

CIVIL-557

Decision aid methodologies in transportation

Lab 2:
Using a mathematical solver II
(Branch & Cut)

Tom Haering, Prunelle Vogler

Transport and Mobility Laboratory (TRANSP-OR)
École Polytechnique Fédérale de Lausanne (EPFL)

Overview

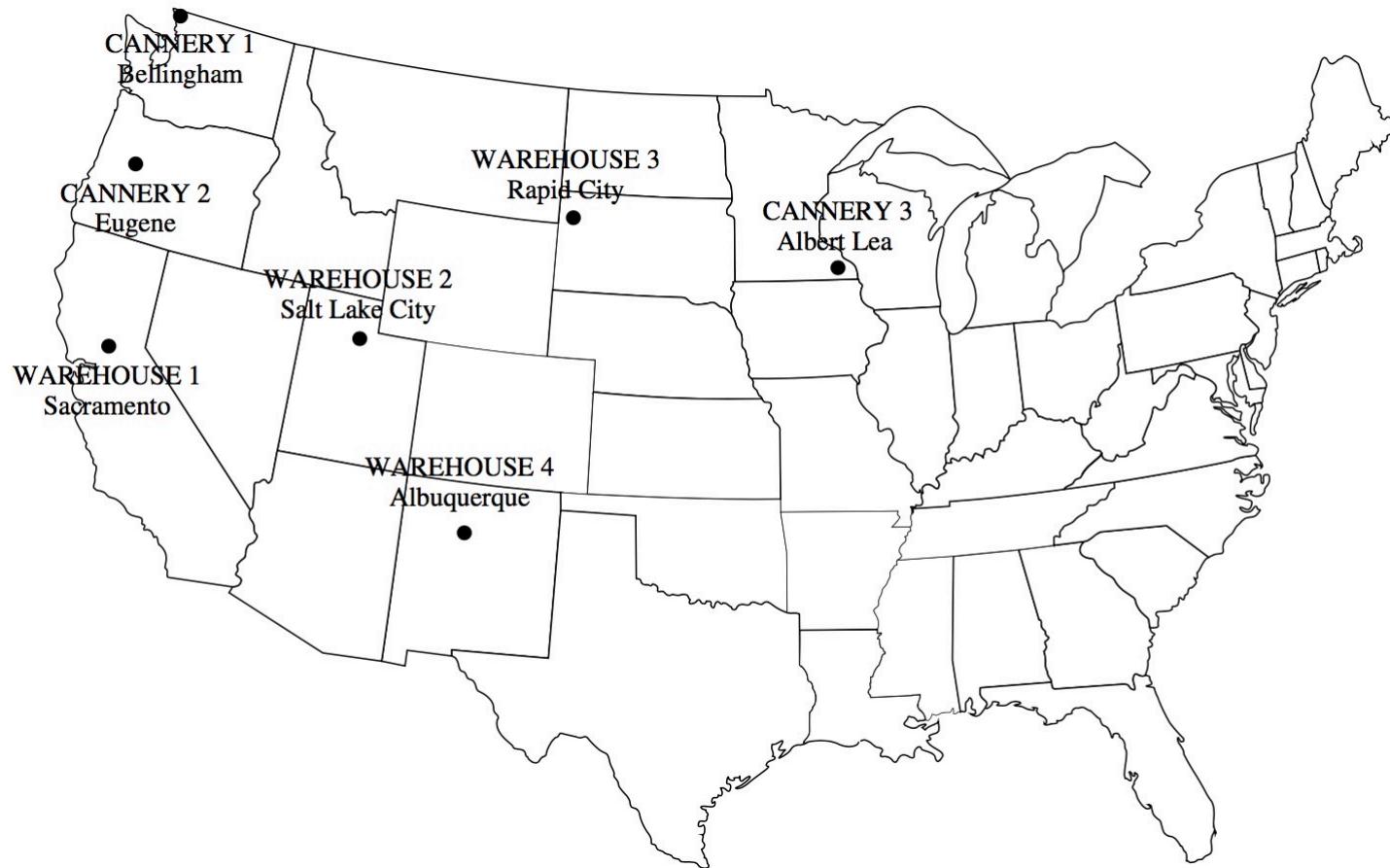
- Solution from last weeks bonus exercise
- What is Branch & Cut?
- Example: Traveling salesman problem (TSP)
- Extension to vehicle routing problem (VRP)

Transportation problem (last weeks bonus exercise)

Transportation Problem

One of the main products of the P&T COMPANY is canned peas. The **peas are prepared at three canneries** (near Bellingham, Washington; Eugene, Oregon; and Albert Lea, Minnesota) and then **shipped by truck to four distributing warehouses** in the western United States (Sacramento, California; Salt Lake City, Utah; Rapid City, South Dakota; and Albuquerque, New Mexico). Because the **shipping costs are a major expense**, management is initiating a study to **reduce them as much as possible**. For the upcoming season, an estimate has been made of the **output from each cannery**, and **each warehouse has been allocated a certain amount from the total supply of peas**. This information (in units of truckloads), along with the shipping cost per truckload for each cannery-warehouse combination, is given in Table 8.2 (and is provided as data). Thus, there are a **total of 300 truckloads to be shipped**. The problem now is to determine which plan for **assigning these shipments to the various cannery-warehouse combinations** would **minimize the total shipping cost**.

Transportation Problem – Layout



Transportation Problem – Table 8.2

TABLE 8.2 Shipping data for P & T Co.

		Shipping Cost (\$) per Truckload				Output
		Warehouse				
		1	2	3	4	
Cannery	1	464	513	654	867	75
	2	352	416	690	791	125
	3	995	682	388	685	100
Allocation		80	65	70	85	

Transportation Problem

- Formulate the problem mathematically
- Implement the problem and report the optimal solution
- Solve the problem for a large instance (use $N= 20$, $M = 30$, and files `Lab1_cost.npy`, `Lab1_output.npy` and `Lab1_allocation.npy`).

Transportation Problem Solution

$$\min \sum_{i=1}^N \sum_{j=1}^M cost_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^M x_{ij} \leq output_i \quad \forall i \in \{1, \dots, N\}$$

$$\sum_{i=1}^N x_{ij} \geq allocation_j \quad \forall j \in \{1, \dots, M\}$$

$$x_{ij} \in \mathbb{N}_0 \quad \forall i, j$$

Transportation Problem Solution

```

N = 20
M = 30
cost = np.load("Lab1_cost.npy", cost)
output = np.load("Lab1_output.npy", output)
allocation = np.load("Lab1_allocation.npy", allocation)

m = gp.Model()

x = {(i, j): m.addVar(vtype=GRB.INTEGER)
      for i in range(N) for j in range(M)}

m.setObjective(gp.quicksum(cost[i,j] * x[i, j]
                            for i in range(N) for j in range(M)),
               GRB.MINIMIZE)

for i in range(N):
    m.addConstr(gp.quicksum(x[i, j] for j in range(M)) <= output[i])
    m.addConstr(gp.quicksum(x[i, j] for j in range(M)) <= output[i])
for j in range(M):
    m.addConstr(gp.quicksum(x[i, j] for i in range(N)) >= allocation[j])

m.optimize()

print(f"Optimal objective = {m.ObjVal}")
for i in range(N):
    for j in range(M):
        print(f"Optimal x[{i},{j}] value = {x[i,j].x}")

```

Overview

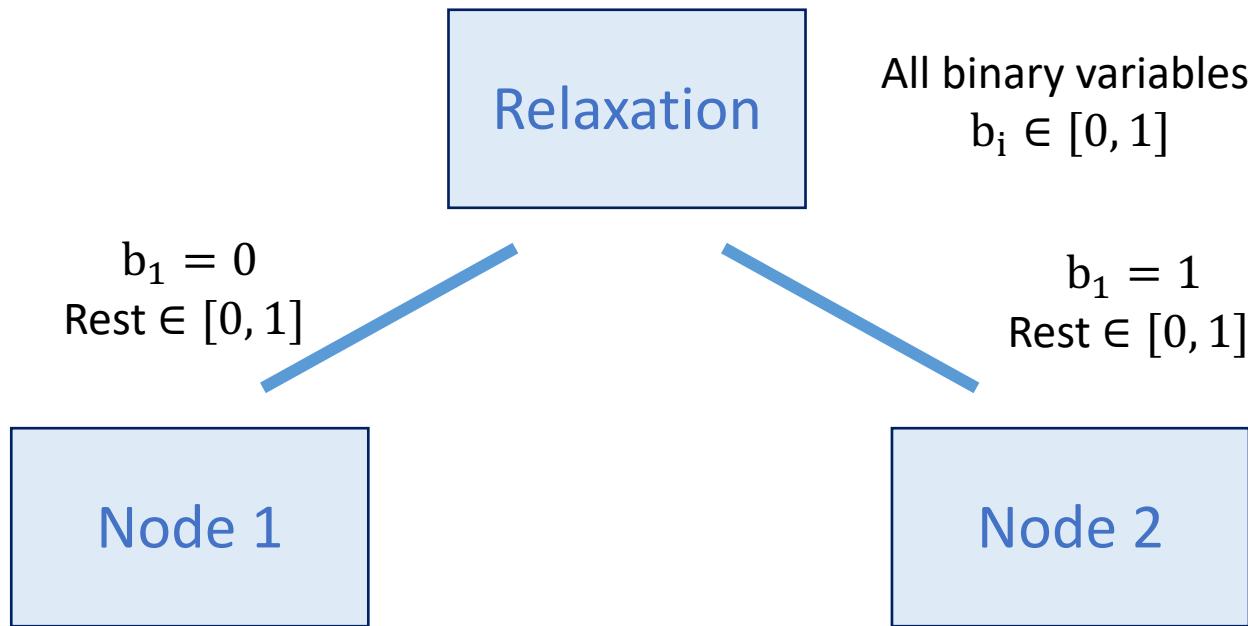
- Solution from last weeks Bonus exercise
- What is Branch & Cut?
- Example: Traveling salesman problem
- Set-partitioning problem

What is Branch & Cut?

What is Branch & Cut?

- **Simple:** It's Branch & Bound with added **cuts** at every (or some) nodes
- Mainly used for solving problems with **integer** variables
- Often, we **only add a cut** at **integer solutions**, but sometimes also at fractional solutions

What is Branch & Bound?



What is Branch & Cut?

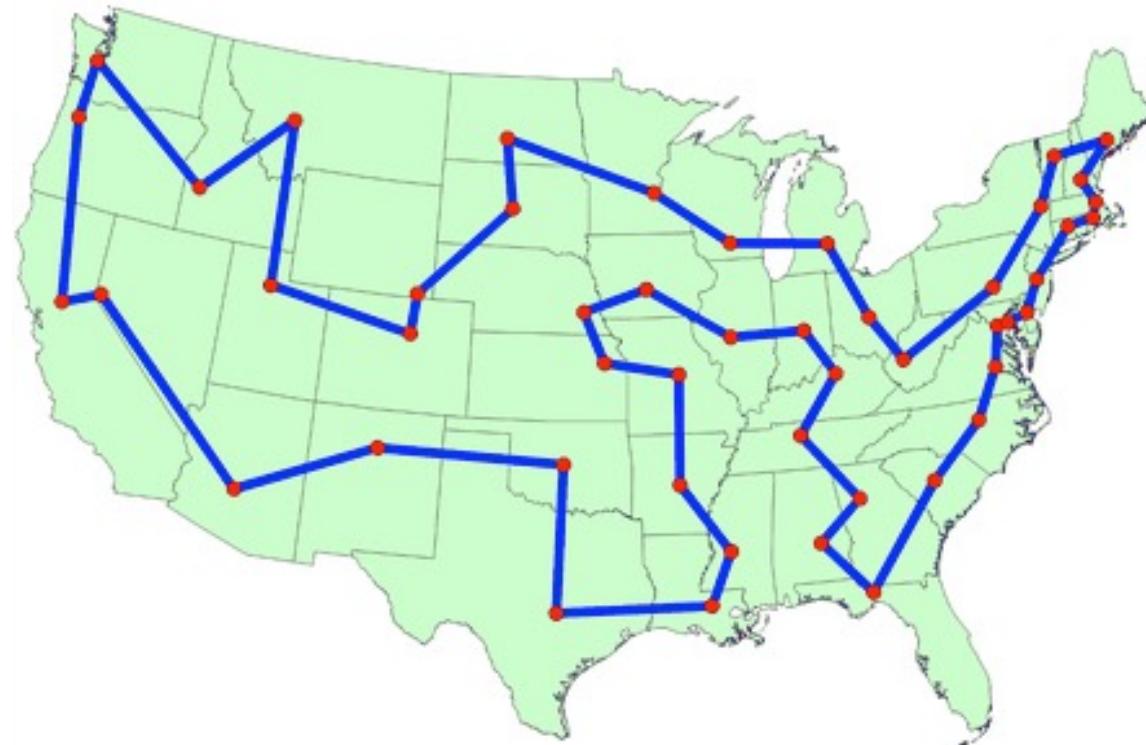


- Add cut to tighten relaxation (if conditions apply)
- Else continue branching on b_2 for example

Example:
Traveling salesman problem

Example: Traveling salesman problem

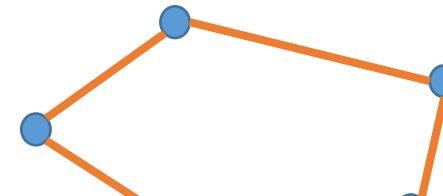
- **Input:** set of n **points** as (x, y) coordinates
- **Goal:** find the **shortest tour** that **visits every point** and returns to the origin



Example: Traveling salesman problem

- **Mathematical formulation:**

$$\min \sum_{(i,j) \in E} dist_{ij} x_{ij}$$



s. t.	$\sum_{j \neq i} x_{ij} = 2 \quad \forall i \in \{1, \dots, N\}$	Degree 2 constraints
	$\sum_{(i,j) \in \delta(S)} x_{ij} \leq S - 1 \quad \forall S \subsetneq N$	No cycles in subsets!
	$x_{ij} \in \{0, 1\} \quad \forall i, j \in E$	

Example: Traveling salesman problem (TSP)

- **Mathematical formulation:**

$$\min \sum_{(i,j) \in E} dist_{ij} x_{ij}$$

s. t.

$$\sum_{j \neq i} x_{ij} = 2$$

$\forall i \in \{1, \dots, N\}$

Degree 2
constraints

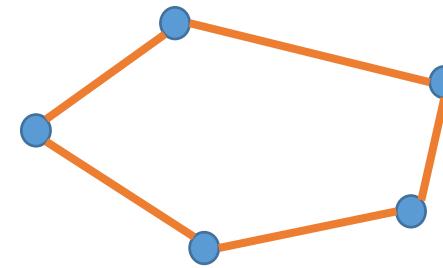
Exponentially many!

$$\sum_{(i,j) \in \delta(S)} x_{ij} \leq |S| - 1$$

$\forall S \subsetneq N$

No cycles
in subsets!

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in E$$



Example: Traveling salesman problem (TSP)

- **Idea:**

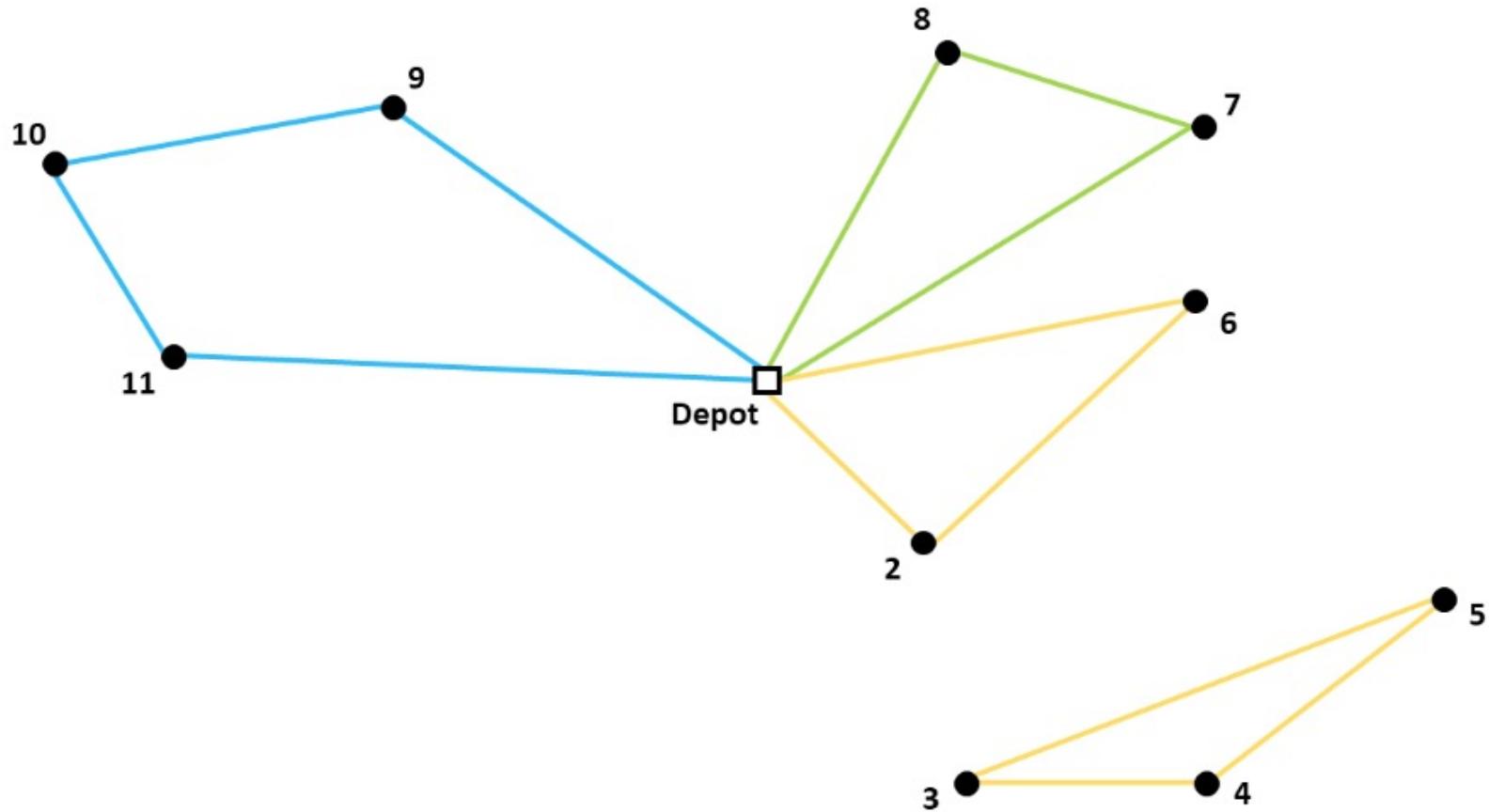
- Start with **relaxation** (no subset constraints)
=> perform standard **integer Branch & Bound**
- Every time we find an integer solution, check if there is a subset constraint that is **violated**
 - if yes => **add the constraint** to the **branch** (cut!)
 - if no => **solution is optimal**

Example: Traveling salesman problem (TSP)

- TSP_VRP.ipynb (or TSP_VRP.py)
- First code full MILP model
- Then code a function that detects a (shortest) cycle, given an integer solution to the TSP:
 - Start at any node
 - Degree 2 constraints imply: only cycles are possible
=> go along the neighbors until you're back at the start
 - If $\text{len}(\text{cycle}) < n$ then we found a violation
- Run Gurobi using callbacks (Branch & Cut)

Extension to the Vehicle Routing Problem (VRP)

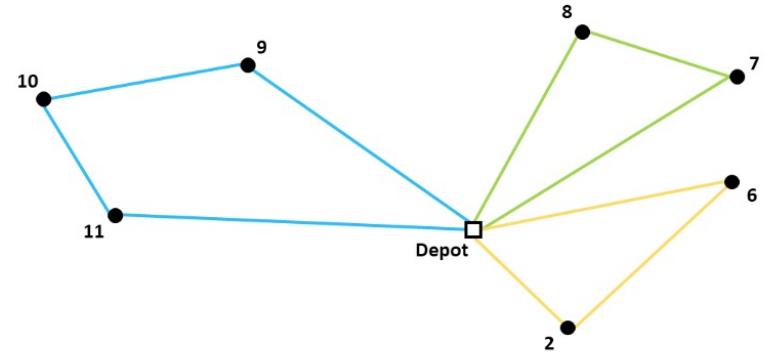
Extension: Vehicle routing problem (VRP)



Extension: Vehicle routing problem (VRP)

■ Mathematical formulation:

$$\min \sum_{(i,j) \in E} dist_{ij} x_{ij}$$



s.t.

$$\sum_{j \neq i} x_{ij} = 2$$

$\forall i \in \{1, \dots, N\} \setminus \text{depot}$

Degree 2
constraints

$$\sum_{(i,j) \in \delta(S)} x_{ij} \leq |S| - \left\lceil \frac{|S|}{Q} \right\rceil \quad \forall S \subsetneq N$$

No cycles
in subsets! + capacity
constraint

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in E$$

Extension: Vehicle routing problem (VRP)

- **Idea:**

- Start with **relaxation** (no subset constraints)
=> perform standard **integer Branch & Bound**
- Every time we find an integer solution,
 - I. Check if there is a **cycle not connected to the depot**
if yes, eliminate with subset constraint ($\dots \leq |S| - 1$)
 2. Else, check if any route violates **capacity constraint**
if yes, eliminate with constraint ($\dots \leq |S| - \frac{|S|}{Q}$)
else, solution is **optimal**