dans une matrice à la densité

de l’ordre de deux fois celle de l’eau est leur distribution au sein du matériau. En effet, la

12

te
l-0

05
98

52
1,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

11



Les bétons de fibres : composition et comportement

plupart du temps, ces inclusions sont du sable ou des graviers (densité 2,65), ou de l’acier pour

les fibres qui nous intéressent ici (densité 7,85). La différence de densité entre la matrice et

les inclusions peut alors mener à une sédimentation des inclusions, au repos ou en écoulement,

sous l’effet de leur propre poids. Les propriétés rhéologiques du matériau permettent, dans le

cas d’une formulation adaptée, de stabiliser les granulats et de conserver l’homogénéité obtenue

après malaxage. Roussel [22] dérive de l’équilibre des forces agissant sur un granulat un critère

de stabilité permettant d’éviter toute sédimentation dans le matériau. De la même manière,

nous proposons ici un critère de stabilité des fibres. La principale difficulté de cet exercice est

d’exprimer la force de trainée qui s’exerce sur les fibres plongées dans un fluide à seuil, celle-ci

dépendant de l’orientation de chacune d’entre elles. De manière à établir un critère sécuritaire,

nous considérons le cas le plus préjudiciable : celui d’une fibre alignée avec la direction de

sédimentation. Une expression de la force de trainée sur cette fibre plongée dans un fluide

Newtonien est donnée dans la littérature [23],[24],[25],[26].

Ff =
aπµN lfVf
log(2r) + b

(1.1)

où µN est la viscosité Newtonienne du fluide suspendant, lf la longueur de la fibre, r le facteur

d’aspect associé, et Vf sa vitesse de sédimentation (vitesse de la fibre par rapport au fluide). a

et b sont des constantes dont les valeurs varient selon les sources. Pour représenter la nature non

Newtonienne du fluide suspendant, la viscosité Newtonienne de l’équation (1.1) est remplacée

par la viscosité apparente d’un fluide de Bingham, en considérant τc le seuil d’écoulement, et

µp la viscosité plastique (cf. section 1.3.1.2). Cette viscosité s’écrit τc/γ̇ + µp où γ̇ est le taux

de cisaillement appliqué à la fibre. D’un point de vue dimensionnel, il est proportionnel au ratio

de la vitesse de sédimentation et de l’épaisseur de fluide cisaillé. Comme la fibre est considérée

alignée avec la direction de sédimentation, l’épaisseur du fluide cisaillé est prise égale au diamètre

de la fibre. Le système atteint l’équilibre quand la force de trainée contrebalance les forces de

gravité et de flottabilité Fm :

Fm =
πd2f lf

4
(ρf − ρfs)g = Ff (1.2)

où ρf est la masse volumique de la fibre, et ρfs celle du fluide suspendant. Le cas où la fibre ne

sédimente pas correspond à une vitesse Vf nulle. Il en résulte dans (1.2) que seul l’effet du seuil

est pris en compte dans l’expression de la force de trainée. La longueur de la fibre dérivée de cet

état d’équilibre s’écrit, pour un facteur d’aspect r∗ donné :

lf =
4aτcr

∗

g(ρf − ρsf (log(2r∗) + b))
(1.3)

Les coefficients a et b peuvent être tirés de [23] (a = 2 et b = −0, 72).

1.3 Comportement rhéologique

Au court du temps, et dès l’arrêt du malaxage, le comportement de la matrice cimentaire

évolue d’une part à court terme par des interactions réversibles entre particules, d’autre part à

plus long terme par des réactions chimiques irréversibles entrainant la prise.
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1.3 Comportement rhéologique

1.3.1 Comportement indépendant du temps

1.3.1.1 Régimes d’écoulement

Le comportement macroscopique d’un composite cimentaire résulte de la compétition entre

toutes les interactions auxquelles ses particules sont soumises. Différents régimes d’écoulement

macroscopique en résultent en fonction des vitesses de cisaillement, au cours desquels les

mécanismes de dissipation d’énergie dominants varient [10]. Ces régimes macroscopiques sont

décrits sur la Figure 1.6 à travers la viscosité apparente (rapport entre la contrainte et le taux

de déformation à chaque instant) [10],[12].

Figure 1.6 – Évolution de la viscosité apparente d’un matériau cimentaire en fonction du cisaillement

qui lui est appliqué (cf. [10]).

Pour des taux de cisaillement de l’ordre de quelques s−1, le premier régime, observé à gauche

sur la Figure 1.6, est rhéofluidifiant. Il est dû à la rupture du réseau d’interactions entre

les particules. Au cours de ce régime, le comportement macroscopique est dominé par la

compétition entre dissipations hydrodynamiques et interactions de type colloidal, de type

frictionnel entre les grains de ciment et de type frictionnel entre les inclusions.

Dans un deuxième régime pseudo Newtonien, la viscosité apparente n’évolue pas avec la vitesse

de cisaillement et décrit un plateau Newtonien (au centre de la Figure 1.6). Le comportement

est dominé par les interactions hydrodynamiques et les contacts frictionnels entre grains.

Ovarlez [27] parle alors de régime ”macro-visqueux”.

Enfin, il existe un régime rhéoépaississant pour lequel l’inertie des granulats n’est pas négligeable

et contribue à une forte dissipation d’énergie via des contacts entre inclusions [10],[27]. Ce

régime est atteint pour des taux de cisaillement de quelques dizaines de s−1. On peut cependant

noter que pour les viscosités des matériaux cimentaires standards de l’industrie (de l’ordre

de 100Pa.s), les taux de cisaillement correspondants (entre 0 et 10s−1) ne permettent pas

d’atteindre ce régime inertiel.
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Les bétons de fibres : composition et comportement

1.3.1.2 Lois de comportement

Plusieurs lois de comportement sont disponibles dans la littérature pour modéliser le compor-

tement macroscopique d’un matériau cimentaire. Elles sont ajustées sur les courbes d’écoulement

du matériau étudié (contrainte en fonction du taux de ciaillement). La Figure 1.7 présente le

modèle de Bingham, le modèle le plus simple utilisé dans la littérature pour représenter le com-

portement d’un fluide à seuil. Il est défini par son seuil d’écoulement τc (contrainte à l’origine)

et sa viscosité plastique µp (pente de la droite). C’est le modèle que nous considérons dans ce

travail pour décrire le comportement d’un matériau cimentaire.

γ
.

τ

τc

µp

Figure 1.7 – Modèle de Bingham utilisé dans la littérature pour représenter la courbe d’écoulement

d’un fluide à seuil.

Selon l’échelle adoptée, le modèle de Bingham peut modéliser le comportement macroscopique

de la pâte de ciment, du mortier ou du béton. La séparation d’échelle choisie dans ce travail

séparant matrice cimentaire et inclusions (cf. Figure 1.2), la pâte de ciment est considérée

comme un fluide de Bingham homogène auquel des inclusions sont ajoutées. À l’échelle des in-

clusions, le comportement du béton est lui-même modélisé de manière macroscopique par un

modèle de Bingham dont les paramètres rhéologiques dépendent de ceux du fluide suspendant

et des inclusions.

L’industrie du génie civil distingue un Béton Ordinaire (BO) dont le seuil est de l’ordre de

quelques milliers de Pa pour une viscosité d’environ 100Pa.s, un Mortier Ordinaire (MO) de

seuil de l’ordre de quelques centaines de Pa pour une viscosité d’environ 10Pa.s, un Béton

Auto Plaçant (BAP) de seuil de l’ordre de quelques dizaines de Pa pour une viscosité d’environ

100Pa.s, une pâte de ciment de seuil de l’ordre de quelques Pa et 1Pa.s de viscosité, et enfin

un coulis dont le seuil est de l’ordre de quelques dixièmes de Pa [28].

1.3.2 Comportement dépendant du temps

1.3.2.1 Thixotropie

Certains matériaux présentent un seuil évoluant dans le temps au cours des premières di-

zaines de minutes suivant l’étape de malaxage. Au repos, la construction d’une structure interne

renforce le réseau entre particules formant le seuil du matériau (structuration). Si un taux de
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1.3 Comportement rhéologique

cisaillement (ou une contrainte de cisaillement) constant et suffisamment fort pour casser ce nou-

veau réseau est appliqué au matériau après une période de repos, la viscosité apparente diminue

en fonction du temps d’écoulement (déstructuration). La distinction est alors faite entre un seuil

statique (ou apparent) correspondant à un matériau structuré, et un seuil dynamique (ou intrin-

sèque), correspondant au matériau déstructuré [29],[30]. Pendant longtemps, cette structuration

a été expliquée par la création de nouvelles interactions colloidales entre les particules. Les der-

nières recherches attribuent ce phénomène à la formation des premiers ponts de CSH dans le

ciment dus aux réactions d’hydratation reliant les particules les unes aux autres [31]. Quelle que

soit l’origine de cette structuration, la thixotropie implique la réversibilité du comportement.

Cette réversibilité n’en diminue pas pour autant son importance. La thixotropie apparait en

effet comme un phénomène complexe dépendant de nombreux paramètres d’une part issus de

la formulation du matériau et d’autre part de son histoire depuis le malaxage jusqu’à la prise.

Son impact est souvent non négligeable et peut même avoir de nombreuses conséquences sur

certaines applications, comme la reprise de pression sur les coffrages des éléments verticaux [32],

ou les problèmes de coulages multi couches [33]. La littérature présente des modèles simplifiés

décrivant une évolution linéaire du seuil statique dans le temps à travers un taux de structura-

tion dépendant de la concentration en inclusions [29]. De plus, la mesure de la thixotropie reste

délicate car l’état permanent doit être atteint au sein du matériau à chaque taux de cisaille-

ment pour ne pas obtenir une mauvaise estimation du phénomène de structuration [34]. Dans

ce travail de thèse, ce comportement dépendant du temps ne sera pas abordé. Chaque matériau

sera considéré à son état déstructuré (état de référence juste après malaxage), et les mesures

seront effectuées sur des matériaux ayant exactement le même ”̂age”, de manière à s’affranchir

des évolutions de comportement liées à la thixotropie des matériaux cimentaires.

1.3.2.2 Réactions d’hydratation

Elles regroupent les réactions à l’origine de la prise des matériaux cimentaires. À long

terme, elles sont responsables de l’évolution de la viscosité apparente du matériau [35],[36]. Des

ponts d’éléments de CSH (silicate de calcium hydraté) se créent entre les particules de ciment

et forment un réseau capable de supporter des efforts. Le faible nombre de ces ponts rend le

phénomène d’hydratation négligeable par rapport à la rhéologie du matériau sur une échelle

de temps de l’ordre d’une heure suivant son malaxage. Après ce délai, la multiplication des

réactions chimiques irréversibles entraine une évolution forte des propriétés rhéologiques du

matériau, le rendant plus visqueux.

Le processus d’hydratation est décrit dans la Figure 1.8 [37]. La première étape de l’hydrata-

tion, l’hydrolyse du ciment, intervient dès la fin du malaxage. Durant cette étape, la température

du matériau augmente de quelques degrés. L’étape suivante est qualifiée de période dormante.

Elle dure de une à trois heures. La chaleur dégagée par les réactions chimiques décrôıt alors de

manière drastique. Durant cette période, le comportement rhéologique du matériau ne varie

que très peu, ce qui permet au matériau d’être coulé et placé sur chantier. C’est seulement à la

fin de cette étape que le phénomène de prise s’initie. Les réactions d’hydratation provoquent

alors le durcissement de la matrice.
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 Figure 1.8 – Evolution du taux de chaleur pendant l’hydratation du ciment Portland CEM I (E/C=0,35)

[37]. Flux de chaleur (courbe de gauche) et le module élastique (aux ultra sons) (courbe de droite)

Dans tout ce travail, les matériaux cimentaires préparés seront testés dans les 30 minutes suivant

le malaxage (Figure 1.8). Cette échelle de temps est largement inférieure au temps nécessaire

aux réactions d’hydratation pour ne plus être négligeables au niveau de la rhéologie du matériau.

On peut conclure de ces comportements très complexes s’étalant sur diverses échelles de

temps que le comportement d’un matériau cimentaire ne peut être complètement pris en compte

dans un modèle aussi simple que celui de Bingham. Cependant, dans ce travail, nous considérons

une échelle de temps suffisamment courte pour négliger les effets de l’évolution de la structure

et de la microstructure dans le temps. L’influence de la thixotropie et de l’hydratation ne sont

donc pas pris en compte.

1.4 Lien formulation-rhéologie

Maintenant que le modèle de comportement choisi pour nos matériaux cimentaires est fixé à

un modèle de Bingham indépendant du temps, nous nous intéressons aux modèles de la littéra-

ture permettant de prédire l’évolution des paramètres de ce modèle en fonction du comportement

de la matrice cimentaire (phase continue) et des inclusions (phase dispersée).

1.4.1 Viscosité apparente

Les interactions dominant le comportement des inclusions sont de type hydrodynamique ou

contacts directs (cf. section 1.2.3.4). De nombreux résultats de la littérature tentent de prédire

ces paramètres par des théories d’homogénéisation. Einstein a ainsi proposé en 1906 [38] une

expression exacte de la viscosité d’une solution diluée de sphères dures. Elle prédit une croissance

linéaire de la viscosité apparente de la suspension η avec la fraction volumique d’inclusions solides

φ :

η = η0(1 + 2, 5φ) (1.4)
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1.4 Lien formulation-rhéologie

où η0 est la viscosité du solvant. La forme de cette expression est due à la limite du régime dilué

de cette loi. En effet, dans ce régime, les inclusions, éloignées les unes des autres, n’interagissent

pas entre elles, et la variation de viscosité totale correspond à la somme des variations locales

dues à une seule sphère. Il vient alors que l’augmentation de la viscosité de la suspension est

proportionnelle à la fraction volumique d’inclusions. Au delà du régime dilué nécessaire à la

validité de cette équation, un terme supplémentaire du second ordre a été ajouté à l’expression

(1.4) par Batchelor et Green [39] pour tenir compte des interactions de type hydrodynamique

entre inclusions. L’expression de la viscosité devient alors :

η = η0(1 + 2, 5φ+ 7, 6φ2) (1.5)

Kriegger et Dougherty [40] ont ensuite généralisé cette idée en exprimant la viscosité d’une

suspension en fonction d’un paramètre représentatif de l’encombrement des inclusions φ/φm,

défini comme le ratio de la fraction volumique des inclusions et de leur fraction d’empilement

(dense) (cf. section 1.2.3.3).

η = η0

(
1− φ

φm

)−[η]φm
(1.6)

où [η] la viscosité intrinsèque du matériau. Elle est égale à 2,5 dans le cas de sphères rigides,

permettant de retrouver l’expression d’Einstein (1.4) dans le cas d’un développement à l’ordre 1,

dans la limite d’une concentration φ nulle. De ce modèle sont dérivés d’autres modèles dont les

domaines d’application sont plus étendus. On trouve par exemple dans la littérature le modèle

de Quemada [41] qui prend en compte la forme non sphérique des inclusions en remplaçant

l’exposant [η]φm par un coefficient. De leur côté, Mansoutre [42] et Strubble [43] avancent un

coefficient plus proche de 4,5 pour des formes de particules non sphériques tels que les grains de

ciment.

1.4.2 Seuil d’écoulement

Le même type d’expression que celle de Krieger-Dougherty (1.6) vise à prédire le seuil d’une

suspension [40],[44] :

τc(φ) ≈ τc(0)f(φ/φm) (1.7)

où τc(φ) et τc(0) sont respectivement le seuil du béton et de la pâte de ciment. Une relation

théorique a récemment été proposée par [45],[46],[47] reliant le seuil d’une suspension au seuil

du fluide suspendant et à la fraction volumique d’inclusions :

τc(φ)

τc(0)
=

√
(1− φ)

(1− φ/φm)2,5φm
(1.8)

Ces modèles permettent de prédire le comportement de suspensions d’inclusions rigides polydis-

perses. La forme non sphérique de ces inclusions est prise en compte dans une certaine limite

puisqu’ils s’étendent aux formes irrégulières de grains dont le facteur d’aspect moyen est de

l’ordre de 2. Au delà de ces géométries, aucun modèle n’est disponible dans la littérature pour

prédire l’influence d’inclusions élancées comme les fibres rigides utilisées dans l’industrie, et dont

les facteurs d’aspect varient entre 20 et 150. De plus, la séparation d’échelle choisie à la section

1.2 nécessite la prise en compte des granulats au même titre que les fibres au niveau du réseau

d’interactions.
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Les bétons de fibres : composition et comportement

1.5 Écoulements industriels

Dans ce travail, nous nous intéressons au comportement des fibres ajoutées à des matériaux

cimentaires mis en œuvre en conditions industrielles. De nombreuses contraintes dues aux condi-

tions de mise en œuvre sont donc à prendre en compte. Tout d’abord, les structures de génie civil

impliquent d’importants volumes de matériaux, eux-mêmes renforcés avec une grande quantité

de fibres. Par exemple, 100 litres de matériau renforcé avec 1% en volume de fibres classiques

du génie civil (10mm de longueur et 0, 2mm de diamètre) représente plus d’un milliard de fibres

ajoutées au matériau. Ensuite, comme nous l’avons vu au cours de ce chapitre, le comportement

rhéologique d’un matériau cimentaire est complexe. L’ajout de fibres ne fait que renforcer cette

complexité.

Lors de sa mise en œuvre, le matériau est versé dans un coffrage. Plusieurs techniques de verse-

ment existent. Dans la plupart des cas, le matériau est extrait du camion toupie par pompage

ou par trémie. Le versement du matériau est parfois réalisé en plusieurs phases.

Une fois versé, le matériau s’écoule à travers des géométries complexes. Dans la majorité des

cas, cette difficulté se limite à la forme du coffrage (e.g. voussoir), plus rarement à la présence

de ferraillages dont le but est de renforcer la structure, peu utilisés dans les structures en béton

fibré. La plupart du temps, d’importantes zones d’interface avec les parois du coffrage induisent

une forte condition de non glissement aux frontières de l’écoulement.

Enfin, le matériau est mû par gravité. Sa progression dans le coffrage s’effectue par un écoule-

ment à surface libre, dont la pente induit le gradient de pression moteur de l’écoulement. Pour

déterminer le régime d’écoulement concerné par le type d’écoulements que nous étudions, le

nombre de Reynolds moyen associé à un écoulement classique induit par une mise en œuvre in-

dustrielle est estimé. La viscosité des bétons est de l’ordre de 100Pa.s, et leur masse volumique

de l’ordre de 2000kg/m3. La distance caractéristique de mise en œuvre est de l’ordre de 10cm si

on considère une épaisseur de coffrage ou de dallage, pour des vitesses d’écoulement de l’ordre

de 10cm/s. Ainsi, le nombre de Reynolds associé à ces paramètres est Re ' 10−2, caractéris-

tique d’un écoulement laminaire. Au cours d’écoulements industriels, les forces de viscosité sont

prépondérantes, et les forces d’inertie négligeables. Nous sommes donc face à un écoulement

laminaire en 3 dimensions et à surface libre d’un fluide de Bingham contenant une concentration

importante d’inclusions non sphériques rigides.
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Deuxième partie

Formulation
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Chapitre 2

Influence des fibres sur la rhéologie

des matériaux cimentaires

2.1 Introduction

L’ajout de fibres, comme tout autre type d’inclusions, modifie les propriétés rhéologiques

du matériau à l’état frais. La littérature des matériaux cimentaires à l’état frais a montré une

réduction de la fluidité avec l’ajout de fibres [48],[49]. Cet effet crôıt avec l’augmentation de la

concentration de fibres dans le matériau et le facteur d’aspect r des fibres utilisées (ratio entre la

longueur lf et le diamètre df des fibres) [13],[50],[51],[52],[53],[54]. Pourtant, l’influence des fibres

sur la rhéologie des matériaux cimentaires provoque toujours de nombreux questionnements.

En effet, malgré les méthodes expérimentales (empiriques) de formulation de ces matériaux

présentées dans la littérature [52], l’influence de ces fibres sur leur comportement rhéologique

est encore mal comprise et limite leur utilisation actuelle.

Nous nous focalisons dans cette deuxième partie sur des écoulements isotropes de matériaux

renforcés en fibres droites. Nous utilisons pour cela des résultats issus d’essais suffisamment

brefs pour qu’aucune ligne de courant ne puisse s’établir et entrainer l’orientation des fibres. Le

processus d’orientation est donc négligé dans cette partie.

Dans ce chapitre, un état de l’art de la littérature est dressé relativement à l’influence des fibres

sur les matériaux cimentaires. Dans une première partie, nous nous intéressons au matériau

après la prise et à l’impact des fibres sur ses résistances mécaniques et sur sa ductilité. Dans

une deuxième partie, les résultats majeurs de la littérature sur matériau fibré à l’état frais nous

permettent de dégager un paramètre représentatif de la présence des fibres au sein du fluide.

2.2 Influence des fibres sur les propriétés mécaniques

2.2.1 Ductilité des bétons fibrés

L’ajout de petites inclusions dans les matériaux cimentaires pour renforcer les matrices ci-

mentaires fragiles [55] est utilisé depuis longtemps (Porter en 1910 [56], Graham en 1911 [57]).

Les recherches sur cette technique de renforcement se sont largement développées depuis les an-

nées 1960 [58],[59],[60], et n’ont cessé depuis d’intéresser de nombreux chercheurs et industriels
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2.2 Influence des fibres sur les propriétés mécaniques

[49],[13],[55],[61],[62],[63],[64],[65],[66],[67],[68].

Aujourd’hui, l’ajout de fibres en génie civil est commun, et les limitations actuelles sont plutôt

dues à l’absence de normes officielles qu’au prix des fibres. En effet, même si les fibres restent

relativement chères, leur utilisation permet de formuler des matériaux dont le comportement

mécanique entraine la réduction drastique des épaisseurs des structures, et avec elle les quanti-

tés de matériaux. Dans le cas des Bétons Fibrés à Ultra hautes Performances (BFUP), les fibres

sont ajoutées à des matrices très concentrées en ciment, et contenant peu de granulats.

Pour remplir ces diverses applications, un panel varié de fibres est utilisé en génie civil [49]. Les

fibres que nous utilisons dans ce travail sont des fibres en acier rigides. Nous considérons dans

cette partie l’hypothèse d’une distribution homogène des fibres au sein du matériau et négligeons

ainsi tout phénomène de ségrégation. De plus, nous supposons une orientation aléatoire de ces

fibres, ce qui permet une couturation des fissures dans toutes les directions [69],[70].

Les recherches dans le domaine des matériaux cimentaires fibrés à l’état durci ont mené à distin-

guer deux échelles d’observation de ces matériaux fibrés [52],[71],[72]. D’une part, à l’échelle de

certains matériaux (BFUP), l’ajout de fibres augmente les résistances mécaniques [73],[74]. Pour

qu’un effet soit constaté à cette échelle, de fortes concentrations (de l’ordre de 5 à 10%) de fibres

très courtes (de longueur de l’ordre de 5mm) doivent être ajoutées. Les matériaux résultants

affichent des performances qualifiées de ”ultra hautes” [65],[66],[75], des propriétés écrouissantes

[55], ou de meilleures résistances aux fortes températures [76], propriétés essentielles pour les

ouvrages d’art.

Mais pour 90 à 95% des bétons fibrés de l’industrie, l’influence des fibres sur le comportement

d’une structure ne se situe pas au niveau du matériau mais au niveau de la structure elle-même

(i.e. après la localisation des fissures) [52],[71]. En effet, les fibres dans ces bétons sont trop

grandes pour avoir un effet à l’échelle du matériau. Elles permettent alors une augmentation si-

gnificative de la ductilité des structures [65],[67],[72],[75],[77],[78],[79],[80],[81],[82],[83],[84]. Pour

un matériau formulé de manière adéquate, les fibres doivent transférer un effort suffisant après

apparition de la première fissure pour permettre le développement de multiples fissures avant la

ruine du matériau [79],[80].

Le mécanisme conditionnant l’impact des fibres sur la ductilité d’une structure se situe au ni-

veau du processus d’arrachement de chaque fibre traversée par une fissure. Tant que les fibres

ne sont pas arrachées à la matrice, elles ralentissent la propagation de la fissure en maintenant

une traction de part et d’autre de la fissure et en réduisant la contrainte en pointe de fissure

[85],[86],[87],[88],[89],[90].

2.2.2 Paramètres représentatifs

La nature fragile d’une pâte de ciment peut être améliorée de manière significative avec

l’ajout de fibres si leur efficacité dans la matrice est maitrisée [91]. Le phénomène majeur control-

lant l’efficacité du renforcement de la structure par les fibres est le comportement à l’interface

fibre/matrice [49],[64],[83],[92],[93],[94],[95],[96],[97],[98],[99], résultant d’un caractère à la fois

adhésif et frictionnel dans le cas des fibres d’acier [49]. L’adhérence entre la fibre et la matrice

est complexe. La présence de pores ou de vides dans la matrice peut localement diminuer la
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Influence des fibres sur la rhéologie des matériaux cimentaires

résistance à l’interface. De manière générale, cette adhérence est faible [100],[101]. Augmenter

la surface de contact fibre/matrice, i.e. augmenter la longueur des fibres, permet alors d’amé-

liorer à la fois adhérence et friction à l’interface [83],[95]. Certains auteurs ont ainsi défini une

longueur minimale critique des fibres en dessous de laquelle les fibres ne permettent pas aux

fissures de se développer et mènent ainsi à une rupture anticipée du composite [102]. D’autre

part, une longueur maximale est définie de manière complémentaire, au delà de laquelle une fibre

ne contribue pas à la ductilité du matériau. Une fibre plus longue a alors tendance à se rompre

au lieu de s’arracher de la matrice, conférant un caractère plus fragile au matériau. Ces deux

longueurs critiques dépendent de l’intensité de l’adhérence fibre/matrice [102], et sont donc ca-

ractéristiques de l’état de surface des fibres et de la formulation du matériau. La longueur d’une

fibre respectant ces critères est alors choisie selon la nature des fissures à couturer (fibres longues

pour les macrofissures et courtes pour les microfissures) [72],[103]. Dans cette plage de longueurs,

les résultats de la littérature montrent une large amélioration des propriétés mécaniques avec le

facteur d’aspect [49],[51],[97].

Pour augmenter la ténacité à l’interface fibre/matrice, la plupart utilisent des fibres aux états

de surface abrasés ou aux formes particulières [102],[104]. Dans ce dernier cas, on trouve prin-

cipalement dans la littérature des fibres crêpées, ondulées, aux extrémités courbées ou aplaties

pour améliorer leur ancrage dans la matrice [105],[106]. L’utilisation de ces formes particulières

doit cependant faire l’objet d’une attention particulière puisque le processus de mise en forme

de ces fibres (entre autres le processus de ”crêpage” des fibres) les rend fragiles et peut produire

des concentrations locales de contraintes au sein de la matrice [106].

Le deuxième paramètre conditionnant l’efficacité des fibres dans une structure est leur fraction

volumique. Elle est représentative du nombre de fibres sur une section et influence donc dans une

large mesure la ductilité d’un composite [49],[51],[64],[71],[95],[97],[104],[105]. Plus les concentra-

tions en fibres sont élevées, et plus il est probable qu’une fissure se propageant soit couturée par

des fibres.

À partir de ce constat, Dhonde [51] étudie l’influence du facteur de fibre, défini comme le pro-

duit rφf du facteur d’aspect et de la concentration des fibres, sur le comportement mécanique

de BAP. Il note une forte amélioration de la résistance en tension, de la ductilité, du module

de rupture et de la contrainte résiduelle moyenne avec le facteur de fibres. Des essais menés sur

les mêmes matériaux à l’état frais montrent en revanche une évolution contraire de leur fluidité

avec ce même facteur, comme il le trace Figure 2.1.

2.3 Influence des fibres au niveau du comportement rhéologique

L’ajout de fibres pour renforcer les matériaux cimentaires, comme tout autre type d’inclu-

sions, en modifie les propriétés à l’état frais. Les propriétés mécaniques augmentent avec le

volume de fibres dans la gamme des concentrations du génie civil. Mais l’ajout de ces inclusions

modifie les propriétés d’écoulement des matériaux et pose une limite à leur encombrement dans

le volume de pâte. Il est important de comprendre l’influence de ces fibres sur les propriétés

rhéologiques des matériaux de manière à optimiser les formulations.
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2.3 Influence des fibres au niveau du comportement rhéologique
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Figure 2.1 – Évolution de la résistance résiduelle moyenne en fonction du facteur de fibres [51].

2.3.1 Paramètres d’influence

L’effet pénalisant des fibres rigides sur la fluidité s’accroit avec les paramètres suivants :

– rigidité

– concentration volumique

– facteur d’aspect

– forme.

On peut tout d’abord citer le type d’inclusions, représentatif de leur rigidité [105]. En effet,

le comportement d’inclusions rigides est très différent de celui d’inclusions flexibles. Les fibres

flexibles ont la capacité de se déformer sous l’effet des granulats [18]. Les mécanismes de dis-

sipation d’énergie décrits dans le chapitre 1 ne sont alors plus valides. Ensuite, comme tout

autre type d’inclusions, l’influence des fibres s’accroit avec leur concentration [53],[105]. Mais

contrairement aux inclusions de type sphérique, nous avons constaté au chapitre précédent que

la forme élancée des fibres multiplie d’autant leur encombrement au sein du matériau. Hughes

et Fattuhi [53] ont mesuré une baisse de la fluidité avec l’augmentation de la longueur des fibres

d’une part, et la réduction de leur diamètre d’autre part. Pour de Larrard [18], ce phénomène

est dû aux perturbations causées par les fibres sur la compacité totale du système [68]. Pour

d’autres, un facteur de fibres important entraine la formation d’”oursins” (i.e. amas de fibres

entremêlées, comme il est présenté sur la Figure 2.2 (c)) qui amplifient les hétérogénéités à

l’échelle du matériau [107],[108] (r ∈ [57; 106]), [105] (r ∈ [60; 100]),[109] (r ∈ [28; 100]). C’est

aussi ce que conclut Markovic [110] lorsqu’il constate une meilleur fluidité du matériau renforcé

avec des fibres courtes qu’avec un mélange de fibres courtes et longues à même concentration

(rcourt = 6/0, 16 = 37, 5 et rlong = 13/0, 20 = 65). Au dessus d’une concentration dépendant du

type de fibres, on note une augmentation du volume d’air piégé dans la matrice avec la longueur

des fibres [53],[107].

Comme il a été vu dans la section 2.2.2, on trouve dans l’industrie des fibres dont la forme est

travaillée de manière à améliorer leur ancrage au sein de la matrice (fibres en cercle, à crochets,

ondulées, en trombone ou duoform). Bien que ces formes particulières favorisent la formation

d’oursins, il a été montré que leur utilisation n’avait qu’un léger impact sur la fluidité des com-

posites [109]. Il est donc possible de négliger l’effet de la forme des fibres [106],[111]. Il faut
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Influence des fibres sur la rhéologie des matériaux cimentaires

cependant noter que l’utilisation de ces formes particulières peut entrainer une quantité d’air

dans la matrice bien supérieure à celle piégée dans le cas de fibres droites et ainsi modifier le

comportement rhéologique de la matrice [53],[109].

2.3.2 Facteur de fibres

Hughes et Fattuhi [53] ont constaté, d’après leurs résultats expérimentaux, une forte dé-

pendance de la fluidité avec l’augmentation du produit r
√
φf , où φf représente la fraction

volumique de fibres. De nombreux chercheurs [13],[51],[97],[105],[109],[111],[112],[113] ont ainsi

observé d’une manière similaire une réduction de l’étalement avec l’augmentation du facteur de

fibres rφf , quelle que soit la formulation de la pâte de ciment initiale [111].

Grünewald et Walraven [112], Bui et al. [114], Ding et al. [115], Ferrara et al. [116] et Banfill et

al. [54] ont de la même façon mesuré au rhéomètre une hausse de la contrainte seuil du maté-

riau avec le facteur de fibres. On pouvait anticiper à ce résultat connaissant la correlation qui

existe entre l’affaissement (ou l’étalement pour des bétons fluides) et le seuil [117],[118],[119].

L’évolution de l’étalement ou du seuil en fonction du facteur de fibres est décrite par beaucoup

comme non linéaire [51],[109],[114]. La réduction du seuil est lente dans un premier temps, puis

soudaine et drastique au delà d’un certain facteur de fibres critique. Une telle évolution n’est

cependant pas constatée dans tous les résultats [54] et semble dépendre d’autres paramètres.

2.3.3 Concentration critique de fibres

Swamy et Mangat [120] ont montré l’existence d’une concentration critique de fibres au delà

de laquelle le matériau ne s’écoule plus, quelles que soient ses caractéristiques rhéologiques sans

fibre. Ce même constat est rapporté par de nombreux chercheurs [13],[64],[110],[114] qui notent

sur BO ou sur BAP un effet accru des fibres sur l’étalement, ou une augmentation soudaine du

seuil mesurée au rhéomètre, au delà d’une certaine concentration de fibres. D’une part pour des

concentrations supérieures à cette valeur critique, le matériau est rapporté comme étant trop

ferme pour s’écouler. D’autre part pour des facteurs d’aspect de fibres trop élevés, des oursins

de fibres se forment, rendant le matériau hétérogène.

Nous avons réalisé des essais d’étalement dans les mêmes conditions pour arriver à ce constat.

L’essai présenté Figure 2.2 est réalisé sur une même pâte de ciment divisée en trois parts et

renforcée avec des fibres droites rigides de concentrations et facteurs d’aspect différents. Sur la

figure (a), la pâte de ciment renforcée avec 5% (en volume) de fibres de facteur d’aspect 17

semble s’écouler librement et donc présenter des propriétés rhéologiques permettant sa mise en

œuvre. Sur la figure (b), cette même pâte de ciment renforcée avec 20% des mêmes fibres est

devenue trop ferme pour s’écouler. Enfin sur la figure (c), les fibres utilisées, d’un élancement

supérieur (r=60), entrainent la formation d’oursins de fibres constatée par de nombreux cher-

cheurs [53],[105],[107],[108],[109] malgré une concentration de 5% identique à celle de la figure

(a). Ces oursins rendent le matériau hétérogène et donc impossible à utiliser sur chantier.

Notre objectif, à partir de cette observation, est de définir une concentration critique au delà de

laquelle les fibres empêchent la mise en œuvre du composite. Grünewald [13] a observé qu’un

BAP devait satisfaire des critères relatifs à son étalement (taille et forme) et sa stabilité pour
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2.3 Influence des fibres au niveau du comportement rhéologique

the steel fibers tested in this sectionwas between 33 and 80 (maximum
length 10 mm). All dimensions of the fibers tested in this paper can be
found in Table 1 and Fig. 6. The diameter of theVane toolwas 4 cmwhile
the diameter of the bowl was 10 cm. The gap between the vane tool
blades and the outerwall of the testing bowlwas therefore 40 mm large
(i.e. 5 times larger than the longest fibers). The height of material of the
bowl was 10 cm. Both dynamic (or intrinsic) yield stress (just after
mixing) and static (or apparent) yield stress (after rest) weremeasured
to check the sensitivity of the mixture to resting time [46,47]. It can be
kept in mind, that, in the rest of this paper, only the dynamic (or
intrinsic) yield stress is studied. Both dynamic and static yield stresses
after a one minute rest of the cement pastes tested here were between
25 and 30 Pa showing that the mixture studied was not strongly
thixotropic. For each test,water and awater reducer of poly-carboxylate
type (polymer to cementweight ratio of 1.3%)weremixed together and
added to the cement powder (CEM I 52.5) before a 2 minute mixing
phase (water to cement ratio equal to 0.4). The fibers were then added
and the mixture was stirred by hand before being poured in the testing
bowl. After a oneminute resting time, the Vane testwas carried out and
typicalmeasurements such as the one shown in Fig. 7were obtained. As
stated above, the fact that the cement paste without fibers does not
show any peak can be linked with the fact that this mixture is not
strongly thixotropic and that, during the oneminute resting time, it does
not have time to build a structure up. It can be noted here that a pre-
shear phase before each test could not be carried out for this specific
study as it would have strongly modified the orientation of the fibers in
the bowl. However, as the resting time and the protocolwere always the
same, it can be considered that the effects of the structuration and of the
thixotropy on the measurements can be neglected or at least do not
affect the relative yield stress (i.e. the ratio between theyield stress of the
cement paste containing fibers and the yield stress of the cement paste
alone) which is used here. A new mixture was prepared for each test.

It can be noted in Fig. 7 that, although the vane test result on the
cement paste without fibers does not display a peak (i.e. the static yield
stress after one minute rest is close to dynamic yield stress [46,47]),
there exists a stress peak when fibers are added. This peak cannot be
explained by thixotropy as the measurement was carried out at the
same age and resting time as the reference cement paste. This peak is in
fact due to the fiber orientation phenomenon. As soon as the material
starts toflow, the fibers start to get a preferred orientation. This induced
anisotropy reduces the energy needed to maintain the flow in the
suspension and therefore reduces the measured stress level. We will
limit our study in this paper to thepeakvalue corresponding to theonset
of flow and therefore to the yield stress of the isotropic material. What
we call yield tress in the following will therefore be the value of the
shear stress at the peak. However, as our material is not strongly
thixotropic and the resting time is very short, the value at the peak will
correspond to the dynamic yield stress of an isotropic mixture.

5.2. Experimental results

Weplot in Fig. 8 the relative yield stress (i.e. ratio between the yield
stress of the cement paste containing fibers and the yield stress of the
cement paste without any fibers) as a function of the relative packing
fraction ϕfr/αm with αm=4 as measured in the previous section. The
relative yield stress increases with increases in the relative packing
fraction. It can be noted that the relative yield stress stay in the same
order of magnitude (i.e. between 1 and 10) below the critical value of
0.8 (random loose packing fraction). As soon as the relative packing
fraction reaches 0.6, data are farmore scattered as the stress needed to
initiate flow strongly depends on minute changes in the existing but
not yet percolated network of contacts between fibers.

During these tests, the fibers sometimes tended to form balls. For
example, for 14% fibers with aspect ratio 33, balls of fibers appeared
and prevented any measurements of the behavior. This corresponds
to a value of ϕfr/αm equal to 1.03, which is in agreement with the
above theoretical frame. It has moreover to be noted that, for all
materials, when ϕfr/αm becomes close to 0.9, hand mixing became
particularly difficult and the rheometer torque was not sufficient to
allow for any measurement.

6. Influence of the presence of other inclusions

In most applications, fibers are not the only inclusions in the
cementitiousmixture. They combinewith sand and gravels in order to
obtain the targeted properties. In this section, we propose to deal with
these mixtures by simply adding the contribution of each type of
inclusion to the contact network.

Fig. 5. Consistency of a cement paste (water to cement ratio 0.4) mixed with fibers with various aspect ratio. (a) ϕfr/αm=0.18; (b) ϕfr/αm=0.83; (c) ϕfr/αm=1.02.

Table 1
Properties of the fibers tested in this paper.

Length
(mm)

Thickness
(mm)

Aspect ratio Shape

3 0.175 17 Straight
5 0.2 25 Straight
5 0.15 33 Straight
10 0.2 50 Straight
42 0.8 52.5 Hooked end
55 1 55 Large end
15 0.25 60 Straight
20 0.25 80 Straight
25 0.3 83 Hooked end
30 0.3 100 Hooked end

5L. Martinie et al. / Cement and Concrete Research xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: L. Martinie, et al., Rheology of fiber reinforced cementitious materials: classification and prediction, Cem. Concr.
Res. (2009), doi:10.1016/j.cemconres.2009.08.032

Figure 2.2 – Illustration de la consistence de pâtes de ciment renforcées avec des fibres de facteurs

d’aspect et concentrations différents. (a) φf = 5% et r = 17, (b) φf = 20% et r = 17, (c) φf = 5% et

r = 80.

que sa mise en œuvre soit possible. Il déduit des diverses formulations testées que les facteurs

de fibres respectant ces critères sont tous compris entre 0,2 et 0,8. Dhonde [51] atteint un bon

compromis entre fluidité et propriétés mécaniques pour des BAP renforcés avec 1% de fibres

courtes (r = 55) ou 0,5% de fibres longues (r = 80) cf. Figure 2.1. Ces deux options très

différentes correspondent à des facteurs de fibres de 0,55 et 0,4 (respectivement).

2.3.4 Prise en compte des granulats

Dans littérature, la présence d’inclusions rigides autres que les fibres semble réduire signi-

ficativement la concentration critique de fibres permettant de conserver une bonne fluidité du

matériau. Il est d’ailleurs conseillé d’un point de vue pratique de réduire les concentrations en

granulats classiquement utilisées dans l’industrie pour permettre l’ajout de fibres dans les ma-

tériaux cimentaires [13],[105],[18],[110]. D’une part, le volume occupé par les granulats dans la

matrice n’est plus disponible pour les fibres [105]. D’autre part, la présence des granulats dans

un volume de pâte influence la compacité de chacun des types d’inclusions (fibres et classes de

granulats ayant un même diamètre) [18],[110]. Au delà d’une certaine concentration (cf. cha-

pitre1 : φc), un réseau de contacts se forme dans le matériau [49],[109].

La taille des granulats est prise en compte dans le guide 544 du Comité de l’ACI pour définir

les concentrations maximales de fibres entrant dans la formulation d’un composite cimentaire.

Celui-ci propose une concentration maximale de fibres d’acier de 2%, ou 1% dans le cas de fibres

de facteur d’aspect élevé. Ce facteur est cependant très vague et ne semble pas capturer la com-

plexité du phénomène observé dans la littérature.

Des résultats plus précis rapportant l’influence des granulats sur la concentration critique en

fibres sont fournis dans [13],[64],[105],[110],[120]. Ces résultats sont cependant difficilement com-

parables dans la mesure où les paramètres de facteur d’aspect et concentrations en fibres, taille

et concentration en granulats peuvent varier.

Swamy et Mangat [120] ont expérimentalement montré en 1974 que la quantité maximale de

fibres décroissait linéairement avec la concentration en graviers pour un facteur d’aspect constant
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Influence des fibres sur la rhéologie des matériaux cimentaires

(tel que φfmax = A−Bφg avec A = −0, 025 et B = 2, 5).

Kooiman [64] a mesuré l’influence de la taille des granulats sur le facteur de fibres critique, pour

trois facteurs d’aspects de fibres différents. Ses résultats montrent une forte influence de la taille

des granulats sur les facteurs de fibres critiques (i.e. déduits des concentrations critiques de

fibres) allant de 1,2 pour des granulats de diamètre (équivalent à) 4mm à 0,4 pour un diamètre

de granulats de 32mm. Il explique ce résultat par l’influence de la taille relative des granulats par

rapport à la longueur des fibres sur leurs compacités respectives (cf. Figure 2.3). En effet, dans

un système composé de fibres et de gros granulats dont les dimensions caractéristiques sont du

même ordre, ces derniers sont repoussés par la présence des fibres [121],[18],[110]. Inversement,

les grains de sable se positionnent dans les espaces restés vides entre les granulats et les fibres

et permettent une amélioration de la compacité.

4
0
 m

m

Lf

Maximum grain size

5 mm 10 mm 20 mm

Figure 2.3 – Effet de la taille maximale des grains sur la distribution des fibres [105].

2.3.5 Critères de formulation des inclusions

Il a été montré précédemment que l’influence d’un type d’inclusions sur un autre dépend

principalement de leurs concentrations et leurs tailles caractéristiques respectives. Des critères

simples relatifs à ces paramètres et visant à optimiser la formulation des bétons renforcés en fibres

sont proposés dans la littérature. Cependant, bien souvent ces critères viennent de l’expérience

personnelle de leurs auteurs, et leur validité reste limitée. Ils fixent d’une part la taille des fibres

par rapport aux graviers, d’autre part la distribution des inclusions de type sphérique (sable par

rapport à gravier), de sorte que :

– la longueur de fibres doit être supérieure au diamètre des plus gros graviers [105],[122],

– la fraction sable/gravier doit être élevée pour permettre d’ajouter une quantité maximale

de fibres possible [108],[121],[123].

Hoy [123] propose par exemple de considérer une fraction sable/granulats (sable + gravier)

supérieure au facteur d’aspect des fibres.

Ces critères résument l’idée tirée de la littérature que l’ajout de fibres perturbe la compacité

du système d’inclusions, et que la quantité maximale de fibres vient de l’optimisation du

squelette granulaire. Le premier vise à éviter la formation d’un système constitué de deux types
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2.3 Influence des fibres au niveau du comportement rhéologique

d’inclusions du même ordre de tailles caractéristiques (fibres et gros granulats), de manière à

réduire les interactions entre ces inclusions et ainsi augmenter la compacité du système [18]. Le

deuxième permet une optimisation du squelette granulaire et donc de la compacité du mélange

grâce à une granulométrie étalée [108],[121].

Le facteur de fibres critique dépend donc de la compacité du système, elle-même déterminée

à partir de la compacité de chacun des types d’inclusions, ainsi que de leurs tailles respectives

et leurs concentrations [18],[121]. Barthos ajoute que le caractère déformable ou non d’un type

d’inclusion influence sa compacité. Deux questions se posent alors dans la suite de ce travail :

– Comment s’assurer de la rigidité des fibres ?

– Comment exprimer leur compacité ?
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Chapitre 3

Les fibres : des inclusions

particulières

3.1 Introduction

L’empilement des inclusions dans une suspension cimentaire forme le squelette granulaire

du matériau, capable de reprendre un effort à travers un réseau de contacts directs entre les

inclusions du système. Ce réseau de contacts dissipe une grande quantité d’énergie, modifiant

ainsi le seuil d’écoulement du matériau. La fraction volumique d’inclusions correspondant à

ce réseau de contacts une fois stable est appelée fraction volumique dense. Elle donne accès

au paramètre d’encombrement φ/φm du matériau par les inclusions, directement lié au volume

occupé par les inclusions dans la pâte, tel qu’il a été défini au chapitre 1. Ce paramètre permet de

prédire l’évolution du comportement rhéologique d’une suspension à partir de la concentration

en inclusions ajoutée. Il est bien connu dans le cas d’inclusions sphériques rigides mais encore

peu décrit dans la littérature dans le cas d’inclusions cylindriques élancées. On peut pourtant

penser que le comportement de la pâte varie de la même façon avec l’ajout de fibres rigides

qu’avec des inclusions sphériques rigides. En effet, les résultats de la littérature décrits dans le

chapitre précédent indiquent une forte dépendance du seuil avec la concentration et le facteur

d’aspect des fibres. L’enjeu de ce travail est alors d’exprimer le paramètre d’encombrement dans

le cas d’inclusions cylindriques dont l’élancement est représentatif des fibres du génie civil.

Nous nous attachons dans ce chapitre à dériver de la littérature des inclusions sphériques les

mécanismes de dissipation d’énergie dans le cas d’inclusions rigides de forme élancée comme les

fibres. Dans un premier temps, il convient de s’assurer de la rigidité des fibres que nous utilisons,

dans la mesure où ce caractère contrôle le niveau d’énergie dissipée par contact. Un critère de

rigidité est alors défini à partir de la nature et de la géométrie d’une fibre ainsi que du fluide dans

lequel elle est plongée. Nous définissons ensuite la notion de fraction volumique d’empilement

des fibres que nous mesurons expérimentalement dans le cas de fibres d’acier rigides couramment

utilisées en génie civil. Ce paramètre nous donne finalement accès à l’encombrement des fibres

dans un volume de pâte, dérivé des régimes de fibres de la littérature. Nous montrons qu’il

existe, comme dans le cas d’inclusions sphériques, une transition entre un régime dominé par les

interactions hydrodynamiques entre inclusions, et un régime dans lequels les contacts mécaniques
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3.2 Critère de rigidité des fibres

directs gouvernent le comportement macroscopique. Enfin, l’influence de l’orientation des fibres

sur leur encombrement dans un système est brièvement envisagé.

3.2 Critère de rigidité des fibres

L’effet des fibres rigides et flexibles sur la couturation d’une fissure est équivalent pour de

petites déformations. Cependant les fibres rigides augmentent la capacité d’absorption d’énergie

d’une manière plus significative que les fibres souples pour des déformations plus grandes [124].

C’est pourquoi leur utilisation en génie civil est beaucoup plus étendue. Ces deux types de fibres

influencent les propriétés rhéologiques des matériaux dans lesquels elles sont plongées. Leur effet

est relativement comparable, pour des concentrations similaires en fibres [105],[114]. Cependant

l’élancement des fibres d’acier est en règle générale bien plus faible que celui des autres types de

fibres (de 50 à 100 pour l’acier, de 200 à 2000 pour les autres), impliquant des facteurs de fibres

très inférieurs. À facteurs de fibres équivalents, l’influence des fibres d’acier est plus marquée.

Ce phénomène s’explique par des comportements différents dans le squelette granulaire selon la

rigidité des fibres. Les fibres souples ont la capacité de se déformer lorsqu’elles sont soumises

à la pression du fluide ou qu’elles interagissent avec d’autres inclusions. Leur influence sur la

compacité du système formé par les inclusions du matériau est donc réduite [18], [13].

Nous nous focalisons dans ce travail sur l’influence de fibres rigides sur le comportement rhéo-

logique de matériaux cimentaires. Il nous faut donc établir la distinction entre fibres rigides et

fibres souples. Par exemple, malgré un module d’Young du carbone presque identique à celui

de l’acier, la forme très élancée des fibres de carbone utilisées en général dans l’industrie leur

confère un caractère souple. De plus, même si une fibre semble rigide dans l’air ou dans l’eau,

elle peut être considérée flexible au sein d’une suspension cimentaire très visqueuse. Il est donc

important d’établir un critère de rigidité prenant en compte le module d’Young et la forme de la

fibre, ainsi que la consistance du matériau cimentaire auquel elle est ajoutée. La trainée exercée

par le matériau cimentaire sur la fibre pourrait bien sûr être calculée de façon rigoureuse, mais

nous ne considérons ici en première approche que les ordres de grandeurs des quantités calculées,

qui sont suffisants pour la formulation d’un critère de rigidité.

Notre approche consiste ici à considérer une fibre plongée dans matériau cimentaire comme un

élément uniformément chargé par le fluide qui l’entoure et d’estimer la flèche de cet élément

rapportée à sa longueur lf . Pour qu’une fibre soit considérée rigide, ce ratio doit être très faible.

Nous faisons de plus l’hypothèse que la charge uniforme (en N/m) à laquelle est soumise la fibre

est de l’ordre de τcdf , où τc représente le seuil du matériau dans lequel cette fibre est plongée,

et df son diamètre. L’ordre de grandeur de la flèche f de la fibre s’écrit alors :

f '
τcdf l

4
f

EI4
(3.1)

où E est le module d’Young de la fibre et I4 est de l’ordre de d4f . La flèche adimensionnée est

alors de l’ordre de :
f

lf
' τc
E
r3 (3.2)
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Les fibres : des inclusions particulières

Ce ratio est par exemple d’ordre 0,03% dans le cas de fibres d’acier standard (r = 50, E =

210000 Mpa) plongées dans un béton auto-plaçant (seuil = 50 Pa), alors qu’il est de l’ordre de

66% pour des fibres de carbone (r = 500, E = 190000 Mpa) plongées dans un béton ordinaire

(seuil = 1000 Pa). On peut donc conclure que les fibres standards en acier des BAP peuvent être

considérées comme rigides, contrairement aux fibres de carbone renforçant les BO. Dans tout ce

travail de recherche, nous nous focaliserons sur le cas des fibres rigides au sens du critère (3.2).

Nous considérerons dans ce travail des résultats issus de la littérature sur des matériaux renforcés

en fibres rigides. Ce critère nous amène donc à ne pas prendre en compte certains résultats de

la littérature, comme ceux de Banfill et al. [54] que nous considérons comme ayant été obtenus

dans le cas de fibres souples.

3.3 Compacité des fibres

Nous avons constaté au cours du chapitre précédent que l’influence des fibres sur les propriétés

rhéologiques des matériaux renforcés s’expliquait par leur impact au niveau de l’arrangement des

inclusions du système. Barthos [121] a déduit de ses travaux que des facteurs d’aspect croissants

entrainaient une baisse de la fraction volumique dense des fibres, ainsi que de celle du système. Il

apparait alors nécessaire d’exprimer cette compacité de manière à quantifier l’impact des fibres

sur le squelette granulaire d’un composite cimentaire.

3.3.1 Fraction(s) volumique(s) des fibres

L’étude de l’arrangement des inclusions d’un système dans un volume donné, très utile dans le

cas de sphères (cf. chapitre 1, section 1.2.3.3), est encore peu appliquée aux géométries des fibres.

Leur forme élancée réduit la symétrie du problème. On retrouve cependant sur la Figure 3.1 les

concentrations critiques évoquées au chapitre 1, i.e. fraction volumique lâche φfc (a), fraction

volumique dense φfm (b) et fraction volumique maximale φfM (c).

Figure 3.1 – Fraction volumique lâche (a), fraction volumique dense (b) et fraction volumique maximale

(c) de fibres rigides.

Les fibres utilisées dans cette études sont représentatives du génie civil. On remarque sur la

Figure 3.2 la dépendance du volume apparent occupé par les fibres avec leur facteur d’aspect,

que Barthos avait constaté dans [121].
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3.3 Compacité des fibres

Figure 3.2 – Volume apparent occupé par des fibres de facteurs d’aspect variés organisées aléatoirement.

3.3.2 Fraction volumique maximale idéale

Dans le cas d’inclusions élancées, la différence entre la compacité dense et la compacité

maximale peut être très élevée. On peut en effet penser que, si une quantité infinie d’énergie est

apportée au système, les fibres se réorganisent d’une configuration dense, comme celle présentée

sur la Figure 3.1(b), à une configuration maximale, comme le montre la Figure 3.1(c), pour

laquelle la fraction volumique atteint des valeurs proches de 80%. Elle s’écrit :

φfM =
volume du cylindre

volume total
=
π(df/2)2lf
4(df/2)2lf

=
π

4
' 0, 785 (3.3)

3.3.3 Fractions volumiques lâche et dense

3.3.3.1 Protocole expérimental

Un travail expérimental mené au LCPC nous a permis d’accéder aux valeurs de fraction

volumique aléatoire lâche φfc et dense φfm en mesurant les volumes apparents Ωavant et Ωapres

occupés par une masse M connue de fibres avant et après vibration. Les fibres utilisées lors de

ces essais sont en acier, considérées comme rigides selon le critère (3.2) (Figure 3.3). Leurs

facteurs d’aspects sont tous largement supérieurs à 1 ( r ∈ [17; 100]). Ces fibres sont en majorité

droites, bien que quelques essais sur fibres aux extrémités en forme de crochet nous ont permis de

compléter nos résultats. Leurs caractéristiques sont données dans la Table 3.1. Les récipients

utilisés pour ces essais présentent un diamètre et une hauteur au moins 5 fois plus importants

que la longueur des fibres testées. Comme les volumes occupés par les fibres (et spécialement

Ωavant) dépendent fortement du procédé de remplissage des récipients, trois essais sont réalisés

pour chaque facteur d’aspect. Nous prenons alors en compte la moyenne arithmétique de ces

trois résultats. Un temps de vibration de 2 minutes, identique pour tous les échantillons, est

choisi. Des temps plus longs ne modifient pas les volumes apparents mesurés vibrés. La confi-

guration du système est stable. On constate que le réseau dense de fibres enchevêtrées se forme

très rapidement.

Les fractions volumiques lâche et dense sont ensuite déduites des valeurs moyennes de
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Les fibres : des inclusions particulières

 

r = 

55 

r = 17 r = 100 

r = 52,5 

r = 83 

r = 80 

r = 60 

r = 50 

r = 25 

r = 33 

Figure 3.3 – Fibres testées.

Longueur Diamètre Facteur d’aspect Forme

(mm) (mm)

3 0,175 17 Droites

5 0,2 25 Droites

5 0,15 33 Droites

10 0,2 50 Droites

42 0,8 52,5 Crochet

55 1 55 Ancrage

15 0,25 60 Droites

20 0,25 80 Droites

25 0,3 83 Crochet

30 0,3 100 Crochet

Table 3.1 – Propriétés des fibres testées

M/(Ωavantρf ) et M/(Ωapresρf ), où ρf est la densité des fibres, correspondant à celle de l’acier

(ρf = 7850kg/m3).

3.3.3.2 Résultats

Les résultats obtenus avant et après vibration sont présentés Figure 3.4. lls confirment la

forte dépendance des fractions volumiques d’empilement avec le facteur d’aspect des fibres. On

remarque notamment que, pour de faibles facteurs d’aspect, les valeurs des fractions volumiques

lâche et dense des fibres tendent vers celles des sphères. Philipse et Verberkmoes [125],[126]

ont montré, pour des facteurs d’aspect élevés (bien supérieurs à 1), qu’il était possible d’ex-

primer les fractions volumiques sous la forme φfc = αc/r pour la fraction volumique lâche et

φfm = αm/r pour la fraction volumique dense. Ce coefficients αc et αm sont alors représenta-

tifs du nombre moyen de contacts nécessaires par fibre du système pour atteindre la structure

d’un réseau aléatoire lâche et d’un réseau dense respectivement. Leurs valeurs, ajustées par la
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3.3 Compacité des fibres

Fraction volumique d'empilement

0,01

0,1

1

0 20 40 60 80 100 120 140

Facteur d'aspect r

fraction lâche, veleurs experimentales (LCPC)
fraction dense, valeurs experimentales (LCPC)
fraction lâche, prediction théorique (Philipse)
fraction dense, prediction théorique (Philipse)
fraction dense de sphères rigides
fraction dense des sphères rigides 

Figure 3.4 – Fractions volumiques lâche et dense mesurées et prédites en fonction des facteurs d’aspect.

Les coefficients ajustés sur nos points expérimentaux sont respectivement égaux à 3,2 et 4.

méthode des moindres carrés sur nos résultats pour des facteurs d’aspect compris entre 50 et

100 (Figure 3.4), sont respectivement 3,2 et 4. Nos résultats sont en bon accord avec la théorie

proposée par Philipse, ainsi qu’avec les résultats expérimentaux de Nardin et Papirer [127].

Le coefficient αm ainsi obtenu à partir de nos résultats est du même ordre de grandeur que celui

de 5,4 obtenu expérimentalement par Philipse [125] pour des facteurs d’aspect supérieurs à 15,

ainsi que de la valeur 4,5 qui peut être extrapolée du travail expérimental de Nardin et Papirer

[127].

Il est intéressant de noter que le ratio entre les fractions volumiques lâche et dense φfc/φfm est

toujours constant, quel que soit le facteur d’aspect choisi, dans l’intervalle des facteurs d’aspect

étudiés. Il rejoint ce même ratio déjà de l’ordre de 0,8 dans le cas d’inclusions sphériques.

Il est finalement important de garder à l’esprit, aux vues de ces résultats, que les prédictions

théoriques des fractions volumiques lâche et dense ne suffisent pas à décrire les résultats obte-

nus expérimentalement sur toute la plage des facteurs d’aspect, ce qui était prévisible puisque

ces expressions ont été établies par Philipse et Verberkmoes [126] pour des facteurs d’aspect

largement supérieurs à 1.

3.3.4 Influence de la forme des fibres

Nous avons vu au chapitre précédent que la forme des fibres (lorsqu’elles sont non droites) n’a

qu’une faible influence sur les propriétés rhéologiques des matériaux renforcés [106],[109],[111].

Nous avons souhaité valider l’hypothèse que cette influence est négligeable au niveau de la compa-

cité des fibres à partir de nos essais sur fibres non droites. Les résultats présentés Figure 3.5(a)

et Figure 3.5(b), comparant les compacités mesurées sur fibres droites et fibres à géométrie

particulière, confirment cettes hypothèse. Nous choisissons cependant de n’utiliser que des fibres
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Les fibres : des inclusions particulières

droites pour renforcer les matériaux dont nous mesurons les propriétés rhéologiques au chapitre

suivant.

(a) fraction volumique lâche (b) fraction volumique dense

Figure 3.5 – Comparaison des fractions volumiques lâche et dense pour des fibres de différentes formes

3.3.5 Combinaisons de plusieurs types d’inclusions

Les mesures de compacité des fibres présentées section 3.3 ont été réalisées dans le cas où

les fibres, toutes de même facteur d’aspect, sont les seules inclusions du systèmes. Si d’autres

inclusions, de géométries différentes (e.g. des granulats, ou même des fibres d’un facteur d’aspect

différent), sont mélangées à ces fibres, des perturbations liées à l’arrangement des inclusions les

unes par rapport aux autres modifie la compacité du système [18],[71]. Deux configurations

peuvent être déduites de [18], correspondant aux deux critères existant dans la littérature (cf.

chapitre 2) quant à la formulation des matériaux renforcés en fibres. La première implique que la

longueur des fibres est bien supérieure à la taille des gros granulats. Les deux types d’inclusions

n’interagissent pas entre eux (i.e. la présence des fibres ne modifie pas la fraction volumique

d’empilement des inclusions, et inversement). Le sable par exemple, dans un empilement similaire

à celui qu’il adopterait en l’absence de fibres, peut se placer autour des fibres [121]. Il existe

alors un optimum granulaire. La fraction volumique d’empilement du mélange s’exprime, selon

le modèle de de Larrard :

φtotalem = inf

(
φ1m

1− φ2/φ2m
,

φ2m
1− (1− φ2m)φ1/φ1m

)
(3.4)

où les paramètres indicés 1 font référence à la classe 1 d’inclusions, et 2 à la classe 2 d’inclusions.

La deuxième configuration implique que la taille des gros granulats est de l’ordre de la lon-

gueur des fibres. Les deux classes d’inclusions s’influencent fortement. Les gros granulats sont

repoussées par les fibres [121]. Ce phénomène complexe, illustré Figure 3.6, ne peut être quan-

titativement prédit sans un grand nombre de résultats expérimentaux permettant l’ajustement

de paramètres empiriques [13],[128]. Le modèle de de Larrard ne prévoit pas de combiner les
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3.4 Encombrement des fibres

fractions volumiques des fibres et des granulats pour déterminer la fraction volumique d’empi-

lement du système, mais il propose une correction de la fraction volumique dense des granulats

φcorrm due à la présence des fibres, prise en compte à travers des effets de paroi additionnels.

φcorrm = (1− φf (1 + (1 + kf )2))× φm (3.5)

où kf est un coefficient empirique ajusté sur des résultats expérimentaux.

at which all these inclusions combine in order to generate a strong
direct contact network in the material. Below the random loose
packing fraction, the fibers and inclusions only play a small role and
the mixture behavior is very close to the cement paste behavior
whereas, above the random loose packing fraction, the material yield
stress increases by several orders of magnitude.

7. An additional mix design criterion for fiber reinforced mortars
or UHPFRC

It is possible to extract from the above results a simple mix design
criterion for UHPFRC. As the objective of mix design is to obtain the
targeted fresh and hardened properties for the cheapest cost, it can be
expected that an optimized mixture will contain as much sand as
possible. The amount of sand will however be limited by the targeted
workability of thematerial and strongly influenced by the amount and
aspect ratio of the fibers.

If the total relative packing fraction defined above is higher than
100%, fibers should tend to form clumps or balls and entrap air in the
mixture. The material will not be flowable. This means that the value
of ϕfr/4+ϕs/ϕm should stay lower than 1. The maximum amount of
fibers (ϕf)max in the mixture to prevent this from happening is

ðϕf Þmax =
400
r

ð1−ϕS =ϕmÞ ðin%Þ ð6Þ

where r is the aspect ratio of the fibers, ϕs is the packing fraction of
sand in the mixture and ϕm is the dense packing fraction of the sand
(of order 65% for a rounded sand).

Eq. (6) captures the fact that it is possible to increase the fiber
volume fraction in a given material by reducing the aspect ratio of the
fiber, by reducing the packing fraction of granular skeleton or by
choosing a sand displaying a higher dense packing fraction (i.e.
naturally rounded sand instead of crushed sand for instance).

If the total relative packing fraction ϕfr/4+ϕs/ϕm is between 0.8
and 1, it can be considered that the mixture is optimized. If it is close
to 1, it will probably be a firm mix as the contact network between
fibers and aggregates will strongly diminish the ability to flow of the
material. If it is close to 0.8, it will be possible to obtain a very fluidmix
(even self compacting) by designing a fluid cement paste through the
variation of the super-plasticizer dosage as the contribution of the
direct contacts between aggregates and fibers to the consistency of
the mix will be low.

Eq. (6) is now applied to the mix designs presented in [51–58] and
which are claimed to be optimized through successive testing or
analytical methods (i.e. these authors have introduced the highest
amount of fibers while still getting a self compacting type mixture).
The calculated total relative volume fractions of these mixes are
plotted in Fig. 11. It can be seen that the above mix design criterion
seems able to describe correctly the influence of both the fiber amount
and shapes and the aggregate contribution to the yield stress of fiber
reinforced concretes. It can be noted that, in the case of themix design
found in [58], three types of fibers are mixed together. In this specific

Fig. 9. Effect of a fiber on the packing of gravel and sand mixtures. In the above 2D dense packing example, the number of small grains needed to reach the densest packing is
increased by roughly 20% whereas the number of large grains is decreased by roughly 10%.

Fig. 10. Relative yield stress as a function of the total relative packing fraction. The
dashed line corresponds to the theoretical random loose packing. Fig. 11. Total relative packing fraction for the various mix designs in [51–58].

7L. Martinie et al. / Cement and Concrete Research xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: L. Martinie, et al., Rheology of fiber reinforced cementitious materials: classification and prediction, Cem. Concr.
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Figure 3.6 – Effet d’une fibre sur la fraction volumique d’empilement du sable et des granulats.

3.4 Encombrement des fibres

La présence d’inclusions dans un volume donné est représentée par un paramètre d’encom-

brement. Selon cet encombrement, les suspensions sont classées en régimes d’inclusions.

3.4.1 Paramètre d’encombrement

Nous avons constaté au chapitre 1 que les lois d’homogénéisation mènent à des comporte-

ments macroscopiques des suspensions évoluant avec le paramètre φ/φm représentatif de l’en-

combrement des inclusions dans un volume de matériau. Il est alors naturel de s’attendre à la

même évolution du comportement des matériaux renforcés en fibres. L’application de cette loi

d’échelle à nos inclusions très élancées exprime la dépendance du comportement d’un composite

cimentaire avec le paramètre φf/φfm et donc φfr/αm. Comme le coefficient αm ne dépend pas

du facteur d’aspect des fibres (au moins pour des facteurs d’aspect élevés), donc le comporte-

ment du composite cimentaire varie en fonction de φfr. C’est effectivement ce que nous avions

constaté dans le chapitre précédent sur trois échantillons de la même pâte de ciment renforcée

avec des concentrations et des géométries de fibres différentes. Le paramètre φfr est représentatif

du nombre de contacts moyen par fibre dans le système [125],[126]. Ce résultat explique alors un

constat important de la littérature selon lequel le comportement macroscopique d’un matériau

cimentaire renforcé en fibres dépend d’un paramètre empirique : le facteur de fibres φfr.

Philipse et Verberkmoes [126] ont déduit de considérations géométriques dans un système sta-

tique de fibres que 5 contacts non corrélés sont en moyenne nécessaires entre une fibre et les

fibres voisines pour bloquer les translations latérales de la fibre (dans la limite de facteurs d’as-

pect élevés). Ils concluent qu’un nombre supérieur de contacts est nécessaire pour bloquer les
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Les fibres : des inclusions particulières

rotations de cette même fibre. Des résultats expérimentaux les amènent à avancer un nombre

moyen de contacts entre 10 et 11 par fibre pour atteindre une configuration représentative de la

compacité dense, ce qui explique la stabilité des réseaux obtenus expérimentalement.

L’encombrement des fibres dans un volume de matériau se définit simplement comme la fraction

volumique apparente occupée par les fibres dans le volume donné (fluide + pâte). Cette fraction

volumique est calculée en prenant l’hypothèse que chaque fibre occupe (dans le volume donné)

un volume apparent Vapp de l’ordre de celui qu’elle occupe quand la compacité dense est atteinte.

L’encombrement s’écrit alors :
φf
φfm

= Nf × Vapp (3.6)

où Nf = φf/(π(df/2)2lf ) est le nombre de fibres correspondant à la concentration φf .

Le volume apparent occupé par chaque fibre se déduit de (3.6) :

Vapp =
φf
φfm

× 1

Nf
∼ l2fdf (3.7)

On retrouve alors l’ordre de grandeur du volume occupé par chaque fibre au cours de la transition

entre un régime semi-dilué et semi-concentré (cf. Figure 3.7). Ce volume délimite un régime

dominé par des interactions de type hydrodynamique et des interactions de type contacts directs

entre les fibres. Le facteur de fibres peut alors s’interpréter comme un paramètre représentatif

ffapp dlV 2>

ffapp dlV 2<

Semi-dilué : interactions hydrodynamiques

Semi-concentré : contacts mécaniques entre fibres

fL

fd

Figure 3.7 – Volume apparent occupé par chaque fibre pendant la transition entre un volume semi-dilué

et semi-concentré.

du nombre de contacts entre fibres au sein du matériau [126],[129] et donc de la force du réseau

formé par l’ensemble des inclusions.

On peut alors noter que Philipse se place dans le cas d’un système statique constitué de fibres

orientées de manière aléatoire. La question de l’influence de l’orientation des fibres sur la com-

pacité des fibres se pose alors.

3.4.2 Influence de l’orientation

On peut s’attendre à une dépendance de la fraction d’empilement dense φm, et donc du

paramètre d’encombrement, avec l’état d’orientation des fibres. Nous avons vu que le paramètre

d’encombrement était représentatif du nombre de contacts par fibre [125],[126]. Ce nombre de

contacts évolue de manière inversement proportionnelle à la distance moyenne entre les fibres.

Ranganathan et Advani [130] et Romualdi et Mandel ([131]) ont étudié cette distance moyenne

adimensionnée (ratio de la distance moyenne et de la longueur d’une fibre) dans le cas de fibres
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3.4 Encombrement des fibres

parfaitement alignées. Ils ont montré qu’elle était elle-même inversement proportionnelle au

facteur r
√
φf , ce qui est en accord avec [132]. On peut donc en conclure que dans un système de

fibres orientées, l’encombrement des fibres n’évolue plus en fonction du facteur de fibres φfr mais

en fonction du facteur r
√
φf . C’est d’ailleurs ce qu’ont constaté Hughes et Fattuhi [53] sur des

mesures d’étalement de bétons renforcés avec des fibres d’acier de géométries et de concentrations

variées. Leurs résultats montrent une évolution linéaire du rayon d’étalement avec le paramètre

r
√
φf , qui laisse supposer que les fibres se sont orientées au cours des essais.

40

te
l-0

05
98

52
1,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

11



Chapitre 4

Critères de formulation

4.1 Introduction

L’ajout d’inclusions modifie le comportement de la pâte à laquelle elles sont ajoutées en y

concentrant les déformations ou les vitesses de déformation. La littérature offre de nombreux

résultats quant à l’évolution des propriétés rhéologiques des matériaux cimentaires en fonction

du facteur de fibres φfr défini au chapitre précédent. Bon nombre d’auteurs ont noté l’existence

d’une valeur critique de ce facteur au delà de laquelle le matériau ne s’écoule plus, quelles que

soient ses caractéristiques rhéologiques sans fibre. Pour de fortes concentrations, le matériau ap-

parâıt trop ferme pour se mettre en mouvement sous l’effet de la gravité. Pour des élancements de

fibre trop élevés, des oursins de fibres se forment, rendant le matériau hétérogène. Pour une géo-

métrie de fibre donnée, ce facteur critique correspond à une concentration considérée comme la

concentration optimale de fibres à ajouter à un composite cimentaire pour obtenir les meilleures

résistances mécaniques à l’état durci. Elle représente en effet un compromis entre renforcement

des propriétés mécaniques à l’état durci et bonne fluidité à l’état frais. Il est donc nécessaire de

savoir la prédire. La plupart des résultats indique que cette concentration critique crôıt avec la

concentration en granulats. On trouve dans la littérature des valeurs d’encombrement des fibres

critique variant entre 0,05 et 0,5 selon la présence ou non d’autres inclusions dans le matériau

cimentaire [13],[54],[64],[110]. Nous avons montré au chapitre précédent que le facteur de fibres

est représentatif du réseau de contacts entre les inclusions d’un système. On peut alors penser

que l’énergie dissipée par ce réseau de contacts domine le comportement macroscopique du ma-

tériau au delà d’une certaine concentration.

Dans ce chapitre, l’influence des fibres sur le comportement rhéologique de fluides à seuil est

considérée à travers le paramètre d’encombrement des fibres défini au chapitre précédent. Des

mesures de seuil sont réalisées sur des matériaux renforcés en inclusions (fibres et sable), selon

des encombrements dus aux fibres variant dans la plage des valeurs du génie civil. Le réseau d’in-

teractions est ensuite étendu à toutes les inclusions du système (fibres et grains de sable). Nous

montrons qu’il est possible de prédire la quantité critique de fibres menant à une forte augmen-

tation du seuil des matériaux cimentaires. Un critère de formulation des composites cimentaires

est dérivé de ce résultat et appliqué à des formulations du génie civil.
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4.2 Rhéologie des composites

4.2 Rhéologie des composites

L’influence de l’encombrement des fibres droites rigides dans un volume de matériau, para-

mètre décrit dans la section précédente, est étudiée pour des pâtes de ciment et des matériaux

modèles. Tous ces matériaux ont pour point commun d’avoir un seuil d’écoulement. Leur com-

portement macroscopique peut être représenté par un modèle de Bingham.

4.2.1 Formulations

4.2.1.1 Émulsion

On choisit d’utiliser une émulsion inverse, de type ”eau dans l’huile”, composée d’une phase

huile continue, du dodécane, et d’une phase eau dispersée, de la saumure. On obtient ainsi un

matériau plus stable dans le temps qu’une émulsion directe.

La phase eau est dispersée dans une phase huile sous forme de petites goutelettes. Un émulsifiant

est ajouté de manière à assurer la stabilité du mélange. Ces deux phases étant non miscibles, la

tension de surface des particules à l’interface huile/eau crée une contrainte seuil. Celle-ci dépend

donc de la taille des microparticules.

La première étape consiste à fabriquer la saumure. Pour cela, du chlorure de calcium CaCl2

en cristaux est ajouté à de l’eau distillée déionisée pendant une première phase d’agitation (au

silversone) d’un délai supérieur à 15 minutes. Le but de l’opération est de favoriser l’absorption

de l’émulsifiant sur l’eau. La saumure obtenue est alors parfaitement homogène. Étant donné que

le chlorure de calcium a été utilisé sous forme anhydre, la saumure est laissée à décanter. Deux

saumures de concentrations différentes sont fabriquées dans le cadre de nos essais, la première à

la concentration de 100g/l de CaCl2, la deuxième à la concentration de 244, 8g/l.

Dans un deuxième temps, l’émulsifiant (du span HLB 4,3± 1.0) est ajouté à la phase huile

(dodécane) à hauteur de 6% en volume d’huile, pendant une première phase d’agitation à

900tr/min pour augmenter l’interface entre les deux phases, puis pendant une deuxième phase

à 3000tr/min. Enfin, la saumure est versée petit à petit en filet continu pendant l’agitation,

jusqu’à obtenir la consistance désirée. Plus la quantité de saumure ajoutée est importante, plus

les particules de cette phase dispersée dans la phase huile sont nombreuses, et plus les effets de

tension de surface entrent en jeu, augmentant ainsi le seuil de l’émulsion.

Trois émulsions sont préparées, dont les formulations sont indiquées Table 4.1. Les préparations

1 et 2 sont réalisées avec la saumure à 100g/l, la préparation 3 avec la saumure à 244, 8g/l.

émulsion1 émulsion2 émulsion3

Matériaux masse volume masse volume masse volume

(g) (l) (g) (l) (g) (l)

Huile 297,0 0,38 97,2 0,13 248,4 0,32

Émulsifiant 26,1 0,02 8,5 0,01 26,7 0,02

Saumure 1846,3 1,58 709,0 0,61 1517,8 1,30

Total 2169,4 1,99 814,77 0,74 1792,88 1,65

Table 4.1 – Formulation des émulsions
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Critères de formulation

Les seuils de ces émulsions sont mesurés au viscosimètre VT Haake 550 respectivement à 36 Pa,

85 Pa et 43 Pa.

Une fois ces émulsions préparées, les fibres, de facteur d’aspect r = 33 (lf = 5mm, df =

0, 15mm), sont ajoutées juste avant chaque essai de manière à éviter toute réaction chimique à

long terme avec l’acier. Neuf concentrations (en volume) allant de 3,3% à 13,2% sont réalisées.

Au delà de ces concentrations, la puissance du viscosimètre ne permet pas de poursuivre les

mesures. Le seuil est alors déterminé à partir d’essais d’étalement pour huit concentrations plus

élevées des mêmes fibres (r=33), de 13,2% à 14,9%. Finalement, le seuil de huit autres émulsions

renforcées avec des fibres d’un facteur d’aspect r = 50 (lf = 10mm, df = 0, 2mm) et à des

concentrations de 6,9% à 9,8% est mesuré par essai d’étalement.

4.2.1.2 Pâte de ciment

Une formulation très simple de pâte de ciment présentée Table 4.2 est utilisée pour chaque

essai. La phase liquide constituée de l’eau et du superplastifiant, de type poly-carboxylate (ratio

polymère / ciment de 1,3% en masse), est d’abord mélangée avant d’être ajoutée au ciment

(CEM I 52.5)(e/c=0,4). Le mélange est ensuite malaxé 2 pendant minutes. Enfin, les fibres sont

ajoutées à la main, après le malaxage, de manière à éviter la formation d’oursins et à obtenir une

distribution aléatoire de l’orientation. Les mêmes fibres droites d’acier (r = 33) sont utilisées

avec la pâte de ciment qu’avec l’émulsion.

Six gâchées de pâte de ciment sont réalisées selon la même formulation. À chaque gâchée, le

seuil de la pâte sans fibre est mesuré par essai d’étalement. Le matériau est ensuite réparti dans

plusieurs béchers pour y ajouter différentes concentrations de fibres. Vingt concentrations sont

testées de manière à dépasser les concentrations couramment atteintes dans l’industrie, de 0,62%

à 10,96%. Le seuil des pâtes de ciment renforcées est alors mesuré par essai d’étalement.

Matériaux Masse Volume

(g) (l)

Ciment 2200 0,698

Eau 660 0,660

Superplastifiant 6 0,006

Table 4.2 – Formulation des pâtes de ciment

4.2.1.3 Mortier

De même que pour la formulation des pâtes de ciment, une formulation simple de mortier,

donnée Table 4.3, est choisie comme base commune à toutes les gâchées, de manière à garder

constant le plus grand nombre de paramètres et à n’observer que l’influence des fibres. Un

ratio e/c de 0,4 est ainsi conservé. Du sable roulé de Seine 0/4 est ajouté à la pâte de ciment.

Six gâchées sont préparées en suivant le même protocole que celui décrit précédemment (cf.

4.2.1.2), en considérant ici la phase solide constituée du ciment et du sable. Deux variations
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4.2 Rhéologie des composites

sont cependant à noter. Les gâchées 4 et 6 comportent des dosages en superplastifiant différents

(15g pour la gâchée 4 et 12g pour la gâchée 6). De même que pour la pâte de ciment, le seuil

Matériaux Masse Volume

(g) (l)

Ciment 1100 0,349

Eau 330 0,33

Superplastifiant 10 0,014

Sable roulé de seine 0/4 1760 0,664

Table 4.3 – Formulation des mortiers

de chaque gâchée de mortier est mesuré avant de répartir le matériau dans plusieurs béchers

pour y ajouter les fibres à la main. Les fibres utilisées sont les mêmes fibres d’acier droites, de

facteur d’aspect r = 33. Neuf concentrations (de fibres) de 0,52% à 3,88% sont testées avec un

viscosimètre et par essai d’étalement afin de déterminer leur seuil respectif.

4.2.2 Protocoles expérimentaux

4.2.2.1 Évolution du comportement des matériaux cimentaires

Nous avons vu au chapitre 1 que le comportement des matériaux cimentaires est complexe et

dépend du temps. De manière à limiter ces effets (thixotropie et hydratation), une nouvelle pâte

est préparée pour chaque essai. Pour chaque gâchée de pâte de ciment ou de mortier, le seuil du

matériau sans fibre est, dans un premier temps, mesuré après 1 minute de repos après la fin du

malaxage. Le matériau est ensuite réparti dans trois béchers. Avant chaque essai, le matériau

est malaxé à forte vitesse de rotation pendant 2 minutes, après quoi les fibres sont incorporées

par un malaxage manuel. Un temps de repos d’1 minute est alors respecté avant de réaliser la

mesure.

Deux essais additionnels ont été menés au viscosimètre afin d’observer l’influence de la

thixotropie sur la rhéologie des matériaux dont les formulations sont présentées Table 4.2 et

Table 4.3. Les seuils dynamique (ou intrinsèque), mesuré juste après le malaxage, et statique

(ou apparent), mesuré juste après la période de repos de ces matériaux sont comparés pour

vérifier la sensibilité du mélange par rapport au temps de repos [29],[30]. Les seuils statique et

dynamique des pâtes de ciment testées après 1 minute de repos se situent tous entre 25 et 30Pa,

ce qui nous a permis de conclure à une influence faible du comportement thixotrope sur la durée

de nos essais. Nous considérons alors les effets de structuration des matériaux négligeables, ou

au moins n’affectant pas les valeurs de seuil adimensionné (i.e. rapport des seuils de la pâte

renforcée en fibres et granulats et de la pâte renforcée en granulats). De plus, nous estimons

l’âge maximal des matériaux testés (dans le bécher utilisé en dernier) à environ 20 minutes,

ce qui n’est pas suffisant pour voir apparâıtre une influence des réactions d’hydratation sur le

matériau. Le comportement rhéologique de l’émulsion s’est pour sa part révélée très stable sur

toute la période pendant laquelle nous l’avons utilisée (3 mois).
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Critères de formulation

4.2.2.2 Mesures au viscosimètre

La contrainte seuil des matériaux est mesurée avec un viscosimètre Haake VT550 selon une

procédure Vane (cf. Figure 4.2).

Figure 4.1 – Viscosimètre Haake VT550 avec géométrie Vane

La longueur maximale des fibres ajoutées à l’émulsion est de 5mm. Le diamètre de la géométrie

Vane est de 4cm, et celui du récipient de 10cm. L’entrefer entre les pâles de l’outils Vane et

la paroi extérieure du récipient est donc large de 30mm, c’est à dire 6 fois plus large que la

longueur des fibres. La hauteur du récipient est de 10cm.

Dans le cas de mesures sur matériaux cimentaires, une minute de repos après malaxage est

appliquée, après quoi l’essai Vane est démarré et des mesures classiques de (taux de cisaille-

ment/contrainte) comme celles présentées Figure 4.2 sont enregistrées.

Il faut noter qu’un précisaillement avant chaque essai n’a pas pu être intégré au protocole de

cette étude puisque cette étape aurait fortement modifié l’orientation des fibres dans le récipient

d’essais.

On note Figure 4.2 qu’un pic de contrainte apparâıt quand les fibres sont ajoutées à la pâte

de ciment. Il ne peut être expliqué par un comportement thixotrope puisque toutes les mesures

ont été menées au même âge et après des temps de repos identiques au cas de la pâte de ciment

de référence. De plus, ce pic est commun aux matériaux cimentaires et aux émulsions. Nous

attribuons alors ce phénomène au processus d’orientation des fibres. Dès que le fluide entre en

écoulement, les fibres s’alignent petit à petit avec l’orientation induite par les lignes de courant.

Ce début d’anisotropie réduit alors l’énergie nécessaire à maintenir le fluide en écoulement, et,

avec elle, la contrainte mesurée. Nous limitons notre étude à la valeur du pic correspondant

à l’établissement de l’écoulement et donc au seuil d’un matériau encore isotrope. Ce que nous

appellerons contrainte seuil dans la suite sera alors la valeur de la contrainte de cisaillement à

ce pic. Quoi qu’il en soit, le comportement faiblement thixotrope et le temps de repos très court
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4.2 Rhéologie des composites

Contrainte (Pa)
pâte de ciment

pâte de ciment et fibres

Temps (s)

Figure 4.2 – Contrainte de cisaillement mesurée au vane test en fonction du temps [48].

nous permettent d’envisager cette valeur comme le seuil dynamique du matériau isotrope.

4.2.2.3 Mesures d’étalement

L’essai d’étalement nous a permis de mesurer le seuil de nos matériaux renforcés. Un volume

connu de matériau est versé sur une surface plane, propre et sèche. Le matériau s’écoule sous

l’effet de la gravité. La hauteur H de matériau (R � H sur la Figure 4.3 (a)) ou le rayon R

de l’étalement (R � H sur la Figure 4.3 (b)) est alors mesuré à l’arrêt de l’écoulement. La

contrainte seuil est alors déduite des formules de Roussel [119]. Deux situations sont envisagées.

À l’arrêt de l’écoulement, si la hauteur d’affaissement H est bien supérieure au rayon d’étalement

R (cf. Figure 4.3 (a)), le seuil du matériau est évalué par :

Pour H � R : τc =
ρgH√

3
(4.1)

où ρ représente la masse volumique du matériau renforcé en fibres, g l’accélération de la pe-

santeur, et H la hauteur de matériau à l’arrêt. Inversement, si le diamètre d’étalement est bien

supérieur à la hauteur d’affaissement (cf. Figure 4.3 (b)), le seuil du matériau est déduit de :

Pour R� H : τc =
225ρgΩ2

128π2R5
(4.2)

avec Ω le volume de matériau versé (obtenu par différence de masses avant et après essai). Le

même temps d’attente de 1 minute entre le malaxage et la mesure, déjà appliqué pour les mesures

au viscosimètre, est respecté pour les matériaux thixotropes.

Pour mesurer un étalement caractéristique du seuil du matériau malgré la présence des fibres,

les volumes de matériau versés sont ajustés de manière à entrâıner des diamètres d’étalement

bien plus importants que la longueur d’une fibre. Ainsi, dans le cas des fibres les plus longues

(L = 10mm), le diamètre de l’étalement à l’arrêt de l’écoulement était de l’ordre de 100mm,

soit 10 fois plus important que la longueur des fibres.
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(a) (b)

Figure 4.3 – Techniques de mesure du seuil : affaissement (a), étalement (b).

4.2.3 Résultats expérimentaux

La Figure 4.4 réunit des résultats expérimentaux de seuil adimensionné issus de la littérature

[133],[54],[114] et d’autres obtenus au LCPC en fonction de l’encombrement relatif des fibres

φf/φfm. Les résultats de la littérature sont issus d’une part de rhéomètres à béton ([54],[114]) et

d’autre part d’essais comme l’essai d’étalement ou d’affaissement ([13],[113],[110]) qui permettent

d’accéder au seuil grâce aux relations données par Roussel et al. [117],[119],[118]. Les résultats

présentés ne concernent que des matériaux cimentaires renforcés avec des fibres droites et rigides

au sens du critère de rigidité donné au chapitre 2. De plus, les seuils mesurés correspondent à un

état d’orientation considéré isotrope. En effet nous faisons l’hypothèse que l’écoulement induit

par les essais d’étalement est trop court pour permettre l’établissement de lignes de courant

et ainsi orienter les fibres. D’autre part, les résultats de rhéomètrie issus de la littérature (e.g.

[114]) sont écartés puisqu’il est impossible de distinguer les mesures avant pic de celles obtenues

une fois le processus d’orientation achevé. Nous considèrons toutefois les résultats de Banfill et

al. [54] mesurés sur un Viskomat NT avec une pale dont les ailettes à la géométrie particulière

garantissent aux fibres d’être continuement mélangées et de ne jamais atteindre l’état anisotrope.

Pour ne considérer que l’effet des fibres sur le seuil du matériau pour l’intégralité des fluides

suspendants, nous choisissons d’étudier le seuil réduit/adimensionné (i.e. le rapport du seuil du

matériau renforcé en fibres sur le seuil de la pâte de ciment, du mortier ou du béton sans fibre).

Sur la Figure 4.4, le seuil adimensionné crôıt avec l’encombrement des fibres dans le matériau.

Il conserve cependant le même ordre de grandeur (i.e. entre 1 et 10Pa) en dessous d’une valeur

critique d’encombrement entre 0,6 et 0,8, ce qui signifie que le seuil d’une suspension de fibres

reste de l’ordre de celui du fluide suspendant. Les fibres interagissent principalement entre elles

par des interactions hydrodynamiques, qui dissipent une faible quantité d’énergie. Au delà de

cette zone de transition, les fibres forment un réseau de contacts directs capable de résister à

une force extérieure. Ces contacts dissipent une importante quantité d’énergie qui provoque une

forte augmentation du seuil pour des encombrements supérieurs à 0,8.

Ce constat ne suffit pourtant pas à expliquer la dispersion des points de la Figure 4.4. Parmi
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4.3 Contribution des différents types d’inclusions
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Figure 4.4 – Seuil adimensionné (i.e. ratio entre le seuil de la pâte renforcée en fibres et le seuil de la

pâte sans fibres) en fonction de la fraction volumique relative φfr/αm avec αm = 4. La ligne en pointillés

correspond à la compacité critique φc/φm = 0, 8.

tous ces résultats, dans de nombreux cas, les fibres ne sont pas les seules inclusions rigides du

système, en particulier pour les mortiers ou les bétons. Elles sont combinées avec du sable ou

des granulats qui participent au réseau d’interactions entre les inclusions du système. Au vu de

notre étude bibliographique présentée au chapitre 2, il apparait alors nécessaire de prendre en

compte la présence de ces inclusions.

4.3 Contribution des différents types d’inclusions

Nous avons constaté au cours des chapitres précédents que les inclusions granulaires parti-

cipent au réseau de contacts dans le matériau en écoulement. D’une part, elles encombrent une

part du volume de matériaux en tant qu’inclusions solides. D’autre part, leur présence affecte

dans une large mesure l’arrangement des autres inclusions, en l’occurence les fibres (cf. chapitre

2). Leur contribution doit donc être envisagée au même titre que la contribution des fibres dans

l’encombrement total du système (ou réseau de contacts).

De Larrard, dans son modèle [18], prend en compte l’influence de la présence des fibres sur

la fraction volumique dense des granulats, en considérant des effets de parois additionnels (cf.

chapitre 3 : expression (3.5)) de la correction de la fraction volumique dense des granulats due à

la présence des fibres). Cependant, aucun modèle de la littérature ne permet à l’heure actuelle
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de prédire la fraction volumique dense d’un mélange de fibres et de granulats, résultant des

fractions denses de chaque type/classe d’inclusion modifiée par la présence d’autres inclusions

de forme différente. Nous avons donc limité notre approche aux matériaux contenant du sable,

configuration dans laquelle la taille des granulats est bien inférieure à la longueur des fibres, ce

qui limite les interactions entre ces deux types d’inclusions [18]. Nos résultats seront alors appli-

cables aux matériaux cimentaires comme les mortiers renforcés en fibres, ou les Bétons Fibrés à

Ultra Hautes Performances (BFUP) ne contenant que des particules de sable. Nous faisons l’hy-

pothèse que les contributions du sable et des fibres se combinent linéairement et nous définissons

l’encombrement total dans le volume de matériau comme la somme de l’encombrement dû aux

fibres et celui dû aux granulats : φf/φmf +φs/φms, où φs et φms sont respectivement la fraction

volumique et la fraction volumique dense du sable. En faisant cette hypothèse, nous négligeons

l’influence des fractions volumiques d’empilement de chaque espèce d’inclusion due à la présence

des parois ou à l’échelle des inclusions, et nous sous-estimons probablement l’encombrement total

des inclusions du système. Il est alors possible de tracer sur la Figure 4.5 le seuil adimensionné

en fonction de l’encombrement total des inclusions, où, cette fois, le seuil adimensionné n’est

plus obtenu en divisant le seuil du mélange par le seuil du mélange sans fibres mais par le seuil

du mélange sans fibres ni autres inclusions.

La compacité dense des grains de sable naturellement roulés utilisés dans ces essais est mesurée

égale à 68%. Cette valeur peut être considérée comme standard selon les travaux de de Larrard

[128]. La quantité de sable ajoutée aux formulations étudiées est constante, alors que les concen-

trations en fibres varient, de manière à n’observer que les effets liés à un seul paramètre. La

contribution du sable par rapport à la compacité relative varie selon la concentration des fibres,

allant jusqu’à 0,65.

La Figure 4.5 présente une nette bifurcation correspondant à un encombrement critique d’in-

clusions égal à 0,8. Il a été montré au cours du chapitre précédent que cette valeur correspond,

dans le cas des fibres comme dans le cas des sphères, au ratio des fractions volumiques d’empi-

lement lâche et dense, c’est à dire à l’encombrement des inclusions dans le système lorsqu’elles

forment un réseau de percolation. La bifurcation constatée sur nos résultats se produit donc

autour de la fraction volumique critique à laquelle toutes les inclusions se combinent, générant

ainsi un réseau de contacts directs au sein du matériau. En dessous de cette valeur critique,

le seuil adimensionné est très proche de 1. Les fibres et granulats jouent un faible rôle sur le

comportement rhéologique du matériau qui reste proche de celui de la pâte de ciment. Au-delà

de cette valeur critique, le nombre de contacts directs entre les inclusions augmente dans une

large mesure. Le réseau dense de ces contacts directs entrâıne alors une forte augmentation du

seuil, empêchant ainsi une bonne mise en œuvre.

Il faut noter que le modèle de correction de la compacité des granulats proposé par de Larrard

(cf. chapitre 3 : expression (3.4)) a été appliqué à nos résultats. Ces corrections sont cependant

trop faibles par rapport aux quantités de granulats utilisées dans nos essais pour modifier l’allure

de la courbe. Quoi qu’il en soit, la Figure 4.5 montre qu’il est possible de combiner linéaire-

ment les effets des fibres et du sable pour prédire la forte augmentation du seuil des matériaux

renforcés en fibres.

49

te
l-0

05
98

52
1,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

11



4.4 Critères de formulation

 

Seuil adimensionné

0

50

100

150

200

250

300

350

0 0,2 0,4 0,6 0,8 1 1,2

Encombrement total

pâte de ciment + sable + fibres

pâte de ciment + fibres

émulsions + fibres

smsfmf φφφφ // +

Figure 4.5 – Seuil adimensionné en fonction de la fraction volumique relative totale d’inclusions. La

ligne en pointillés correspond à la compacité critique de divergence 0,8.

4.4 Critères de formulation

L’objectif de l’étape de formulation est d’atteindre, pour un coût minimal, des propriétés à

l’état frais comme à l’état solide, répondant au cahier des charges du matériau. On peut donc

s’attendre à réduire les coûts en ajoutant autant de sable que possible. Cette quantité de sable

est cependant limitée par l’ouvrabilité souhaitée du matériau, et dépend fortement de facteur

d’aspect des fibres utilisées. Si l’encombrement total défini précédemment est supérieur à 100%,

les fibres risquent de former des oursins et de piéger de l’air au sein de la structure, entravant

le bon écoulement du composite. La valeur de l’encombrement total doit donc rester inférieure

à 1, ce qui correspond au critère, pour des fibres de longueur supérieure au diamètre des grains

de sable (lf > ds) :
φf
φfm

+
φs
φsm

≤ 1 (4.3)

Ce critère montre qu’il est possible d’augmenter la quantité de fibres dans un matériau donné

en réduisant leur facteur d’aspect, en réduisant la quantité de sable, ou en substituant le sable

utilisé par un sable ayant une compacité plus élevée (i.e. du sable naturellement roulé à la place

d’un sable concassé par exemple). Il faut cependant noter que la réduction des paramètres liés

aux fibres affectent leur efficacité mécanique.

Si l’encombrement total des inclusions dans le matériau se situe entre 0,8 et 1, la formulation peut
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être considérée comme optimisée du point de vue des propriétés mécaniques. On note que dans le

cas d’un encombrement proche de 1, le matériau à l’état frais sera probablement très ferme. Ce

critère n’est donc pas suffisant pour la formulation d’un matériau fluide, de type auto-plaçant.

Un tel matériau affiche une contrainte seuil de l’ordre de 100Pa. Or pour un encombrement

proche de 0,8, l’ajout d’inclusions entrâıne l’augmentation du seuil d’un facteur 10. Il est donc

possible, en formulant une pâte de ciment fluide (dont le seuil est de l’ordre de la dizaine de Pa),

d’obtenir un composite cimentaire auto-plaçant. Ce cas correspond alors au critère :

φf
φfm

+
φs
φsm

≤ 0, 8 (4.4)

4.5 Application à des formulations du génie civil

Dans cette partie, nous nous sommes focalisés sur le seuil d’écoulement des composites cimen-

taires puisqu’il s’agit de la propriété rhéologique responsable de l’arrêt de l’écoulement et donc

primordiale pour une bonne mise en oeuvre industrielle. Nous avons montré que le seuil des ma-

tériaux cimentaires fibrés évolue avec l’encombrement des fibres dans un volume de matériaux.

Un encombrement supérieur à la valeur critique de 0,8 entraine une augmentation drastique de

la contrainte seuil et entrave le bon remplissage d’un coffrage.

On pourrait alors penser que la concentration optimale de fibres dans un composite cimen-

taire correspond à un encombrement maximal des inclusions solides, c’est à dire un encom-

brement proche de 0,8. Il représente en effet un compromis entre propriétés mécaniques à

l’état durci et bonne fluidité à l’état frais. Il est en fait facile de vérifier que l’expérience des

hommes dans le domaine du génie civil a permis de s’approcher progressivement de cette for-

mulation optimale. Ainsi, l’équation (4.4) est ici appliquée à des formulations de la littérature

[134],[135],[136],[137],[138],[139],[140],[141] présentées comme optimisées par leurs auteurs, c’est

à dire dans leur cas renforcées avec une quantité maximale de fibres permettant de conserver un

comportement auto-plaçant à l’état frais. L’encombrement total de chacun de ces matériaux est

tracé Figure 4.6.

at which all these inclusions combine in order to generate a strong
direct contact network in the material. Below the random loose
packing fraction, the fibers and inclusions only play a small role and
the mixture behavior is very close to the cement paste behavior
whereas, above the random loose packing fraction, the material yield
stress increases by several orders of magnitude.

7. An additional mix design criterion for fiber reinforced mortars
or UHPFRC

It is possible to extract from the above results a simple mix design
criterion for UHPFRC. As the objective of mix design is to obtain the
targeted fresh and hardened properties for the cheapest cost, it can be
expected that an optimized mixture will contain as much sand as
possible. The amount of sand will however be limited by the targeted
workability of thematerial and strongly influenced by the amount and
aspect ratio of the fibers.

If the total relative packing fraction defined above is higher than
100%, fibers should tend to form clumps or balls and entrap air in the
mixture. The material will not be flowable. This means that the value
of ϕfr/4+ϕs/ϕm should stay lower than 1. The maximum amount of
fibers (ϕf)max in the mixture to prevent this from happening is

ðϕf Þmax =
400
r

ð1−ϕS =ϕmÞ ðin%Þ ð6Þ

where r is the aspect ratio of the fibers, ϕs is the packing fraction of
sand in the mixture and ϕm is the dense packing fraction of the sand
(of order 65% for a rounded sand).

Eq. (6) captures the fact that it is possible to increase the fiber
volume fraction in a given material by reducing the aspect ratio of the
fiber, by reducing the packing fraction of granular skeleton or by
choosing a sand displaying a higher dense packing fraction (i.e.
naturally rounded sand instead of crushed sand for instance).

If the total relative packing fraction ϕfr/4+ϕs/ϕm is between 0.8
and 1, it can be considered that the mixture is optimized. If it is close
to 1, it will probably be a firm mix as the contact network between
fibers and aggregates will strongly diminish the ability to flow of the
material. If it is close to 0.8, it will be possible to obtain a very fluidmix
(even self compacting) by designing a fluid cement paste through the
variation of the super-plasticizer dosage as the contribution of the
direct contacts between aggregates and fibers to the consistency of
the mix will be low.

Eq. (6) is now applied to the mix designs presented in [51–58] and
which are claimed to be optimized through successive testing or
analytical methods (i.e. these authors have introduced the highest
amount of fibers while still getting a self compacting type mixture).
The calculated total relative volume fractions of these mixes are
plotted in Fig. 11. It can be seen that the above mix design criterion
seems able to describe correctly the influence of both the fiber amount
and shapes and the aggregate contribution to the yield stress of fiber
reinforced concretes. It can be noted that, in the case of themix design
found in [58], three types of fibers are mixed together. In this specific

Fig. 9. Effect of a fiber on the packing of gravel and sand mixtures. In the above 2D dense packing example, the number of small grains needed to reach the densest packing is
increased by roughly 20% whereas the number of large grains is decreased by roughly 10%.

Fig. 10. Relative yield stress as a function of the total relative packing fraction. The
dashed line corresponds to the theoretical random loose packing. Fig. 11. Total relative packing fraction for the various mix designs in [51–58].

7L. Martinie et al. / Cement and Concrete Research xxx (2009) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: L. Martinie, et al., Rheology of fiber reinforced cementitious materials: classification and prediction, Cem. Concr.
Res. (2009), doi:10.1016/j.cemconres.2009.08.032

Figure 4.6 – Encombrement total issu de [48] pour différentes formualtions de la littérature

([134],[135],[136],[137],[138],[139],[140],[141]).
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4.5 Application à des formulations du génie civil

Il ressort de cette figure que le critère défini dans la section précédente semble être un outils

permettant de prédire correctement l’influence des fibres, ainsi que la contribution des granulats

sur le seuil des matériaux considérés. On peut noter que, dans le cas des formulations tirées de

[141], trois géométries de fibres sont utilisées simultanément. Dans ce cas particulier, la compa-

cité de toutes ces fibres ne peut être déduite de l’expression φfm = αm/r. Elle est donc mesurée

en mélangeant les mêmes quantités de fibres selon la procédure indiquée dans le chapitre pré-

cédent. Le mélange se compose de 27% de laine d’acier (de compacité dense égale à 9%), 55%

de fibres d’acier courtes (de longueur 5mm et de diamètre 0, 15mm, de compacité égale à 14%)

et 18% de fibres longues (de longueur 80mm et de diamètre 0, 25mm, de compacité égale à

5%). La compacité du mélange est finalement mesurée à 15%. On constate que cette compacité

est supérieure à la compacité de chaque géométrie de fibres, puisque chaque type d’inclusions

bénéficie de la polydispersité du mélange.
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Troisième partie

Mise en oeuvre
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Chapitre 5

Écoulement industriel d’un béton de

fibres

5.1 Introduction

Contrairement aux inclusions sphériques, la mise en œuvre des matériaux cimentaires ren-

forcés en fibres peut induire une anisotropie des fibres qui modifie les propriétés rhéologiques

du matériau, et, après la prise, influence dans une large mesure ses propriétés mécaniques

[104],[64],[110],[142]. Swamy a observé à ce sujet que l’efficacité des fibres pouvait décroitre

de 100% pour des fibres totalement alignées à 30% pour des fibres distribuées de manière iso-

trope. De nombreux auteurs ont conclu, à partir d’essais d’arrachement d’une fibre, à l’existence

d’une inclinaison optimale représentant la meilleure contribution de la fibre à la couturation

d’une fissure [110]. Il apparait donc essentiel de prédire l’orientation d’une population de fibres

pendant la mise en œuvre, de manière à ajuster les concentrations en fibres relativement aux

résistances mécaniques requises.

Le processus d’orientation d’un ellipsoide induit par un écoulement, décrit pour la première

fois par Jeffery [143] en 1922, suscite toujours l’intérêt de nombreux chercheurs, principalement

dans le cas de fluides Newtoniens soumis à des écoulements simples, de type cisaillement ou

élongation. Cependant, ce processus est encore peu étudié dans le cas de fluides de Bingham

[64],[144],[145],[146].

La plupart des écoulements industriels du génie civil peut se réduire aux deux situations géné-

riques de déformation que sont le cisaillement et l’élongation, pour lesquels le processus d’orien-

tation est prédictible dans le cas d’ellipsoides plongées dans des fluides Newtoniens en régime

dilué. De nouveaux paramètres sont cependant à prendre en compte dans les configurations

industrielles du génie civil, tels que le comportement rhéologique des matériaux, la forme des

coffrages ou encore le procédé de coulage.

Nous prenons dans ce travail l’hypothèse que l’encombrement des fibres est trop faible pour

entrainer leur enchevêtrement (cf. Partie I) et que le seuil et la viscosité des matériaux renforcés

sont assez élevés pour éviter toute sédimentation des inclusions. L’hypothèse d’une distribution

homogène est donc considérée.

Dans ce chapitre, nous étudions dans un premier temps la littérature des composites à l’état
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5.2 Influence de l’orientation des fibres sur les propriétés mécaniques d’un béton

durci pour justifier de l’importance de l’orientation des fibres sur les propriétés mécaniques de

ces matériaux. Nous dérivons des résultats d’arrachement d’une fibre un angle critique au delà

duquel une fibre est considérée orientée du fait de sa contribution optimale au renforcement

du matériau à l’état durci. Puis, les techniques permettant de mesurer expérimentalement cette

orientation sont brièvement exposées. Des résultats issus d’une de ces techniques donnent un

premier aperçu de l’orientation des fibres.

Dans une deuxième partie, la notion de facteur d’orientation, notion courante de la littérature

[104],[64], [144],[145],[147],[148],[149],[150],[151],[152],[13], est définie comme un outil simple et

efficace pour caractériser le degré d’orientation d’une population de fibres à l’échelle de la struc-

ture. L’influence des parois sur l’orientation est alors exprimée à une échelle locale puis à l’échelle

de l’écoulement.

Dans un troisième partie, nous nous focalisons sur le processus d’initiation de cette orientation.

Les principaux résultats d’orientation des fibres issus de la littérature des fluides Newtoniens

nous permettent de comprendre le processus d’orientation tel qu’il a été décrit par Jeffery [143].

5.2 Influence de l’orientation des fibres sur les propriétés méca-

niques d’un béton

5.2.1 Processus d’arrachement

Nous proposons d’appeler fibre orientée (par rapport à la direction de chargement) une fibre

dont la position au sein du matériau permet de contribuer de façon optimale à son renforcement

après la prise. Un critère d’orientation est donc dérivé dans cette partie des mesures expérimen-

tales des propriétés mécaniques à l’état durci.

La résistance mécanique d’un matériau dépend de la contribution de chacune des fibres à cou-

turer une fissure. Laranjeira [82] dresse une synthèse du processus d’arrachement d’une fibre

en considérant l’influence de l’inclinaison de la fibre à chaque étape du processus, à partir des

modèles de fissuration existant dans la littérature (décollement, éclatement de la matrice, flexion

de la fibre, friction cf. Figure 5.1).

Figure 5.1 – Description du processus d’arrachement d’une fibre dans une matrice cimentaire [76].

L’orientation optimale d’une fibre, c’est à dire l’orientation induisant son efficacité maximale

(relativement à la couturation d’une fissure), correspond à la meilleure combinaison des contri-
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Écoulement industriel d’un béton de fibres

butions de la fibre à chacune des étapes d’arrachement. La détermination de cette orientation

optimale est délicate puisque l’influence de l’orientation d’une fibre au niveau de la couturation

des fissures varie selon l’étape du processus d’arrachement. Cette influence est négligeable au

cours de l’étape de décollement [153], [82]. Par contre, la quantité d’énergie dissipée par friction

de la fibre sur la matrice crôıt avec l’angle d’inclinaison, de même que le processus de flexion,

jouant un rôle significatif sur le comportement à l’arrachement [101]. Enfin, l’éclatement de la

matrice autour de la fibre au niveau de la fissure réduit la longueur de fibre encastrée, ce qui

fragilise le lien entre la fibre et la matrice.

5.2.2 Orientation optimale d’une fibre

La littérature propose des modèles prédisant le comportement à l’arrachement d’une fibre

encastrée dans une matrice cimentaire [110], [101], [154]. Ils fournissent ainsi d’importantes

informations quant à la prédiction d’une orientation optimale des fibres (cf. Figure 5.2).

Figure 5.2 – Courbe d’arrachement d’une fibre selon son orientation au sein d’une matrice cimentaire.

Modèle issu de [82].

Nous montrons dans cette section que la charge maximale d’arrachement d’une fibre est obtenue

pour une orientation de la fibre inférieure à 20̊ , et que le travail maximal est obtenu pour une

orientation de 20̊ .

5.2.2.1 Charge maximale d’arrachement

L’impact d’une fibre sur le processus de fissuration peut être mesuré sur la courbe d’arra-

chement d’une fibre par la force d’arrachement maximale (représentée sur la figure Figure 5.2

par le premier pic). Elle intervient pendant la phase de décollement [82], la plus critique au

niveau du processus d’arrachement [49], [93]. Une fissure créée sous sollicitation en traction se

propage perpendiculairement à la direction d’effort. On peut donc penser que le renforcement le

plus efficace correspond à une fibre alignée avec la direction de sollicitation [155], [156]. En effet

comme il est ensuite montré sur la figure Figure 5.2, l’inclinaison de la fibre réduit la résistance

à la fissure du matériau renforcé. Cette influence est d’abord faible pour des inclinaisons de 0◦

à 30◦ [82], [94], puis s’accélère pour des angles plus importants [83].
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5.2 Influence de l’orientation des fibres sur les propriétés mécaniques d’un béton

Quoi qu’il en soit, il a été vu au chapitre 2 que le rôle des fibres ajoutées à une matrice fragile

consiste, plus qu’à augmenter la résistance mécanique du matériau, à permettre le développe-

ment de multiples fissures avant la rupture du matériau. Les fibres confèrent alors au matériau

un caractère ductile grâce à la quantité d’énergie absorbée par chacune d’elles tout au long du

processus d’arrachement.

5.2.2.2 Travail maximal d’arrachement

De nombreux auteurs s’accordent sur l’existence d’un angle optimal pour lequel la capacité

d’absorption d’énergie est maximale [110],[82],[101],[49],[155],[156],[83]. Il correspond à l’angle

pour lequel le travail nécessaire pour extraire complètement la fibre de la matrice est maxi-

mal [94]. L’énergie absorbée par la fibre est dissipée d’une part par la friction à l’interface

fibre/matrice, d’autre part par flexion de la fibre [110].

Des résultats expérimentaux de la littérature suggèrent un travail maximal d’arrachement, donc

une énergie stockée par le matériau, pour une inclinaison de la fibre autour de 45◦ [82], [94], incli-

naison critique confirmée par les modèles de la littérature. L’énergie stockée n’est pas constante

durant le processus puisqu’elle varie selon la largeur de fissure. D’ailleurs selon Markovic [110],

une force ou un travail mesurés sur tout le processus de couturation ne suffisent pas à caracté-

riser les performances des composites quant à l’ajout de fibres. Leur influence est à considérer

pour une largeur de fissure constante, appropriée à l’élément. En effet, la ruine d’un élément

composite est supposée avoir lieu au delà d’une certaine largeur de fissure. Donc une largeur

critique doit être fixée, assez faible pour répondre aux critères de durabilité ou de résistances

mécaniques [153], [110]. Selon Markovic, elle doit être comprise entre 0,1mm et 1,0mm à la fin

du processus d’arrachement. Laranjeira [82] suggère une largeur de fissure de l’ordre de 0,2mm

à la fin de l’étape de décollement, pour des fibres d’acier communément utilisées dans l’industrie

(30-60mm de longueur et 0,5-1,00mm de diamètre).

Nous considérons ici les recommandations de l’AFGC relatives aux BFUP pour définir une lar-

geur de fissure critique [157]. Dans le cas d’éléments structurels non précontraints, le béton

appartient à la classe CLASS IV. La longueur de fissure normative est alors égale à 0,3mm, dans

l’hypothèse où aucune agression chimique externe n’est précisée. Cette largeur de fissure s’étend

de la microfissure à la macrofissure.

5.2.2.3 Travail d’arrachement maximal pour une largeur de fissure fixe

Les résultats de la littérature suggèrent que plus la largeur de fissure critique choisie est

grande, plus l’orientation optimale de la fibre est importante, jusqu’à une orientation de 45◦ à

partir de laquelle, pour un même chargement, la ruine du matériau a lieu. Ce phénomène est

principalement dû d’une part à la flexion de la fibre, d’autre part à un effet de confinement

renforçant la friction interfaciale. Pour des largeurs de fissure jusqu’à 0,2mm, Laranjeira [82]

prédit que le travail d’arrachement maximal correspond à une fibre inclinée de 18◦ par rapport à

la direction de chargement. Markovic [110] déduit de résultats de la littérature que, malgré des

écarts importants d’un auteur à l’autre, l’angle d’orientation optimal d’une fibre pour une largeur

de fissure de 0,5mm s’étend entre 0◦ et 20◦. Des angles plus élevés entrainent une réduction de
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Écoulement industriel d’un béton de fibres

la capacité de résistance en tension dans les premiers instants de chargement, qui sont décisifs

pour le reste du processus [110]. Au vu de ces résultats, le pic d’arrachement correspondant à

une largeur de fissure critique de 0,3mm est extrapolé à 20◦.

5.2.3 Influence d’une population de fibres

La légitimité du critère d’orientation à 20̊ , déduit du comportement d’une seule fibre encas-

trée dans une matrice, est à discuter dans le cas de multiples fibres orientées de manière plus

ou moins aléatoire. Le cas, par exemple, de deux fibres placées perpendiculairement l’une par

rapport à l’autre entrainera la couturation optimale d’une fissure traversant ces fibres en leur

milieu, même si l’angle formé par chacune des deux fibres avec la direction de chargement est

supérieur à 20◦. Cependant, au sein d’une distribution aléatoire de fibres dont l’orientation n’est

contrôlée que par l’écoulement, la probabilité de rencontrer des fibres alignées selon la direction

privilégiée induite par cet écoulement est largement supérieure à toute autre configuration. Le

critère d’orientation de 20̊ peut donc s’appliquer à une population de fibres comme une orien-

tation critique à partir de laquelle chaque fibre participera à la couturation d’une fissure se

propageant perpendiculairement à cette direction privilégiée.

5.3 Méthodes expérimentales de mesure de l’orientation

5.3.1 Description des méthodes

De nombreuses méthodes sont présentées dans la littérature pour mesurer l’état d’orientation

d’une population de fibres dans un matériau renforcé. Elles varient selon la nature des maté-

riaux utilisés (matrice et fibres), la taille des fibres et leur concentration. Elles se classent en

deux groupes, les méthodes destructives et les méthodes non destructives.

Les deux principales méthodes non destructives de la littérature sont la spectroscopie par impé-

dance [145],[158] et les mesures de résistivités électriques [159],[160],[146]. Ces méthodes utilisent

le courant électrique, et nécessitent donc le renforcement des structures par des fibres conduc-

trices.

Dans ce même groupe, l’évolution de l’orientation des fibres à l’état frais est mesurée, dans le cas

de fluide modèles transparents, grâce à des techniques expérimentales de visualisation (dynamic

light scattering) [161],[162],[163],[164],[165],[166],[167],[168],[169]. Des fibres tracers sont plon-

gées dans le fluide soumis à un écoulement cisaillant ou élongationnel. L’opacité des matrices

cimentaires ne permet pas en revanche l’utilisation de ce genre de techniques.

Le deuxième groupe correspond aux méthodes destructives, avec parmi elles le comptage ma-

nuel de fibres [104],[144],[151], l’analyse d’images [170],[171], la radiographie par rayons X [172],

la tomographie par rayons X (CT-Scans) [159], ou la mesure indirecte par essais mécaniques

[144],[151],[152],[159],[173].

Le comptage de fibres est la technique la plus simple et la moins onéreuse pour caractériser

l’orientation d’une population de fibres. Le comptage peut s’effectuer sur tous les types de

fibres, dès lors que la taille et la couleur des fibres permettent de les distinguer visuellement

de la matrice. La structure est découpée en sections. Le nombre de fibres comptées sur chaque
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5.3 Méthodes expérimentales de mesure de l’orientation

section est représentatif du nombre de fibres disponibles pour couturer une fissure se propageant

sur cette section. Un exemple de mesure d’orientation par comptage manuel est donné à la sec-

tion suivante.

L’analyse d’images permet de déterminer plus précisément l’orientation de chacune des fibres

sur une section. Aucune restriction ne porte sur la taille des fibres ou leur concentration. Par

contre, la taille des sections photographiées est limitée par l’appareil photographique utilisé et

la haute qualité de l’image requise. De plus, la différence de couleur nécessaire entre la fibre et

la matrice présente une forte contrainte dans le choix des fibres utilisées. Peu de résultats sont

présentés dans la littérature .

La tomographie par rayons X permet de recréer une image en 3 dimensions des fibres dans le

matériau. Le matériel utilisé est cependant très couteux [159].

Enfin nous avons vu à la section 5.2 que l’orientation des fibres modifiait leurs résistances mé-

caniques à l’état durci. Des essais mécaniques classiques, principalement l’essai de traction et

l’essai de flexion, peuvent alors être utilisés pour déterminer qualitativement l’état d’orientation

d’une population de fibres dans un composite cimentaire [144],[151],[152],[159],[173]. L’influence

de l’orientation des fibres sur les résistances mécaniques des matériaux à l’état durci n’est ce-

pendant ici que qualitative.

5.3.2 Exemple de mesure de l’orientation sur un canal à surface libre

Un exemple de résultats issus de comptage de fibres sur les sections successives d’un canal à

surface libre est proposé ici.

L’orientation est exprimée par un facteur d’orientation défini dans la section 5.4.2 pour s’affran-

chir de la difficulté de manipuler la notion d’orientation en 3 dimensions à travers une section

[149],[151],[152],[82]. Il s’écrit :

Ntheo =
Abφf
Af

(5.1)

avec Af la section d’une fibre, Ab la section de la structure et φf la fraction volumique en fibres.

5.3.2.1 Protocole expérimental

Nous choisissons de fabriquer une pâte de ciment type BAP renforcée en fibres de manière à

éviter les interactions fibres/granulats au cours du processus d’orientation des fibres. L’absence

de granulats facilite de plus le comptage de fibres sur les sections de matériaux. La pâte se

compose de ciment CEM I pour un ratio e/c = 0, 5. Du filler calcaire est mélangé au ciment

selon un ratio filler/ciment = 0, 5. Du superplastifiant (type poly-carboxylate) est ajouté à la

pâte à hauteur de 0,5% par rapport à la masse de ciment. 0,5% de fibres de facteur d’aspect

r = 50 (de longueur 10mm) sont ajoutées à la pâte durant la phase finale de l’étape de malaxage,

correspondant à un encombrement de φf/φfm = 0, 0625. Un seuil de 30Pa est mesuré par essai

d’étalement une fois le malaxage terminé.

Le matériau est ensuite versé (sans temps de repos) dans un canal de longueur L = 60cm par

une de ses extrémités et s’écoule dans le canal avant d’atteindre son extrémité opposée. Après

la prise, le canal est découpé en tronçons de 10cm d’épaisseur dans la direction de l’écoulement
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Écoulement industriel d’un béton de fibres

(cf. Figure 5.3). Aucun phénomène de sédimentation des fibres n’est observé sur les sections.

Les fibres sont alors comptées sur chacune de ces sections découpées en zones d’intérêt.

Figure 5.3 – Sections du canal à surface libre.

5.3.2.2 Résultats

Le nombre de fibres comptées par zone d’intérêt nous donne accès à un facteur d’orientation,

représentatif de l’intensité de l’orientation sur les zones étudiées. Ce facteur est décrit dans la

section 5.4.2 de ce chapitre. Les facteurs d’orientation des fibres sur les sections successives sont

reportées sur la Figure 5.4.

Facteur d'orientation (-)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

-0,05 0 0,05 0,1 0,15 0,2 0,25

Largeur de la section (m)

X/h = 2

X/h = 4

X/h = 6

X/h = 8

X/h = 10

X/h = 12

Moyenne

Paroi

zone 

non 

cisaillée

zone cisaillée

Effet de 

paroi
Effet de 

paroi

Paroi

zone cisaillée

isotropie

Figure 5.4 – Facteur d’orientation (issu du comptage de fibres) selon la direction de l’écoulement sur

différentes sections du canal à surface libre.
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5.4 Facteur d’orientation

5.4 Facteur d’orientation

5.4.1 Définition du facteur d’orientation

Le facteur d’orientation représente la fraction de fibres sur une section qui contribuent à la

couturation d’une fissure se propageant le long de cette section. Il se calcule donc par rapport à

la direction de traction appliquée à une structure.

Les valeurs du facteur d’orientation varient de 0 à 1. La valeur nulle signifie qu’aucune fibre

n’est orientée dans la direction étudiée, alors que la valeur 1 représente une orientation parfaite

de toutes les fibres dans cette direction. Ce facteur nécessite de considérer l’hypothèse d’une

distribution homogène des fibres à l’échelle de la structure, hypothèse que nous avons adoptée

au chapitre 1 de ce travail, même dans les zones proches des parois.

Ce facteur se définit d’une manière continue comme la contribution moyenne des fibres au ren-

forcement du matériau dans lequel elles sont plongées par rapport à une direction choisie, la

direction x sur la Figure 5.5. Il se calcule localement comme la projection moyenne d’une fibre

sur cette direction parmi toutes les orientations possibles de la fibre. Seule une demi-sphère est

considérée du fait de la symétrie de la fibre.

x

z

ϕd

θϕ dsin
y

ϕ

θ

Figure 5.5 – Fibre dans la sphère unité pour le calcul du facteur d’orientation selon la direction x.

Dans la suite de ce travail, une fibre est représentée par son vecteur unitaire p (Figure 5.6). Soit

ψ la densité de probabilité de distribution des fibres, définie sur la sphère unité. Elle représente

la probabilité de rencontrer une fibre entre les angles θ et θ+ dθ, et entre les angles ϕ et ϕ+ dϕ.

Le facteur s’écrit alors :

αx =

∮
p
ψ(p)pxdp (5.2)

αx =

∫ π/2

0

∫ 2π

0
ψ(θ, ϕ) sin2 ϕ cos θdϕdθ (5.3)

où px est la projection du vecteur p sur l’axe x.
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Écoulement industriel d’un béton de fibres

x

y

z

p

θ

ϕ

Figure 5.6 – Système de coordonnées d’une fibre dans un écoulement.

On trouve dans la littératures d’autres formes du même facteur. Par exemple Dupont et Vande-

walle [149] considèrent l’angle β formé par la fibre avec la direction x sur la Figure 5.5. Le facteur

d’orientation en condition isotrope s’exprime alors, dans le système d’axes donné en Annexe C),

comme la projection moyenne cosβ de la fibre sur la direction x, adimensionnée par la surface

de la demi-sphère 2π (condition d’équiprobabilité ψ(β, α) = 1/(2π) ∀β ∈ [0;π/2],∀α ∈ [0; 2π]).

Ce facteur s’écrit alors [147],[149],[174] :

αx =
1

2π

∫ π/2

0

∫ 2π

0
cosβ × sinβdα× dβ =

∫ π/2

0
cosβ sinβdβ (5.4)

Le facteur d’orientation isotrope en 3D est égal à 1/2. Dupont et Vandewalle prennent alors

en compte une anisotropie imposée par la présence d’une paroi en modifiant les bornes de

l’intégrale, sans modifier la condition d’équiprobabilité.

5.4.2 Approche expérimentale

Un facteur d’orientation est utilisé pour mesurer expérimentalement l’orientation d’une po-

pulation de fibres sur une tranche de structure d’épaisseur égale à une longueur de fibre, par

rapport à la direction normale à la section. Ainsi sur la Figure 5.7, le facteur d’orientation

αx est représentatif de l’état d’orientation des fibres contenues dans la tranche selon l’axe x.

Ce facteur est calculé comme le nombre de fibres traversant la section S (en gris foncé sur la

Figure 5.7), adimensionné par le nombre total de fibres comprises dans la tranche de part et

d’autre de la section, d’une épaisseur égale à une longueur de fibre. Le facteur d’orientation αx

s’écrit :

αx =
Nexpe

Ntheo
(5.5)

où Nexpe est le nombre de fibres comptées sur la section S, et Ntheo le nombre de fibres comprises

dans la tranche du canal.

On vérifie qu’un facteur d’orientation égal à 1 représente l’alignement de toutes les fibres, alors
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5.4 Facteur d’orientation

x

z

y

θ
fl

S

ϕ

Figure 5.7 – Orientation moyenne dans un tronçon d’une structure représenté par le facteur d’orientation

(5.5).

qu’un facteur de 0 implique une orientation de toutes les fibres orthogonale à la direction étudiée.

Plus ce facteur est faible et moins l’alignement est marqué dans la direction étudiée.

On considère une fibre fi de longueur lf comprise dans le tronçon de structure d’épaisseur lf en

gris clair sur la Figure 5.7. La fibre est définie par les angles θi et φi. La projection de cette

fibre sur l’axe orthogonal à la structure s’écrit l∗f sinφi cos θi où l∗f est la longueur de la fibre

dans le volume considéré. Alors, la probabilité Pi pour que cette fibre coupe la section S de ce

volume est égale à

Pi =
longueur projetée

longueur du tronçon
=
l∗f sinϕi cos θi

lf
(5.6)

La probabilité moyenne que chaque fibre appartenant au tronçon coupe la section centrale s’écrit

alors [175] :

< P >=<
l∗f
lf

sinϕ cos θ >=
< l∗f >

lf
< sinϕ cos θ > (5.7)

où la moyenne < . > en 3 dimensions s’écrit
∫ π/2
0

∫ 2π
0 ψ(θ, ϕ) sinϕdϕdθ, avec ψ la densité de

probabilité d’orientation des fibres. Dans l’hypothèse d’une distribution homogène des fibres, le

nombre de fibres contenues dans ce tronçon est égal à Ntotal =
Ablfφf
Af<l

∗
f>

, où < l∗f > est la longueur

moyenne des fibres dans le tronçon. Le nombre de fibres comptées sur la section droite est alors

< P > Ntotal [175], tel que :

Nexpe = < P > Ntotal

=
Ablfφf

Af < l∗f >

< l∗f >

lf
< sinϕ cos θ >

=
Abφf
Af

< sinϕ cos θ > (5.8)

Ce nombre s’écrit, en faisant la moyenne sur la sphère unité [175] :

Nexpe =
Abφf
Af

∫ π/2

0

∫ 2π

0
ψ(θ, ϕ) sin2 ϕ cos θdϕdθ (5.9)

On reconnait dans (5.9) le facteur d’orientation donné dans (5.2). L’équation (5.9) cor-

respond à une expression du facteur d’orientation couramment utilisée dans la littéra-

ture pour mesurer l’orientation d’une population de fibres dans des structures réelles
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Écoulement industriel d’un béton de fibres

[104],[142],[144],[145],[151],[152],[13] :

αx =
Nexpe

Ntheo
= Nexpe

Af
Abφf

(5.10)

En effet, l’expression Abφf représente la surface sur la section qui devrait proportionnellement

être couverte par les fibres si elles étaient toutes alignées avec la direction étudiée.
Abφf
Af

est donc

le nombre de fibres correspondant, Ntheo =
Abφf
Af

.

Le facteur d’orientation isotrope en 2 dimensions (en considérant un angle θ nul) se retrouve

alors à partir de ce raisonnement. En effet, la probabilité pour que la fibre coupe la section

étudiée, par projection sur l’axe x, devient en 2 dimensions l∗f sinϕ/lf . La projection moyenne

s’écrit alors :

< P >=
< l∗f >

lf
< sinϕ > (5.11)

où la moyenne < . > en 2 dimensions s’écrit
∫ π
0 ψ(ϕ)dϕ avec ψ est la fonction de densité de

probabilité d’orientation des fibres. Le nombre de fibres coupant réellement la section est alors,

de même que dans le cas 3D, Nexpe = Ntotal < P >, tel que :

Nexpe =
Abφf
Af

∫ π

0
ψ(ϕ) sinϕdϕ (5.12)

Le facteur d’orientation αx se déduit de (5.12) :

αx =

∫ π

0
ψ(ϕ) sinϕdϕ (5.13)

avec la condition d’équiprobabilité en 2 dimensions : ψ(ϕ) = 1
π . On retrouve alors l’expression

donnée par [174],[147],[150],[64] :

αx =

∫ π

0

sinϕ

π
dϕ =

2

π
(5.14)

Par contre, la présence d’une paroi réduisant les degrés de liberté des fibres, ou un écoulement

les orientant entraine la prise en compte dans l’expression (5.9) d’une fonction de densité de

probabilité non uniforme.

5.4.3 Approche discrète

Par opposition à l’approche continue développée dans la section 5.4.1, et dans l’esprit de

l’approche expérimentale précédemment exposée, l’état macroscopique d’orientation dans une

structure réelle combine les contributions de chacune des fibres réellement ajoutées au matériau.

Une approche discrète du facteur d’orientation le long de la direction x est alors dérivée de

l’expression (5.2) [176] :

αx =
1

N

N∑
i=1

p(i)x =
1

N

N∑
i=1

cos θi sinϕi (5.15)

où N est le nombre de fibres considérées. En reprenant l’angle βi formé par la ième fibre avec

la direction x, le facteur d’orientation discret s’écrit :

αx =
1

N

N∑
i=1

cosβi (5.16)
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5.5 Effets de paroi

pour des angles compris dans [−π/2; +π/2]. La valeur absolue du cosinus peut être nécessaire

selon l’extrémité considérée des fibres. On remarque qu’un facteur nul signifie que les contribu-

tions de toutes les fibres sont nulles, et donc que toutes les fibres sont orthogonales à la direction

étudiée. Un facteur αx = 1 implique que toutes les contributions sont égales à 1, et donc que

chaque fibre est alignée avec la direction x.

Le facteur d’orientation exprimé de manière discrète est un outil simple et pratique permettant

de caractériser l’état d’orientation d’une structure dû aux effets de paroi et aux déformations du

fluide suspendant. Nous nous intéressons maintenant à ces deux origines de l’orientation.

5.5 Effets de paroi

5.5.1 Mise en évidence de l’effet de paroi

Les résultats expérimentaux de la littérature obtenus sur fluide Newtonien cisaillé sont en

accord avec les prédictions analytiques de l’orientation des fibres due à un écoulement pour des

distances à la paroi supérieures à une longueur de fibre. Mais certains auteurs ont montré qu’une

fibre dont le centre est placé à une distance d’une paroi inférieure à une longueur de fibre ne

vérifiait plus ces prédictions analytiques [177], [178]. L’alignement des fibres avec la direction de

l’écoulement est obtenu quasi-instantanément. Pour Russel [179] l’influence de la paroi s’étend

même sur une distance égale à deux fois la longueur d’une fibre. Dans ces zones, les fibres ne

sont pas soumises aux mêmes contraintes qu’au centre de l’écoulement. En effet, la paroi modifie

les composants du couple rotation-translation appliqué à la fibre [180], qui se traduit par une

augmentation sensible de la force de trainée appliquée à la fibre. Ainsi, Moses et al. [178] ont

observé une augmentation des taux de rotation et de cisaillement du fluide, inversement à la

distance à la paroi. Le modèle d’évolution présenté dans la section 5.6.3 n’est alors plus valide

dans les zones proches des parois.

5.5.2 Comportement des fibres aux parois

D’un point de vue purement géométrique, il est évidemment impossible à une fibre de se

placer perpendiculairement à une paroi tant que la distance de son centre à la paroi est inférieure

à la demi-longueur de la fibre. Les fibres appartenant à cette zone proche des parois adoptent

donc une orientation parallèle par la paroi. Ces fibres influencent alors dans une large mesure

les fibres environnantes par des interactions hydrodynamiques et de contacts directs, sur une

distance égale à une longueur de fibre [179]. On considère donc communément que les effets de

paroi s’étendent sur une longueur de fibre à partir de la paroi. Dans cette zone, les quelques

fibres orientées perpendiculairement (i.e. alignées avec l’axe normal à la paroi à 20̊ près [181])

effectuent des rotations à une plus haute fréquence qu’une fibre parallèle à la même distance

de séparation [178]. Elles suivent un mouvement qualifié de ”pole-vaulting” par Stover et Cohen

[177], pendant lequel la distance du centre de la fibre à la paroi varie de façon périodique. Ces

rotations fréquentes modifient l’orientation des fibres et les repoussent peu à peu dans un plan

parallèle à la paroi [177],[178]. Le coulage d’un gel à cheveux de seuil de l’ordre de 10Pa renforcé

en fibres d’acier de longueur 1cm nous a permis d’oberver ce phénomène Figure 5.8. La paroi
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Écoulement industriel d’un béton de fibres

a un effet stabilisateur sur ces fibres une fois orientées dans le plan parallèle, en induisant une

importante réduction de leur vitesse angulaire [178],[180],[181],[182].

2222
LLLLffff

fl

Figure 5.8 – Orientation préférentielle des fibres dans un plan parallèle à la paroi (illustration sur un

gel à cheveux contenant des fibres d’acier de longueur 10mm et de diamètre 0, 2mm).

Dans ce plan parallèle, des résultats expérimentaux de Moses et al. [178] mettent en avant deux

orientations privilégiées des fibres. Une grande partie des fibres s’aligne avec la direction de

l’écoulement alors qu’un nombre non négligeable d’entre elles se place orthogonalement à la

direction de l’écoulement (cf. Figure 5.9). Cette distinction est de plus en plus nette plus le

plan d’observation est proche de la paroi (∼ 1mm). Le nombre de ces fibres orthogonales crôıt

lorsque leur longueur ou leur concentration diminue.

x

y

écoulement

Figure 5.9 – Orientations privilégiées des fibres par rapport à l’écoulement. Le plan (x,y) est le plan

de la paroi. Les fibres s’orientent majoritairement dans le direction de l’écoulement, mais un nombre

significatif de fibres se place perpendiculairement (illustration sur un gel à cheveux contenant des fibres

d’acier de longueur 10mm et de diamètre 0, 2mm).

Ces fibres suivent un mouvement complexe de rotation autour de leur axe propre en même temps

qu’un glissement le long de la paroi, appelé phénomène de ”rolling” [183]. Ce comportement est

observé pour de faibles concentrations et de faibles élancements, i.e. dans le cas de régimes

dilués, à cause des interactions entre fibres rendant la position perpendiculaire à l’écoulement

instable [178].
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5.5 Effets de paroi

Moses et al. déduisent de l’équilibre des moments appliqués à la fibre par l’écoulement et modifiés

par la présence de la paroi, un taux de cisaillement effectif prenant en compte l’influence de la

présence du mur dans les prédictions théoriques d’orientation. Ce taux de cisaillement effectif

décroit logarithmiquement avec la distance à la paroi.

5.5.3 Influence locale d’une paroi sur un écoulement isotrope

Pour quantifier l’influence d’une paroi sur l’orientation des fibres situées à moins d’une demi-

longueur de la paroi à une échelle locale, et plus encore à l’échelle macroscopique d’une structure

entière, de nombreux auteurs utilisent le facteur d’orientation décrit précédemment, qui permet

de manipuler simplement la notion spatiale d’orientation par rapport à une direction choisie

[104],[64],[144],[145],[147],[148],[149],[150],[151],[152],[13],[174],[184].

La condition de distribution équiprobable n’est alors plus respectée, et une contrainte géomé-

trique doit être introduite dans le calcul du facteur d’orientation (5.4). Dupont et Vandewalle

[149] prennent en compte cette restriction géométrique dans leur calcul du facteur d’orientation.

Dans une première étape, ils expriment le facteur d’orientation par rapport à la direction pa-

rallèle à la paroi. Ensuite, ce facteur est intégré sur le plan orthogonal à cette paroi, entre la

paroi et la demie longueur de fibre. L’intégration numérique du facteur d’orientation dans ce

plan renvoie la valeur du facteur d’orientation moyen sur le plan perpendiculaire à la paroi et

influencé par la présence de la paroi α⊥w = 0, 6 [149]. Ce calcul peut alors être adapté au plan

parallèle à la paroi. De même que pour le calcul de α⊥w, le facteur d’orientation est d’abord

évalué selon la direction perpendiculaire à la paroi, en fonction de la distance y entre le centre

de gravité de la fibre et la paroi :

α⊥ =

∫ π/2
arccos 2y

lf

l2f
2 π sinβ cosβdβ

πlfy
=
y

lf
(5.17)

Ensuite, ce facteur est intégré sur tous les plans parallèles à la paroi, entre y = 0 et y = lf/2

pour donner une orientation moyenne sur cette distance :

α‖w =
2

lf

∫ lf
2

0

y

lf
=

1

4
(5.18)

Le détail des calculs est donné en Annexe D.

Ce facteur α‖w = 0, 25 est alors représentatif d’une faible orientation moyenne perpendiculaire-

ment à la paroi sur l’ensemble des plans influencés par cette paroi et qui lui sont parallèles.

5.5.4 Influence d’une paroi à l’échelle de la structure

Dès lors que les facteurs d’orientation α⊥w et α‖w ont été exprimés dans la zone proche des

parois, il est facile d’étendre leur influence à l’échelle de toute une structure, à travers l’estimation

d’un facteur d’orientation moyen calculé sur une section entière de la structure étudiée. On prend

ici l’hypothèse d’une orientation isotrope dans le reste de l’écoulement. L’orientation des fibres

est ainsi uniquement due aux limites géométriques du coffrage. Nous considérons la section de

largeur caractéristique e d’une structure à laquelle des fibres de longueur lf ont été ajoutées.
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Écoulement industriel d’un béton de fibres

Dans les deux zones proches des parois s’étendant sur une demi-longueur de fibre, les fibres sont

fortement parallèles aux parois et le facteur d’orientation moyen dans ces zones est de 0,6. Sur

la distance e − 2 × lf/2 au centre de la section, les fibres sont orientées de manière isotrope et

le facteur d’orientation est donc égal à 0,5. L’orientation moyenne sur cette section est alors

évaluée sur toute la section par :

ᾱ⊥ =
1

e
(0, 5× (e− lf ) + 0, 6× lf )

=
1

2
+

lf
10e

(5.19)

Le même calcul peut alors être transposé à un plan parallèle à la paroi, d’une longueur carac-

téristique L, la même que celle de la section de la structure, pour pouvoir comparer les deux

résultats. Dans ce cas, la facteur moyen d’orientation sur ce plan est égal à :

ᾱ‖ =
1

e
(0, 5× (e− lf ) + 0, 25× lf )

=
1

2
−
lf
4e

(5.20)

La longueur des fibres communément utilisées en génie civil est de l’ordre de 10mm, et la

taille caractéristique minimale de la section d’un élément structurel est de l’ordre de 10cm.

Le ratio lf/e est donc de l’ordre de 10−1, et on peut s’attendre à ce que les variations du

facteur d’orientation moyen dues aux effets de paroi soient limitées à quelques %. Bien que,

de ce point de vue, la présence des parois ne semble pas influencer dans une large mesure les

propriétés macroscopiques du matériau, il ne faut pas oublier que, dans les zones proches des

parois, ces variations sont localement plus fortes, et que ces zones sont déterminantes au niveau

des propriétés mécaniques de la structure en terme de fissuration [149]. De plus, cette influence

moyenne des parois sur l’orientation macroscopique des fibres dans la structure peut prendre de

bien plus larges proportions dans le cas d’éléments structurels fins, par exemple dans le cas du

coulage de dalles. Dans ce dernier cas, des ratios lf/e proches de l’unité peuvent être envisagés.

5.5.5 Effet des parois sur la concentration

La présence des parois repousse vers le centre du moule les fibres ne leur étant pas parfaite-

ment parallèles, ce qui a pour effet de réduire la concentration en fibres dans la zone d’influence

de ces parois. Stroeven [185] a exprimé un facteur de réduction ξ de la concentration dans la zone

proche des parois, défini comme le ratio entre la concentration des fibres dans les zones proches

des parois et la concentration dans le reste du matériau (supposée homogène), en fonction de la

distance relative du centre de la fibre à la paroi y/lf (où y est la distance du centre de la fibre

à la paroi).

ξ = y/lf − y/lf ln(y/lf ) (5.21)

D’après l’expression de Stroeven, on peut directement observer sur la figure Figure 5.10 cette

réduction de la concentration en fibres au voisinage d’une paroi. Cet effet est cependant négligé

dans notre travail.
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5.6 Orientation des fibres

Concentration adimensionnée

0

0,5

1

0 0,5 1

Distance / longueur de fibre

Figure 5.10 – Facteur de réduction de la concentration des fibres à la paroi [185].

5.6 Orientation des fibres

5.6.1 Paramètres d’influence

L’orientation des fibres induite par la mise en œuvre d’un matériau cimentaire est influencée

par de nombreux paramètres liés aux conditions de la mise en œuvre. Certains sont dus aux fibres

elles-mêmes, et plus précisemment à leur forme. Soroushian et Lee [104] concluent de leurs résul-

tats que la forme des fibres (droite ou à crochets) n’a qu’une influence négligeable sur le facteur

d’orientation calculé sur la section d’échantillons renforcés avec des fibres de diverses formes.

Par contre le facteur d’aspect, paramètre représentatif de leur élancement, semble avoir un effet

plus significatif. Le degré d’anisotropie des fibres crôıt avec cet élancement [110],[149],[167].

De plus, le fluide suspendant dans lequel les fibres sont plongées est controlé par deux pa-

ramètres rhéologiques (seuil et viscosité). Ces paramètres influencent l’écoulement, et donc le

degré d’orientation d’une population de fibres. Stähli et van Mier [142] constatent une aniso-

tropie plus marquée dans le cas de matériaux fluides. Boulekbache et al. [144] précisent que le

paramètre rhéologique impactant l’orientation est le seuil d’écoulement du matériau.

Bien sûr, cette orientation est induite par l’écoulement. Lors d’une mise en œuvre, il dépend

d’une part du coulage (point de coulage, béton projeté [151]), d’autre part de la forme du moule

[64]. Les zones proches des parois induisent d’importants effets de parois influençant significa-

tivement l’état d’orientation local des fibres [104],[64],[149]. Les fibres tendent à adopter une

orientation plane, dans un plan parallèle aux murs.

Enfin, la méthode de production, liée à la mise en œuvre industrielle, peut finalement modi-

fier l’orientation. La vibration d’un béton pour obtenir un meilleur placement dans le coffrage

entraine par exemple une orientation des fibres dans des plans horizontaux [104],[186].

5.6.2 Orientation induite par un écoulement

Le processus d’orientation a été pour la première fois décrit par Jeffery ([143]) en 1922

et suscite toujours un fort intérêt pour de nombreux chercheurs, principalement dans le cas de

fluides suspendants newtoniens [150],[164],[167],[169],[187],[188],[189],[190],[191],[192],[193],fibres
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Écoulement industriel d’un béton de fibres

polymères : [161],[166], injection : [194],[195],[196],[197]). La littérature offre de plus en plus de

résultats expérimentaux dans le cas de fluides suspendant non Newtoniens, d’une part pour

des fluides dont la viscosité varie avec le taux de déformation ([198] : fluide de second ordre,

[199],[200] : fluide de Giesekus, [201] : fluide en loi puissance) d’autre part pour des fluides visco-

élastiques ([202] : fluide de Boger,[203] : fluide d’oldroyd B,[162],[204] : faiblement élastique,[163] :

fortement élastique) ou pour encore des fluides à seuil ([64],[144],[145],[158],[160],[148] avec vi-

brations). Dans ce dernier cas, les théories, peu developpées, ne permettent pas de prédiction

analytique de l’orientation. Les fluides à seuil de type Bingham, sont plutôt à comparer aux

fluides Newtoniens, puisqu’ils affichent une évolution linéaire de la contrainte avec le taux de

cisaillement au delà du seuil. En dessous, on peut considérer que ces fluides sont très fortement

élastiques.

Ces résultats distinguent deux tendances principales quant à l’orientations des fibres dans l’écou-

lement. D’une part, les fibres plongées dans un fluide soumis à un écoulement cisaillant s’alignent

petit à petit avec l’écoulement [144],[161],[165],[167],[169]. D’autre part, l’orientation dans un

écoulement élongationnel diffère selon que l’écoulement est convergent ou divergent. Dans le

premier cas, les fibres s’alignent avec les lignes de courant, alors qu’elles se positionnent perpen-

diculairement aux lignes de courant dans le deuxième cas [144],[159],[160],[169]. Certaines zones

d’écoulement plus complexes (zones d’angles, extrusion, régime turbulent) font l’objet d’études

particulières [152],[166],[192],[205]. L’évolution de l’orientation dans ces zones reste difficile à

prédire, malgré les modèles numériques existant [206],[207].

D’une manière générale, l’orientation d’une fibre est due aux couples appliqués par le fluide sur

cette fibre à l’interface fluide/fibre. Une fibre tend naturellement vers sa position d’équilibre au

sein du fluide pendant l’écoulement. Cette position d’équilibre correspond à l’inclinaison de la

fibre qui implique une répartition homogène des forces du fluide à sa surface. Elle est adoptée

par la fibre le long des isovitesses.

5.6.3 Processus d’orientation

Le processus d’orientation d’un éllispsöıde rigide plongé dans un fluide Newtonien a pour

la première fois été décrit par Jeffery ([143]) en 1922. Il a montré que cet ellispöıde, soumis

uniquement aux efforts de l’écoulement transmis par le fluide suspendant, est transportée par

le fluide à la vitesse (au centre de l’ellipsöıde) du fluide équivalent non perturbé. L’équilibre des

moments appliqués à l’ellipsöıde par le fluide suspendant combine la déformation du fluide et

la vitesse de rotation de la fibre relativement à celle du fluide. Jeffery a déduit de cet équilibre

des moments l’équation d’évolution de l’orientation de l’ellispöıde en prenant en compte une

condition de non glissement à la surface de la particule et en considérant que le champ de vitesse

au voisinage de l’ellipsöıde correspond à celui du fluide loin de la particule. Plusieurs hypothèses

ont été nécessaires :

– les fibres sont rigides, leur taille est uniforme,

– la suspension est incompressible,

– la suspension est assez visqueuse, et les vitesses d’écoulement faibles, pour que l’inertie

des fibres soit négligeable,
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5.6 Orientation des fibres

– la répartition des fibres est initialement homogène,

– aucune force ni aucun couple extérieur n’agit sur les fibres, autre que celui dû à l’écoule-

ment,

– la fibre se trouve dans un milieu continu (i.e. la microstructure constituant la matrice est

de taille bien inférieure à la taille des fibres),

– l’écoulement est linéaire à l’échelle de la fibre (gradient de vitesse ne variant pas sur l’échelle

de la fibre)

– la matrice est Newtonienne.

L’évolution d’une ellipsöıde de facteur d’aspect r, représentée par son vecteur unitaire p (Fi-

gure 5.6), s’écrit selon Jeffery :

ṗ = Wp+ λ (Dp− (D : pp)p) (5.22)

où W et D sont les tenseurs respectivement de vorticité et de taux de déformation du fluide non

perturbé par l’ellipsöıde. λ est un paramètre représentatif de l’élancement de la fibre, tel que

λ = (r2 − 1)/(r2 + 1).

La prédiction de l’orientation de cette inclusion consiste à résoudre l’équation (A.2) de manière

à connaitre l’évolution des deux angles θ et ϕ (Figure 5.6) décrivant la position de l’ellipsöıde

dans l’espace.

Jeffery a montré que, en l’absence d’interactions, une fibre soumise à un écoulement cisaillant

passe la majeur partie de son temps alignée avec la direction de l’écoulement. Cette position

est pourtant instable, et la fibre effectue de brèves rotations périodiques le long d’une trajec-

toire comptant parmi un nombre infini d’orbites. Chacune de ces orbites est caractérisée par

une constante orbitale Cϕ (cf. Annexe A) qui représente l’excentricité de l’orbite suivie par la

particule et le long de laquelle la fibre effectue des rotations au cours de l’écoulement. La valeur

de cette constante varie entre 0 et l’infini (donc parmi une infinité de trajectoires possibles).

L’orbite décrit par une fibre dépend de la position initiale de la fibre. La valeur Cϕ = 0 implique

que la particule est alignée selon l’axe de vorticité (θ = 0). Le cas Cϕ →∞ signifie que la parti-

cule se trouve dans le plan de cisaillement (θ = π/2). Une fibre en simple cisaillement reste dans

son orbite initial indéfiniment si aucune interaction avec des fibres avoisinantes ne provoque son

saut sur une autre orbite.

La période entre deux rotations a été exprimée par [191] :

Tp =
2π

γ̇

(
r +

1

r

)
(5.23)

5.6.4 Facteurs d’aspect d’inclusions cylindriques

Le modèle de Jeffery a été initialement développé pour des ellipsoides. Son application à des

inclusions cylindriques comme des fibres nécessite une correction de la forme. En effet, une fibre

en rotation génère un moment plus important qu’un ellipsoide dans les mêmes conditions, du

fait de ses extrémités plates par rapport à celles de l’ellipsoide [178]. Bretherton [190] a remplacé

le facteur d’aspect de l’ellipsoide présent dans le paramètre de forme λ par un facteur d’aspect

corrigé re expérimentalement ajusté dans le cas de ses fibres. Harris et al. [208] ont proposé une
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Écoulement industriel d’un béton de fibres

correction semi-empirique du facteur d’aspect équivalent :

re = 1, 14r0,844 (5.24)

De manière générale, il est intéressant de retenir qu’un certain nombre d’auteurs [188], [209],

[210], [208],[162] fournissent des valeurs expérimentales du ratio re/r entre 0, 4− 0, 7 dans le cas

de facteurs d’aspect élevés.

5.6.5 Influence d’une population de fibres

L’équation (A.2) nous donne accès à l’évolution de l’orientation de fibres en régime dilué

(i.e. régime dans lequel l’évolution d’une fibre n’est pas influencée par les fibres voisines). Or

le comportement rotationnel des fibres est dû à la fois à la convection des fibres (i.e. aux dé-

formations du fluide dans lesquelles elles évoluent) [143], et à la diffusion des interactions entre

fibres [167]. En effet, les concentrations entre 0% et 1% couramment utilisées en génie civil pour

renforcer les matériaux cimentaires impliquent un grand nombre de fibres (entre 106 et 108 par

m3). Nous avons vu au chapitre 4 que les encombrements de fibres correspondants impliquent

des interactions hydrodynamiques, voire des contacts entre fibres. Ces interactions ont alors une

influence au niveau de l’orientation macroscopique. En effet la présence d’autres fibres dans le

voisinage de la fibre étudiée perturbe le mouvement de la première. Ces fibres voisines peuvent,

par interactions hydrodynamiques ou contacts directs ponctuels, la décaler de son orbite ini-

tiale.

Il est vrai qu’en régime dilué ou semi-dilué, les interactions dominantes, de type hydrodyna-

mique, induisent des pertubations du champ de vitesses autour d’une fibre dont l’amplitude est

bien plus faible que celle du champ de vitesse moyen [187]. Certains auteurs ont montré que

l’équation d’évolution de Jeffery (A.2) prédisait d’une manière correcte l’évolution de l’orienta-

tion d’une fibre pour des régimes semi-dilués. Ils ont conclu que le fait de négliger les interactions

entre fibres dans la description de cette évolution constitue une approximation pertinente pour

les systèmes dilués, et un résultat encore cohérent pour des systèmes semi-dilués [211],[187] jus-

qu’à semi-concentrés [189],[167]. En effet, les interactions hydrodynamiques en jeu à ce niveau

d’encombrement du système sont assez faibles pour ne pas entrainer un nombre significatif de

contacts fibre-fibre, et ne perturbent que très modestement l’orientation des fibres [187]. Il a

d’ailleurs été montré qu’à chaque instant, seule une faible fraction de fibres effectue une rotation

(Θ(1\r)), alors que la majorité reste alignée selon la direction privilégiée induite par l’écoulement

[187]. Petrich [165] observe tout de même une augmentation de 25% de la fréquence de rotation

de fibres à un encombrement de Nf l
2
fdf = 0, 2 ou φf/φfm = 0, 04 par rapport à leur fréquence

de rotation en régime dilué. La nature aléatoire de ces intéractions pousse de nombreux auteurs

à considérer ce processus comme diffusif, dans une certaine limite de concentrations de fibres.

Petrich [165] représente l’intensité de ce processus de diffusion par la dispersion de la fonction

de probabilité de présence de l’angle formé entre la fibre et l’axe y (représentatif de la direction

du gradient de cisaillement) dans le plan de cisaillement. Soit θ′ = π/2− θ cet angle au sens de

Figure 5.6, le processus de diffusion est estimé par :

< cos2 θ′ >

< cos2 θ′ >Jef
(5.25)
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5.6 Orientation des fibres

où le terme de diffusion < cos2 θ′ > est adimensionné par la diffusion en régime dilué

< cos2 θ′ >Jef .
M.P. Petrich et al. / J. Non-Newtonian Fluid Mech. 95 (2000) 101–133 115

Fig. 7. The orientational dispersion, characterized by〈cos2 φ〉 and normalized by the value in the Jeffery limit,
〈cos2 φ〉Jef = 1/(1 + re), as a function ofnL2d. The symbols and error bars are defined in Fig. 5. The solid and dashed
lines are estimates from the hydrodynamic interaction theory forr = 50 and 72, respectively.

the semi-dilute regime. Rahnama et al. [16] developed an expression for the orientation distribution,
which Koch fit to Stover’s experimental data [31]. The correlation resulting from Koch’s calculations
states that〈p2

xp
2
y〉 = 0.371/r. Values of〈p2

xp
2
y〉 from the present work are shown in Table 4. The values

were slightly higher than predicted by Koch’s correlation, and there was no clear trend as a function
of concentration. The 90% confidence intervals for this data were roughly±10% of the value, meaning
that the error bars overlap for the majority of the data points. However, at the highest concentrations,
nL2d = 3.0 for r = 50 andnL2d = 2.5 for r = 72, the value of〈p2

xp
2
y〉 decreased significantly relative

to the other concentrations. It is not a coincidence that〈cos2 φ〉 and〈Cb〉 in those two tests were also
the smallest relative to the other experiments at the same aspect ratio. The measurements of the moment
〈p2
xp

2
y〉 will be used in comparing theories to shear viscosity data in Section 5.1.

3.3. Effects of a nematic potential

In an effort to understand why the orientational dispersion, as characterized by〈cos2 φ〉, peaked and
then decreased abovenL2d = 0.5–0.8 (see Fig. 7), the steady-state fiber orientation distribution was
found from a model including a nematic potential. In highly concentrated suspensions of Brownian rods,
a rotation rate due to the gradient of a mean-field potential can lead to a highly aligned, nematic state [32].
While no thermodynamic isotropic–nematic transition can be identified for non-Brownian suspensions,
the volumetric exclusion of fibers favors aligned states in non-Brownian as well as Brownian suspensions.

Figure 5.11 – Dispersion de l’orientation définie par (5.25) en fonction de l’encombrement des fibres tiré

de [165]. Résultats expérimentaux représentés par les diamants (r = 50) et les carrés (r = 72). Simulations

numériques de contacts mécaniques représentés par les cercles. Les lignes continue et en pointillés sont des

estimations des interactions hydrodynamiques pour les facteurs d’aspect r = 50 et r = 72 respectivement.

Petrich a tracé sur la Figure 5.11 ce processus de diffusion en fonction de l’encombrement des

fibres, mesuré expérimentalement. On observe une forte croissance de la diffusion d’orientation

due aux interactions entre fibres pour de faibles valeurs d’encombrement des fibres, jusqu’à un

encombrement critique de Nf l
2
fdf = 0, 5 ou φf/φfm = 0, 1 à partir duquel cette diffusion dé-

croit. Cette transition intervient donc en régime semi-dilué. Petrich a ajouté des résultats de

simulations numériques de contacts mécaniques par Sundararajakumar et Koch. Ces résultats

évoluent parallèlement aux résultats expérimentaux pour de faibles valeurs d’encombrement des

fibres, mais continuent de crôıtre au delà de l’encombrement critique, ce qui suggère que les

contacts directs entre fibres ne gouvernent pas le processus de diffusion de l’orientation.

On peut donc penser grâce à la Figure 5.11 que, même pour régimes concentrés Nf l
2
fdf > 0, 5,

les interactions hydrodynamiques continuent de dominer le processus de diffusion. Au delà du ré-

gime semi-dilué, à partir d’une concentration critique de l’ordre de φtrans = 400π ln(r)2/r4 [212],

il devient pourtant difficile pour une fibre de trouver une configuration possible lui permettant

de s’écarter de l’alignement induit par l’écoulement et d’effectuer une rotation, d’où la réduction

du terme de diffusion. Les interactions de contact deviennent alors moteur de l’alignement des

fibres.
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Écoulement industriel d’un béton de fibres

5.6.6 Modélisation des interactions

Plusieurs modèles sont disponibles dans la littérature pour représenter l’influence des inter-

actions entre fibres sur l’orientation d’un ensemble de fibres. Le modèle le plus largement utilisé

est celui de Folgar et Tucker [167] qui ajoute un terme diffusif isotrope à l’équation d’évolution

de l’orientation. Le phénomène de convection, modélisé par l’équation d’évolution pour un terme

de diffusion nul, est totalement réversible. Par contre, l’ajout d’un terme de diffusion à l’équation

d’évolution des fibres induit des perturbations qualifiées de bruit par Sepehr et al. [213] autour

de la trajectoire de la fibre sur son orbite, entrainant l’irréversibilité de l’écoulement. Le terme

défini par Folgar et Tucker s’écrit :

I =
Dr

ψ

∂ψ

∂p
(5.26)

où Dr = CI |D| avec CI un coefficient empirique ajusté sur des résultats expérimentaux et |D|
le second invariant du tenseur des déformations. ψ représente la fonction de distribution de

l’orientation des fibres. La dérivée de cette fonction par rapport à une orientation donnée dans

ce terme implique que plus la distribution des fibres est dispersée, plus le terme d’interactions

est élevé, et plus les interactions entre fibres perturbent l’alignement avec la direction induite

par l’écoulement.

Le coefficient empirique CI , représentatif de l’intensité du phénomène de diffusion, est lié à

la distance moyenne entre les fibres [130], donc à l’encombrement des fibres (φf/φfm) dans le

système [167]. C’est pourquoi les valeurs de ce paramètre sont, dans la littérature des fluides

Newtoniens, se situent dans la gamme [10−3; 1]. Pour Folgar et Tucker [167], ce paramètre

crôıt avec l’encombrement des fibres car plus celles-ci sont proches les unes des autres, et plus

elles perturbent localement les fibres voisines. Ils ajustent ce coefficient sur leurs résultats

expérimentaux et obtiennent des valeurs comprises entre 0,0032 pour un encombrement de

φf/φfm = 0, 0083, et 0,0165 pour un encombrement de φf/φfm = 0, 64. Phan-Thien et

al. [214] proposent une relation d’évolution de ce paramètre avec le facteur de fibres φfr :

CI = 0, 03(1− exp(−0, 224φfr). Tous ces résultats sont donnés Figure 5.12.

Au delà d’une certaine concentration, Doi et Edwards [168] expliquent que la présence de

nombreuses fibres crée un effet de cage pour chacune d’entre elles, limitant ainsi leur degré de

liberté et donc leurs rotations. Cette tendance d’un paramètre CI décroissant avec l’encombre-

ment des fibres est confirmée par Bay [215] dans le cas de fibres dont la distribution n’est pas

uniforme. Il déduit de ses résultats l’expression CI = 0, 0184 exp(−0, 7148φfr). Phelps et Tucker

[216] ont étendu le travail de Folgar et Tucker en considérant une expression plus générale

des tenseurs de diffusion. Ils expriment alorso un coefficient d’interactions représentatif des

interactions entre fibres quand l’anisotropie est atteinte. Latz et al. [217] proposent une étude

comparative des termes d’interactions isotrope et anisotrope. Ils concluent que l’effet d’un terme

d’interactions anisotrope dépend de l’écoulement. Dans un canal, l’utilisation de ce terme d’une

part augmente le degré d’orientation dans la direction de l’écoulement dans les zones proches

des parois, d’autre part induit une orientation perpendiculaire à l’écoulement au centre du canal.

D’autres modèles, moins utilisés, permettent de prendre en compte les interactions entre
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Coefficient d'interactions

0,001
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Encombrement des fibres

Folgar et Tucker

Sepehr et al.

Phan Thien et al.

fmf φφ /

Figure 5.12 – Coefficient d’interactions issus de la littérature [167],[213],[214].

fibres lors du processus d’orientation. Fan [218] évite l’utilisation d’une fonction de distribution

dans (7.15) en la remplaçant par un terme stochastique dépendant d’un processus de Wiener.

Petrich [165] représente le phénomène d’interactions pour des régimes de fibres concentrés par un

modèle dérivé de particules browniennes et inclut un potentiel nématique. Le taux de cisaillement

dû au fluide et qui aligne la fibre devient dans Jeffery la somme du taux de cisiallement du fluide

et du taux de cisaillement issu de ce potentiel nématique.
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Chapitre 6

Comportement des fibres lors de

l’écoulement

6.1 Introduction

Nous avons pu constater au cours chapitre précédent que la prédiction de l’orientation des

fibres dans un matériau cimentaire induite par sa mise en œuvre est complexe du fait du nombre

de paramètres influençant cette orientation. En effet, les connaissances analytiques dans ce do-

maine ne concernent que l’évolution de fibres rigides dans des fluides Newtoniens en écoulement

laminaire. De plus, les régimes de fibres étudiés sont limités pour réduire l’influence des interac-

tions entre fibres. Ces connaissances ne permettent pas la prédiction de l’orientation des fibres

lors de mises en œuvres industrielles impliquant des concentrations de fibres élevées, un compor-

tement rhéologique non-Newtonien des matériaux, des écoulements complexes et des effets de

paroi avec le coffrage. Toutefois, dans la plupart des mises en œuvre industrielles, une approche

dimensionnelle peut permettre d’accéder à des prédictions qualitatives simples mais suffisantes

pour estimer en phase de pré-étude l’influence des fibres sur le matériau à l’état durci.

Dans ce chapitre, nous prédisons par une approche dimensionnelle simple l’orientation de fibres

dans les matériaux cimentaires lors de mises en œuvre industrielles. Pour cela, les écoulements

induits par l’étape de mise en œuvre sont réduits aux deux situations génériques de déformation

que sont le cisaillement et l’élongation. L’évolution de l’orientation de fibres rigides monodis-

perses ajoutées à un fluide à seuil en régime dilué est considérée. Les interactions entre fibres

sont donc négligées. Elles seront traitées dans les chapitres suivants.

Dans la première partie de ce chapitre, les hypothèses nécessaires à notre approche dimension-

nelle sont approfondies. Puis, une étude qualitative nous permet de caractériser l’écoulement

d’un fluide à seuil en régime laminaire. Il devient alors possible de distinguer les zones où l’écou-

lement oriente les fibres de celles où l’isotropie initiale est conservée. Nous nous intéressons alors

aux zones en écoulement. Dans une troisième partie, l’évolution de l’orientation d’une fibre dans

un écoulement de référence (cisaillement et élongation) nous permet de prédire dimensionnelle-

ment l’état d’orientation des fibres dans des cas simples réels. Enfin, nos résultats sont étendus

à une population de fibres. Un temps d’écoulement nécessaire à l’orientation des fibres dans une

structure à géométrie simple (i.e. dont la mise en œuvre induit un écoulement simple) est alors
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6.2 Processus d’orientation

défini.

6.2 Processus d’orientation

Nous avons constaté au cours du chapitre précédent que l’évolution de l’orientation d’une

fibre dans un fluide Newtonien induite par un écoulement laminaire est décrite par l’équation

de Jeffery. Dans ce travail, nous appliquons ce modèle au cas des fibres rigides renforçant les

matériaux cimentaires. Pour cela, un certain nombre d’hypothèses est à définir.

6.2.1 Hypothèse de fibre infinie

Le cas asymptotique de fibres dont l’élancement est infini est communément utilisé dans la

littérature comme l’approximation de la fibre alignée, ainsi appelée par [192] et qui rejoint la

théorie du corps élancé de Batchelor [219]. Dans ce cas, une fibre est assimilée à une ligne de fluide

infinie [220], ce qui implique que les fibres n’effectuent plus de rotations périodiques quand elles

sont soumises à un écoulement cisaillant, mais qu’elles tendent à adopter une position d’équilibre

stable selon la direction privilégiée induite par l’écoulement. Ainsi, une fois la fibre alignée, elle

conserve cette orientation dans l’écoulement. Quand le régime permanent est atteint, toutes les

fibres sont alignées, le moment de la distribution de l’orientation des fibres est alors égal à 1.

L’erreur induite par une telle hypothèse peut être déduite de l’expression semi-empirique de ce

moment 0, 371/r donnée par [221] dans la cas des fibres du génie civil dont les facteurs d’apect

varient entre 20 et 100. La différence entre l’expression semi-empirique de Koch et l’hypothèse

de la fibre infinie mène à une erreur inférieure à quelques % comme le montre la Figure 6.2.

Cette hypothèse sera donc adoptée dans la suite de notre travail.

100%

10%

1%

0% Facteur d’aspect r

0 20 40 60 80 100

Erreur (%)

Fibres du génie civil

Figure 6.1 – Estimation de l’erreur sur le facteur d’orientation en état permanent obtenue en négligeant

les rotations périodiques en fonction du facteur d’aspect [221].

D’un point de vue analytique, cette hypothèse implique un élancement infini des fibres, et donc

un paramètre de forme λ approchant la valeur 1 dans l’équation d’évolution de Jeffery présentée

au chapitre précédent, qui devient alors :

ṗ = ∇V · p−D : ppp (6.1)
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Comportement des fibres lors de l’écoulement

6.2.2 Bilan des hypothèses

Nous avons déjà vu à la section 5.6.3 du chapitre 5 précédent les hypothèses nécessaires à

Jeffery pour exprimer l’évolution de l’orientation d’une fibre dans un fluide Newtonien. Dans le

cadre de notre étude, d’autres hypothsèes sont à considérer :

– Les fibres sont de géométrie homogène et d’élancement infini, et rigides au sens du critère

du chapitre 3.

– L’état de surface de la fibre doit permettre d’appliquer une condition de non glissement à

l’interface fibre/fluide. Cette condition est en effet requise par Jeffery pour écrire le champ

de vitesses à la surface de la fibre. Pour cela, il suffit que la rugosité de la fibre soit du

même ordre de grandeur que la taille des particules en suspension, de manière à ce que les

dissipations visqueuses à l’interface soient du même ordre que celles à l’intérieur du fluide.

Dans notre étude, les particules en suspension sont des grains de ciment, de taille moyenne

10µm.

– Le fluide suspendant est ici un fluide à seuil, contrairement à l’hypothèse de Jeffery d’un

comportement Newtonien.

Cette dernière hypothèse nécessite un approfondissement. Elle consiste à appliquer à une fibre im-

mergée dans un fluide à seuil une équation d’évolution macroscopique basée sur l’hypothèse que

la seule force agissant sur la fibre est due au caractère visqueux du fluide suspendant. Nous sup-

posons alors que dans les zones où le matériau s’écoule, la viscosité apparente est constante (ou

ne subit que de faibles variations) dans un volume de giration autour de la fibre et centré sur son

centre d’inertie. Nous négligeons ainsi la non-linéarité du comportement rhéologique à l’échelle

de la fibre. C’est aussi l’hypothèse adoptée par Vincent [169] dans sa thèse. Il utilise l’équation

d’évolution de Jeffery (cf. chapitre 5 section 5.6.3) dans le cas de fluides pseudo-plastiques, en

considérant une viscosité constante dans le voisinage d’une fibre. Dans notre travail, cette vis-

cosité apparente résulte, à l’instar de la viscosité Newtonienne des fluides considérés par Jeffery,

de la combinaison des forces dominant le comportement macroscopique du matériau : les inter-

actions hydrodynamiques, les interactions colloidales de la matrice cimentaire et les interactions

frictionnelles entre les inclusions.

Cette hypothèse peut entrainer des approximations dans les zones d’interface entre les zones

déformées par l’écoulement et les zones mortes. Mais une approche dimensionnelle nous permet

dans ce chapitre de prédire la largeur des zones non déformées par l’écoulement. Nous verrons

alors que dans les zones soumises aux déformations d’un écoulement type du génie civil, l’orien-

tation d’une fibre est quasi-instantanée.

Enfin on peut noter que, pour que l’hypothèse d’une viscosité apparente constante soit valide,

la longueur des fibres doit être telle que le milieu dans lequel elles sont immergées est continu à

l’échelle de chaque fibre.

6.3 Orientation des fibres dans un fluide à seuil en écoulement

L’existence d’une contrainte seuil peut impliquer la formation de zones mortes, i.e. de zones

dans lesquelles cette contrainte critique n’est pas atteinte. Deux régimes sont alors à prendre
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6.3 Orientation des fibres dans un fluide à seuil en écoulement

en compte dans la description du processus d’orientation des fibres. Ces régimes sont mis en

évidence sur la Figure 6.2 lors de l’écoulement dans un canal transparent d’un gel à cheveux

d’environ 30Pa de seuil, auquel des fibres de facteur d’aspect 50 ont été ajoutées.

Figure 6.2 – Écoulement d’un gel à cheveux de 30Pa de seuil renforcé en fibres de facteur d’aspect

50. Dans chaque insert, la représentation polaire de l’état d’orientation des fibres est indiquée, issue du

logiciel INTERCEPT [222].

Dans les zones très proches des parois (de l’ordre d’une longueur de fibre), nous avons vu au cha-

pitre précédent que les fibres sont soumises à de forts effets de parois. Au delà de cette distance,

dans les zones soumises aux déformations de l’écoulement, le taux de cisaillement est maximal

à la paroi du fait de la condition de non glissement et décrôıt vers le centre de l’écoulement. Les

déformations du fluide contribuent à l’alignement de la fibre avec la direction de l’écoulement,

comme le décrit la loi d’évolution de Jeffery (cf. Figure 6.2 insert du haut). Le temps nécessaire

à une fibre pour adopter une orientation proche de cette asymptote dépend de son orientation

initiale. On peut cependant constater sur la Figure 6.2 qu’une fibre initialement proche de la

paroi du moule, quelle que soit son orientation initiale, s’oriente presque instantanément.

En s’éloignant de la paroi, la contrainte de cisaillement décrôıt, et avec elle le taux de cisaille-

ment, vers le plan de symétrie de l’écoulement (ou la surface libre selon selon l’écoulement), où

la contrainte dans le fluide est nulle. Ainsi sur l’insert du haut de la Figure 6.2, l’orientation

des fibres est très forte dans les zones les plus proches des parois, et de moins en moins marquée

lorsqu’on se rapproche du centre de l’écoulement. Il existe donc une épaisseur critique où la

contrainte dans le fluide atteint le seuil du matériau τc. Au delà de cette épaisseur, la contrainte

de cisaillement induite par l’écoulement n’est pas assez élevée pour dépasser le seuil. Le taux

de cisaillement est nul, le fluide n’est soumis à aucune déformation plastique, un bouchon se
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Comportement des fibres lors de l’écoulement

forme au sein duquel les fibres conservent leur isotropie initiale (cf. Figure 6.2 insert du bas).

Le matériau se comporte dans cette zone comme un solide transporté avec l’écoulement à la

vitesse de l’interface avec la zone cisaillée (vitesse maximale de l’écoulement).

Il est possible de prédire dimensionnellement l’orientation dans ces différents régimes d’écoule-

ment. Le modèle de Jeffery peut en effet être appliqué dans les zones où le matériau s’écoule.

Cependant, l’interface zone cisaillée/zone morte reste une zone d’incertitude, d’une épaisseur

inférieure à la longueur des fibres, dans laquelle l’écoulement n’est pas homogène à l’échelle de

la fibre. En effet, une fibre située dans cette zone peut être soumise à la fois au comportement

solide du bouchon et à l’écoulement de la zone cisaillée à ses deux extrémités. Dans ce cas, la

contrainte due à l’écoulement et appliquée sur l’extrémité de la fibre située dans la zone cisaillée

est reprise par l’extrémité de la fibre située dans la zone non cisaillée. Le comportement de cette

fibre dépend alors de sa longueur L1 située dans la partie cisaillée par rapport à sa longueur L2

plongée dans le bouchon (cf. Figure 6.3). Si la force appliquée sur la longueur L1 de la fibre

par l’écoulement est supérieure à la force qui peut être reprise par l’autre partie de la fibre, alors

la fibre s’aligne avec l’écoulement.

Zone morte

Zone cisaillée
Écoulement 

L 1

L 2

x
y

y

Vx
pcxy ∂

∂+= µττ

cxy ττ ≤

Figure 6.3 – Fibre située dans la zone de transition entre la zone cisaillée et la zone morte

On en déduit que, si L1 est supérieure à L2, la force due à l’écoulement et appliquée sur la fibre

est plus importante que celle que la fibre peut supporter, et celle-ci s’oriente petit à petit avec

l’écoulement. On ne peut par contre pas prédire l’évolution de l’orientation de la fibre pour un

ratio des longueurs inférieur à 1. L’épaisseur de la zone d’incertitude est alors réduite à une demi-

longueur de fibre au maximum. En conclusion, il existe une zone d’incertitude d’une épaisseur

inférieure à la demi-longueur des fibres autour des zones mortes dans laquelle le comportement

des fibres est difficile à prévoir. Une fibre dans cette zone soit ne subit aucune déformation, soit

s’aligne avec l’écoulement au bout d’un temps plus long que celui nécessaire aux fibres situées

dans les zones cisaillées. On peut noter que, pour des fibres couramment utilisées en génie civil,

d’une longueur de l’ordre du centimètre, la zone d’incertitude ne s’étend que sur quelques mil-

limètres d’épaisseur, ce qui représente un très faible volume de fluide par rapport aux volumes

concernés dans les coulages industriels.
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6.4 Application à des écoulements industriels

6.4 Application à des écoulements industriels

Les procédés de mise en œuvre des matériaux cimentaires du génie civil induisent des écou-

lements complexes du fait de la géométrie des moules. Cependant, dans la majorité des cas, un

écoulement simple domine le processus de remplissage. Il faut rappeler que les vitesses d’écou-

lement des bétons sur chantier entrainent des comportements de type laminaire (cf. chapitre

1). Les deux écoulements dominant alors le remplissage des moules sont de type cisaillant et

élongationnel. L’évolution de l’orientation d’une fibre soumise à ces écoulements, déjà résolue

dans la littérature dans le cas de fluides Newtoniens, est ici étudiée relativement à l’influence

d’une contrainte seuil. Les interactions entre fibres sont négligées dans la description de cette

évolution, ce qui constitue, selon certains auteurs, une approximation pertinente pour les sys-

tèmes dilués, et un résultat encore cohérent pour des systèmes semi-dilués (cf. chapitre 5 section

8.2.2). Nous considérons de plus dans la suite de ce travail l’”hypothèse de la fibre infinie”. Une

fibre est décrite par son vecteur unitaire p dans le système d’axes représenté sur la Figure 5.6

du chapitre 5.

6.4.1 Fibre plongée dans un écoulement cisaillant

La plupart des mises en oeuvre industrielles entraine des écoulements de type cisaillement

(coulage de poutres, voiles). D’autre part, quelle que soit la forme du coffrage, une condition

de non glissement à l’interface entre le fluide et le coffrage entraine le cisaillement du matériau

dans les zones proches des parois [169],[164],[150],[64],[149].

L’évolution de l’orientation d’une fibre plongée dans un fluide suspendant Newtonien sou-

mis à un écoulement de cisaillement simple a déjà fait l’objet de nombreuses recherches

[169],[164],[167],[187],[188],[189],[223]. Il a été montré que la fibre s’alignait petit à petit avec

les lignes de courant. Nous appliquons ici ce résultat à toute fibre située dans les zones cisaillées

d’un fluide à seuil.

6.4.1.1 Cisaillement simple

Nous considérons ici le cas d’un fluide à seuil soumis à un cisaillement simple entre deux

plans parallèles infinis et distants de h selon la direction y. Un plan est fixe alors que l’autre est

transporté à vitesse constante V0 dans la direction x (cf. Figure 6.4).

Le champ de vitesse dans un fluide visqueux Newtonien a la forme (Vx = γ̇y;Vy = 0;Vz = 0).

Le fluide est cisaillé dans toute son épaisseur de sorte que le taux de cisaillement macroscopique

résultant, constant dans l’épaisseur du fluide, s’écrit : γ̇ = V0/h.

La fibre est représentée par son vecteur unitaire p formant un angle θ avec l’axe de l’écoulement

et un angle φ avec l’axe de vorticité (axe z sur la Figure 5.6 du chapitre 5). L’évolution de

l’orientation se déduit alors de l’équation d’évolution de Jeffery 6.1 dans laquelle le champ de

vitesses cisaillant est injecté (cf. Annexe A).

tan(θ(t)) =
1

r tan
(
2πt
T + q

) λ→1−→ 1

γ̇t+ cot(θ0)
(6.2a)
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Comportement des fibres lors de l’écoulement

x
y

ymin

ymax

2

h

0V

Figure 6.4 – Fibre soumise à un écoulement cisaillant entre deux plans parallèles infinis.

tan(ϕ(t)) =
rCϕ(

r2 cos2(θ(t)) + sin2(θ(t))
) 1

2

λ→1−→ Cϕ
sin(θ(t))

(6.2b)

Dans cette expression, T est la période de rotation de la fibre (cf. expression (5.23) du chapitre

5). Le paramètre q dépend de l’orientation initiale de la fibre, tel que tan(q) = 1/(r tan(θ0)). Cϕ

est la constante orbitale (cf. section 5.6.3 du chapitre 5).

La fibre tend à s’aligner avec la direction de l’écoulement. Le temps nécessaire à cet alignement

est alors controlé par deux paramètres : le taux de cisaillement auquel elle est soumise et son

orientation initiale.

L’évolution de l’orientation d’une fibre dans le cas d’un fluide à seuil suit celle d’un fluide New-

tonien dont le taux de cisaillement imposé est égal à (τxy−τc)/µp au lieu de τxy/ηN , où ηN est la

viscosité Newtonienne. Dans la plupart des écoulements industriels, des considérations géomé-

triques permettent de considérer un plan dominant le processus d’orientation. Seule l’évolution

de l’angle θ entre la fibre et l’axe de l’écoulement, décrite par l’expression (6.2a), est nécessaire.

Cette évolution est tracée sur la Figure 6.5 pour des taux de cisaillement représentatifs de ceux

du génie civil.

Quelle que soit l’orientation initiale de la fibre et le taux de cisaillement (non nul) auquel elle est

soumise, la fibre s’aligne avec la direction de l’écoulement. On peut cependant déduire des ex-

pressions (6.2a) et (6.2b) que l’orientation parfaite est atteinte au bout d’un temps infini ([167]).

Par contre, une fibre est considérée orientée au sens du critère θc = 20̊ (cf. chapitre 5) en un

temps très bref, inférieur à 1s, quel que soit le seuil du matériau (dans la gamme des seuils des

matériaux cimentaires fluides), comme il est montré sur la Figure 6.5. Ce temps correspond à

l’intersection des courbes avec la ligne en pointillés tracée à 20̊ . Il dépend du taux de cisaillement

auquel le matériau est soumis.

6.4.1.2 Ecoulement entre deux plans infinis parallèles (cas d’un mur)

Considérons maintenant un fluide à seuil (de contrainte seuil τc) s’écoulant dans un canal à

section rectangulaire de largeur H. Dans cette géométrie, la contrainte de cisaillement n’est pas

constante dans la largeur du matériau cisaillé (cf. section 6.3). Elle est maximale à la paroi à
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Figure 6.5 – Evolution de l’angle θ en fonction du temps selon différents seuils de fluide suspendant par

rapport à un fluide Newtonien. Le taux de cisaillement appliqué au fluide Newtonien est de γ̇ = 10s−1.

Il correspond à γ̇50 = 9s−1, γ̇150 = 7s−1, γ̇300 = 4s−1. L’orientation initiale de la fibre est de 90 .̊ 0

c̊orrespond à la direction de l’écoulement.

cause de la condition de non glissement, et décrôıt jusqu’à devenir nulle au centre du canal. Il

existe donc une hauteur critique yc où la contrainte seuil est atteinte. Une zone morte se crée

alors au centre, d’une largeur de deux fois la hauteur critique, et qui n’est soumise à aucune

déformation plastique. En général, la description de ce problème dans le plan (x, y) suffit à la

prédiction complète de l’écoulement par des considérations de symétrie. La largeur de cette zone

morte se déduit des équations d’équilibre projetées sur l’axe de l’écoulement x :

∂τxy
∂y

=
∂P

∂x
(6.3)

Cette projection est intégrée entre l’axe central (y = 0) et la hauteur y dans le canal. La hauteur

critique yc correspond à la hauteur où la contrainte seuil τc est atteinte. Elle s’écrit yc = τc
∂P/∂x .

Les contraintes de cisaillement se concentrent dans la zone cisaillée. La vitesse du fluide de

x

y

θ

p

2

H

yc

Figure 6.6 – Fibre plongée dans un fluide à seuil s’écoulant dans un canal.
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Comportement des fibres lors de l’écoulement

viscosité plastique µp dans le canal est alors exprimée en fonction des zones.

dans la zone cisaillée, pour |y| ≥ |yc| :

Vx(y) =

(
1

2µp

∣∣∣∣∂P∂x
∣∣∣∣ [(h/2− y)(h/2 + y − 2yc)]

)
(6.4a)

dans la zone morte, pour |y| < |yc| :

Vx(y) =

(
1

2µp

∣∣∣∣∂P∂x
∣∣∣∣ (h/2− yc)2) (6.4b)

Cette expression indique que la zone morte centrale est transportée avec le fluide à la vitesse

du fluide cisaillé à l’interface entre les deux zones. Les fibres situées à l’intérieur de cette zone

ne sont soumises à aucune déformation. Elles conservent donc leur orientation isotrope initiale.

L’évolution de l’orientation d’une fibre dépend alors de sa hauteur initiale dans le canal. Pour

l’angle θ tel qu’il est représenté sur la Figure 6.6, le processus d’orientation est déduit de

l’équation (6.2) en réduisant la zone cisaillée à y − yc pour un écoulement dû à un gradient de

pression ∂P
∂x :

y ≥ yc : tan(θ) =
1∣∣∂P

∂x

∣∣ y−yc
µp

t+ cot(θ0)
(6.5a)

y < yc : θ = θ0 (6.5b)

Pour se donner une idée de l’orientation des fibres dans chacune des zones d’un canal fermé,

étudions les ordres de grandeur mis en jeu. On considère le cas d’un mur typique de largeur

10cm. Le seuil du composite versé dans ce canal est égal à 300Pa, de manière à obtenir une

consistance de l’ordre de celle des bétons fibrés mis en œuvre dans l’industrie. L’écoulement du

matériau dans le canal est dû à la gravité.

L’expression (6.5a) permet de tracer les lignes d’iso angles à l’intérieur du canal. Pour une

orientation initiale θ0 et une orientation finale θ∗ fixées, les lignes d’iso angles sont déduites de

l’expression de la vitesse Vx(y) = x(y)/t :

x(y) =
1

2

(
1

tan(θ∗)
− 1

tan(θ0)

)
(h/2− y)(h/2 + y − 2yc)

y − yc
(6.6)

La largeur de la zone morte au centre du canal (6.3) et l’évolution de l’orientation (6.6) sont

alors utilisées pour tracer l’orientation d’une fibre au sein du canal. L’orientation des fibres dans

un fluide à seuil (cf. Figure 6.7) est comparée à celle d’un fluide Newtonien (cf. Figure 6.8).

On remarque que l’orientation apparait plus rapidement dans le fluide à seuil que dans le fluide

Newtonien. En effet, la largeur sur laquelle le cisaillement est localisé est réduite de la zone

morte centrale. Le taux de cisaillement est alors plus élevé, accélérant le processus d’orientation.

6.4.1.3 Canal à surface libre (cas d’une poutre)

Une approche simplifiée peut être appliquée au cas plus complexe d’un canal à surface libre

(cf. Figure 6.9), de manière à déduire de ce qui précède le processus d’orientation des fibres.

La contrainte de cisaillement est maximale à l’interface avec le moule, et décrôıt jusqu’à être
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Figure 6.7 – Lignes d’iso angles d’une fibre immergée dans un fluide de seuil 300Pa s’écoulant entre

deux plans parallèles infinis distants de 10cm. L’orientation initiale de la fibre est de θ0 = 180̊ − 20̊ , et

l’épaisseur de la zone morte est égale à 2,4cm.
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Figure 6.8 – Lignes d’iso angles d’une fibre immergée dans un fluide Newtonien s’écoulant entre deux

plans parallèles infinis distants de 10cm. L’orientation initiale de la fibre est de θ0 = 180̊ − 20̊ , et

l’épaisseur de la zone morte est égale à 2,4cm..

négligeable à la surface libre. Il existe donc une hauteur critique yc à laquelle la contrainte

appliquée au matériau atteint la contrainte seuil τc. Au delà de cette hauteur, une zone non

cisaillée existe. L’équation de mouvement de cet écoulement est décrit par Roussel [119] :

∂τxy
∂y

=
∂P

∂x
(6.7)

à partir de quoi la hauteur critique peut être déduite :

yc(x) = h(x)− τc
|∂P/∂x|

(6.8)

Le seuil τc se déduit de la différence de hauteur de matériau ∆h = h1− h2 à l’arrêt de l’écoule-

ment, tel que τc = ρg∆h où ρ est la masse volumique du matériau. La hauteur critique devient :

yc(x) = h(x)− ρg∆h

|∂P/∂x|
(6.9)

où L est la longueur du canal.

L’écoulement dans le canal de la Figure 6.9 présente alors une zone morte au centre due plan

de symétrie et une zone morte à la surface du canal donnée par (6.9). Dans la zone cisaillée,

l’évolution de l’orientation des fibres est donnée par (6.2a) et (6.2b).
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Comportement des fibres lors de l’écoulement

H1
H2

x

y

L

Figure 6.9 – Effet de la correction de la paroi sur le facteur d’orientation calculé selon la direction x.

6.4.2 Fibre dans un écoulement élongationnel

Le deuxième écoulement très présent lors des mises en œuvre industrielles est l’écoulement

élongationnel (coulage de dalle, procédé d’extrusion...), résultant d’un effet de contraction ou de

dilatation du fluide. Cet écoulement induit une orientation des fibres différente de celle induite

par un écoulement cisaillant. L’orientation de fibres dans une matrice Newtonienne soumise à

ce type d’écoulements est cependant peu présenté dans la littérature [169],[167],[189],[193]. Ces

auteurs concluent à l’alignement de la fibre avec la direction principale d’étirement du fluide,

qui représente une position d’équilibre (stable en considérant l’hypothèse de fibre infinie 6.2.1)

[169]. C’est en effet la position pour laquelle les forces appliquées par le fluide sur la fibre sont

également réparties à l’interface fibre/fluide. Deux comportements sont alors constatés selon

le signe de l’extension. Dans le cas d’un écoulement convergent (cf. Figure 6.10 à droite), le

processus de contraction tend à faire pivoter la fibre vers la direction de l’écoulement. Par contre,

dans le cas d’un écoulement divergent (cf. Figure 6.10 à gauche), le processus de dilatation tend

à orienter la fibre perpendiculairement à l’écoulement.

Écoulement 

Écoulement convergent Écoulement divergent 

Figure 6.10 – Comportement d’une fibre injectée dans un écoulement élongationnel. Dilatation à gauche,

contraction à droite ([169])

Le champ de vitesses correspondant à une sollicitation élongationnelle s’écrit pour les deux

écoulements (Vx = ε̇x;Vy = − ε̇
2y;Vz = − ε̇

2z), où ε̇ est le taux d’élongation.
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6.4 Application à des écoulements industriels

6.4.2.1 Élongation simple

L’évolution de l’orientation d’une fibre est déduite de l’équation de Jeffery pour un champ

de vitesses élongationnel. Soit ε̇ le taux d’élongation, l’évolution de la fibre s’écrit (cf. Annexe B) :

tan(θ(t)) = tan(θ0)e
−3/2ε̇t (6.10a)

tan(φ(t)) =
Ceϕ

cos(θ(t))
e

3
2
ε̇t (6.10b)

en posant Ceϕ = tanϕ0

(1+tan2 θ0)1/2
=

Cϕ
tan(θ0)

.

Les deux types d’écoulement élongationnel (convergent correspondant à un taux d’élongation

positif ε̇ > 0, et divergent à un taux d’élongation négatif ε̇ < 0) sont à dissocier (cf. Figure 6.11).

Nous nous intéressons dans ce travail aux écoulements divergents, représentatifs des mises en

œuvre industrielles de dalles ou dallages.

x

y

z

p

θ

φ

x

y

z

p

θ

φ

(a) (b)

Figure 6.11 – Lignes de courant d’un écoulement élongationnel (a) convergent, (b) divergent.

L’évolution de l’orientation d’une fibre soumise à un écoulement élongationnel, de même que dans

le cas d’un écoulement cisaillant, dépend dans une large mesure de l’orientation initiale de cette

fibre, ainsi que du taux de déformation auquel elle est soumise. Pour comparer cette évolution

à celle d’une fibre en écoulement de simple cisaillement, la configuration de la Figure 6.5 est

reprise. À chaque valeur de contrainte seuil, nous traçons sur la Figure 6.12 l’évolution de la

fibre en écoulement élongationnel, telle que les seconds invariants des tenseurs de déformation

des écoulements cisaillant et élongationnel soient égaux. Cette condition signifie :

γ̇ =
ε̇

2
√

2
(6.11)

Pour des seuils de matériaux types BAP, la fibre est très rapidemment repoussée dans le plan

(y,z) (cf. Figure 6.12). Une fois la fibre dans ce plan, sa position est stable. L’angle φ tend

alors vers une valeur finie qui dépend de la constante orbitale Ceφ caractérisant l’orbite autour
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Comportement des fibres lors de l’écoulement
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Figure 6.12 – Evolution de l’angle θ en fonction du temps pour divers seuils du fluide suspendant.

Comparaison avec l’évolution de θ dans un fluide Newtonien. Les taux d’élongation sont appliqués de

telle sorte qu’ils soient comparables aux écoulements cisaillants de la Figure 6.5. L’orientation initiale de

la fibre est inférieure à 1 .̊ L’orientation 90 s̊ignifie que la fibre appartient au plan (y, z) de l’écoulement.

de laquelle la fibre pivote :

tanϕ = Ceϕ(1 + tan2 θ0e
−3ε̇t)1/2e

3
2
ε̇t

= Ceϕ(e3ε̇t + tan2 θ0)
1/2 t→+∞−→ Ceϕ tan θ0 (6.12)

L’évolution du comportement de l’angle ϕ observé Figure 6.13 confirme ce comportement

asymptotique. Les lignes en pointillés représentent l’orientation critique à partir de laquelle la

fibre est considérée orientée au sens du critère du chapitre 5 pour la courbe d’évolution de l’angle

ϕ tracée à partir de ϕ0 ' 89̊ . Cette orientation initiale correspond à arctan(Ceϕ tan 89̊ ) ± 20̊ .

Au vu des observations expérimentales dans ce genre d’écoulements élongationnels, on peut

naturellement s’attendre à ce que l’angle ϕ tende vers une valeur perpendiculaire aux lignes de

courant. Sa valeur limite arctan(Ceϕ tan θ0) dépendant fortement de l’orientation initiale de la

fibre, on peut alors penser que la trajectoire de la fibre dans l’écoulement est influencée par son

orientation initiale.

6.4.2.2 Écoulement à surface libre (dalle)

Dans le cas d’un écoulement à surface libre, comme le coulage d’une dalle par exemple, la

contrainte d’élongation σxx décrôıt d’une valeur maximale à l’interface avec le sol jusqu’à une

valeur nulle à la surface. Il existe donc une hauteur critique x0 à laquelle la contrainte seuil est

atteinte. Au delà de cette hauteur critique, le matériau se comporte comme un solide transporté

par le fluide s’écoulant en dessous.

L’étude d’un écoulement divergent dans le plan horizontal (y, z) (cf. Figure 6.11) est suffisante

pour prédire l’orientation d’une population de fibres lors d’un coulage (e.g. le plan du sol pour

un essai d’étalement). On considère alors que les lignes de courant sont radiales et on néglige

la composante verticale du champ de vitesses au niveau du front d’écoulement (appelée ”effet
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6.4 Application à des écoulements industriels
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Figure 6.13 – Evolution de l’angle φ en fonction de l’orientation initiale de la fibre. Taux d’élongation

ε̇ = −1s−1 (dilatation)et θ0 = 1̊ . Les lignes en pointillés jaunes correspondent à la limite d’orientation

au sens du critère d’orientation pour une orientation initiale de 89̊ .

fontaine” par [224]). Le champ de vitesses, exprimé dans un système polaire (cf. Figure 6.11),

a alors la forme (Vr = Q
2πr ;Vθ = 0), où Q est le débit du fluide (Q > 0 pour un écoulement

divergent et Q < 0 pour un écoulement convergent).

r

θ

θ

Figure 6.14 – Système d’axes d’une fibre dans le plan horizontal d’un écoulement élongationnel divergent.

L’évolution de la fibre dans ce plan est alors déduite de l’évolution précédente (6.10a) exprimée

dans le plan orthogonal en considérant le taux d’élongation ε̇ = ∂Vr/∂r = −Q/2πr2 :

tan(θ(t)) = tan(θ0)e
Qt

πr2 (6.13)

Une fibre soumise à un écoulement source tend à adopter une orientation tangente aux lignes

d’isovitesses (lignes circulaires sur la Figure 6.14). Cette orientation a déjà été observée dans

la pratique lors de coulage de dalles [169], [160], [159].
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Comportement des fibres lors de l’écoulement

6.5 Temps d’orientation

Malgré les fortes concentrations de fibres utilisées dans l’industrie, dans cette partie nous

négligeons les interactions entre les inclusions. L’état d’orientation d’une population de fibres

est simplement exprimé dans les zones où le matériau est soumis à des déformations, à partir

de l’évolution d’une fibre. On définit la notion de temps caractéristique d’orientation T comme

le temps nécessaire à un groupe de fibres pour s’orienter relativement à l’écoulement. Le degré

d’anisotropie qui en découle est alors exprimé comme le ratio du temps d’écoulement et du temps

d’orientation t/T . Pour un ratio t/T < 1, l’anisotropie n’est pas totale dans la structure. Dans

ce cas, plus la valeur de ce ratio est élevée, et plus le nombre de fibres alignées avec l’écoulement

est important. Un ratio t/T > 1 signifie que l’orientation finale est atteinte pour la majorité des

fibres.

Dans le cas de fibres soumises à un cisaillement simple, le temps T shear nécessaire à ces fibres pour

qu’elles s’alignent avec l’écoulement est déduit de (6.2), où θ∗ et ϕ∗ sont les angles d’alignement

de la fibre :

T shearθ =
1

γ̇

(
1

tan(θ∗)
− 1

tan(θ0)

)
(6.14a)

T shearϕ =
1

γ̇

((tanϕ∗
Cϕ

)2

− 1

)1/2

− 1

tan θ0

 (6.14b)

De (6.14) on peut conclure qu’un temps infini est nécessaire à la fibre pour atteindre l’alignement

parfait avec la direction de l’écoulement (i.e. θ∗ = 0), quelle que soit sa position initiale θ0 [187].

Cependant, pour une fibre proche de l’alignement, l’angle θ∗ de l’équation (6.14a) devient petit,

et le terme cot θ0 est négligeable devant le terme en γ̇. Dans ce cas, un développement de

Taylor au premier ordre nous permet d’exprimer le temps d’orientation T shearθ ∼ 1/γ̇. Le même

développement appliqué à (6.14b) nous permet d’arriver au même temps caractéristique T shearϕ ∼
1/γ̇. Pour des taux de cisaillement entre 1s−1 et 10s−1 lors de mises en œuvre industrielles (cf.

1), les temps caractéristiques d’alignement des fibres avec la direction de l’écoulement sont de

l’ordre de la seconde. Cela signifie qu’au bout de quelques secondes d’écoulement, la majorité des

fibres est alignée. Les fibres s’orientent donc en un temps bien inférieur au temps de l’écoulement.

Cette orientation peut être qualifiée de quasi-instantanée.
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6.5 Temps d’orientation
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Chapitre 7

Outils numériques pour la

modélisation d’écoulements

industriels

7.1 Introduction

Nous avons constaté au cours des chapitres précédents qu’une approche analytique permet de

prédire l’orientation des fibres au sein de structures simples. Mais dès que la prise en compte des

conditions réelles de mise en œuvre est nécessaire, de nombreux paramètres influencent l’orien-

tation macroscopique (comportement rhéologique du matériau, interactions entre les inclusions,

géométrie complexe des coffrages, procédé de coulage, effets de paroi... ). L’utilisation d’un outil

numérique est donc nécessaire. Différentes méthodes existent déjà dans la littérature. Une mé-

thode basée sur la mécanique des fluides traditionnelle a été développée par Dufour [225],[226].

L’évolution d’ellipsoides plongées dans un fluide Newtonien est déduite du bilan des moments

dus au fluide. La finesse du maillage imposée par la taille des ellipsoides entraine alors des temps

de calculs trop conséquents pour l’utilisation de cette méthode à l’échelle des mises en œuvre

industrielles.

La deuxième méthode, continue, prend en compte la probabilité de distribution de l’orientation

d’une population de fibres. L’état d’orientation est alors exprimé à travers un tenseur d’orien-

tation issu de l’équation de Jeffery. Cette méthode nécessite de considérer une relation ajoutée

au modèle pour fermer le système.

Enfin, la dernière méthode, appelée par Roquet et al. [227] ”approche multifibres”, se présente

comme un intermédiaire aux deux méthodes précédentes. Elle consiste à suivre l’évolution d’un

nombre fini de fibres, initialement réparties de manière isotrope. L’état d’orientation à chaque

instant est alors déduit de la moyenne de l’orientation de toutes ces fibres. Un certain nombre

de questions se posent alors. Combien de fibres sont nécessaires pour représenter une population

entière de fibres ? Quelle doit être leur orientation initiale ? Comment, à partir de ces fibres,

exprimer simplement l’état d’orientation dans une structure ?

Dans ce chapitre, nous commençons par introduire les différentes méthodes numériques utilisées

pour simuler l’écoulement d’un matériau cimentaire (matrice à seuil + inclusions) dans la lit-
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7.2 Simulations numériques des écoulements de matériaux cimentaires

térature. Puis, nous présentons le code de CFD Flow3D c© que nous utilisons dans le cadre de

ce travail. Dans un deuxième temps, nous présentons brièvement une méthode simple d’implé-

mentation du modèle tensoriel continu. Dans une troisième partie, nous développons un modèle

multifibres pour simuler l’orientation d’une population de fibres plongées dans un fluide à seuil

en écoulement. Les résultats obtenus sur un écoulement de simple cisaillement entre deux plans

parallèles infinis par ces deux modèles sont finalement comparés, dans le but de conclure sur

l’efficacité des modèles.

7.2 Simulations numériques des écoulements de matériaux ci-

mentaires

La prédiction de la mise en œuvre des matériaux cimentaires à l’état frais est nécessaire

pour anticiper les nombreux problèmes pouvant apparaitre (ségrégation des granulats, mauvais

remplissage du coffrage, blocage des granulats entre les barres de renforcement, bulles d’air...).

Ces problèmes ont plusieurs origines : matériaux hétérogènes, existence d’une contrainte seuil,

écoulement à surface libre, procédé de mise en œuvre (e.g. pompage). Toutes ces caractéristiques

sont autant de problèmes numériques complexes à résoudre.

Trois approches différentes de la modélisation des matériaux cimentaires permettent cette pré-

diction. Elles sont détaillées dans [228]. Le choix de la méthode dépend alors de l’échelle d’ob-

servation et du phénomène à prédire. L’échelle choisie doit en effet permettre d’observer les

variations des grandeurs physiques que l’on souhaite étudier.

7.2.1 Approche continue (CFM)

L’approche continue (Computational Fluid Mechanics) consiste à faire l’hypothèse que le ma-

tériau (matrice + inclusions) est homogène. Son comportement macroscopique est modélisé par

une loi de comportement, classiquement Bingham ou Herschel Bulkley. Cette approche, la plus

courante dans la littérature des matériaux cimentaires, est principalement utilisée pour modéliser

les essais empiriques ou de laboratoire du génie civil (étalement/affaissement [117],[119],[229],

pénétromètre [230], L-box [231], rhéomètre [232]), mais permet aussi la modélisation d’écou-

lements à l’échelle d’une mise en œuvre [233],[234],[235]. Diverses méthodes existent dans la

littérature, parmi elles la Méthode aux Élements Finis Viscoplastique (MEFV) ou la Méthode

aux Élements Divisés Viscoplastique (MEDV), d’approche Lagrangienne et Eulérienne respec-

tivement. Les résultats obtenus par ces méthodes ont montré de bonnes corrélations avec des

mises en œuvres réelles [236]. Ces méthodes ne permettent pas la prédiction de la ségrégation

des granulats, ni du phénomène de blocage granulaire.

7.2.2 Particules discrètes (DEM)

Dans les bétons ordinaires, la présence de granulats peut atteindre 80% en volume. Une

analogie est donc souvent faite entre le comportement d’un béton et celui d’un milieu granulaire,

malgré l’émergence des bétons modernes dont la formulation réduit le volume de granulats.

L’approche simulant l’écoulement d’un matériau cimentaire, au comportement macroscopique
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Outils numériques pour la modélisation d’écoulements industriels

fluide, à partir de particules discrètes (Discrete Element Method) permet de prédire le compor-

tement des granulats indépendamment et d’étudier notamment les phénomènes de ségrégation.

Deux méthodes dominantes se basent sur cette approche, d’une part, la Méthode (standard)

aux Éléments Distincts (MED) [237], d’autre part la méthode de Dynamique de Dissipation des

Particules (DDP). Cette dernière permet de prédire les hétérogénéités mésoscopiques comme la

migration des particules dans un rhéomètre.

Il faut cependant rappeler que les interactions entre particules définies dans ces méthodes n’ont

pas de sens physique direct. De plus, la prédiction d’un faible volume de matériau nécessite un

nombre conséquent de particules, et entraine donc d’importants temps de calculs. Le nombre

élevé de fibres mises en jeu lors de coulages industriels ne permet alors pas d’envisager une

méthode aux éléments discrets pour la prédiction de l’orientation des fibres dans les matériaux

cimentaires.

7.2.3 Écoulement multiphasique

Cette dernière approche considère indépendamment une phase liquide représentative de

la matrice cimentaire, et des particules solides, représentatifs des graviers. Cette approche

permet la simulation de mises en œuvre dans lesquelles la taille du coffrage et la distance entre

les armatures sont proches de la taille des gros granulats [226], sans utiliser la méthode aux

éléments discrets.

Ici encore, deux méthodes sont principalement décrites dans la littérature, la Méthode aux

Éléments dans une Suspension Viscoplastique (MESV) [233] et la méthode des Élements Finis

avec des Points d’Intégration Lagrangiens (MEFPIL) [226], basée sur une approche Eulérienne

du fluide combinée aux particules Lagrangiennes.

7.2.4 Bilan des méthodes

Parmi les trois approches décrites ici, l’approche par écoulement multiphasique permet une

description des matériaux cimentaires la plus proche de la réalité. Cependant, cette disparité

d’échelle implique un découpage raffiné du domaine d’étude, ce qui entraine des temps de calcul

conséquents. Une approche continue est donc choisie ici, en prenant l’hypothèse qu’à l’échelle de

la mise en œuvre, les matériaux cimentaires sont homogènes.

Les codes de calcul de prédiction de l’orientation des fibres basés sur cet approche dans la

littérature sont principalement utilisés pour prédire l’état d’orientation de fibres rigides dans

un fluide Newtonien en écoulement complexe (e.g. géométries complexes : [238],[206],[207],[239],

écoulement turbulent : [240]). Les résultats des simulations ne sont donnés que pour des volumes

limités de matériaux faiblement renforcés en fibres. Bien souvent, les temps de calcul mis en

jeu ne sont pas adaptés aux volumes du génie civil. L’objectif du travail présenté ici consiste à

prédire l’orientation de fibres plongées dans des matériaux cimentaires aux lois de comportement

complexes, mis en œuvre dans des conditions industrielles.
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7.3 Code CFD Flow3D c©

7.3 Code CFD Flow3D c©

7.3.1 Description du code

Nous utilisons dans ce travail le code de calcul de CFD FLOW3D c©, déjà utilisé par Roussel

[117],[119] pour simuler l’écoulement de matériaux cimentaires lors d’essais d’étalement. Ce code

permet en effet de simuler des matériaux dont le comportement peut être décrit par une loi de

type Bingham. Deux méthodes sont à disposition de l’utilisateur pour représenter l’influence

macroscopique du seuil. La première consiste à utiliser un modèle de comportement du fluide de

type élasto-plastique. Deux paramètres rhéologiques sont alors à renseigner, le seuil et la viscosité

plastique. Le fluide soumis à une contrainte inférieure au seuil d’écoulement du matériau se

comporte comme un solide transporté avec le fluide en écoulement. Il suit donc la loi d’élasticité

de Hooke. Le module d’élasticité du matériau G doit donc être renseigné. Si la contrainte seuil

est dépassée, le fluide est visqueux. La contrainte totale dans chaque élément de fluide est alors

la somme de la contribution élastique et de la contribution visqueuse, ce qui se traduit par une

viscosité apparente η calculée à chaque étape de calcul :

η =
τc√
2D‖

+ µp (7.1)

où µp est la viscosité plastique du fluide, τc sa contrainte seuil et D‖ le second invariant du

tenseur des déformations. L’application d’une loi de comportement de type solide ou de type

fluide de Bingham est dirigée par le critère de Von Mises à chaque étape de calcul.

La deuxième méthode proposée par CFD FLOW3D c© pour simuler le comportement à seuil

d’un matériau consiste à utiliser un modèle de biviscosité. À chaque étape de calcul, une visco-

sité apparente basée sur le modèle de Carreau est calculée. Nous avons constaté lors du chapitre

6 que l’orientation des fibres s’effectue de manière quasi-instantanée dans les zones soumises

aux déformations du fluide en écoulement. La prise en compte d’une contrainte seuil dans le

comportement macroscopique du fluide permet donc principalement de distinguer ces zones en

écoulement par rapport aux zones mortes. Le modèle bivisqueux crée un cisaillement certes faible

mais fictif qui oriente les fibres dans les zones non-cisaillées. Nous choisissons donc d’utiliser le

modèle visco-élastique.

La structure du code CFD Flow3D c© donne la possibilité aux utilisateurs de rajouter de nou-

velles fonctionnalités aux calculs déjà éxécutés par le code. Dans ce travail, une procédure per-

mettant de calculer l’évolution de l’orientation de fibres plongées dans un fluide à seuil est insérée

dans la structure du code. L’implémentation de cette nouvelle procédure nécessite la création de

scalaires dont les valeurs initiales et aux limites du maillage sont renseignées par l’utilisateur.

On considère dans notre cas chaque coordonnée des fibres comme un scalaire transporté avec le

fluide. Il s’agit donc d’ajouter 3×N scalaires, où N est le nombre de fibres dont l’évolution est

calculée. Ces coordonnées sont advectées avec le fluide dans lequel les fibres sont plongées. La

discrétisation du modèle d’évolution des fibres s’effectue alors dans ce chapitre par une approche

eulérienne.

L’évolution des scalaires ajoutés au code Flow 3D c© est alors calculée à la fin de chaque pas de

temps.

Une étude dimensionnelle présentée dans le chapitre 6 nous a permis d’estimer que le temps
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Outils numériques pour la modélisation d’écoulements industriels

caractéristique T de l’orientation, en 1/γ̇, était du même ordre que le temps caractéristique de

l’écoulement. Pour s’assurer de la convergence du schéma, un pas de temps maximal est rensei-

gné dans le code, tel que dtmax ∼ 10−3T . Prenons l’exemple d’un matériau s’écoulant dans un

canal de largeur h = 20cm et de longueur 60cm. Le fluide est assimilé à un fluide Newtonien

de viscosité 50Pa.s et donc l’écoulement devient un écoulement de Poiseuille pour simplifier les

calculs tout en conservant les ordres de grandeur. La vitesse moyenne dans ce canal est égale

à 2/3Vmax où Vmax est la vitesse maximale du fluide atteinte au centre du canal. Pour une

pression de 2500Pa appliquée à l’entrée du canal, la vitesse moyenne dans le canal est de l’ordre

de 0, 4m/s. Le taux de cisaillement dans le canal est de l’ordre de γ̇ = Vmoy/h ∼ 1s−1. Le temps

caractéristique de l’orientation dans ce canal est alors de l’ordre de 1, donc le pas de temps

maximal est fixé à 10−3s.

7.3.2 Limitation de la méthode

L’ajout de fibres modifie les dissipations visqueuses au sein du fluide. Le processus d’orien-

tation des fibres induit par l’écoulement peut alors influencer de façon non négligeable la rhéo-

logie du système en induisant une anisotropie des propriétés du fluide. La répartition des

contraintes dues à l’écoulement est alors modifiée. Ainsi, une fois l’écoulement établi, l’incli-

naison des fibres est constante, et la dissipation d’énergie est minimale. La résistance à l’écou-

lement est plus faible dans la direction de l’écoulement que dans les autres directions. Cette

anisotropie peut alors avoir d’importantes conséquences au niveau de la forme de l’écoule-

ment, au moins localement, et de la direction privilégiée qu’il induit. Un certain nombre de

modèles présentés dans la littérature prennent en compte cette influence des fibres sur les pro-

priétés rhéologiques du fluide via une loi de comportement dépendant de l’état d’orientation

[206],[241],[218],[207],[240],[242],[243],[189],[244],[220],[176],[192],[245],[213]. À chaque pas de cal-

cul, l’état d’orientation des fibres modifie localement l’écoulement, et cet écoulement oriente les

fibres. Le modèle d’orientation est couplé avec l’écoulement. Cependant, la personalisation du

code Flow3D c© ne permet de prendre en compte dans la résolution de l’écoulement qu’une

viscosité isotrope (sous forme d’un paramètre scalaire). Il est impossible d’ajouter à la loi de

comportement actuelle une anisotropie induite par une orientation préférentielle des fibres. L’ou-

til numérique que nous proposons ici ne prend donc pas en compte l’influence de l’orientation

des fibres sur le champ de vitesses.

Quoi qu’il en soit, on peut considérer que la plupart des écoulements de mise en œuvre in-

dustrielle induit un état de contraintes quasi-statique dans le matériau, du fait des vitesses de

cisaillement lentes entrainant des écoulements de type laminaire. Ainsi, la délimitation des zones

soumises aux déformations du fluide et des zones mortes n’évolue que peu au cours de l’écou-

lement. De plus, la prise en compte du couplage contrainte d’écoulement/orientation des fibres

n’est pas triviale dans le cas d’un fluide à seuil. En effet, l’état actuel des connaissances ne

permet pas de prédire l’influence de l’orientation des fibres sur la contrainte seuil d’un matériau

fibré. Quoi qu’il en soit, cette contrainte seuil est renseignée dans le code de calcul Flow 3D c©
comme un paramètre rhéologique constant. Le choix de la contrainte seuil conduit donc à une

approximation dans les zones dont le degré d’orientation ne correspond pas à celui choisi pour
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7.4 Méthode classique de la littérature

la contrainte seuil. Nous considérons pour nos simulations la contrainte seuil de nos matériaux

mesurée en condition d’isotropie.

7.4 Méthode classique de la littérature

La première méthode utilisée pour prédire l’orientation d’une population de fibres

dans un fluide à seuil en écoulement est une méthode continue basée sur un modèle

d’évolution d’un tenseur d’orientation. Ce modèle est largement étudié dans la littérature

[238],[206],[207],[242],[243],[246],[244],[239],[213].

7.4.1 Philosophie de la méthode

Advani et Tucker [247] définissent une série de tenseurs des moments d’orientation qui re-

présentent l’état local d’orientation des fibres dans le fluide. Ces tenseurs sont d’ordre pair, il en

existe une infinité, mais le tenseur d’orientation a2 d’ordre 2 suffit à représenter l’état d’orien-

tation [247].

Les coefficients aij du tenseur d’orientation se définissent comme les moments de l’état local

d’orientation. Ils sont représentatifs de l’influence de l’état d’orientation sur le tenseur des

contraintes [247]. Ils s’écrivent :

aij =

∮
pipjΨ(p)dp (7.2)

Le tenseur a2 exprimé dans sa base propre permet de tracer une ellipse d’orientation (cf. Fi-

gure 7.1). En effet, après diagonalisation, les vecteurs propres du tenseur correspondent aux

axes principaux d’orientation (les axes de l’ellipse), et les valeurs propres aux intensités d’orien-

tation sur ces axes (demi longueurs des axes des ellipses) [206],[239],[241]. Écrits dans une base

non diagonalisante, les coefficients aij sont donc les projections de ces axes principaux sur la

base dans laquelle ils sont exprimés.

Figure 7.1 – Représentation schématique de la distribution d’orientation par a2 [239].
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Outils numériques pour la modélisation d’écoulements industriels

7.4.2 Expression de l’orientation

La combinaison de l’équation de continuité et de l’équation d’évolution de Jeffery permet

d’exprimer l’équation d’évolution de la fonction de probabilité de distribution des fibres, ou

équation de Fokker-Plank [245]. De cette équation, Advani et Tucker ont déduit l’équation

d’évolution du tenseur d’orientation [247] :

Daij
Dt

= (wikakj − aikwkj) + (γ̇ikakj + aikγ̇kj − 2γ̇klaijkl) + 2Dr(δ − 3aij) (7.3)

Cette équation manipule des grandeurs tensorielles mais des conditions de symétrie et de nor-

malisation permettent de réduire le nombre de calculs :

aij = aji (7.4)

aii = 1 (7.5)

Seuls 5 coefficients de a2 sont indépendants et nécessitent que leur évolution soit calculée à

chaque pas de temps.

Dans l’équation (7.3), le dernier terme représente les interactions entre fibres hydrodynamique-

ment induites par l’écoulement telles qu’elles sont décrites par Folgar et Tucker [167] (cf. chapitre

5 section 5.6.6). Le choix du coefficient d’interactions empirique Dr pour nos simulations est dé-

taillé dans la section suivante 7.4.3.

Un tenseur d’orientation d’ordre 4 intervient dans cette équation. Il convient donc à cette étape

d’utiliser une relation de fermeture qui exprime ce tenseur d’ordre 4 en fonction du tenseur

d’ordre 2 pour que le système soit isostatique. Un large panel de ces relations est disponible

dans la littérature [213],[245],[248],[249],[250],[251],[252],[253],[254],[255],[256],[257]. Pour la sim-

plicité de la comparaison, nous ne considèrons dans ce travail que la relation de fermeture la

plus couramment utilisée, la relation quadratique [258], exacte pour l’alignement [244]. Cette

relation s’écrit :

aijkl = aijakl (7.6)

Les fibres sont initialement orientées de manière isotrope. La condition initiale du tenseur d’orien-

tation dans ce modèle est donc représentative d’un état isotrope 3D ou 2D [242] :

aij =


1
3 0 0

0 1
3 0

0 0 1
3

 ; aij =


1
2 0 0

0 1
2 0

0 0 0

 (7.7)

7.4.3 Coefficient d’interactions

Le terme de diffusion de l’équation (7.3) dépend d’un coefficient de diffusion Dr, défini dans

la littérature par :

Dr = CI |D| (7.8)

où |D| est la norme 2 du tenseur des déformations.

Le coefficient empirique CI est représentatif de l’intensité des interactions dans la suspension

[130]. Ce paramètre est obtenu en ajustant les simulations numériques sur des résultats expé-

rimentaux. On trouve dans la littérature des valeurs de ce paramètre comprises dans [10−3; 1],

mesurées dans des fluides Newtoniens (cf. chapitre 5 section 5.6.6).
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7.5 Méthode multi fibres

7.4.4 Implémentation

Un schéma d’Euler explicite est appliqué à la résolution de l’équation d’évolution (7.3).

Pour simplifier la notation, on note an+1
ij = aij(X

n+1) le coefficient aij du tenseur d’orientation

au temps (n+ 1).

an+1
ij = anij + ∆t× ((

∑
k

Wn+1
ik ankj −

∑
k

anikW
n+1
kj )

+(
∑
k

Dn+1
ik ankj +

∑
k

anikD
n+1
kj − 2

∑
k,l

Dn+1
kl anijkl)

+2Dr(δij − 3anij))

On rappelle que l’advection de chaque scalaire est réalisée par le code de calcul Flow3D c© à la

fin de chaque pas de temps.

7.5 Méthode multi fibres

La méthode mutli fibres consiste à considérer un échantillon représentatif d’une population

de fibres. Cette méthode a d’abord été utilisée par Roquet et al. [227] en deux dimensions. Elle

est ici développée dans le cas d’écoulements complexes de type industriel en trois dimensions.

7.5.1 Philosophie de la méthode

Pour chaque position du centre de gravité d’une fibre, une infinité d’orientations est possible

à l’intérieur de la sphère contenant la fibre. Le principe de la méthode consiste à exprimer un

état d’orientation local moyen à partir de l’orientation d’un nombre représentatif d’une popu-

lation entière. Ces fibres sont initialement réparties de manière isotrope (cf. Figure 7.2). Le

but est alors d’approcher la solution d’une fonction continue par une valeur moyenne. Lors de

l’écoulement du matériau, l’évolution de chacune des fibres est calculée.

Figure 7.2 – Orientation de fibres initialement isotropes [227]
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Outils numériques pour la modélisation d’écoulements industriels

7.5.2 Expression de l’orientation

Pour déduire de l’état d’orientation d’un nombre limité de fibres un unique coefficient quan-

titativement représentatif de l’orientation d’une population de fibres, un facteur d’orientation

discret est utilisé. Il est dérivé de la méthode précédemment détaillée par l’écriture discrète des

coefficients diagonaux du tenseur d’orientation [176],[206]. Si βix est l’angle formé par la ième

fibre avec la direction x (Figure 7.3), le facteur d’orientation par rapport à x se définit par :

αx =
1

N

N∑
i=1

(p(i)x )2 =
1

N

N∑
i=1

cos2 βix (7.9)

fib
re

 i

x

i

x
β

Figure 7.3 – Angle βi
x formé entre la ième fibre et la direction x.

À chaque pas de temps, l’orientation des N fibres considérées dans le modèle permet alors de

déduire un scalaire représentatif de l’état d’orientation dans le matériau. Ce facteur d’orientation,

calculé dans chaque cellule du maillage, permet de tracer une cartographie d’orientation selon

chacun des trois axes du domaine.

On peut remarquer que le choix de considérer l’une ou l’autre des extrémités des fibres n’a

aucune incidence sur le facteur d’orientation selon l’expression (7.9).

Un facteur αx = 0 signifie que toutes les contributions des fibres sont nulles, donc que toutes

les fibres sont orthogonales à la direction étudiée. Un facteur αx = 1 est obtenu dans le cas où

chaque contribution égale à 1, donc quand les fibres sont toutes alignées avec x. Le cas isotrope

dépend de la dimension de l’espace considérée. En effet le facteur d’orientation tel qu’il est

défini dans l’expression (7.9) s’écrit d’une manière continue dans une configuration isotrope en

3 dimensions :

αx =

∫ π/2

0
cos2 β sinβdβ =

1

3
(7.10)

tel que la somme des facteurs dans les trois directions αx, αy et αz égale à 1. En deux dimensions,

l’isotropie sera atteinte pour un facteur αx = 0, 5.

7.5.3 Evolution des fibres

L’équation d’évolution de Jeffery (avec l’hypothèse de la fibre infinie), à laquelle est rajouté

le terme d’interactions de Folgar et Tucker [167], est implémentée dans le code Flow 3D c©.

L’équation d’évolution s’écrit alors :

ṗ = ∇V · p−D : ppp+ I (7.11)

101

te
l-0

05
98

52
1,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

11



7.5 Méthode multi fibres

Un schéma d’Euler explicite d’ordre 1 est appliqué à cette équation d’évolution. En définissant

pn+1 = p(Xn+1) le vecteur orientation de la fibre au temps tn+1 et en adoptant cette notation

pour chaque grandeur calculée, le schéma s’écrit :

pn+1 = pn +4t× (∇V n+1 · pn − (Dn+1 : pnpn)pn + In) (7.12)

L’advection des composantes des vecteurs unitaires des fibres est réalisée par Flow 3D c© entre

chaque pas de temps.

7.5.4 Nombre de fibres et condition initiale

L’état d’orientation initial des fibres pendant l’étape de mise en œuvre correspond à de l’iso-

tropie. La question du nombre de fibres nécessaire pour définir cette isotropie se pose dans ce

modèle. L’objectif est de trouver un bon compromis entre un nombre de fibres le plus restreint

possible pour limiter les temps de calcul, tout en conservant une précision acceptable des ré-

sultats. Définir un état isotrope consiste à placer ce nombre N de fibres de manière équilibrée

sur la sphère unitaire, chaque fibre ayant une extrémité au centre de la sphère, et l’autre sur sa

surface.

Dans ce travail, différents nombres de fibres sont utilisés comme condition initiale pour détermi-

ner le nombre minimal de fibres permettant d’atteindre la précision souhaitée. Le code de calcul

Flow3D c© étant limité à une centaine de scalaires, le nombre de fibres N est limité à 100/3 ' 33

fibres.

7.5.4.1 Configuration 2D

Les fibres sont supposées initialement isotropes dans tout le canal. Sur la Figure 7.4, cela

signifie que les fibres sont disposées selon le schéma de droite dans chaque maille du domaine.

Pendant l’écoulement, cette condition d’isotropie est imposée à l’entrée de l’écoulement (sur les

mailles soumises à la condition de pression en z = 0). La Figure 7.4 présente la configuration

z

x1

2

3

4

z

x

x

z

Figure 7.4 – Configuration de 4 fibres réparties de manière isotrope dans le plan (x, z).
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Outils numériques pour la modélisation d’écoulements industriels

à 4 fibres. Mais plusieurs configurations sont testées, en faisant varier le nombre de fibres. Les

coordonnées de la ième fibre parmi N fibres réparties de manière équilibrée sur le disque unitaire

s’écrivent dans le plan (x, z) :

px = cos

(
(i− 1)π

N

)
pz = sin

(
(i− 1)π

N

)
(7.13)

Six configurations initiales différentes sont comparées dans la géométrie de l’écoulement entre

les deux plans parallèles. On considère successivement l’état d’orientation dans cette géométrie

déduit de l’évolution de 4, 6, 8 et 10 fibres. À cette étape le calcul ne prend pas en compte les

interactions entre les fibres. La Figure 7.5 représente le profil d’orientation entre deux plans

parallèles distants de 20cm. Ce profil est tracé en bout de canal, à une distance z = 60cm de

l’entrée du canal. Les résultats des simulations sont proches dès que le nombre de fibres est

égal ou supérieur à 4. Les zones où les écarts sont les plus grands se situent autour de la zone

morte centrale. La méthode des moindres carrés appliquée aux profils de 6 fibres, 8 fibres et 10

Facteur d'orientation (-)

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0,00 0,05 0,10 0,15 0,20

Distance entre les deux plans (m)

4fibres

6fibres

8fibres

10fibres

Figure 7.5 – Profil des facteurs d’orientation selon l’axe x pour divers nombres de fibres. Profil tracé

pour z = 60cm.

fibres par rapport au profil issu de l’évolution de 4 fibres nous donne une erreur moyenne de

1, 2.10−5, 2, 7.10−4 et 1, 8.10−4 respectivement. Ces erreurs sont très faibles, nous considérons

donc la configuration à 4 fibres comme la configuration de référence.

7.5.4.2 Configuration 3D

Les diverses configurations en 3 dimensions sont simulées et comparées sur la géométrie d’un

canal en U présentée au chapitre suivant. Quatre configurations initiales sont testées, représen-

tées sur les Figure 7.6 et Figure 7.7. Elles correspondent à 3 fibres, 7 fibres, 11 fibres et 13

fibres initialement réparties de manière proche de l’isotropie sur la demi-sphère unitaire.

La configuration à 11 fibres est obtenue selon une méthode dérivée de la mé-
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7.5 Méthode multi fibres

z

y

x

(a) 3 fibres

y

z

x

(b) 7 fibres

y

z

x

(c) 13 fibres

Figure 7.6 – Isotropie initiale des fibres. Chaque point à la surface de la sphère correspond à l’extrémité

d’une fibre. Leur centre de gravité se situe au centre de la sphère.

thode ”trig” (http : //www.math.niu.edu/ rusin/known − math/96/sph.rand, http :

//www.cgafaq.info/wiki/RandomP ointsOnSphere, http : //maven.smith.edu/ orourke/).

Cette méthode consiste à découper un axe (sur la Figure 7.7 il s’agit de l’axe z) en seg-

ments réguliers, et à découper la sphère en parties d’épaisseurs égales à chacun de ces segments.

Chaque section sphérique est alors divisée en parties d’angle au centre de la section constant.

Cette méthode permet de s’approcher de l’isotropie pour un nombre de fibres élevé. Un bon

compromis entre isotropie et temps de calcul est obtenu avec 11 fibres distribuées comme indi-

qué Figure 7.7 sur la demi-sphère unitaire.

Le calcul des coordonnées des vecteurs unitaires p représentatifs de l’orientation des fibres sur

z

y

x

Figure 7.7 – Isotropie initiale des fibres obtenue grâce à la méthode ”trig”. Chaque point à la surface de

la sphère correspond à l’extrémité d’une fibre.

les différentes configurations est donné dans l’annexe D. On note qu’à partir de ces coordonnées,

les facteurs d’orientation isotropes sont déduits de l’expression (7.9) pour chaque configuration.
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Outils numériques pour la modélisation d’écoulements industriels

Leurs valeurs confirment une répartition proche de l’isotropie.

αx,3fibres = 0, 333, αy,3fibres = 0, 333, αz,3fibres = 0, 333

αx,7fibres = 0, 333, αy,7fibres = 0, 333, αz,7fibres = 0, 333

αx,11fibres = 0, 318, αy,11fibres = 0, 318, αz,11fibres = 0, 364

αx,13fibres = 0, 333, αy,13fibres = 0, 333, αz,13fibres = 0, 333 (7.14)

7.5.5 Interactions entre fibres

Nous avons déduit de la littérature des fluides Newtoniens que les interactions entre fibres

dans des systèmes semi dilués réduisent l’orientation des fibres. Elles sont comparées à un proces-

sus de diffusion induisant hydrodynamiquement des rotations additionnelles des fibres [167],[165].

Pour prendre en compte cet effet dans le calcul de l’évolution de l’orientation des fibres, un terme

de diffusion I est alors ajouté à l’équation de Jeffery (A.2) dans la littérature [167] :

I =
Dr

ψ

∂ψ

∂p
(7.15)

où Dr est le même paramètre que celui décrit à la section 7.4.3. ψ représente la fonction de

distribution de l’orientation des fibres. Elle est symétrique (par la condition de symétrie des

fibres par rapport à leur centre de gravité), et telle que la probabilité pour une fibre d’adopter

une position entre deux angles β1 et β2 s’exprime par [167],[130] :

P (β1 < β < β2) =

∫ β2

β1

ψ(β′)dβ′ (7.16)

Par définition, cette fonction ψ doit vérifier deux conditions. La première est une distribution

des fibres comprise entre −π/2 et π/2, ce qui implique une probabilité de 1 de trouver une fibre

orientée entre ces deux angles limites :∫ π/2

−π/2
ψ(β)dβ = 1 (7.17)

La deuxième est une distribution π−périodique de l’orientation des fibres, telle que :

ψ(β + π) = ψ(β) (7.18)

7.5.5.1 Hypothèse d’une répartition gaussienne

L’équation de Jeffery est déduite de l’équilibre des forces appliquées par un écoulement

laminaire sur une fibre. Nous avons constaté au chapitre 6 qu’au cours de ces écoulements,

l’orientation des fibres s’établissait selon une unique direction préférentielle induite par les lignes

de courant, selon le type d’écoulement. Nous choisissons alors d’imposer une forme gaussienne

à la fonction de probabilité de distribution de l’orientation des fibres, privilégiant cette unique

direction préférentielle. On définit une fonction de probabilité de distribution des fibres selon

chacun des trois axes x, y et z. Ces fonctions dépendent des angles formés entre les fibres et l’axe

considéré. Par définition, chaque fonction de distribution est symétrique par rapport à l’angle

moyen (déduit de la moyenne des orientations de toutes les fibres).
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7.5 Méthode multi fibres

Cet angle moyen est considéré dans l’intervalle [−π/2; +π/2] par rapport à la direction étudiée

pour que le calcul de l’angle moyen soit représentatif de l’inclinaison moyenne des fibres par

rapport à cette direction.

La probabilité de distribution des fibres s’écrit, par rapport à un axe avec lequel la fibre forme

un angle β et sur l’intervalle [−∞; +∞] :

ψ(β) =
1

σ
√

2π
e−

(β−µ)2

2σ2 (7.19)

où µ est l’angle moyen des vecteurs p avec la direction étudiée, et σ2 la variance.

Cette fonction de distribution doit alors vérifier les deux propriétés 7.17 et 7.18. Or, d’une part

une distribution gaussienne ne vérifie pas la condition de π-périodicité, d’autre part la probabilité

unitaire n’est par définition obtenue que sur tout le domaine [−∞; +∞] :∫ +∞

−∞
ψ(β)dβ = 1 (7.20)

Nous construisons donc une fonction de probabilité Ψ des fibres par morceaux, à partir de la

gaussienne de référence tronquée sur l’intervalle [−π/2 + µ;π/2 + µ]. La fonction de probabilité

de distribution des fibres Ψ est alors la somme des distributions gaussiennes tronquées définies

sur chaque intervalle [−π
2 (2k−1)+µ; π2 (2k+1)+µ], où k est un entier réel. Ces gaussiennes sont

multipliées à des fonctions portes Pµ,k définies à partir des fonctions de Heaviside H correspon-

dant à chaque intervalle. On obtient alors une fonction de distribution des fibres, π−périodique,

définie pour une moyenne µ et une variance σ2 :

Ψ(β) =
∑
k∈Z

1

σ
√

2π
exp

(
−(β − (µ+ kπ))2

σ2

)
× Pµ,k(β) (7.21)

où

Pµ,k(β) =
[
H
(
β + µ+

π

2
(2k + 1)

)
−H

(
β + µ+

π

2
(2k − 1)

)]
(7.22)

La fonction Ψ(β) est continue par morceaux sur chaque intervalle [−π
2 (2k−1)+µ; π2 (2k+1)+µ].

On peut alors montrer sa continuité sur l’ensemble des réels en montrant que la valeur de la

gaussienne à droite d’un intervalle est égale à celle de la gaussienne à gauche de l’intervalle

suivant :

Ψ(µ+
π

2
(2k + 1)) = Ψ(µ+

π

2
(2k′ − 1)) (7.23)

avec k′ = k + 1. En effet chacun des termes calculés séparément est égal à 1
σ
√
2π

exp
(
− (π/2)2

σ2

)
.

La fonction Ψ est donc π−périodique et uniformément continue sur IR. Elle est uniformément

dérivable sur chaque morceau. Toutefois, la condition de probabilité unitaire n’est pas vérifiée sur

chaque morceau. On peut cependant montrer qu’elle y est approchée. On s’intéresse au morceau

[−π/2 + µ;π/2 + µ]. On cherche alors à évaluer l’erreur commise sur la condition 7.17 dans cet

intervalle. Pour cela, deux cas de figures particuliers sont définis, entre lesquels toutes les confi-

gurations sont possibles : l’isotropie et l’anisotropie par rapport à l’axe étudié. Dans le cas 3D,

une distribution isotrope selon un axe est représentée par une distribution régulière de 7 fibres

dans l’intervalle [−π/2;π/2] (puisque dans ce cas l’angle moyen est nul), et l’anisotropie comme

une distribution régulière de 7 fibres dans l’intervalle [−20̊ ; +20̊ ] selon le critère d’anisotropie
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Outils numériques pour la modélisation d’écoulements industriels

du chapitre 5 (pour un angle moyen nul aussi à cause de la régularité de la distribution). La

distribution gaussienne d’une répartition anisotrope ainsi définie atteint la valeur nulle avant les

bornes −π/2 et +π/2 de l’intervalle de définition (en gris sur la Figure 7.8). Ainsi la condition

7.17 est respectée dans cette configuration. Dans le cas d’une distribution isotrope, comme re-

présenté en noir sur la Figure 7.8, l’intégrale (au sens de Riemann) de la fonction entre −π/2 et

+π/2 est ' 0, 93, soit une probabilité de présence d’une fibre d’environ 93% au lieu de 100% sur

tout l’intervalle. Le terme d’interaction est dans ce cas légèrement sous-estimé. Cette erreur est

négligée dans la suite de nos calculs. La condition de probabilité unitaire sur chaque intervalle

[−π
2 (2k − 1) + µ; π2 (2k + 1) + µ] est supposée respectée.

Probabilité de distribution des fibres

0

0,03

-200 -150 -100 -50 0 50 100 150 200

angle (degrés)

isotropie

anisotropie

bornes de l'intervalle

Figure 7.8 – Tracé de la fonction de probabilité de distribution des fibres dans un cas isotrope et

anisotrope selon une direction d étudiée.

Il faut noter que la configuration d’anisotropie présentée sur la figure Figure 7.8 est relative à

la direction d étudiée puisque l’angle des fibres se définit par rapport à cet axe. Le cas particulier

d’une anisotropie de l’orientation des fibres marquée dans le sens orthogonal à cette direction

n’est pas pris en compte par la distribution gaussienne. Ainsi, la configuration d’anisotropie

orthogonale à la direction d présentée sur la Figure 7.9 correspond à la distribution tracée en

gris sur la Figure 7.10.

d

Figure 7.9 – Configuration d’anisotropie des fibres dans la direction orthogonale à la direction d étudiée.

Cette distribution est très proche d’une configuration isotrope, malgré l’orientation privilégiée

adoptée par les fibres. Dans ce cas, selon l’expression du terme d’interaction donné dans la section

suivante 7.5.5.2, les paramètres σ et µ déduits des inclinaisons de toutes les fibres sont respec-
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7.5 Méthode multi fibres

tivement élevé et faible. Ces paramètres entrainent un faible terme d’interaction pour une fibre

formant un angle inclus dans l’intervalle [−π/2; +π/2] par rapport à d (fibre sur la Figure 7.9).

L’expression de ce terme est détaillé dans la section suivante. Selon cette expression, le terme

d’interaction ne dépasse pas 3.10−4Dr. Ce résultat semble cohérent puisque le mouvement de

l’extrémité des fibres orthogonal à d n’influence que dans une faible mesure la fibre orientée selon

d. On note que dans ce cas, l’intégrale (au sens de Riemann) de la fonction entre −π/2 et +π/2

est ' 0, 75.

Probabilité de distribution des fibres

0

0,03

-180 -130 -80 -30 20 70 120 170

angle (degrés)

isotropie

anisotropie

bornes de l'intervalle

Figure 7.10 – Tracé de la fonction de probabilité de distribution des fibres dans un cas isotrope et

anisotrope orthogonalement à une direction d étudiée.

7.5.5.2 Calcul du terme d’interactions

Une fois la fonction de distribution des fibres définie, on cherche à exprimer le terme d’in-

teractions (7.15) en fonction des paramètres calculés par le code Flow3D c©. Ce terme ajouté

à l’équation d’évolution de l’orientation d’une fibre est projeté sur les trois axes de l’espace

comme :

I =


Ix

Iy

Iz

 = Dr


1

ψx(βx)
∂ψx(βx)
∂px

1
ψy(βy)

∂ψy(βy)
∂py

1
ψz(βz)

∂ψz(βz)
∂pz

 (7.24)

px, py et pz sont les projections du vecteur unitaire p sur les trois axes. βx, βy et βz sont les

angles formés entre la fibre et chacun des axes. ψx, ψy et ψz sont les fonction de distribution des

fibres selon ces axes.

Chaque distribution gaussienne ψ(β) se définit par rapport à deux paramètres : l’angle moyen

µ et la variance σ2, qui sont recalculés dans le code à chaque pas de temps et sur chaque cellule

en fonction de l’orientation des fibres à la fin du pas de temps précédent advectée sur la même

cellule. Trois couples de paramètres (µx, σx), (µy, σy) et (µz, σz) sont donc déduits et permettent

de construire les fonctions de distribution selon chaque axe.

Chaque fonction de distribution doit alors être dérivée par rapport à la projection du vecteur

p sur l’intervalle [−π/2 + µ;π/2 + µ]. Le détail de ce calcul est donné en Annexe E. Le terme
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Outils numériques pour la modélisation d’écoulements industriels

d’interaction s’exprime finalement :

I = Dr


1
σ2
x
× arccos(px)−µx√

1−p2x
1
σ2
y
× arccos(py)−µy√

1−p2y
1
σ2
z
× arccos(pz)−µz√

1−p2z

 (7.25)

avec les angles arccos(px), arccos(py) et arccos(pz) appartenant respectivement aux intervalles

[−π
2 + µx; +π

2 + µx], [−π
2 + µy; +π

2 + µy] et [−π
2 + µz; +π

2 + µz].

Il faut noter que le calcul de la dérivée de la fonction de probabilité de distribution est réalisé en

prenant l’hypothèse que l’angle moyen et la variance sont fixes sur un pas de temps. Seul l’angle

β varie au cours de ce calcul.

7.6 Écoulement entre deux plans parallèles infinis

L’évolution de l’orientation d’une population de fibres dans un fluide à seuil s’écoulant entre

deux plans parallèles infinis distants de 20cm est alors simulée. Un matériau cimentaire de seuil

τc = 300Pa et de viscosité plastique µp = 10Pa.s, est injecté dans le canal par une pression

uniforme de 2500Pa appliquée à la limite inférieure du canal (cf. Figure 7.11). Une condition de

pression stagnante (stagnation pressure) impose une vitesse nulle du fluide à l’entrée du canal.

Cette condition est cohérente avec la condition d’isotropie des fibres, et permet d’observer le

processus d’orientation à l’entrée du canal.

d=20cm

P=2500Pa

Figure 7.11 – Écoulement de référence entre deux plans parallèles infinis distants de d.

La condition initiale adoptée dans ce canal est une isotropie en 2 dimensions, donnée par (7.7)

pour la méthode continue, et par (7.13) pour la configuration à 4 fibres de la méthode multifibres.

À la sortie du canal, une condition type continuité est appliquée. Par cette relation, le gradient

de tous les paramètres de l’écoulement dans la direction normale à la frontière du maillage est

forcé à 0. De cette façon, l’état permanent est atteint au bout du canal.
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7.6 Écoulement entre deux plans parallèles infinis

Le pas de temps maximal est choisi comme il est précisé dans la section 7.3.1 Dtmax = 10−3s.

7.6.1 Modèle sans interactions

L’évolution de l’orientation d’une fibre seule plongée dans le canal est représentée Fi-

gure 7.12. Une zone non cisaillée au centre de canal de l’ordre de 14 − 15cm de largeur est

prédite.
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Figure 7.12 – Évolution de l’orientation d’une fibre entre deux plans parallèles distants de 20cm.

L’orientation dans cette zone est caractérisée par un facteur d’orientation de 0,5. Dans les zones

cisaillées de part et d’autre de cette zone centrale, de facteur d’orientation en état permanent est

de 1. Cet écoulement est simulé selon les deux modèles proposés dans ce chapitre. Pour l’instant,

le terme d’interactions n’est pas pris en compte. Les profils d’orientation en bout de canal sont

donnés sur la Figure 7.13. Ils correspondent au coefficient a33 de la matrice d’orientation pour

la modèle continu, directement comparable au facteur d’orientation α3 du modèle multifibres.

Facteur d'orientation (-)

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0,00 0,05 0,10 0,15 0,20
Distance entre les parois (m)

solution analytique

modèle multifibres

modèle continu

Figure 7.13 – Profil du facteur d’orientation en bout de canal (pour z = 0, 6m) tracé pour les deux

modèles de prédiction (continu et multifibres). Le terme d’interactions est égal à zéro.

Les résultats des deux méthodes sont très proches, l’erreur moyenne au sens des moindres carrés

est de l’ordre de 3.10−4. Ces deux méthodes mènent à une bonne prédiction de l’état perma-

nent d’orientation dans le canal. Une estimation du temps nécessaire pour atteindre 99% de
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Outils numériques pour la modélisation d’écoulements industriels

l’orientation pour des fibres initialement isotropes à l’entrée du canal peut être déduite des pro-

fils d’orientation le long du canal, pour chacun des modèles. Cette estimation est tracée sur la

Figure 7.14. Les temps nécessaires pour que l’orientation caractéristique d’un régime perma-

nent soit atteinte (à 1% près) sont de l’ordre de 2 secondes pour chacun des modèles. On note

toutefois une légère différence entre les modèles pour une vitesse de cisaillement moyenne entre

les deux plans de l’ordre de 0, 1m/s. Les temps d’orientation du modèle tensoriel continu sont

environ 15% plus élevés que ceux du modèle multifibres.

Temps d'orientation à 99% (s)

0,0

0,5

1,0

1,5

2,0

2,5

0,170 0,175 0,180 0,185 0,190 0,195 0,200

Distance entre les deux plans (m)

modèle tensoriel

modèle tensoriel, CI=0,05

modèle multifibres

modèle multifibres, CI=0,05

Figure 7.14 – Temps nécessaire pour atteindre 99% de l’orientation finale dans le canal, selon la dis-

tance entre les deux plans. Comparaison des facteurs d’orientation (a33 et α3) selon les deux modèles

numériques.

La prise en compte du terme d’interactions réduit le temps d’orientation pour chacun des modèles

puisque ces interactions induisent une orientation premanente moins marquée, donc atteinte plus

rapidement par les fibres en écoulement. Ce processus semble plus important dans le cas du mo-

dèle tensoriel sur la Figure 7.14, du fait de l’influence plus marquée des interactions au niveau

de l’orientation permanente dans ce modèle.

7.6.2 Influence des propriétés rhéologiques du matériau

Les propriétés rhéologiques du matériau sont maintenant modifiées pour observer l’impact

du comportement macroscopique sur le profil de l’écoulement. Pour cela, nous caractérisons le

comportement rhéologique d’un fluide par le nombre de Bingham Bm déduit de ses paramètres

de seuil et de viscosité plastique. Il s’écrit :

Bm =
τcL

µpV
(7.26)

où L est une longueur caractéristique de l’écoulement, et V sa vitesse. Ce nombre adimen-

sionnel est utilisé pour caractériser le rapport entre les contraintes élastiques et les contraintes

visqueuses. Dimensionnellement, on s’attend à ce que plus les contraintes élastiques sont impor-

tantes, plus les zones mortes sont importantes au niveau de l’écoulement et plus l’orientation

macroscopique est faible. Dans notre écoulement 2D, la longueur caractéristique est la distance
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7.6 Écoulement entre deux plans parallèles infinis

entre les deux plans L = 0, 2m et le calcul de l’ordre de grandeur de la vitesse s’effectue par l’ap-

proximation d’un champ de vitesse caractéristique d’un écoulement de Poiseuille Vmoy = 2
3Vmax.

Le nombre de Bingham de l’écoulement présenté précédemment est de l’ordre de Bm = 4, 32.

Les paramètres de seuil et de viscosité sont alors variés pour observer l’impact des propriétés

rhéologiques sur le profil de l’écoulement. Ces paramètres sont donnés dans la Table 7.1 :

Bingham Bm1 Bm2 Bm3

Seuil (Pa) 300 100 50

Viscosité (Pa.s) 10 10 10

Bingham 4,32 1,44 0,72

Table 7.1 – Nombres de Bingham représentatifs du comportement rhéologique des matériaux dont

l’écoulement est simulé entre deux plans parallèles infinis.

La Figure 7.15 réunit les profils d’écoulement entre les deux plans parallèles au bout du canal

(z = 0, 6m).

Facteur d'orientation (-)

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0,00 0,05 0,10 0,15 0,20

Distance entre les deux plans (m)

Bm=4,32
Bm=1,44
Bm=0,72
solution analytique (Bm=3,42)
solution analytique (Bm=1,44)
solution analytique (Bm=0,72)

Figure 7.15 – Profils du facteur d’orientation en bout de canal pour matériaux caractérisés par leur

nombre de Bingham. Simulations réalisées par le modèle continu. Un coefficient d’interactions CI = 0, 005

a été utilisé.

Un nombre de Bingham décroissant n’influence pas le facteur d’orientation dans les zones ci-

saillées mais modifie la prédiction de la zone isotrope, ainsi que l’orientation dans cette zone.

Cette zone isotrope est conditionnée par la contrainte seuil du matériau. Dès que le critère de

Von Mises n’est plus respecté, le matériau suit une loi de comportement élastique en fonction

du module de cisaillement G du matériau, choisi tel que :

τc = Gγcrit (7.27)
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Outils numériques pour la modélisation d’écoulements industriels

où γcrit est la déformation critique au delà de laquelle le comportement élastique du matériau est

dépassé. Pour chaque nombre de Bingham, cette déformation critique est fixée à γcrit = 10−2,

valeur classique des matériaux cimentaires. Le module de cisaillement du matériau est modifié

avec le seuil pour chaque simulation. Un module G faible entraine alors des déformations élas-

tiques dans la zone isotrope, et donc une évolution de l’orientation des fibres. On peut penser

qu’une valeur artificiellement forte de ce module tend vers la solution analytique d’une orienta-

tion maximale aux parois et isotrope dans la zone centrale, avec un gradient d’orientation très

fort à l’interface entre les deux zones.

De plus, la largeur de la zone isotrope centrale numériquement obtenue par rapport à sa pré-

diction analytique peut être expliqué par le caractère diffusif des interactions. Le profile de

l’écoulement est plus doux plus le seuil est faible, et l’effet des interactions domine le processus

d’orientation dans la zone proche de l’isotropie centrale.

7.6.3 Influence du terme d’interactions

Les interactions sont ajoutées à chacun des deux modèles. Le coefficient d’interactions CI est

varié sur la plage des coefficients de la littérature (entre 10−3 et 0, 2). Les profils d’orientation

sont tracés sur la Figure 7.14.

Facteur d'orientation (-)

0,4

0,5

0,6

0,7

0,8

0,9
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1,1

0,00 0,05 0,10 0,15 0,20
Distance entre les parois (m)

solution analytique
4 fibres
4 fibres CI=0,001
4 fibres CI=0,005
4 fibres CI=0,05
4 fibres CI=0,1
tenseur
tenseur CI=0,001
tenseur CI=0,005
tenseur CI=0,05
tenseur CI=0,1
tenseur CI=0,2

Figure 7.16 – Profils du facteur d’orientation en bout de canal pour différents coefficients d’interactions,

tracés pour les deux modèles de prédiction (continu et semi-discret).

Pour les deux modèles, l’augmentation du coefficient d’interactions CI entraine une réduction

du degré d’orientation caractéristique du régime permanent dans les zones cisaillées. Le temps

nécessaire pour atteindre cette orientation réduite est alors plus rapide (cf. Figure 7.14). En

revanche, aucun effet n’est observé dans la zone isotrope centrale. Ce comportement était prévi-

sible du fait des faibles déformations dans cette zone pour un module de cisaillement assez élevé

(G = 30000Pa).

La comparaison des deux modèle montre que, malgré des profils d’orientation similaires, le mo-

dèle multifibres sous-estime les interactions des fibres entre elles lors de l’écoulement par rapport
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7.6 Écoulement entre deux plans parallèles infinis

à l’approche tensorielle.

Quoi qu’il en soit, ce terme doit permettre l’ajustement des résultats numériques sur les résul-

tats expérimentaux. Or, les valeurs du facteur d’orientation expérimentalement mesurées par

comptage de fibres sur des sections d’un canal à surface libre (cf. chapitre 5) sont de l’ordre de

0,7-0,8 aux parois. Nous n’avons pu réussir à obtenir de telles valeurs avec le modèle multifibres.

En effet, au delà du coefficient d’interactions de 0,1, de fortes perturbations de l’orientation sont

apparues dans les zones cisaillées du canal. Par contre, le modèle continu permet d’obtenir des

facteurs d’orientation aux parois du canal de l’ordre de 0,7 pour un coefficient d’orientation de

CI = 0, 1− 0, 2. Si on compare ce facteur aux résultats de la littérature, on s’aperçoit que cette

valeur de coefficient d’interactions correspond à des encombrements très élevés (cf. chapitre 5

section 5.6.6). Nous avons proposé au chapitre 4 un critère de formulation des matériaux fibrés

tel que l’encombrement dû aux inclusions dans les matériaux cimentaires ne dépasse pas 0,8. Or

si on se réfère aux coefficients de Folgar et Tucker [167] sur la Figure 7.17, un encombrement

des fibres φf/φfm de 0,8 implique un coefficient d’interactions de l’ordre de 0,02, ce qui est un

ordre de grandeur en dessous du coefficient nécessaire dans nos simulations.

Coefficient d'interactions

y = 0,0031e2,5504x

0,001

0,01

0,1

0 0,2 0,4 0,6 0,8 1

Encombrement

Folgar et Tucker

Sepehr et al.

Phan Thien et al.

~0,024

0,8

fmf φφ /

Figure 7.17 – Coefficient d’interactions issus de la littérature [167],[213],[214]. Le point blanc correspond

à l’extrapolation de ce coefficient pour un encombrement de 0,8.

Une estimation du nombre de calculs pour chacun des modèles mène pour chaque pas de temps

à (149 additions/soustractions + 132 multiplications/divisions + 1 racine) calculs pour le mo-

dèle continu, et (244 additions/soustractions + 240 multiplications/divisions + 21 racines + 28

arccosinus) calculs pour le modèle multifibres (sans compter l’appel à une procédure de Jacobi

dans chacun des modèles pour le calcul du paramètre d’interactions Dr défini au 5 section 5.6.6).

Cette estimation prédit un temps de calcul plus important dans avec le modèle multifibres. Nous

avons effectivement constaté cette différence de temps, inférieure à 20minutes sur un calcul de

2heures. Nous recommendons donc le modèle continu. Il faut cependant garder à l’esprit que les

coefficients d’interactions nécessaires pour simuler l’orientation d’une population de fibres dans

une structure réelle sont bien supérieurs à ceux couramment utilisés dans la littérature pour des
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Outils numériques pour la modélisation d’écoulements industriels

encombrements similaires. Les facteurs d’orientation de l’ordre de 0,7 mesurés sur structures

réelles ne sont donc pas uniquement dus aux interactions entre les fibres. Il faut alors tenir

compte du comportement macroscopique du matériau en écoulement. En effet, les coefficients

d’interaction de la littérature sont mesurés sur des fluides Newtoniens. Or, les matériaux dont

nous simulons l’écoulement présentent un seuil d’écoulement qui peut modifier l’évolution de

l’orientation des fibres.

Nous avons dès le début de cette étude appliqué un modèle d’évolution de l’orientation issu de

la mécanique des milieux Newtoniens à des matériaux cimentaires présentant un seuil d’écou-

lement. Nous avons alors constaté que cette hypothèse forte permettait d’obtenir de bonnes

prédictions de l’état d’orientation dans les zones cisaillées du matériau. Mais cette hypothèse a

des limites. Elle est en effet valable au niveau macroscopique mais ne prend pas en compte l’effet

du seuil à l’échelle de la fibre.

7.7 Comparaison entre les résultats numériques et expérimen-

taux

Les résultats expérimentaux issus du comptage des fibres sur des sections d’un canal à surface

libre présentés à la section 5.3.2.2 du chapitre 5 montrent une orientation plus faible des fibres

dans les zones proches des parois que les prédictions analytique et numérique. En effet dans le

cas de ce canal, l’encombrement expérimental du matériau par les fibres de φf/φfm = 0, 0625

correspond, selon les résultats de la littérature (cf. Figure 7.17), à un coefficient d’interactions de

CI = 0, 002. Les facteurs d’orientation expérimentaux dans les zones proches des parois sont alors

de 0,72. Ce constat expérimental cöıncide d’ailleurs avec la gamme de valeurs expérimentalement

adoptées par ce facteur dans le cas de matériaux cimentaires et reportée par certains auteurs.

Soroushian [104] fait le bilan de résultats entre [0, 41; 0, 82] et Grünewald [13] suggère une gamme

légèrement plus ouverte, de [0, 2; 0, 825]. Or les ordres de grandeur des facteurs d’orientation

prédits entre les deux plans parallèles infinis de la Figure 7.16 dans le cas de coefficients

d’interactions de l’ordre de CI = 0, 005 sont proches de 1. Ce contraste entre prédiction et

mesures peut se comprendre si on se place à l’échelle des fibres. La vitesse de rotation d’une

fibre diminue au fur et à mesure que la fibre se rapproche de sa position d’équilibre et que le

couple généré par le fluide diminue. Le cas d’une fibre soumise à un écoulement cisaillant est

donné à titre d’exemple sur la Figure 7.18.

Au cours du processus d’orientation, le fluide compris dans un domaine entre la fibre et la

direction de l’écoulement oppose une résistance à la rotation de la fibre liée au seuil et à la

viscosité du fluide porteur. Or plus la fibre se rapproche de son orientation finale, plus le couple

moteur de la rotation décroit, jusqu’à devenir nul une fois l’alignement atteint. On peut donc

penser qu’il existe une orientation critique de la fibre pour laquelle ce couple ne permet plus

de surpasser l’effet de la contrainte seuil. La rotation s’arrête alors, et la fibre n’atteint jamais

complètement sa position d’équilibre prédite analytiquement par Jeffery (Figure 7.18).
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7.7 Comparaison entre les résultats numériques et expérimentaux

Figure 7.18 – Évolution de l’inclinaison d’une fibre en rotation dans un écoulement cisaillant. Les lignes

bleues représentent la distance entre la fibre et l’alignement final.
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Chapitre 8

Application des modèles de

prédiction de l’orientation à un

écoulement industriel

8.1 Introduction

Le modèle multifibres de prédiction de l’orientation d’une population de fibres a été déve-

loppé dans le chapitre précédent et testé entre deux plans parallèles infinis. L’état d’orientation

dans un matériau est déduit à chaque instant de l’orientation moyenne d’un échantillon de fibres

initialement isotropes. Un terme d’interactions est pris en compte pour représenter l’effet diffusif

des interactions entre les fibres.

Nous appliquons dans ce chapitre ce modèle à un écoulement représentatif d’une mise en œuvre

industrielle dans un canal en forme de U. La forme du coffrage, le processus de coulage, la

concentration en fibres, les effets des parois sont autant de facteurs qui influencent le processus

d’orientation des fibres lors d’une mise en œuvre industrielle qui ne peuvent être pris en compte

analytiquement. Le matériau considéré est une pâte de ciment renforcée en fibres. Un terme

d’interactions permet de simuler les encombrements de fibres couramment utilisés en génie civil.

Les interactions dues aux grains de sable et aux granulats sont ici négligées. Les prédictions

d’orientation sont donc applicables à des pâtes de ciment fibrées. On peut cependant penser

que, pour des grains de sable de diamètre bien inférieur à la longueur des fibres, les interactions

entre ces deux types d’inclusions sont en première approximation négligeables. Dans ce cas, les

résultats de ce chapitre peuvent être comparés au cas des mortiers fibrés. Par contre, des graviers

dont le diamètre est de l’ordre de la longueur des fibres modifient dans une large mesure leur

orientation et induisent une orientation isotrope, même dans les zones où le cisaillement devrait

aligner les fibres avec l’écoulement.

Dans un premier temps, nous définissons les paramètres caractéristiques de l’écoulement relatifs

à la rhéologie du comportement du matériau et à la mise en place numérique du problème. Puis,

nous décrivons une campagne d’essais mise en place dans le cadre de ce travail en collaboration

avec le GHYMAC à Bordeaux, dans le but de valider nos résultats numériques. L’orientation ma-

croscopique de fibres dans un matériau cimentaire coulé dans la même géométrie que celle décrite
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8.2 Modélisation d’un coulage de type industriel

précédemment est déduite de mesures de résistivité électrique locale après prise du matériau.

D’autre part, le comptage des fibres sur des sections du canal découpées permet de compléter

ces résultats. Après un bref descriptif de la méthode de mesures de résistivité électrique, l’essai

est mis en place. Les protocoles expérimentaux suivis dans cette étude sont alors décrits.

Dans un deuxième temps, nous déduisons des résultats numériques les principales caractéris-

tiques de l’orientation macroscopique des fibres. Nous retrouvons un résultat du chapitre 6 qui

prédisait une orientation quasi instantanée des fibres dans la direction de l’écoulement dans les

zones cisaillées. Le facteur d’orientation atteint des valeurs élevées dans les zones proches des pa-

rois. D’autre part, une zone non cisaillée se forme au centre de l’écoulement, due à la contrainte

seuil du matériau.

Enfin, l’état d’orientation macroscopique des fibres dans le canal en U est déduit des résultats

obtenus à la fois par mesures de résistivité électrique et comptage de fibres.

8.2 Modélisation d’un coulage de type industriel

Dans ce chapitre, nous appliquons à un cas concret de mise en œuvre les modèles proposés

au cours du chapitre précédent. Nous définissons donc un écoulement de référence dans une

géométrie de type canal en U, représentative des coffrages du génie civil. Les dimensions du

canal sont renseignées sur la Figure 8.1.

L =  80cm

d =  10cm

H
 =

 6
0
c

m

e = 20cm

Figure 8.1 – Dimensions du canal en U utilisé pour la simulation du coulage d’un matériau cimentaire

renforcé en fibres de type industriel.

8.2.1 Paramètres rhéologiques

La contrainte seuil du matériau est fixée à 300Pa de manière à être représentatif des ma-

tériaux industriels renforcés en fibres et à mettre en avant l’effet du seuil sur l’écoulement. Le

module d’Young du matériau, représentatif du comportement du matériau dans les zones mortes,

est alors égal à 30000Pa (cf. expression (7.27) du chapitre 7). La déformation critique est de

l’ordre de 10−2 pour des matériaux cimentaires [10]. Une viscosité de 50Pa.s est considérée.
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Application des modèles de prédiction de l’orientation à un écoulement industriel

8.2.2 Coefficient d’interactions

En première approche, nous déduisons le paramètre d’interactions CI par interpolation des

résultats de la littérature [167],[213],[214] pour deux concentrations de fibres prévues pour nos

essais, représentatives de celles utilisées en industrie : 0,2% et 1% de fibres de facteur d’aspect 50.

Les encombrements correspondant sont de φf/φfm = 0, 025 et φf/φfm = 0, 125. Les paramètres

d’interaction identifiés sont égaux respectivement à 0,0033 et 0,0043 (cf. chapitre 7 Figure 7.17).

Les résultats présentés dans ce chapitre concernent la configuration avec un encombrement de

φf/φfm = 0, 125.

8.2.3 Maillage

Un maillage régulier est appliqué au canal en U présenté Figure 8.1, de manière à éviter les

distorsions des cellules. Chaque cellule a la taille 1cm × 1cm × 1cm (Figure 8.2). Le canal en

U est maillé comme un parallélépipède rectangle dont le centre est rempli par un obstacle (au

centre sur la Figure 8.2). Le fluide est versé par une des extrémités du canal pour simuler une

mise en œuvre de type industriel. Une condition de symétrie est appliquée à y = 0 de manière

à réduire le temps de calcul grâce à la symétrie de l’écoulement.

z

x y

z

x

y

Figure 8.2 – Maillage du canal en U.

8.2.4 Conditions aux frontières du maillage

Le versement du matériau s’effectue sur une des deux extrémités du canal, à la surface

z = zmax. Trois versements de 10l de fluide chacun sont effectués pour le remplissage du cof-

frage, correspondant à trois volumes de matériau fibré versés successivement dans le moule (cf.

Figure 8.3). La vitesse de versement de chacun des volumes de fluide s’écrit :

Vseau =
volume

Av × t
(8.1)
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8.2 Modélisation d’un coulage de type industriel

où volume = 10l est le volume de matériau versé en une fois, t ' 30s le temps nécessaire au

versement d’un volume, et Av = 0, 2m× 0, 05m l’aire par laquelle le matériau est versé dans le

coffrage. La vitesse de versement est donc de l’ordre de 1/t. Un temps de repos de 60 secondes

est appliqué, correspondant au temps avant le versement suivant.

Étape 1 Étape 2 Étape 3

Figure 8.3 – Facteur d’orientation dans la direction x d’une pâte de ciment renforcée en fibres coulée

dans un canal en U selon un versement en trois temps. Chaque image correspond à la fin du versement

d’un volume de 10l de matériau.

Les surfaces extérieures du canal z = zmin, y = ymax, x = xmin et x = xmax sont des parois du

coffrage sur lesquelles une condition de non glissement est appliquée. La même condition existe

à l’interface fluide-obstacle, donc sur les parois intérieures du canal.

Enfin, la paroi y = ymin est soumise à une condition de symétrie puisque seulement la moitié du

canal est modélisée, de ymin = 0 à ymax = 10cm.

8.2.5 Effet de parois

Une condition aux parois du coffrage est ajoutée à ce schéma de manière à modéliser les

effets de paroi décrit au chapitre 5. Pour cette condition aux bords, la longueur des fibres doit

nécessairement être renseignée dans le code de calcul.

Zmax

x

y

z

φ
BCφ

Figure 8.4 – Corrections du vecteur p en présence d’une paroi.

À chaque étape de calcul, un test est réalisé sur les composantes de chaque fibre dans une zone
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Application des modèles de prédiction de l’orientation à un écoulement industriel

proche des parois pour déterminer si cette fibre traverse une paroi. Dans ce cas, une correction de

l’orientation de la fibre est effectuée. L’angle responsable de la correction est réduit de manière

à ce que la fibre soit contenue dans le coffrage. Les autres angles sont alors gardés constants (cf.

Figure 8.4). De plus, dans les zones d’angle du coffrage, si la fibre traverse une seconde paroi

(de par son orientation due à l’écoulement ou à cause de la correction précédente), la première

coordonnée corrigée est conservée et la deuxième coordonnée traversant la paroi est corrigée

à son tour. L’angle responsable de la correction est modifié de manière à ce que la fibre soit

contenue dans le coffrage, et la troisième coordonnée est déduite des deux premières grâce à la

norme unitaire du vecteur p (cf. Figure 8.5).

xmax

y

z

x

φ
BCφ

ymax

Figure 8.5 – Corrections du vecteur p en présence de deux parois. Les projections au delà des parois

sont corrigées et les coordonnées finales correspondent à la fibre au centre.

Pour observer l’influence de la présence des parois au bord de notre écoulement, le maillage a été

raffiné aux frontières du canal (cf. Figure 8.6). Il ne permet cependant de corriger l’orientation

des fibres que sur deux rangées de cellules. Le raffinement du maillage est ici limité par des

temps de calcul conséquents.

On constate une forte influence des parois sur le facteur d’orientation dans les zones proches

des parois, principalement là où deux parois influencent simultanément l’orientation, comme le

montre la Figure 8.7.

Il faut noter que le cas des cellules placées dans la zone précise d’angle du coffrage, c’est à dire

influencées dans le même temps par trois parois, ne peut être traité correctement dans la mesure

où la seule correction réaliste possible serait de déplacer le centre de gravité de la fibre dans

le coffrage. Cet effet est cependant négligé puisqu’il ne concerne que de faibles zones dans les

coffrages de type industriel.
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8.3 Validation expérimentale

z

x

z

y

Figure 8.6 – Raffinement du maillage dans les zones proches des frontières de coffrage.

Figure 8.7 – Effet de la correction de la paroi sur le facteur d’orientation calculé selon la direction z.

L’effet de paroi est rajouté au code à droite.

8.3 Validation expérimentale

Dans le cas des BFUP, les fibres utilisées pour renforcer le matériau étant en acier, des mé-

thodes basées sur la conduction du courant électrique dans la structure peuvent être appliquées.

Ces méthodes semblent d’ailleurs indiquées dans le cas des structures du génie civil puisqu’elles

présentent l’avantage d’être non destructives. De plus, des études préliminaires ont montré une

bonne sensibilité de la résistivité électrique à la présence de fibres d’acier renforçant des ma-

tériaux cimentaires [145],[146],[159],[259],[160],[260]. Dans la suite de ce travail, nous validons

le modèle numérique appliqué à un géométrie simple et représentative des mises en œuvre in-

dustrielles par des résulats expérimentaux dans la même géométrie. D’une part, les mesures

de résistivité électrique fournissent une information qualitative locale de la direction d’orien-

tation des fibres. D’autre part, le comptage de fibres, très limité du fait du temps nécessaire

au comptage, permet une description plus quantitative du degré d’orientation grâce au facteur

d’orientation défini à la section 5.4.2 du chapitre 5.
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Application des modèles de prédiction de l’orientation à un écoulement industriel

8.3.1 Mesures de résistivité électrique

Les mesures sont réalisées grâce à un dispositif composé de quatre électrodes disposées en

carré. Un courant d’une intensité connue est injecté entre deux électrodes adjacentes (électrodes

de gauche sur la Figure 8.8). Le courant injecté est de type alternatif pour éviter la polarisation

de l’échantillon à caractériser. La différence de potentiel induite par ce courant traversant le

matériau est mesurée entre les deux électrodes parallèles (électrodes de droite sur la Figure 8.8)

[159],[160]. Elle est proportionnelle à la résistance du matériau au passage du courant R. À cette

résistance est associée une résistivité apparente ρ (mesurée en Ohm.m). Cette résistivité est

inversement proportionnelle à la conductivité σe du matériau (mesurée en S/m) :

R ∼ U

I
avec R ∼ ρ ∼ 1

σe
(8.2)

∆U

- I

+ I

∆U
faible résistivité

électrique

- I

+ I

forte résistivité

électrique

Figure 8.8 – Mesures de résistivité électrique. À gauche : dispositif de mesures, à droite : influence de

l’orientation des fibres sur la résistivité d’un matériau.

Le béton (non renforcé en fibres) est un matériau isotrope à l’échelle de ces mesures et peu

conductif. L’ajout de fibres d’acier modifie la conductivité locale du matériau, réduisant en

moyenne sa résistivité. L’influence des fibres métalliques, si elles présentent une orientation

marquée en moyenne, est différente selon la direction de circulation du courant électrique. Le

contraste entre les mesures de résistivité obtenues au même point dans diverses directions est

alors représentatif d’une orientation privilégiée des fibres dans le matériau (Figure 8.8 à droite).

Pour obtenir cette orientation privilégiée, l’anisotropie locale des propriétés électriques du ma-

tériau est tracée [160]. On en déduit que l’orientation des fibres est alors perpendicuaire aux

axes de plus grande résistivité [160]. En effet, un courant injecté parallèlement à la direction

d’orientation des fibres est facilement conduit dans le matériau, du fait du caractère hautement

conducteur de l’acier. La résistivité déduite de la différence de potentiel mesurée est donc faible

(Figure 8.8 schéma du haut). À l’inverse, une orientation macroscopique des fibres perpendicu-

laire à la direction d’injection du courant des fibres entraine une résistivité de l’échantillon qui

n’est quasiment pas modifiée par leur présence, donc de l’ordre de celle du matériau sans fibres

(Figure 8.8 schéma du bas).

Les dispositifs de mesure varient d’une étude à l’autre. Sur chacun de ces dispositifs, la dis-
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8.3 Validation expérimentale

tance entre deux électrodes est représentative de l’épaisseur de pénétration du courant. Plus

les électrodes entre lesquelles le courant est injecté sont éloignées, et plus le courant pénètre en

profondeur dans le matériau, donc plus l’épaisseur du béton testé est importante [159],[160].

La technique expérimentale de mesure de la résistivité électrique pour accéder aux propriétés

locales d’un matériau entrainent un certain nombre d’incertitudes qui doivent être controlées.

– Tout d’abord, pour chaque campagne d’essais lancée sur un échantillon, une étude parallèle

doit être menée, d’une part sur le même échantillon non fibré pour corriger les bruits de

mesure, d’autre part sur l’échantillon fibré coulé dans une géométrie de référence, pour

contrôler les dérives dans le temps dues à une éventuelle évolution de la microstructure du

matériau (prise du béton).

– Les mesures sont réalisées à la surface des éprouvettes à tester, selon un quadrillage

construit en fonction des zones à étudier. Sur chaque point, le dispositif peut être pi-

voté de manière à mesurer la résistivité locale de la structure selon différentes directions.

Il est alors possible de caractériser l’anisotropie électrique locale par des représentations

polaires (diagrammes radiaux). Par des considération de symétrie, les mesures n’ont besoin

d’être enregistrées que sur une demi rotation du dispositif ([0, π]).

– La présence des bords de la structure testée influence la propagation du courant dans le

matériau, et donc la forme des lignes courant. L’effet de ces parois est difficile à estimer

sur les mesures de résistivité. Il est corrigé numériquement par des méthodes dérivées des

modèles analogiques de propagation du courant dépendant uniquement de la géométrie de

l’échantillon testé [159],[261].

Des mesures d’orientation des fibres par cette technique ont déjà montré dans la littérature de

bonnes corrélations avec des mesures complémentaires, par observation visuelle [160], tomogra-

phie par rayons X ou encore essais mécaniques (essai du ”rounded panel” et essais de flexion)

[159].

8.3.2 Application à un coulage de type industriel

L’enjeu de cette étude expérimentale est de valider nos résultats numériques sur des éprou-

vettes de pâte de ciment renforcées en fibres et coulées dans un canal en U. Cette géométrie est

choisie pour être représentative des coffrages du génie civil. Les fibres s’orientent dans les parties

rectilignes du canal. Dans ces zones, on souhaite se rapprocher d’un écoulement de type cisaille-

ment entre deux plans infinis parallèles puisque cet écoulement est analytiquement connu. La

section du canal en U est donc rectangulaire de manière à négliger les effets de parois dans une

direction. Dans les angles du coffrage, le changement de direction brutal des lignes de courant

influence fortement l’état d’orientation des fibres. Il est alors difficile de prédire analytiquement

cet état d’orientation.

8.3.2.1 Dimensionnement du moule

Le fluide est versé dans une colonne du canal (colonne de gauche Figure 8.9) et s’écoule

sous l’effet de son propre poids. Quand le matériau est au repos, les seules forces mises en jeu

sont le poids du fluide et les interactions entre particules, constituant le seuil du matériau.
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Application des modèles de prédiction de l’orientation à un écoulement industriel

Ce seuil, nul dans le cas d’un fluide Newtonien pour lequel le niveau de matériau serait le

même dans les deux colonnes, induit ici une différence de hauteur ∆h. L’arrêt de l’écoulement

correspond en effet au moment où la partie centrale du moule est à l’équilibre :

gravité︸ ︷︷ ︸ = interactions︸ ︷︷ ︸
moteur de l’écoulement arrêt de l’écoulement

La pression hydrostatique induite par le poids des colonnes est appliquée de chaque côté de la

partie centrale (P1 et P2 sur la Figure 8.9). Un déséquilibre existe donc entre la pression de la

colonne par laquelle le matériau est coulé et celle par laquelle il remonte, noté ∆P = P1 − P2.

Les interactions entre particules de la partie centrale reprennent cette différence de pression qui

est donc de l’ordre du seuil du matériau à l’arrêt de l’écoulement. Le bilan des forces sur la

partie centrale s’écrit donc :

– forces dues à la gravité appliquées de chaque côté de la partie centrale horizontale :

∆P × d× e
– forces dues aux interactions existant dans toute la partie centrale horizontale :

2× L× d× τ0 + 2× L× e× τ0
Et l’équilibre est atteint pour :

∆P

L
=
ρg∆h

L
= 2τ0

(
1

d
+

1

e

)
(8.3)

∆h

interactions 
ττττ0

poids de 
la 

colonne  
de fluide

pression

hydrostatique

d

L

écoulement

poids de 
la 

colonne  
de fluide

pression 

hydrostatique

Figure 8.9 – Fluide à seuil au repos dans un canal en U d’épaisseur e. Vue de profil du canal.

Les dimensions du moule sont choisies de manière à observer dans la partie centrale un écoule-

ment cisaillant entre deux plans parallèles. On choisit donc une largeur du canal deux fois plus

importante que son épaisseur. Il faut tout de même noter que cette géométrie ne permet pas de
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8.3 Validation expérimentale

négliger les effets de bord. Les fibres ajoutées aux matériaux sont longues de 10mm, pour un

facteur d’aspect r = 10mm/0, 2mm = 50. Leur longueur doit être bien inférieure aux dimensions

du moule de manière à limiter les effets de paroi. On respecte en général un facteur 10 entre la

longueur des fibres et la plus petite dimension du moule.

La géométrie du moule respectant ces critères et choisie pour notre campagne d’essais est la

même que celle donnée sur la Figure 8.1. 30l de matériau sont nécessaires pour couler chaque

éprouvette. La différence de hauteur entre les deux colonnes est de l’ordre de 20-25cm. Un cal-

cul dimensionnel (cf. chapitre 6) nous permet de conclure que l’alignement des fibres avec la

direction de l’écoulement dans le canal central est atteint à des distances de l’ordre de quelques

centimètres pour une fibre se déplaçant à proximité des parois, où le taux de cisaillement est le

plus fort, mais ne l’est jamais pour une fibre initialement située dans la zone morte centrale.

Le matériau utilisé pour constituer le moule doit présenter assez de rugosité en surface pour que

le fluide ne glisse pas aux parois.

8.3.2.2 Matériaux

On choisit d’étudier une pâte de ciment renforcée en fibres pour éviter les interactions fibre-

granulat des mortiers fibrés. Le seuil des matériaux cimentaires est de l’ordre de τc = 300Pa. Ce

seuil doit permettre de distinguer expérimentalement une zone centrale non cisaillée au centre

de l’écoulement. Trois éprouvettes sont coulées dans la même géométrie, déjà donnée sur la

Figure 8.1. Chaque gâchée de matériau est formulée avec la même pâte de ciment, présentée

Table 8.1.

Formulation masse (kg)

Ciment CALCIA 33,775

Filler BETOCAB MEAC 20,265

Eau 14,636

Superplastifiant CHRYSOFLUID Optima 175 0,068

Table 8.1 – Formulation de la matrice de chaque gâchée de matériau.

Une première gâchée de pâte de ciment, à laquelle aucune fibre n’est ajoutée, est réalisée

pour servir d’éprouvette de référence. Elle permet d’effectuer l’étalonnage du dispositif et de

soustraire aux mesures de résistivité sur matériau renforcé un éventuel biais dans les mesures dû

à la géométrie du canal. Deux autres gâchées de la même pâte de ciment sont ensuite réalisées

pour comparer les résultats d’orientation issus de deux dosages en fibres différents et observer

l’influence des interactions entre fibres.

Ces dosages sont déterminés de manière à se placer en régime semi-dilué (φfr
2 >> 1 et

φfr << 1), régime correspondant aux concentrations rencontrées dans l’industrie, et approché

de manière précise par les prédictions numériques.

La fabrication des matériaux est réalisée en laboratoire, en suivant un protocole industriel. L’eau

est ajoutée à la phase solide (ciment et filler) dans le malaxeur. Pendant l’étape de malaxage, le

superplastifiant est versé en une seule fois. Dans le cas des gâchées de matériau fibré, les fibres
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Application des modèles de prédiction de l’orientation à un écoulement industriel

sont ajoutées deux minutes avant la fin du malaxage pour éviter la formation d’oursins. 0,524kg

de fibres sont ajoutées à la deuxième gâchée pour atteindre une concentration de φf = 0, 2%

dans le matériau. On vérifie que les volumes occupés par les fibres sont caractéristiques d’un

régime semi-dilué (φfr
2 ' 5 et φfr ' 0, 1, pour un encombrement de φf/φfm = 0, 025). Enfin,

la troisième gâchée est renforcée avec 2,643kg des mêmes fibres, soit une concentration de

φf = 1, 0%. De nouveau, le régime atteint est semi-dilué (φfr
2 ' 25 et φfr ' 0, 5, pour un

encombrement de φf/φfm = 0, 125). On peut cependant noter que le ratio e/(c+ f) = 0, 27 est

relativement bas pour la formulation d’un matériau cimentaire fluide, et que l’ajout de fibres a

tendance à augmenter légèrement leur seuil. Du superplastifiant à hauteur de 4, 34g est donc

ajouté à chacune des gâchées contenant des fibres pendant la dernière étape de malaxage de

manière à se rapprocher des comportements rhéologiques de l’industrie.

8.3.2.3 Mise en œuvre

Le coulage de chaque éprouvette est réalisé en trois phases, du fait du volume de matériau

nécessaire pour remplir un moule. Trois volumes de 10l sont successivement versés dans le canal.

Le temps d’attente entre deux versements est d’environ 1 minute. On peut considérer que le

versement s’effectue à débit constant.

En parallèle de chaque canal coulé, des prismes de géométrie 15cm × 15cm × 15cm issus de la

même gâchée sont eux aussi réalisés pour effectuer des mesures complémentaires. L’écoulement

dans les prismes est considéré trop court pour que les lignes de courant puissent s’y établir.

L’état d’orientation des fibres y est donc supposé isotrope. Chaque corps d’épreuve nécessite

donc une gâchée d’environ 35l pour remplir un coffrage en U et deux prismes avec le même

matériau. Pendant l’étape de coulage, un essai d’étalement est mené pour contrôler le seuil du

matériau. Ces valeurs, données avec une précision de ±50Pa, sont de 400Pa pour la pâte de

ciment non fibrée, et 300Pa pour les deux pâtes de ciment renforcées.

Les éprouvettes sont coulées un après midi de manière à obtenir un matériau assez ferme le

lendemain matin pour être transporté et démoulé au GHYMAC (Université Bordeaux 1). Le

démoulage a lieu au bout d’environ 24h. Pendant ce laps de temps, les éprouvettes sont protégées

de l’air avec des linges humides pour ralentir le processus de séchage.

Les mesures de résistivité commencent dès le démoulage et se déroulent sur 2 jours. Les mesures

sur béton jeune permettent en effet d’avoir des mesures plus précises en limitant les biais de

mesures.

8.3.2.4 Mesures de résistivité

Les mesures de résisitvité sont réalisées à Bordeaux, par Jean-François Lataste, Maitre de

Conférences à l’Université Bordeaux 1. Ces mesures sont réalisées sur le dos, la surface supérieure

et la tranche de chaque éprouvette, notées sur la Figure 8.10. C’est en effet dans ces zones que

s’initie et se développe tout le processus d’orientation. Un dispositif quadripolaire de géométrie

carrée est appliqué sur la surface de l’éprouvette à étudier, comme représenté sur la Figure 8.8.

Les quatre électrodes du dispositif sont régulièrement humidifiées pour optimiser le contact avec
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coulage

z

x

y
Surface supérieure

Tranche

Dos

Figure 8.10 – Surfaces considérées pour les mesures de résistivité dans notre étude.

la surface de l’éprouvette.

Deux dispositifs sont disponibles pour les mesures de résistivité électrique, dont les écartements

inter-électrodes sont de 5cm pour le dispositif Q5, et 10cm Q10. Ces deux configurations per-

mettent d’investiguer deux profondeurs différentes de pénétration du courant. Un troisième dis-

positif, Q5-bis, est réalisé le premier jour de la campagne d’essais, d’écartement inter-électrodes

de 5cm aussi, mais de support beaucoup plus étroit. Ce dispositif peut donc être collé contre

la paroi d’une colonne de l’éprouvette et prendre des mesures dans des zones inaccessibles pour

les deux autres dispositifs. Les mesures de résistivité électrique locale sont obtenues à l’échelle

de la mesure, c’est à dire dans un volume dépendant de la distance entre les électrodes. Il est

impossible de connaitre exactement le volume investigué par la mesure, mais dans un milieu

semi-infini, il est admis que la profondeur d’investigation est comprise entre la demi-distance et

la distance totale entre les électrodes [146].

Les mesures sont réalisées selon le protocole suivant. Dans un premier temps, le quadrillage des

points de mesures est dessiné sur chaque surface à mesurer. Tant que toutes les mesures ne sont

pas réalisées, l’éprouvette est couverte en permanence par un linge humide. Ce linge est retiré

une demi-heure avant chaque prise de mesures, le temps à l’éprouvette de sécher superficielle-

ment. Une fois la surface de l’éprouvette sèche, le quadripôle est disposé autour du premier point

de mesure, de manière à ce que le centre du quadripôle corresponde parfaitement avec ce point.

Un courant d’une intensité connue est alors injecté entre deux électrodes. Le signal est basse

fréquence (128 Hz) pour éviter les problèmes de polarisation des fibres. La différence de poten-

tiel est mesurée parallèlement à l’injection. Deux mesures sont réalisées sur chaque position du

dispositif en fonction de la direction d’injection du courant, parallèlement (PL) ou perpendicu-

lairement (PP) à la direction de l’écoulement (cf. Figure 8.11). Puis, le quadripôle est déplacé
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Application des modèles de prédiction de l’orientation à un écoulement industriel

pour effectuer la mesure suivante.

+i

-i

∆V

1 2

34
∆V

-i +i
1 2

34

écoulement écoulementPLPP

Figure 8.11 – Deux directions possibles d’injection du courant sur le quadripôle.

Une étude de la variabilité des mesures due à plusieurs sources d’erreurs potentielles (dispositif,

protocole de mesures, dérive du matériau) est menée. Cette étude est réalisée selon trois échelles

de temps. D’une part, la répétabilité des mesures est testée sur un court laps de temps (une

même mesure prise plusieurs fois successives). D’autre part, la reproductibilité est mesurée à

l’échelle du corps d’épreuve (une série de mesures prises sur un même corps d’épreuves se ter-

mine par le même point que celui par lequel la série a commencé). Enfin, la reproductibilité est

aussi mesurée à l’échelle de la campagne. Pour cela, les premières mesures prises au début de la

campagne sont reproduites à la fin, c’est à dire au bout de 48h, sur le même corps d’épreuve.

Les mesures de répétabilité et reproductibilité sont réunies dans la Table 8.2 [262].

Éprouvette Dispositif Répétabilité Reproductibilité Reproductibilité

/séance /campagne

1 Q5 0,36% 1,37% 4,45%

1 Q10 0,91% 1,62% 7,25%

2 Q5 0,65% 3,94% 6,83%

2 Q10 0,32% 6,46%

3 Q5 1,05% 3,18% 10,02%

3 Q10 0,89% 1,08% 5,16%

Table 8.2 – Variabilité des mesures [262].

Ces valeurs correspondent à des valeurs classiques de mesures de résistivité. Les résultats obte-

nus semblent donc cohérents.

En plus de ces mesures, la dérive de résistivité liée au jeune âge du matériau est suivie au cours

de chaque série de mesures sur un même corps d’épreuves. En effet, l’évolution de la microstruc-

ture des matériaux cimentaires dans le temps (due au phénomène de prise exothermique de la

matrice et au séchage) entraine une évolution de leurs propriétés électriques. La conduction du

courant au sein de la matrice cimentaire est assurée par les solutions d’électrolyte présentes à

l’intérieur des pores de la matrice. La prise de materiau modife peu à peu le réseau de pores,

ainsi que les caractéristiques du fluide interstitiel. La conduction électrique étant fortement liée

à ces paramètres, l’évolution des premiers jours est notable sur la mesure électrique. Cette évo-
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8.3 Validation expérimentale

lution peut alors entrainer une augmentation de la résistivité moyenne, qui est à surveiller dans

le cadre d’une campagne de mesures de mesures sur béton jeune s’étalant sur plusieurs heures.

De manière à rendre compte de l’évolution de la microstructure, des mesures sont régulièrement

effectuées sur les prismes de référence au cours de chaque série de mesures sur le même corps

d’épreuves. Les résultats de dérive présentés dans le rapport de mesures [262] montrent une

augmentation des résistivités entre 2 et 3% en une heure. Ces valeurs de dérive sont de l’ordre

du bruit. Elles sont comparables aux valeurs de reproductibilité des mesures. On choisit donc

de ne pas les corriger.

Enfin, le calibrage de chacun des dispositifs est vérifié, i.e. leur capacité à mesurer l’isotropie.

En effet, tout décalage des électrodes par rapport à leur emplacement géométrique décrivant

un carré parfait peut être source d’erreur. Les résitivités mesurées au même point par le même

dispositif sont alors comparées quand le dispositif est pivoté de 90̊ . Les résultats présentés dans

[262] sont donnés dans la Table 8.3.

Éprouvette Q5-bis Q5 Q10

1 2,8% 0,7% 1,4%

2 1,3% 1,3%

3 1,3% 1,3%

Table 8.3 – Anisotropie propre des dispositifs [262].

Ces valeurs d’anisotropie sont elles aussi de l’ordre du bruit de mesure, et témoignent de la

précision de chaque dispositif. Elles garantissent donc une mesure cohérente de l’isotropie.

Une fois ces mesures réalisées, elles peuvent se décliner selon diverses formes de représentations.

D’une part, l’évolution d’un profil de résistivités apparentes locales le long d’une section par

exemple donne des informations sur les zones de la section où le courant est plus ou moins faci-

lement conduit.

D’autre part, de ces mesures de résistivité, une valeur représentative de l’anisotropie est ex-

primée à travers le logarithme du rapport entre la résistivité dans la direction étudiée et la

résistivité dans la direction orthogonale. Ainsi, l’anisotropie (de la résistivité) dans la direction

i est calculée par :

log10Anρi = log10(ρj/ρi) (8.4)

où i et j sont deux directions orthogonales. Une valeur d’anisotropie égale à log10An = 0 cor-

respond à une isotropie parfaite.

Des valeurs d’anisotropie construites selon plusieurs directions autour d’un même point per-

mettent alors de tracer des représentations polaires d’anisotropie. Pour cela, le dispositif est

pivoté quatre fois (tous les 22,5̊ ) et deux mesures (PP et PL) sont prises pour chaque position

(cf. Figure 8.11). En tout huit mesures (soit 8 directions d’injection) enregistrées sur 180̊ sont

utilisées pour représenter l’anisotropie locale, les huit mesures diamétralement opposées étant dé-

duites par symétrie. De manière à simplifier les représentations graphiques polaires des mesures

de résistivité, nous choisissons de parler en terme de conductivités pour celles-ci. Nous traçons

donc dans le cas de ces diagrammes polaires une anisotropie représentative de la conductivité
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Application des modèles de prédiction de l’orientation à un écoulement industriel

du matériau, définie comme étant l’inverse du facteur précédent :

log10Anσi = log10(ρi/ρj) (8.5)

De manière simplifiée pour ces diagrammes polaires, plus l’anisotropie calculée selon une direc-

tion est élevée, et plus les fibres sont alignées dans cette direction. Un exemple de diagramme

polaire tracé à partir de ces huit mesures sur un même point du canal est donné Figure 8.12.

Les valeurs d’anisotropie calculées selon (8.5) sont tracées pour les deux dispositifs Q5 et Q10.

L’axe principal d’orientation indiqué sur la figure est déduit de ces valeurs d’anisotropie pour

chaque dispositif. Sa direction est représentative de la direction moyenne de l’orientation d’une

population de fibres, et leur longueur de l’intensité de cette orientation.

Measurements starting from the surface make it possible to
acquire the apparent resistivity, which is representative of the
true resistivities of the elements in the sounded volume. This
volume depends on the dimensions of the device as well as on its
geometry. In this study, only two square devices have been used.
They are respectively denominated Q5 and Q10 for the devices
with 5 and 10 cm between electrodes. These two sizes make it
possible to sound the material at various depths. In a semi-infinite
medium one admits that the investigation depth of such devices is
roughly between a/2 and a (a being the distance between probes).
In the following, due to slabs thickness (same order as the device
size), we will speak of ‘surface’ information (first centimetres) or
‘in-depth’ information (whole thickness of the slab) according to
the fact that measurements are done with Q5 or Q10.

Another indicator is the anisotropy (An). It is defined as the
ratio between two apparent resistivities at a given point, obtained
for two perpendicular orientations of measurement. Anisotropy
underlines electrical contrasts according to the orientation of
measurement.

The specimens are done on eight 60 cm�60 cm SFRC slabs.
Measurements are done between 12 and 48 h after the casting of
slabs. It is assumed that the casting process of the specimens
conditioned the distribution of fibres in the material. Various
cases are defined for tests (Table 2):

� a 3 cm thick slab, without fibres (for calibration),
� Three slabs of 2, 3, and 5 cm thick with an isotropic

distribution (calibration),
� a 3 cm thick slab poured from the centre,
� a 3 cm thick slab poured from a corner,
� a 3 cm thick slab where the orientation of fibres is forced (fresh

concrete combed with metallic blades),
� a slab poured from two opposite points, to simulate a

construction joint.

The metal fibres are steel wire segments of 0.2 mm in diameter,
and a 13 mm length. The fibres length is of the same order of
magnitude as the measurement device (5 cm between electrodes).

The entire programme (measurements, data processing, and
interpretation of results) has been carried out as a blind test. No
information on a specimen was available at the time of electrical
resistivity measurements. A procedure has been defined to carry
out measurements in an identical way on each slab. Each
specimen was oriented by the mentions ‘‘top’’ and ‘‘bottom’’ such
as to be able, after investigations, to locate measurements
relatively to casting points. Works were carried out on the non-
shuttered surface of the specimens. Nine areas were selected for
measurements on the available surface. They are indicated by the
letters A, B, C, D, E, F, G, H, and I (Fig. 2).

On each area, measurements are carried out in order to
characterise 16 different directions, corresponding to a 22.51 angle
step (Fig. 3). In fact, on the area A the 16 directions are actually
investigated, thus on the other zones only the first eight are kept
for measurements. Indeed, from simple considerations of sym-
metry, resistivities on the first eight measurement points are
identical to the values of the eight last directions (ri ¼ ri+8, with ri

resistivity in direction i). This assumption was successfully
controlled only on zone A.

The eight inspection directions are obtained from four series of
measurements (angle i to i+5), since two perpendicular inspection
directions can be tested at each time. The results are reported on a
polar diagram. Each measurement is noted rij where i (i ¼ 1-8)
correspond to the orientation, and j (j ¼ 1-9) to the zone (with 1
corresponding to the zone A, 2 for zone B,y, and 9 for zone I).

ARTICLE IN PRESS

Table 2
Slab characteristics

Slab number 1 2 3 4 5 6 7 8

Fibred No Yes Yes Yes Yes Yes Yes Yes

Thickness (cm) 3 3 3 3 3 2 3 5

Fig. 2. Locations of measurement zones on slabs.
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On each of the 9 zones, 16 directions for investigation :

. 1-8 directions investigated on each zone

. 9-16 directions investigated only in zone A 

(due to symmetry of electrical measurement:

in a general way:

n the direction i)

�1 = �9; �2 = �10 ; …; �8 = �16 

�i = �i + 8, with ρi the apparent resistivity

Fig. 3. Orientations of electrical resistivity measurements on a zone.
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-0,8

-0,4

0,0

0,4

0,8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Q5

Q10

axe Anis Q5

axe Anis Q10

-0,8

-0,4

0,0

0,4

0,8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) Anisotropies en un point de mesures

Figure 8.12 – Diagramme polaire des mesures d’anisotropie [146].

Enfin, des cartographies de surface de résistivités et d’anisotropies peuvent être tracées en in-

terpolant chaque valeur entre deux points de mesures.

Les points de mesure et le type de mesures à chacun de ces points sont indiqués sur la Fi-

gure 8.13 pour la surface supérieure du canal central, et Figure 8.14 pour la tranche.
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Figure 8.13 – Points de mesures de résistivités sur la surface supérieure du canal central (plan xy).
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Figure 8.14 – Points de mesures de résistivités sur la partie horizontale de la tranche du canal (plan

xz).

8.3.2.5 Comptage de fibres

Une fois les mesures de résistivité effectuées, la partie centrale horizontale des deux éprou-

vettes renforcées en fibres a été découpée en sections régulières d’épaisseur 10cm (cf. Fi-

gure 8.15). À cause de l’épaisseur de la lame de la scie circulaire, l’épaisseur de la dernière

section n’est que de 6cm. Les fibres sont comptées sur chacune des 7 sections obtenues après dé-

dos

face

coulage

z

x

y

10 cm

6 cm

Figure 8.15 – Découpage de la partie horizontale du canal en U en sections régulières.
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Application des modèles de prédiction de l’orientation à un écoulement industriel

coupage du canal (cf. Figure 8.15), de la première section du côté du dos du canal (x = 10cm)

à la dernière section du côté de la face du canal (x = 70cm). Pour cela, chaque section est divi-

sée en plusieures aires rectangulaires selon la Figure 8.16. Un premier découpage en carrés de

5cm× 5cm est dessiné pour simplifier le comptage. Ce découpage permet de vérifier la symétrie

de l’écoulement en comparant le nombre de fibres dans chaque carré. Puis une bande d’épaisseur

égale à la longueur d’une fibre (1cm) est délimitée autour de la section, de manière à observer

l’effet des parois sur l’orientation des fibres. Enfin, un carré de taille 6cm × 6cm, au centre de

la section, est détaillé pour rendre compte de la zone non cisaillée au centre de l’écoulement (en

gris foncé sur Figure 8.16).

1cm

1cm

5cm
5cm

3cm

3cm

Figure 8.16 – Découpage d’une section du canal en sous-sections.

Les résultats des comptages sont présentés en annexe F.

8.4 Résultats numériques

L’écoulement dans ce canal est plus complexe que la géométrie idéale des deux plans parallèles

étudiée au chapitre précédent, du fait des conditions de type industriel de ce coulage (phases de

versement, gravité, angles du coffrage). Les conclusions des chapitres précédents caractérisant

l’état macroscopique d’orientation peuvent tout de même être retrouvées dans cette simulation.

On rappelle qu’en trois dimensions, l’isotropie correspond à un facteur d’orientation de 0,33. Au

delà d’un facteur d’orientation de 0,33, les fibres sont considérées comme orientées.

8.4.1 Orientation quasi-instantanée dans le sens de l’écoulement

Les Figure 8.17 et Figure 8.18 montrent l’orientation des fibres selon la direction x. Les

trois étapes de versement sont détaillées pour chacun des modèles (tenseur d’orientation et

multifibres). Les fibres sont majoritairement orientées dans la direction de l’écoulement dans le

canal. En effet, l’orientation moyenne dans la direction x sur toutes les cellules du maillage du

canal central est de 0,75 pour le modèle multifibres, et 0,79 pour le modèle tensoriel, ce qui est

largement au dessus de l’isotropie de 0,33.

Le cisaillement est maximal à la paroi, et décroit vers le centre du canal. La zone centrale

conserve ainsi son isotropie.
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Étape 1Étape 1 Étape 2

Étape 3

Figure 8.17 – Facteur d’orientation selon x dans le canal en U par la méthode des tenseurs d’orientations.

Plan (x, z) de l’écoulement, au plan de symétrie (y=0). Un coefficient d’interactions CI = 0, 0043 a été

utilisé.

8.4.2 Zone morte centrale

La différence de pression entre les deux colonnes du canal due au poids du matériau à l’arrêt

de l’écoulement est de l’ordre de ∆P = ρg∆h ∼ 700Pa (cf. Figure 8.17 et Figure 8.18). Le

gradient de pression appliqué au canal central est alors de l’ordre de ∆P/∆x ∼ 11300Pa/m.

L’épaisseur de la zone centrale dans laquelle le matériau n’est soumis à aucune déformation est

donc de l’ordre de yc = 2τc/(∆P/∆x) ∼ 5cm.

Cette zone est nette dans le plan yz de l’écoulement, par exemple à la sortie du canal central,

comme il est montré sur la Figure 8.19, ou dans le plan de l’écoulement (x, y) sur la Figure 8.20.

Un bon accord entre la prédiction dimensionnelle et les simulations numériques est constaté bien

que les zones dans lesquelles le facteur d’orientation est proche de la référence isotrope de 0,33 est

plutôt de l’ordre de 4cm. Dans cette zone centrale, des facteurs d’orientation légèrement inférieurs

à la valeur isotrope peuvent être obtenus. Ils s’expliquent par une orientation préalable des fibres

dans la colonne où le remplissage a lieu, ou du fait d’une légère orientation élongationnelle du

front de matériau s’écoulant dans le canal horizontal. Quoi qu’il en soit, le facteur d’orientation

moyen selon x dans la zone centrale d’épaisseur 5cm et de longueur la longueur du canal central

est de 0,48 avec le modèle multifibres, et 0,51 avec le modèle tensoriel, ce qui est bien inférieur

au facteur d’orientation moyen dans le reste du canal.
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Étape 1

Étape 3

Étape 1 Étape 2

Figure 8.18 – Facteur d’orientation selon x dans le canal en U par la méthode multifibres (7 fibres).

Plan (x, z) de l’écoulement, au plan de symétrie (y=0). Un coefficient d’interactions CI = 0, 0043 a été

utilisé.

(a) (b)

Figure 8.19 – Facteur d’orientation selon x dans le canal en U. Plan (y, z) de l’écoulement à la sortie du

canal horizontal (x = 0, 695m). Comparaison des résultats issus de la méthode des tenseurs d’orientation

(a) et de la méthode multifibres (b). Un coefficient d’interactions CI = 0, 0043 a été utilisé.

8.4.3 Orientation forte aux parois

Deux phénomènes renforcent l’orientation aux parois. D’une part, le taux de cisaillement y

est élevé. De plus, la présence physique des parois intégrée au code empêche la fibre de traverser

une paroi et la repousse dans un plan parallèle à la paroi. Cet effet ne peut cependant étendre
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(a) (b)

Figure 8.20 – Facteur d’orientation selon x dans le canal en U. Plan (x, y) de l’écoulement à la sortie du

canal horizontal (x = 0, 695m). Comparaison des résultats issus de la méthode des tenseurs d’orientation

(a) et de la méthode multifibres (b). Un coefficient d’interactions CI = 0, 0043 a été utilisé.

son influence au delà d’une longueur de fibre. Cette orientation très marquée au niveau de

la paroi est représentée sur la Figure 8.21 où les zones noires correspondent à des facteurs

d’orientation supérieurs à 0,67 (deux fois plus élevés que l’isotropie). Ces zones s’étendent sur

plus de 2cm de chaque côté du canal. Elles dépassent la longueur d’une fibre et sont donc

attribuées principalement au cisaillement élevé dans ces zones. Quoi qu’il en soit, le facteur

d’orientation moyen aux parois du canal central (jusqu’à la distance d’une longueur de fibre de

la paroi) est égal à 0,86 dans le cas du modèle continu, et 0,93 dans le cas du modèle tensoriel,

ce qui est bien supérieur au facteur moyen dans le reste du canal.

8.5 Résultats Expérimentaux

Les résultats obtenus grâce aux mesures réalisées sur les trois éprouvettes coulées (mesures de

résistivité et comptage de fibres sur les sections découpées) permettent d’évaluer l’état d’orien-

tation des fibres dans le canal. Ces deux types de résultats sont complémentaires. En effet les

mesures de résistivité fournissent une information qualitative locale dans une zone définie de

manière non précise, alors que le comptage de fibres permet une description plus quantitative

du degré d’orientation grâce au facteur d’orientation.

L’écoulement de la colonne par laquelle le fluide est versé est complexe puisqu’il résulte de nom-

breux facteurs liés à l’étape de coulage (temps de versement, inclinaison du seau, surface sur

laquelle le fluide est versé, temps de repos entre deux versements). L’accent est alors ici mis

sur le canal horizontal central où l’écoulement se rapproche d’un écoulement modèle entre deux

plans infinis, prédictible analytiquement et numériquement.

Les trois résultats majeurs caractérisant l’orientation des fibres dans un canal, déjà observés

numériquement, sont détaillés dans cette partie sur le canal central horizontal du canal en U.
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Application des modèles de prédiction de l’orientation à un écoulement industriel

(a) (b)

Figure 8.21 – Facteur d’orientation selon x dans le canal en U. Plan (y, z) de l’écoulement à la sortie

du canal horizontal (x = 0, 695m). Comparaison des méthode des tenseurs d’orientation (a) et méthode

multifibre (b). Un coefficient d’interactions CI = 0, 0043 a été utilisé.

8.5.1 Orientation quasi-instantanée

Pour observer l’évolution de l’orientation des fibres dans le canal central, le profil des ré-

sistivités apparentes est tracé pour les trois corps d’épreuve le long de l’axe central du canal,

suivant l’axe x, sur la Figure 8.22. Cette figure est obtenue avec le dispositif Q10, on peut donc

considérer que les résistivités sont représentatives de propriétés moyennes dans l’épaisseur du

canal. Le courant est injecté dans la direction de l’écoulement (PL sur Figure 8.11). Une faible

résistivité correspond à une forte conductivité du courant dans cette direction, due à la présence

de fibres alignées avec le courant.
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Figure 8.22 – Profil de résistivités apparentes le long de l’axe central du canal horizontal.

La résistivité apparente est constante le long du profil. L’état d’orientation final le long du canal
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8.5 Résultats Expérimentaux

est très rapidement atteint puisque dès la deuxième mesure (x = 20cm), les variations de résis-

tivités sont de l’ordre du bruit de mesure. De plus, la différence de niveau de résistivité entre les

trois éprouvettes est révélateur des concentrations en fibres différentes. La résistivité apparente

moyenne mesurée sur l’éprouvette 1, sans fibres, est de 16,5Ohm.m. Dans le cas des éprouvettes

renforcées en fibres, cette moyenne baisse, légèrement pour l’éprouvette 2 (11,4Ohm.m), et de

manière drastique pour l’éprouvette 3 (4,2Ohm.m).

L’état d’orientation est alors exprimé de manière précise par l’axe principal d’orientation déduit

des diagrammes polaires d’anisotropie. Le diagramme isotrope de référence, mesuré au premier

point de mesure des anisotropies le long de l’axe central (cf. Figure 8.13) sur l’éprouvette sans

fibre, est donné comme référence sur la Figure 8.12(b). Par comparaison, les diagrammes de

différents points (3 et 4, et 9 et 10) sont donnés sur la Figure 8.23. Ils montrent une forte

orientation des fibres dans la direction de l’écoulement (axe 5-13 sur la figure) dont l’intensité,

représentée par la norme de l’axe central, est la même entre les points 3 et 4 au premier tiers du

canal (x = 20), et 9 et 10 à la fin du canal (x = 50).
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Figure 8.23 – Vue de dessus de l’éprouvette 3. Diagrammes polaires des anisotropies mesurées aux

points 3 et 4, et 9 et 10.

L’anisotropie quasi-instantanée dans le canal central horizontal est confirmée par les mesures

d’anisotropie effectuées sur la tranche du canal. Le diagramme polaire en forme de cercle tracé

au niveau du premier point de mesure indique un état d’orientation isotrope là où le fluide versé

du haut de la colonne tombe sous l’effet de la gravité (cf. Figure 8.24). Le processus d’orienta-

tion s’initie alors dans le canal au cours des premiers centimètres, correspondant à des résistivités

locales de plus en plus anisotropes tracées sur cette figure. Au delà du troisième point, un état

d’orientation proche de l’état final est observé, atteignant des facteurs d’anisotropie de l’ordre de
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Application des modèles de prédiction de l’orientation à un écoulement industriel

1 (donc un rapport entre les résistivités perpendiculaires de l’ordre de 10) à partir du cinquième

point de mesure (cf. Figure 8.25). On peut donc considérer que l’état définitif d’orientation des

fibres est atteint dans le canal à x ' 30cm.
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Figure 8.24 – Tranche de l’éprouvette 3. Diagrammes polaires des anisotropies mesurées avec Q5 aux

trois premiers points (x = 5cm, x = 10cm et x = 15cm).

L’orientation quasi-instantannée des fibres dans les zones en écoulement est confirmée par les

résultats issus du comptage de fibres sur les sections successives du canal central. Un facteur

d’orientation moyen est mesuré sur chaque bande de section constituée de deux aires adjacentes

l’une au dessus de l’autre (aires Ci et Ci+4 sur la Figure F.1 de l’annexe F). Les profils de ces

facteur d’orientation moyens le long des sections (plan (y, z)) du canal central horizontal sont

superposés sur la Figure 8.26 et Figure 8.27 selon la concentration en fibres de l’échantillon.

On constate qu’il n’y a pas d’évolution du profil de la section pour les x croissants. Le profil en

bout de canal est déjà établi dès la première section (x = 10cm).
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Figure 8.25 – Tranche de l’éprouvette 3. Diagrammes polaires des anisotropies mesurées avec Q5 en

deux points de la tranche où l’état d’orientation des fibres est définitif (x = 35cm et x = 70cm).
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Figure 8.26 – Facteur d’orientation (issu du comptage de fibres) selon la direction x sur différentes

sections yz de l’éprouvette 2 (0,2% de fibres). Chaque point est calculé à partir de la moyenne des fibres

comptées sur la partie haute et la partie basse de la section. La correction pour une distribution homogène

des fibres est appliquée (cf. Annexe F).

8.5.2 Isotropie centrale

Les zones mortes induites par la contrainte seuil sont difficilement observables à travers

les mesures de résistivité puisque le courant injecté traverse une zone impossible à délimiter

précisemment, qui englobe des zones cisaillées proches de la surface et des zones mortes dans
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Figure 8.27 – Facteur d’orientation (issu du comptage de fibres) selon la direction x sur différentes

sections yz de l’éprouvette 3 (1,0% de fibres). Chaque point est calculé à partir de la moyenne des fibres

comptées sur la partie haute et la partie basse de la section. La correction pour une distribution homogène

des fibres est appliquée (cf. Annexe F)

l’épaisseur du matériau. Nous nous focalisons donc sur les résultats du comptage de fibres pour

rendre compte de l’isotropie de la zone centrale du canal.
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Figure 8.28 – Facteur d’orientation numérique selon x sur les sections (yz) successives du canal horizon-

tal central, obtenu avec la méthode des tenseurs d’orientation. Un coefficient d’interactions CI = 0, 0043

a été utilisé.

Sur les Figure 8.26 et Figure 8.27, un facteur d’orientation égal à 0,5 au centre de chacune

des sections (y = 7, 5cm et y = 12, 5cm) est représentatif d’une zone d’isotropie des fibres. Ce

facteur augmente alors de manière importante jusqu’aux parois où il est en moyenne de l’ordre

de 0,8 du fait du taux de cisaillement croissant.
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Figure 8.29 – Facteur d’orientation numérique selon x sur les sections (yz) successives du canal ho-

rizontal central, obtenu avec la méthode multifibres. Un coefficient d’interactions CI = 0, 0043 a été

utilisé.

Ces résultats obtenus expérimentalement sont comparés aux mêmes profils de facteurs d’orien-

tation issus des simulations numériques lancées avec les deux méthodes, et tracés sur les Fi-

gure 8.28 et Figure 8.29.

Pour obtenir ces profils, la moyenne des facteurs d’orientation est réalisée sur toutes les cellules

correspondant aux aires de comptage des fibres sur les sections successives. Les facteurs d’orien-

tation prédits numériquement sont moins contrastés que les résultats expérimentaux, quel que

soit le modèle numérique utilisé. Les résultats numériques permettent de retrouver l’ordre de

grandeur des facteurs expérimentaux dans les zones proches des parois. Cependant, dans la zone

centrale de l’écoulement, les facteurs d’orientation prédits numériquement sont supérieurs de

22% en moyenne aux facteurs numériques par rapport à 4% pour les facteurs dans les zones

cisaillées. On attribue l’orientation des fibres dans la zone centrale de l’écoulement au compor-

tement élastique du matériau dans cette zone. Le tenseur des taux de déformations est non nul

du fait des déformations élastiques. L’équation d’évolution des fibres (A.2) du chapitre 7 induit

donc une évolution de l’orientation. La question peut alors se poser de la validité d’une telle

équation dans un fluide à seuil. Pour conserver l’isotropie des fibres dans les zones non cisaillées,

une solution serait d’imposer un module de cisaillement artificiellement très élevé. Cette solution

influencerait cependant le comportement du matériau à l’interface entre les zones cisaillées et

les zones non cisaillées.

8.5.3 Effets de parois

Sur une section yz, l’influence de la paroi horizontale supérieure z = 10cm est contenue

dans chaque mesure effectuée sur le profil transverse. Par contre, l’influence des parois verticales

y = 0 et y = 20cm n’est observable que sur les mesures de résistivité proches de ces parois

(y < 1 − 2cm et y > 18 − 19cm respectivement pour des fibres de longueur 1cm). Le dispositif

Q5 appliqué à 2, 5cm d’une paroi mesure la résistivité apparente dans un volume entre 2, 5cm
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Application des modèles de prédiction de l’orientation à un écoulement industriel

et 5cm de côté. La mesure tient donc compte de l’influence des parois sur la conduction du

courant. On note que cet effet est moins net sur les mesures prises avec le dispositif Q10, avec

lequel le volume sondé est beaucoup plus important. Sur la figure Figure 8.30 est tracé le

profil transverse des anisotropies électriques de l’éprouvette 3 obtenu avec le dispositif Q5.

Profils d'anisotropies (Log10 (PP/PL)) 
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Figure 8.30 – Profil transversal (yz) des anisotropies électriques de l’éprouvette 3 (1% de fibres) à

différentes positions le long du canal. Mesures obtenues avec le dispositif Q5, sur la surface supérieure du

canal.

Sur ce profil, une forte augmentation des anisotropies est constatée dans les zones proches

des parois. Ce résultat signifie que dans les zones proches des parois, le ratio de la résistivité

perpendiculaire et parallèle aux parois crôıt, donc la conductivité perpendiculaire aux parois

décroit. L’orientation de fibres s’organise alors parallèlement aux parois. Ce résultat apparait

clairement à travers le contraste entre les représentations polaires des mesures prises au centre

de la surface du canal central et au bord du canal avec le dispositif Q5. La Figure 8.31 trace

ces représentations pour les points 1 et 2 sur l’éprouvette 3. Dès ce premier point, avant même

que l’état d’orientation des fibres ne soit définitif dans le canal, l’orientation est nettement plus

importante dans la zone proche des parois qu’au centre de la surface.

Enfin, une cartographie issue de l’interpolation entre tous les points de mesure de la surface du

canal central Figure 8.32 montre un fort gradient au niveau des propriétés électriques dans les

zones proches du bord.

Sur les Figure 8.26 et Figure 8.27, les facteurs d’orientation dans les zones proches des parois

atteignent les valeurs maximales de l’ordre de 0,8. Le facteur d’orientation moyen aux parois,

calculé à partir des facteurs d’orientation sur les bords (d’épaisseur 1cm) des sections du canal,

de x = 20cm à x = 50cm, est égal à 0,82. Ces valeurs sont très proches de celles des simulations

obtenues avec la méthode multifibres.
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Figure 8.31 – Vue de dessus de l’éprouvette 3. Représentations polaires des anisotropies mesurées aux

points 1 et 2 sur la surface supérieure du canal. Mesures obtenues avec le dispositif Q5.
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Figure 8.32 – Cartographie de résistivités apparentes sur la demi-surface supérieure obtenue avec le

dispositif Q5 en injection PP sur l’éprouvette 3.
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Conclusion

Dans la première partie de ce travail, nous avons posé le cadre de notre étude et justifié

l’approche bi-phasique utilisée dans la suite à partir du comportement macroscopique des

matériaux cimentaires de l’industrie.

Dans une deuxième partie, nous avons étudié l’influence des fibres sur le comportement

rhéologique des matériaux cimentaires. Tout d’abord, un critère de rigidité des fibres a été

construit à partir de la nature et de la géométrie d’une fibre et du comportement rhéologique

du fluide dans lequel elle est plongée.

Nous avons ensuite mesuré la fraction volumique d’empilement dense de fibres d’acier rigides

couramment utilisées en génie civil, dans une configuration isotrope des fibres. À partir de cette

fraction volumique dense, nous avons exprimé le paramètre d’encombrement de la suspension.

Ce paramètre d’encombrement nous a alors permis d’expliquer un constat important de la

littérature selon lequel l’évolution du comportement rhéologique d’une suspension dépend du

facteur de fibres.

Cet encombrement dû aux fibres a ensuite été étendu à l’encombrement total représentatif du

réseau de contacts créés entre toutes les inclusions du système.

Nous avons montré, grâce à des mesures de seuil d’écoulement sur des matériaux renforcés en

inclusions (fibres et sable), que le comportement macroscopique d’une suspension évolue selon

la nature des interactions dominantes. À partir d’une certaine concentration en inclusions, le

réseau de contacts devient percolant et les contacts directs entre les inclusions dominent le

comportement rhéologique de la suspension. Nous avons alors proposé un critère de formulation

des composites cimentaires permettant d’optimiser l’ajout des fibres grâce à un encombrement

maximal de ces inclusions dans un volume de pâte.

Dans une troisième partie, nous nous sommes intéressés à la prédiction de l’orientation

de fibres dans un écoulement. Nous avons montré que la majorité des écoulements industriels

peut se réduire à des écoulements simples. Nous avons alors dérivé du modèle de Jeffery des

outils simples de prédiction de l’orientation de fibres lors d’une mise en oeuvre. Pour cela, les

écoulements induits par l’étape de mise en œuvre ont été réduits aux deux situations génériques

de déformation que sont le cisaillement et l’élongation. Une approche dimensionnelle nous a

permis de distinguer dans l’écoulement les zones soumises aux déformations des zones mortes.

Dans les zones cisaillées, la solution analytique prédit une orientation maximale aux parois de

fibres en régime dilué. Nous avons alors montré qu’à l’échelle de la durée d’un coulage industriel,
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8.5 Résultats Expérimentaux

cette orientation est atteinte de manière quasi-instantanée. Dans les zones mortes l’isotropie

initiale est conservée.

Nous avons ensuite comparé dans le cas d’un écoulement entre deux plans infinis parallèles

deux modèles de prédiction numérique de l’orientation adaptés au cahier des charges du génie

civil. Le premier modèle, le modèle continu, est traditionnellement utilisé dans la littérature.

Le deuxième modèle, moins répandu, se présente comme la transition semie discrète entre le

modèle continu et les méthodes discrètes. Les résultats de simulation issus de ces deux outils

numériques sont proches. Cependant, la prise en compte d’un terme diffusif basé sur une

distribution gaussienne des fibres dans le modèle mulitfibres sous-estime la contribution des

interactions au niveau de l’orientation macroscopique.

Ces modèles ont ensuite été appliqués à un écoulement représentatif des mises en oeuvre

industrielles, dans lequel des paramètres tels que la géométrie complexe du coffrage (canal en

U), le procédé de coulage, et les effets de paroi influencent l’orientation macroscopique. Les

résultats des simulations ont montré une bonne cohérence avec les résultats expérimentaux

issus du coulage d’une pâte de ciment renforcée en fibres dans les mêmes conditions. Les

caractéristiques principales de cet écoulement rejoignent ce qui avait été constaté précédem-

ment, c’est à dire une orientation des fibres quasi instantanée dans les zones en écoulement,

la présence de zones non cisaillées dans lesquelles le phénomène d’orientation est peu marqué

et des valeurs élevées du facteur d’orientation dans les zones proches des parois. Cependant,

les facteurs d’orientation déduits du comptage manuel de fibres sur des sections de cette

structure en U, ainsi que sur les sections d’un canal à surface libre, sont plus faibles que ceux

prédits par les modèles numériques. Nous avons alors essayé d’expliquer cette différence par les

interactions hydrodyamiques entre les fibres, puisque les encombrements des fibres couramment

rencontrés dans l’industrie atteignent des valeurs élevées de l’ordre de 0,8. Pour cela, nous avons

augmenté artificiellement la contribution des interactions hydrodynamiques entre les fibres dans

le processus d’évolution de l’orientation. Des coefficients d’interactions de l’ordre de 0,2 nous

ont permis d’obtenir des facteurs d’orientation aux parois de l’ordre de ceux expérimentalement

mesurés. Mais ces valeurs ne sont pas représentatives des encombrements de fibres du génie

civil. Nous en avons conclu que les interactions entre fibres ne suffisent pas à expliquer les écarts

d’orientation constatés entre les prédictions numériques et les mesures. L’origine de ces écarts

a alors été attribuée au seuil du matériau qui influence l’orientation caractéristique du régime

permanent de la fibre.

Plusieurs perspectives sont alors à envisager. Le modèle d’encombrement de la suspension

par les inclusions se base sur la combinaison linéaire des contributions des fibres et des granulats.

Cependant, l’effet de l’ajout des granulats sur la compacité des fibres, et inversement, devrait

permettre une prédiction plus fine des encombrements de systèmes complexes, et ainsi étendre

cette étude aux bétons classiques de la littérature. Cette étude requiert un grand nombre de

données expérimentales pour la construction d’un modèle plus complet que celui présenté dans

ce travail.

Nous avons conclu des écarts entre les facteurs d’orientation expérimentalement mesurés
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Application des modèles de prédiction de l’orientation à un écoulement industriel

et ceux prédits numériquement que le modèle d’évolution de Jeffery n’est pas adaptable dans

le cas de fluides à seuil. Il permet d’obtenir des résultats satisfaisants pour une prédiction

macroscopique à l’échelle d’une structure, mais une prédiction rigoureuse de l’orientation

des fibres dans un fluide de Bingham doit tenir compte de la contrainte seuil du matériau.

Cette contrainte devra être introduite dans le bilan des efforts appliqués à la fibre par le

fluide suspendant. Un terme supplémentaire sera rajouté à l’équation. Il devra dépendre de

l’orientation de la fibre, de la contrainte seuil du matériau, ainsi que de la déformation à

laquelle le fluide suspendant est soumis. En effet, dans la zone soumise à aucune déforma-

tion, l’orientation de la fibre n’évolue plus, donc l’effet de la contrainte seuil sur la fibre disparait.

De plus, des écarts ont été constatés entre la taille de la zone isotrope au centre d’écoule-

ments de cisaillement prédite par les simulations et celle mesurée par le comptage de fibres. Ils

sont attribués au fait que l’orientation implémantée dans le code de calculs n’est pas couplée

à l’écoulement. La contrainte seuil conditionnant la distinction entre les zones cisaillées et les

zones mortes est mesurée à partir d’une configuration isotrope des fibres. Or leur alignement

avec l’écoulement influence manifestement leur empilement dans le matériau et réduit les

dissipations d’énergie au cours de l’écoulement. La contrainte seuil résultant est plus faible et

modifie ainsi la taille de la zone morte. L’étape de couplage de l’orientation avec l’écoulement

parait nécessaire. Elle n’est cependant pas possible avec le code Flow 3D c©. L’implémentation

des outils d’orientation présentés dans ce travail devra donc être réalisée dans d’autres codes de

CFD contenant le modèle de Bingham (e.g. Fluent c©).

Un critère de stabilité proposé au début de ce travail nous a permis de négliger la sédimen-

tation des fibres et de faire l’hypothèse d’une distribution homogène des fibres dans le matériau.

Cependant, les bétons modernes de plus en plus fluides ne permettent pas toujours de respecter

ce critère. L’implémentation de la ségrégation des fibres, et principalement la ségrégation due

à la gravité dans le cadre des écoulements industriels, doit être ajoutée à l’évolution de leur

orientation pour simuler une situation réelle. Un angle de sédimentation des fibres est alors

à prendre en compte. Il dépend de l’orientation des fibres dans le fluide suspendant. Une

méthode continue de la prédiction de la sédimentation impliquerait de considérer un angle

moyen représentatif de l’état d’orientation dans chaque cellule du maillage.

Enfin, ce travail doit être envisagé comme un maillon de la chaine reliant les propriétés

rhéologiques aux propriétés mécaniques des matériaux cimentaires. La prédiction de l’orientation

macroscopique des fibres dans un matériau n’a de sens que si l’effet de cette orientation est

maitrisé au niveau du matériau à l’état durci. Des collaborations seraient donc à envisager entre

mécaniciens et rhéologues pour atteindre l’objectif final de la prédiction des résistances d’une

structure fibrée prenant en compte l’état d’orientation des fibres.
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Annexe A

Résolution de l’équation de Jeffery

pour une fibre plongée en simple

cisaillement 3D

A.1 Orientation d’une fibre

Soit une fibre définie en 3 dimensions par son vecteur unitaire p (Figure 5.6), avec

p =


sinϕ cos θ

sinϕ sin θ

cosϕ

 (A.1)

L’évolution de la fibre est décrite par Jeffery en 1923 :

ṗ = ∇V.p− (D : pp)p (A.2)

où D est le tenseur d’ordre 2 (matrice 3x3 en 3d) du taux de déformations lié au gradient des

vitesses D =
(
∇u+∇ut

)
/2, et où le produit contracté s’écrit D : pp =

∑
k,l dklpkpl.

Le but est de résoudre cette équation en 3D pour des écoulements simples.

A.2 Évolution de l’orientation

La fibre est plongée dans un écoulement cisaillant décrit par le champ de vitesse (Vx =

γ̇y;Vy = 0;Vz = 0), où γ̇ est le taux de cisaillement, constant dans le temps pour un écoulement

permanent. On a donc

V =


γ̇y

0

0

 donc ∇V =


0 γ̇ 0

0 0 0

0 0 0

 et D =


0 γ̇

2 0

− γ̇
2 0 0

0 0 0

 (A.3)

En injectant ce profil dans A.2 on obtient le système d’équations :
ṗ1 = γ̇p2 − γ̇p21p2
ṗ2 = −γ̇p1p22
ṗ3 = −γ̇p1p2p3

(A.4)
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En remplaçant les pi par leur valeur en fonction des angles θ et φ (cf A.1), on obtient :

ϕ̇ cosϕ cos θ − θ̇ sinϕ sin θ = γ̇ sinϕ sin θ − γ̇ sin3 ϕ cos2 θ sin θ (A.5)

ϕ̇ cosϕ sin θ + θ̇ sinϕ cos θ = −γ̇ sin3 ϕ cos θ sin2 θ (A.6)

−ϕ̇ sinϕ = −γ̇ sin2 ϕ cos θ sin θ cosϕ (A.7)

Du système formé par les trois équations A.5, A.6 et A.7, on tire deux equations différentielles

selon θ et ϕ.

De A.7, on a :

ϕ̇ = γ̇ sinϕ cos θ sin θ cosϕ pour ϕ 6= 0 et π (A.8)

De (− sin θA.5+ cos θA.6), on a :

θ̇ = −γ̇ sin2 θ pour ϕ 6= 0 et π (A.9)

On résoud d’abord A.9 en intégrant entre t = 0 et t l’expression :

dθ

sin2 θ
= −γ̇

avec γ̇ une constante, et θ(t = 0) = θ0. Grâce à
[
−dθ
sin2 θ

]
= cot θ, on trouve :

tan θ =
1

γ̇t+ cot θ0
(A.10)

On veut maintenant obtenir l’évolution de ϕ grâce à A.8. On utilise alors l’expression de θ pour

obtenir sin θ et cos θ :

sin θ = sin

(
arctan

(
1

γ̇t+ cot θ0

))
=

1/(γ̇t+ cot θ0)(
1 + 1

(γ̇t+cot θ0)2

)1/2
cos θ = cos

(
arctan

(
1

γ̇t+ cot θ0

))
=

1(
1 + 1

(γ̇t+cot θ0)2

)1/2
qu’on injecte dans A.8. L’équation devient :

ϕ̇

sinϕ cosϕ
= γ̇

1/(γ̇t+ cot θ0)(
1 + 1

(γ̇t+cot θ0)2

)1/2 × 1(
1 + 1

(γ̇t+cot θ0)2

)1/2
=

γ̇

γ̇t+ cot θ0
× 1

1 +
(

1
γ̇t+cot θ0

)2
=

γ̇(γ̇t+ cot θ0)

(γ̇t+ cot θ0)2 + 1

Le terme de gauche se résoud grâce à
[

dϕ
sinϕ cosϕ

]
= ln(tan θ), avec ϕ(t = 0) = ϕ0.

∫ t

0

dϕ

sinϕ cosϕ
= ln(tanϕ)− ln(tanϕ0) = ln

(
tanϕ

tanϕ0

)
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Le terme de droite se résoud grâce à
[
u′u
u2+1

]
= ln(u2 + 1)/2 :∫ t

0

γ̇(γ̇t+ cot θ0)

(γ̇t+ cot θ0)2 + 1
dt =

1

2
ln(γ̇t+ cot θ0)

2 + 1)− 1

2
ln(cot2 θ0 + 1)

=
1

2
ln

(
(γ̇t+ cot θ0)

2 + 1

cot2 θ0 + 1

)
= ln

((
(γ̇t+ cot θ0)

2 + 1

cot2 θ0 + 1

)1/2
)

= ln

(
((γ̇t+ cot θ0)

2 + 1)1/2

(cot2 θ0 + 1)1/2

)
Finalement A.8 devient :

ln

(
tanϕ

tanϕ0

)
= ln

(
((γ̇t+ cot θ0)

2 + 1)1/2

(cot2 θ0 + 1)1/2

)
tanϕ

tanϕ0
=

((γ̇t+ cot θ0)
2 + 1)1/2

(cot2 θ0 + 1)1/2

tanϕ =
tanϕ0

(cot2 θ0 + 1)1/2
((γ̇t+ cot θ0)

2 + 1)1/2

tanϕ =
tanϕ0 tan θ0

(1 + tan2 θ0)1/2
((γ̇t+ cot θ0)

2 + 1)1/2

En posant Cϕ = tanϕ0 tan θ0
(1+tan2 θ0)1/2

, on a alors :

tanϕ = Cϕ((γ̇t+ cot θ0)
2 + 1)1/2 (A.11)

Grâce à (x2 + 1)1/2 = 1
cos(arctanx) , on remarque que ((γ̇t+ cot θ0)

2 + 1)1/2 = 1
sin θ . Finalement on

obtient :

tanϕ =
Cϕ

sin θ
(A.12)

Le système est alors résolu par (A.10) et (A.12).

Remarque : on retrouve l’expression donnée par [188] et par [161] dans le cas général où λ 6= 1 :

tanϕ =
rCϕ(

r2 sin2 θ + cos2 θ
) 1

2

r→∞−→ Cϕ
sin θ

(A.13)

Attention, selon l’angle choisi on peut trouver la même expression dans la littérature avec un

cosinus :

tanϕ =
Cϕ

cos θ
(A.14)

C’est en fait la résolution de l’équation générale dont (A.2) est issue, avec la différence que nous,

nous faisons tendre r vers l’infini. La solution de l’équation générale de la littérature est :

tan(ϕ) =
rCϕ(

r2 cos2(θ) + sin2(θ)
) 1

2

(A.15)

et en faisant tendre r vers l’infini on a :

tan(ϕ)
r→∞−→ Cϕ

cos(θ)
(A.16)
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Annexe B

Résolution de l’équation de Jeffery

pour une fibre plongée en

écoulement éélongationnel 3D

B.1 Orientation d’une fibre

Cf. Annexe A.

B.2 Évolution de l’orientation

La fibre est plongée dans un écoulement cisaillant décrit par le champ de vitesse (Vx =

ε̇x;Vy = − ε̇
2y;Vz = − ε̇

2z), où ε̇ est le taux d’élongation, constant dans le temps pour un écoule-

ment permanent. On a donc

V =


ε̇x

− ε̇
2y

− ε̇
2z

 donc ∇V = D =


ε̇ 0 0

0 − ε̇
2 0

0 0 − ε̇
2

 (B.1)

En injectant ce profil dans A.2 on obtient le système d’équations :
ṗ1 = ε̇p1 − ε̇p31 + ε̇

2p1p
2
2 + ε̇

2p1p
2
3

ṗ2 = − ε̇
2p2 − ε̇p

2
1p2 + ε̇

2p
3
2 + ε̇

2p2p
2
3

ṗ3 = − ε̇
2p3 − ε̇p

2
1p3 + ε̇

2p
2
2p3 + ε̇

2p
3
3

(B.2)

En remplaçant les pi par leur valeur en fonction des angles θ et ϕ (cf A.1), on obtient :

ϕ̇ cosϕ cos θ − θ̇ sinϕ sin θ = ε̇ sinϕ cos θ − ε̇ sin3 ϕ cos3 θ +
ε̇

2
cos θ sin3 ϕ sin2 θ +

ε̇

2
cos θ sinϕ cos2 ϕ(B.3)

ϕ̇ cosϕ sin θ + θ̇ sinϕ cos θ = − ε̇
2

sinϕ sin θ − ε̇ sin3 ϕ cos2 θ sin θ +
ε̇

2
sin3 ϕ sin3 θ +

ε̇

2
sin θ sinϕ cos3 ϕ(B.4)

−ϕ̇ sinϕ = − ε̇
2

cosϕ− ε̇ cos2 θ sin2 ϕ cosϕ+
ε̇

2
sin2 ϕ sin2 θ cosϕ+

ε̇

2
cos3 ϕ (B.5)

Du système formé par les trois équation B.3, B.4 et B.5, on tire deux équations différentielles

selon θ et ϕ.
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De (− sin θB.3+ cos θB.4), on a :

θ̇ = −3

2
ε̇ sin θ cos θ pour ϕ 6= 0 et π (B.6)

De (cos θB.3+ sin θB.4), on a :

ϕ̇ =
3

2
ε̇ sinϕ cosϕ cos2 θ pour ϕ 6= −π

2
et

π

2
(B.7)

On résoud d’abord B.6 en intégrant entre t = 0 et t l’expression :

dθ

sin θ cos θ
= −3

2
ε̇dt

avec ε̇ une constante, et θ(t = 0) = θ0. Grâce à
[

dθ
sin θ cos θ

]
= ln(tan θ), on trouve :

tan θ = tan(θ0)e
−(3/2)ε̇t (B.8)

On veut maintenant obtenir l’évolution de ϕ grâce à B.7. On utilise alors l’expression de θ pour

obtenir cos θ :

cos θ = cos
(

arctan
(

tan θ0e
−(3/2)ε̇t

))
=

1(
1 + (tan θ0e−(3/2)ε̇t)2

)1/2
qu’on injecte dans B.7. L’équation devient :

ϕ̇

sinϕ cosϕ
=

3

2
ε̇× 1

1 + (tan θ0e−(3/2)ε̇t)2

=
3

2
ε̇× 1

1 + tan2 θ0e−3ε̇t

=
1

2
× 3ε̇

1 + tan2 θ0e−3ε̇t

Le terme de gauche se résoud comme dans le cas du cisaillement, on obtient ln
(

tanϕ
tanϕ0

)
.

Le terme de droite se résoud en remarquant :
[
ln(1 + Ce−Kt) +Kt

]′
= −CKe−Kt

1+Ce−Kt
+K = K

1+Ce−Kt
:

1

2

∫ t

0

3ε̇

1 + tan2 θ0e−3ε̇t
dt =

1

2

[
ln(1 + tan2 θ0e

−3ε̇t) + 3ε̇t− ln(1 + tan2 θ0)
]

= ln
(

(1 + tan2 θ0e
−3ε̇t)1/2

)
− ln

(
(1 + tan2 θ0)

1/2
)

+
3

2
ε̇t

= ln

(
(1 + tan2 θ0e

−3ε̇t)1/2

(1 + tan2 θ0)1/2

)
+

3

2
ε̇t

Finalement B.7 devient :

ln

(
tanϕ

tanϕ0

)
= ln

(
(1 + tan2 θ0e

−3ε̇t)1/2

(1 + tan2 θ0)1/2

)
+

3

2
ε̇t

tanϕ

tanϕ0
=

(
(1 + tan2 θ0e

−3ε̇t)1/2

(1 + tan2 θ0)1/2

)
e

3
2
ε̇t

tanϕ =
tanϕ0

(1 + tan2 θ0)1/2
(1 + tan2 θ0e

−3ε̇t)1/2e
3
2
ε̇t

En posant Ceϕ = tanϕ0

(1+tan2 θ0)1/2
, on a alors :

tanϕ = Ceϕ(1 + tan2 θ0e
−3ε̇t)1/2e

3
2
ε̇t (B.9)
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De mâme que dans le cas d’un écoulement cisaillant, on reconnait (1 + tan2 θ0e
−3ε̇t)1/2 = 1

cos θ .

B.9 devient alors :

tanϕ =
Ceϕ

cos θ
e

3
2
ε̇t (B.10)

Le système est alors résolu par B.8 et B.10.
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Annexe C

Facteur d’orientation sur un plan

parallèle à la paroi

C.1 Influence de la paroi

L’idée du calcul d’un facteur d’orientation consiste à considérer les différentes orientations

que peut adopter une fibre au sein du fluide dans lequel ell est plongée. Quand cette fibre se

place dans une zone proche d’une paroi, elle ne peut effectuer une rotation complète dans un

plan perpendiculaire à la paroi, cf. Figure C.1. Cette restriction de liberté est alors prise en

compte dans le calcul du facteur d’orientation. Considérons la configuration présentée sur la

β
c 2

f
l

y

Figure C.1 – Liberté de rotation d’une fibre proche d’une paroi

Figure C.1. La fibre ne peut effectuer une rotation complète, elle est bloquée par la présence

du mur au moment où elle forme un angle critique βc avec la direction orthogonale au mur (en

rouge).
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C.2 Calcul du facteur d’orientation

C.2.1 Cas isotrope

Le facteur d’orientation se calcule comme la projection moyenne des fibres sur l’axe rouge de

la Figure C.1. Cette projection s’exprime grâce au cosinus de l’angle β entre la fibre et l’axe.

La projection moyenne est alors obtenue en pondérant chaque projection (correspondant à un

angle β fixé) par la surface qui peut être balayée par l’extrémité de la fibre(pour ce β toujours

fixé) selon sa liberté géométrique de rotation.

x

y’

y

z

βd
l f

2

αβd
l f sin
2

β

α

Figure C.2 – Système de coordonnées d’une fibre au sein du matériau.

Soit une fibre définie de manière classique par ses deux angles θ et ϕ dans le repère (x, y, z) de

la Figure C.2. Cette fibre se définit de manière similaire par ses angles β et α dans le repère

(x, y′, z′), où l’axe y′ est l’intersection entre le plan contenant la fibre et l’axe x et le plan (y, z)

(cf. Figure C.3).

α

z

y

y’

β

y’

x

Figure C.3 – Plans de changement de repère.

La surface balayée par l’extrémité de la fibre pondérant la projection de la fibre sur l’axe x est

représentée par un élément de surface de sphère
lf
2 sinβdα× lf

2 dβ (cf. Figure C.2 : élément en
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rouge). L’intégration se fait alors sur la demie sphère. Le facteur s’écrit donc comme une double

intégrale sur α entre 0 et 2π et sur β entre 0 et π/2. Cette valeur est finalement adimensionnée

par la surface de la demie sphère pour obtenir un facteur normé.

Le facteur se calcule donc par :

αx =

∫ 2π
0

∫ π/2
0 cosβ ×

(
lf
2

)2
sinβdαdβ∫ 2π

0

∫ π/2
0

(
lf
2

)2
sinβdαdβ

(C.1)

Après intégration sur α :

αx =
2π
(
lf
2

)2 ∫ π/2
0 cosβ sinβdβ

2π
(
lf
2

)2 ∫ π/2
0 sinβdβ

=

∫ π/2
0 cosβ sinβdβ∫ 0

π/2 sinβdβ

=

∫ π/2

0
cosβ sinβdβ (C.2)

C.2.2 Présence d’une paroi

La présence d’une paroi impose de réduire les bornes d’intégration sur l’angle β. L’intégration

est alors réalisée d’un angle critique βc à π/2 cf. Figure C.1. Cet angle s’écrit βc = arccos(2y/lf ).

Le facteur d’orientation s’exprime alors, une fois l’intégration sur α effectuée, par :

αx =

∫ π/2
βc

sinβ cosβdβ∫ π/2
βc

sinβdβ

=

∫ π/2
βc

sinβ cosβdβ

πlfy

=
y

lf
(C.3)

Ce facteur s’écrit simplement, en fonction de y. On remarque alors qu’une fibre directement

collée à la paroi (y = 0) impliquera un facteur d’orientation nul, alors qu’une fibre placée à une

distance lf/2 de cette paroi entrainera un facteur d’orientation isotrope (α⊥ = 0, 5).

Ensuite, ce facteur est intégré sur tous les plans parallèles à la paroi, entre y = 0 et y = lf/2

pour donner une orientation moyenne sur cette distance :

ᾱ‖ =
2

lf

∫ lf
2

0

y

lf
=

1

4
(C.4)

C.3 Facteur d’orientation expérimental

Par définition, le facteur d’orientation selon l’axe x s’écrit, dans le repère donné au chapitre

5 :

αx =

∫ π/2

0

∫ 2π

0
P (θ, ϕ) sin2 ϕ cos θdϕdθ (C.5)
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Dans cette expression, sinϕdθdϕ est l’élément de surface de la demie sphère sur laquelle l’extré-

mité de la fibre est intégrée. Cet élément de surface s’écrit aussi en fonction des angles β et α

définis sur la Figure C.2) sinβdαdβ. En effectuant le changement de repère et en écrivant que

la projection sinϕ cos θ du vecteur p sur l’axe x peut aussi s’écrire cosβ où β est l’angle formé

entre la fibre et l’axe x, (C.6) devient :

αx =

∫ π/2

0

∫ 2π

0
P (α, β) cosβ sinβdαdβ (C.6)

Dupont et Vandewalle [149] prennent alors l’hypothèse d’une configuration isotrope des fibres.

Cette hypothèse se traduit par une équiprobabilité de la distribution des fibres dans la sphère

unitaire, donc à une fonction de probabilité P (α, β) = 1/2π (la surface de la demie sphère). En

intégrant par rapport à l’angle α dans (C.6), il vient :∫ π/2

0

∫ π/2

0
P (θ, ϕ) sinϕ cos θdϕdθ =

∫ π/2

0
cosβ sinβdβ (C.7)
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Annexe D

Isotropie initiale des fibres

D.1 Isotropie initiale

Description du processus. On dispose régulièrement des fibres représentées par leur vecteur

unitaire p dans une sphère unitaire. On découpe la surface de la sphère unitaire en points

réguliers. Chacun de ces points correspond à une extrémité de vecteur p, l’autre étant toujours

le centre de la sphère. Grâce à des considérations géométriques, on réduit la surface à couvrir par

l’extrémité des fibres à une demie sphère. On choisit alors de ne considérer que la demie sphère

centrée en x, c’est à dire les fibres dont la composante en x du vecteur unitaire p est positive.

z

y
x 1 2

3

y

z

x
1 2

3

5 4

7 6

y

z

x

1 2

4

3

6

7

5

8

911 10

12

13

(a) (c)(b)

Figure D.1 – Configurations initiales de fibres réparties régulièrement sur la surface de la sphère unitaire

visant à modéliser l’isotropie. Les fibres sont représentées en orange dans chaque sphère.

D.1.1 Configuration à 3 fibres

Le découpage de la sphère unitaire est ici le plus simple possible. Il s’agit de la configuration

(a) sur la Figure D.1. Trois fibres décrivent l’ensemble des directions possibles sur la demie

sphère. Les coordonnées des extrémités de chacun des vecteurs unitaires représentatifs des fibres
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sont simplement celles coincidant avec les trois axes :

f1 =


1

0

0

 ; f2 =


0

1

0

 ; f3 =


0

0

1


D.1.2 Configuration à 7 fibres

La deuxième configuration construite contient 7 fibres, comme représenté en (b) sur la Fi-

gure D.1 au centre. Le découpage de la sphère se fait en trois étapes. La sphère est d’abord

divisée en quatre quartiers égaux suivant l’axe x, puis le même découpage est réalisé suivant

l’axe y et l’axe z. Les points de croisement de ces découpages correspondent aux extrémités

des vecteurs unitaires représentatifs des fibres à la surface de la sphère. Les coordonnées de ces

points sont alors exprimées géométriquement. On remarque notament que les extrémités des

fibres 1, 2 et 3 sont les mêêmes que dans la configuration précédente. De plus, les extrémités

5, 6 et 7 peuvent se déduire de l’extrémité 4 par simples considérations géométriques. Donc,

seule la fibre 4 est étudiée (cf.Figure D.2). L’extrémité de la fibre 4 est située à l’intersection

x

y

z

4

45°

φ

Figure D.2 – Coordonnées de la fibre 4 dans la configuration à 7 fibres.

des 3 bissectrices des arcs xy, yz et zx. Elle se situe donc à égales distances des extrémités 1,

2 et 3. Les coordonnées de l’extrémité 4 s’écrivant (sinϕ cos 45̊ , sinϕ sin 45̊ , cosϕ), l’égalité de

toutes les coordonnées implique un angle ϕ égal à 0, 9553 radians, ou 54, 73̊ . Les coordonnées

de chacune des extrémités sont alors déduites :

f4 =


sinϕ cos 45̊ ' 0, 57735

sinϕ sin 45̊ ' 0, 57735

cosϕ ' 0, 57735



f5 =


0, 57735

−0, 57735

0, 57735

 ; f6 =


0, 57735

0, 57735

−0, 57735

 ; f7 =


0, 57735

−0, 57735

−0, 57735


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D.1.3 Configuration à 13 fibres

La troisième configuration comporte 13 fibres réparties sur la demie sphère unitaire, comme

le présente la figure Figure D.1 (c). La même technique de découpage de la sphère que celle

décrite dans le cas de 7 fibres est suivie. La sphère est cette fois divisée en 8 quartiers selon

chacun des axes. Les points d’intersection de ces découpages correspondent aux extrémités des

fibres. Dans cette configuration, les extrémités 4, 5, 7 et 12 sont étudiées, les coordonnées de

toutes les autres extrémités peuvent être déduites. On remarque d’abord que la fibre 4 est placée

au même endroit dans la configuration 13 fibres que dans la configuration 7 fibres. La fibre 5

x

z

5

x

y

7

45°

45°

z

12

45°

y

Figure D.3 – Fibres 5 et 7 appartenant respectivement aux plans (x, z) et (x, y).

appartient au plan (x, z), la fibre 7 au plan (x, y) et la fibre 12 au plan (y, z) (cf. Figure D.3).

Il en découle :

f5 =


cos 45̊ ' 0, 7071

0

sin 45̊

 ; f7 =


cos 45̊

sin 45̊

0

 ; f12 =


0

cos 45̊

sin 45̊


Les coordonnées des extrémités des autres fibres sont alors obtenues par symétrie.

D.1.4 Méthode Trig (11 fibres)

La méthode utilisée pour répartir les points régulièrement sur la surface de la sphère est la

suivante. L’un des trois axe est divisé en parties régulières. On choisit ici l’axe z. La sphère est

alors coupée selon les plans de normale z passant par ces points. Sur chacun de ces plans, la

section de la sphère est divisée en portions régulières Figure D.4.

Les coordonnées de ces points sont tirées d’un algorithme de la littéra-

ture (http : //www.math.niu.edu/ rusin/known − math/96/sph.rand, http :

//www.cgafaq.info/wiki/RandomP ointsOnSphere, http : //maven.smith.edu/ orourke/).

f1 =


1

0

0

 ; f2 =


0

1

0

 ; f3 =


0

0

1


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z

y

x

y y

x

x

1

2

3

4

8

5

6

7

9

10

11

Figure D.4 – Configuration de répartition des fibres sur la sphère unitaire par la méthode ”Trig”. La

coupe (x, y) présentée en bas au centre de la figure correspond au plan médian de la sphère, et la coupe

(x, y) en bas à droite aux deux plans parallèles de part et d’autre du plan médian.

f4 =


0, 3536

0, 6124

0, 7071

 ; f5 =


0, 7071

0

0, 7071

 ; f6 =


0, 3536

−0, 6124

0, 7071



f7 =


0, 7071

0, 7071

0

 ; f8 =


0, 7071

−0, 7071

0



f9 =


0, 3536

0, 6124

−0, 7071

 ; f10 =


0, 7071

0

−0, 7071

 ; f11 =


0, 3536

−0, 6124

−0, 7071


D.2 Vérification de la symétrie

Pour vérifier la condition de symétrie des fibres permettant de nous limiter à une demie

sphère, la configuration intiale à 7 fibres décrite au dessus est considérée centrée en y puis en z

(cf. Figure D.5). On vérifie ainsi l’impact d’une demie sphère ou d’une autre sur les résultats

numériques de simulation. Dans la configuration centrée en y, les fibres 5’ et 7’ sont obtenues

par symétrie :

f5′ =


−0, 57735

0, 57735

0, 57735

 ; f7′ =


−0, 57735

0, 57735

−0, 57735


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y

z

x 1
2

3

4

6 7’

5’

y
z

x

1

2
3

45

6’7’

Figure D.5 – Configuration à 7 fibres centrée en y (à gauche) et en z (à droite).

Il en est de même pour les fibres 6’ et 7’ dans la configuration centrée en z :

f6′ =


−0, 57735

0, 57735

0, 57735

 ; f7′ =


−0, 57735

−0, 57735

0, 57735


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Annexe E

Terme d’interactions entre fibres

E.1 Expression de l’équation d’évolution

L’équation de Jeffery, formulée en 1929, décrit l’évolution de l’orientation d’une fibre plongée

dans un fluide newtonien. Un terme d’interactions entre fibres [167] ajouté à cette équation

permet de décrire l’évolution d’une population de fibres interagissant hydrodynamiquement entre

elles. Cette équation devient :

ṗ = ∇V · p+ (D : pp)p− I (E.1)

(E.2)

La projection de cette équation sur un axe i s’écrit :

ṗi =
∂vi
∂x

px +
∂vi
∂y

py +
∂vi
∂z

pz + (D : pp)pi − Ii (E.3)

où, par symétrie du tenseur des déformations D :

(D : pp) = D11p
2
1 +D22p

2
2 +D33p

2
3 + 2D12p1p2 + 2D13p1p3 + 2D23p2p3

Le terme d’interaction Ii est alors détaillé [167] :

Ii =
Dr

ψi(βi)

∂ψi(βi)

∂pi
(E.4)

exprimé en fonction de la distribution gaussienne ψi(βi) :

ψi(βi) =
1

σi
√

2π
e
− (βi−µi)

2

2σ2
i (E.5)

E.2 Calcul du terme d’interactions

On cherche maintenant à dériver la fonction de distribution ψi(βi) par rapport au paramètre

cosβi.

Hypothèse µi et σi fixes.

On pose le paramètre cosβi = pi , d’où βi = arccos pi.

En posant f(pi) = −1
2

(
arccos pi−µi

σi

)2
, la fonction ψi peut s’écrire :

ψi(βi) =
1

σi
√

2π
e
− (arccos pi−µi)

2

2σ2
i =

1

σi
√

2π
exp ◦f(pi) (E.6)
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On a alors :
∂ψi(pi)

∂pi
=

1

σi
√

2π
× f ′(pi)× exp ◦f(pi) (E.7)

On calcule alors la dérivée f ′(pi) :

f ′(pi) =
∂f(pi)

∂pi
= −1

2

∂

∂pi

(
arccos(pi)− µi

σi

)2

= − 1

2σ2i

∂

∂pi
(arccos(pi)− µi)2

= − 1

2σ2i
× 2× −1√

1− p2i
× (arccos(pi)− µi)

=
(arccos(pi)− µi)

σ2i

√
1− p2i

Finalement, il vient :

∂ψi(pi)

∂pi
=

1

σi
√

2π
× arccos(pi)− µi

σ2i

√
1− p2i

× exp

(
−1

2

(
arccos(pi)− µi

σi

)2
)

(E.8)

On reconnait l’expression de la distribution gaussienne :

∂ψi(pi)

∂pi
=

βi − µi
σ2i

√
1− p2i

× 1

σi
√

2π
exp

(
−1

2

(
arccos(pi)− µi

σi

)2
)

(E.9)

Le terme d’interaction selon E.4 devient alors :

Ii =
Dr

σ2i

βi − µi√
1− p2i

(E.10)
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Annexe F

Comptage de fibres

F.1 Découpage des sections

La partie horizontale de chaque canal en U est découpée en tronçons d’épaisseur 10cm (sauf

6cm pour le dernier tronçon) comme il est indiqué au chapitre9. Chaque section des tronçons issus

du canal central est divisée en différentes zones choisies pour mettre en avant les caractéristiques

de l’écoulement. Tout d’abord la section est divisée en carrés de 4cm×5cm (de C1 à C8 en jaune

1cm

1cm

5cm

5cm
3cm

3cm

G1

G2
D2

D1

H1 H2 H3 H4

B1 B2 B3 B4

C1 C2 C3
P1 P2

P3 P4

C4

C8C7C6C5

Figure F.1 – Découpage d’une section du canal en subdivisions dessinées selon la prédiction de l’écou-

lement.

sur Figure F.1). Puis une bande de 1cm d’épaisseur (une longueur de fibre) est isolée sur chaque

bord de la section (en bleu sur Figure F.1 : G1 et G2 à gauche, D1 et D2 à droite, de H1 à H4

en haut, et de B1 à B4 en bas de la section). Enfin, un carré central forme quatre subdivisions

situées dans la zone non cisaillée de l’écoulement (de P1 à P4 en orange sur Figure F.1).

Le comptage de fibres permet d’exprimer le facteur d’orientation sur les zones concernées. Ce

facteur d’orientation dépend de l’aire de la zone considérée, du nombre de fibres traversant

cette zone, de la concentration en fibre et de la section de chacune d’elles. Ces deux derniers

paramètres sont supposés constants. La section d’une fibre est égale à S = πr2f = π.10−8. L’aire

de chacune des zones est donnée sur la Figure F.1. Cependant, certaines aires nécessitent une

correction, à cause de bulles d’air ou de parties endommagées pendant le découpage du canal.

Ces corrections sont données dans les sections suivantes.
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F.2 Éprouvette faiblement renforcée

La deuxième éprouvette est renforcée avec 0, 2% en volume de fibres de facteur d’aspect

r = 50. Le comptage des fibres est renseigné dans la Table F.1, ainsi que l’aire sur laquelle ces

fibres sont comptées(en cm2), corrigée par les bulles d’air ou les zones dégradées si nécessaire.

S1 S2 S3 S4

Zone Nf Acorr αx Nf Acorr αx Nf Acorr αx Nf Acorr αx

C1 125 24,6 0,80 135 25 0,85 113 25 0,71 134 25 0,84

C2 93 25 0,58 75 24,76 0,48 72 25 0,45 98 25 0,62

C3 115 25 0,72 83 25 0,52 110 25 0,69 76 23,6 0,51

C4 83 17,5 0,75 136 25 0,85 109 25 0,68 109 25 0,68

C5 122 25 0,77 124 25 0,78 124 25 0,78 126 25 0,79

C6 75 25 0,47 86 25 0,54 88 25 0,55 79 25 0,50

C7 107 25 0,67 80 25 0,50 93 25 0,58 84 25 0,53

C8 105 22,5 0,73 112 25 0,70 117 25 0,74 109 25 0,68

P1 30 9 0,52 13 9 0,23 19 9 0,33 22 9 0,38

P2 38 9 0,66 19 9 0,33 36 9 0,63 18 9 0,31

P3 23 9 0,40 18 9 0,31 23 9 0,40 14 9 0,24

P4 35 9 0,61 26 9 0,45 20 9 0,35 20 9 0,35

H1 - - - 12 2,5 0,75 11 2,5 0,69 16 2,5 1,01

H2 - - - 7 2,5 0,44 10 2,5 0,63 16 2,38 1,06

H3 - - - 13 2,5 0,82 19 2,5 1,19 7 1,9 0,58

H4 - - - 15 2,5 0,94 13 2,5 0,82 15 2,5 0,94

B1 16 2,5 1,01 9 2,5 0,57 12 2,5 0,75 14 2,5 0,88

B2 7 2,5 0,44 13 2,5 0,82 10 2,5 0,63 12 2,5 0,75

B3 9 2,5 0,57 12 1,6 1,18 10 2,5 0,63 10 2,5 0,63

B4 8 2,25 0,56 10 2 0,79 14 2,5 0,88 - - -

G1 13 2,25 0,91 17 2,5 1,07 12 2,5 0,75 22 2,5 1,38

G2 16 2,5 1,01 9 2,5 0,57 9 2,5 0,57 17 2,5 1,07

D1 - - - 6 1,25 0,75 - - - 12 2,5 0,75

D2 - - - 12 2,5 0,75 11 2,5 0,69 10 2,5 0,63

Table F.1 – Fibres comptées sur les sections S1, S2, S3 et S4 de l’éprouvette 2

F.3 Éprouvette fortement renforcée

La troisième éprouvette est renforcée avec 1, 0% en volume des mêmes fibres que l’éprouvette

2 (r = 50). Le nombre de fibres comptées sur chaque section de l’éprouvette 3 est alors indiqué

de la même façon que pour l’éprouvette 2 dans les Table F.3 et Table F.4.
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S5 S6 S7

Zone Nf Acorr αx Nf Acorr αx Nf Acorr αx

C1 123 25 0,77 121 25 0,76 96 20,25 0,74

C2 109 25 0,68 94 24 0,62 92 22,5 0,64

C3 101 25 0,63 101 24 0,66 85 22,5 0,59

C4 117 25 0,74 112 25 0,70 75 20,25 0,58

C5 117 25 0,74 117 22,5 0,82 64 20,25 0,50

C6 76 25 0,48 71 22,5 0,50 92 22,5 0,64

C7 71 25 0,45 75 22,5 0,52 77 22,5 0,54

C8 101 25 0,63 102 22,5 0,71 62 22,5 0,43

P1 30 9 0,52 29 8 0,57 - - -

P2 20 9 0,35 26 8 0,51 19 9 0,33

P3 13 9 0,23 22 9 0,38 - - -

P4 20 9 0,35 21 9 0,37 22 9 0,38

H1 15 2,5 0,94 18 2,5 1,13 - - -

H2 10 2,5 0,63 14 2,5 0,88 - - -

H3 15 2,5 0,94 14 2,5 0,88 - - -

H4 10 2,5 0,63 12 2,5 0,75 - - -

B1 11 2,5 0,69 7 1,25 0,88 12 2,25 0,84

B2 7 2,5 0,44 11 1,25 1,38 14 2,5 0,88

B3 8 2,5 0,50 12 1,25 1,51 8 2,5 0,50

B4 8 2,5 0,50 12 1,25 1,51 - - -

G1 15 2,5 0,94 11 2,5 0,69 - - -

G2 14 2,5 0,88 10 2,25 0,70 - - -

D1 15 2,5 0,94 9 2,5 0,57 10 2,25 0,70

D2 11 2,5 0,69 9 2,5 0,57 - - -

Table F.2 – Fibres comptées sur les sections S5, S6 et S7 de l’éprouvette 2

F.4 Correction de distribution

L’hypothèse d’une distribution homogène des fibres est considérée pour le calcul du facteur

d’orientation expérimental. Pour s’assurer d’un comptage homogène des fibres sur les sections,

le nombre de fibres comptées sur chaque section est corrigé par le ratio entre le nombre de

fibres comptées sur la première section, sur laquelle la distribution est supposée homogène et le

nombre de fibres comptées sur la section étudiée. Ces nombres de fibres N sont indiqués dans la

Table F.5 pour l’éprouvette 2, et dans la Table F.6 pour l’éprouvette 3.
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S1 S2 S3 S4

Zone Nf Acorr αx Nf Acorr αx Nf Acorr αx Nf Acorr αx

C1 649 25 0,82 610 25 0,77 654 25 0,82 667 25 0,84

C2 460 25 0,58 320 25 0,40 452 25 0,57 412 25 0,52

C3 469 25 0,59 400 25 0,50 444 25 0,56 409 25 0,51

C4 621 25 0,78 521 25 0,65 590 25 0,74 618 25 0,78

C5 495 25 0,62 590 25 0,74 611 25 0,77 602 25 0,76

C6 497 25 0,62 327 25 0,41 469 25 0,59 330 25 0,41

C7 493 25 0,62 334 25 0,42 513 25 0,64 332 25 0,42

C8 502 25 0,63 527 25 0,66 612 25 0,77 628 25 0,79

P1 178 9 0,62 52 9 0,18 156 9 0,54 86 9 0,30

P2 176 9 0,61 79 9 0,28 114 9 0,40 67 9 0,23

P3 174 9 0,61 84 9 0,29 129 9 0,45 91 9 0,32

P4 179 9 0,62 106 9 0,37 136 9 0,47 84 9 0,29

H1 124 5 0,78 135 5 0,85 144 5 0,90 149 5 0,94

H2 58 5 0,36 120 5 0,75 102 5 0,64 145 5 0,91

H3 82 5 0,52 131 5 0,82 104 5 0,65 153 5 0,96

H4 106 5 0,67 122 4,6 0,83 128 4,8 0,84 134 5 0,84

B1 85 4 0,67 129 4,875 0,83 129 5 0,81 123 5 0,77

B2 78 5 0,49 97 5 0,61 119 5 0,75 133 5 0,84

B3 68 4,3 0,50 104 4 0,82 120 5 0,75 132 5 0,83

B4 48 2,5 0,60 126 5 0,79 109 4,5 0,76 133 4,7 0,89

G1 104 4,4 0,74 126 5 0,79 128 5 0,80 130 5 0,82

G2 57 2 0,90 135 4,875 0,87 116 5 0,73 143 5 0,90

D1 110 5 0,69 107 4,35 0,77 119 4,5 0,83 144 5 0,90

D2 93 4,5 0,65 130 5 0,82 108 4,8 0,71 125 4,5 0,87

Table F.3 – Fibres comptées sur les sections S1, S2, S3 et S4 de l’éprouvette 3
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S5 S6 S7

Zone Nf Acorr αx Nf Acorr αx Nf Acorr αx

C1 593 25 0,75 625 25 0,79 601 24,91 0,76

C2 511 25 0,64 585 24,79 0,74 544 24,5 0,70

C3 399 25 0,50 512 22 0,73 492 22,15 0,70

C4 570 25 0,72 649 25 0,82 541 20,8 0,82

C5 581 25 0,73 618 24 0,81 518 22,5 0,72

C6 379 25 0,48 471 24 0,62 479 22,5 0,67

C7 385 25 0,48 484 24 0,63 496 22,5 0,69

C8 604 25 0,76 584 24 0,76 313 12,4 0,79

P1 140 9 0,49 184 8,79 0,66 178 8,5 0,66

P2 109 9 0,38 94 6 0,49 126 6,15 0,64

P3 60 9 0,21 113 9 0,39 174 9 0,61

P4 66 9 0,23 129 9 0,45 163 9 0,57

H1 138 5 0,87 124 4,96 0,79 126 4,91 0,81

H2 150 5 0,94 128 5 0,80 127 5 0,80

H3 125 5 0,79 146 5 0,92 124 5 0,78

H4 111 5 0,70 125 4,8 0,82 115 4,8 0,75

B1 111 4,6 0,76 97 4 0,76 42 2,5 0,53

B2 122 4,5 0,85 120 4 0,94 68 2,5 0,85

B3 111 4,5 0,77 104 4 0,82 65 2,5 0,82

B4 126 4,5 0,88 105 4 0,82 - - -

G1 129 5 0,81 124 4,96 0,79 127 4,11 0,97

G2 119 5 0,75 112 4,8 0,73 98 4,5 0,68

D1 157 5 0,99 143 4,65 0,97 - - -

D2 131 4,6 0,89 115 4,7 0,77 - - -

Table F.4 – Fibres comptées sur les sections S5, S6 et S7 de l’éprouvette 3

Sections S1 S2 S3 S4 S5 S6 S7

Nombre de fibres 825 831 826 815 815 793 643

Table F.5 – Nombre de fibres comptées sur les sections de l’éprouvette 2.

Sections S1 S2 S3 S4 S5 S6 S7

Nombre de fibres 4186 3629 4345 3998 4022 4528 3984

Table F.6 – Nombre de fibres comptées sur les sections de l’éprouvette 3.
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P. Rossi et G. Chanvillard, éditeurs : Fifth RILEM Symposium on Biber-Reinforced

Concrete (FRC) - RILEM Proceedings, volume 15, pages 87–100, 2000.

[66] P. Rossi : Development of new cement composite materials for construction. In Procee-

dings of the Institution of Mechanical Engineer Part L- Journal of Materials-Design and

Applications, volume 219 de L1, pages 67–74, 2005.

[67] A.E. Naaman : Tailored properties for structural performance. In H. W. Reinhardt et
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