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Overview

§ Solution from last weeks bonus exercise
§ What is Branch & Cut?
§ Example: Traveling salesman problem (TSP)
§ Extension to vehicle routing problem (VRP)
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Transportation problem 
(last weeks bonus exercise)
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Transportation Problem

One of the main products of the P&T COMPANY is canned peas. The peas are 
prepared at three canneries (near Bellingham, Washington; Eugene, Oregon; 
and Albert Lea, Minnesota) and then shipped by truck to four distributing 
warehouses in the western United States (Sacramento, California; Salt Lake 
City, Utah; Rapid City, South Dakota; and Albuquerque, New Mexico). Because 
the shipping costs are a major expense, management is initiating a study to 
reduce them as much as possible. For the upcoming season, an estimate has 
been made of the output from each cannery, and each warehouse has been 
allocated a certain amount from the total supply of peas. This information (in 
units of truckloads), along with the shipping cost per truckload for each 
cannery-warehouse combination, is given in Table 8.2 (and is provided as 
data). Thus, there are a total of 300 truckloads to be shipped. The problem 
now is to determine which plan for assigning these shipments to the various 
cannery-warehouse combinations would minimize the total shipping cost. 
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Transportation Problem – Layout 
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Transportation Problem – Table 8.2 
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§ Formulate the problem mathematically
§ Implement the problem and report the optimal solution
§ Solve the problem for a large instance (use N= 20, M = 30, and

files Lab1_cost.npy, Lab1_ output.npy and Lab1_ allocation.npy).
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Transportation Problem Solution
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Transportation Problem Solution

Optimal objective value is = 516468



Overview

§ Solution from last weeks Bonus exercise
§ What is Branch & Cut?
§ Example: Traveling salesman problem
§ Set-partitioning problem
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What is Branch & Cut?
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What is Branch & Cut?

§ Simple: It’s Branch & Bound with added cuts at every (or 
some) nodes

§ Mainly used for solving problems with integer variables

§ Often, we only add a cut at integer solutions, but 
sometimes also at fractional solutions
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What is Branch & Cut?
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Relaxation All binary variables 
b' ∈ [0, 1]

Node 1 Node 2

b# = 0
Rest ∈ [0, 1]

b# = 1
Rest ∈ [0, 1]

• Add cut to tighten relaxation
(if conditions apply)

• Else continue branching on b( for example 
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What is Branch & Cut?
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Example: 
Traveling salesman problem
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Example: Traveling salesman problem
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§ Input: set of ! points as (x, y) coordinates
§ Goal: find the shortest tour that visits every point and 

returns to the origin



Example: Traveling salesman problem
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§ Mathematical formulation:
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Example: Traveling salesman problem (TSP)
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§ Mathematical formulation:

No cylces 
in subsets!
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Example: Traveling salesman problem (TSP)
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§ Idea:

• Start with relaxation (no subset constraints)
=> perform standard integer Branch & Bound

• Every time we find an integer solution, check if there is a 
subset constraint that is violated
o if yes =>  add the constraint to the branch (cut!)
o if no =>  solution is optimal



Example: Traveling salesman problem (TSP)
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§ TSP_VRP.ipynb (or TSP_VRP.py)
§ First code full MILP model
§ Then code a function that detects a (shortest) cycle, given an 

integer solution to the TSP:

§ Run Gurobi using callbacks (Branch & Cut)

• Start at any node
• Degree 2 constraints imply: only cycles are possible

=> go along the neighbors until you’re back at the 
start

• If len(cycle) < n then we found a violation



Extension to the 
Vehicle Routing Problem (VRP)
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Extension: Vehicle routing problem (VRP)
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§ Mathematical formulation:
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§ Idea:

• Start with relaxation (no subset constraints)
=> perform standard integer Branch & Bound

• Every time we find an integer solution,

Extension: Vehicle routing problem (VRP)

1. Check if there is a cycle not connected to the depot
if yes, eliminate with subset constraint (… ≤ $ − 1)

2. Else, check if any route violates capacity constraint
if yes, eliminate with constraint (… ≤ $ − |G|

H )

else, solution is optimal


