CIVIL-557
Decision aid methodologies

In transportation

Lab 2:
Using a mathematical solver I
(Branch & Cut)

Tom Haering, Prunelle Vogler

Transport and Mobility Laboratory (TRANSP-OR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

-g;RANSP-UR 25.02.2025 EPFL

Overview

= Solution from last weeks bonus exercise
" What is Branch & Cut?

* Example: Traveling salesman problem (TSP)
* Extension to vehicle routing problem (VRP)

-g'}RANSP-[]R EPFL

Transportation problem
(last weeks bonus exercise)

-g'?'RANSP-[]R EPFL

22

Transportation Problem

One of the main products of the P&T COMPANY is canned peas. The peas are
prepared at three canneries (near Bellingham, Washington; Eugene, Oregon;
and Albert Lea, Minnesota) and then shipped by truck to four distributing
warehouses in the western United States (Sacramento, California; Salt Lake
City, Utah; Rapid City, South Dakota; and Albuquerque, New Mexico). Because
the shipping costs are a major expense, management is initiating a study to
reduce them as much as possible. For the upcoming season, an estimate has
been made of the output from each cannery, and each warehouse has been
allocated a certain amount from the total supply of peas. This information (in
units of truckloads), along with the shipping cost per truckload for each
cannery-warehouse combination, is given in Table 8.2 (and is provided as
data). Thus, there are a total of 300 truckloads to be shipped. The problem
now is to determine which plan for assigning these shipments to the various
cannery-warehouse combinations would minimize the total shipping cost.

m

PrL

STRANSP-DR

Transportation Problem — Layout

's'}RANSP-DR EPFL

Transportation Problem —Table 8.2

TABLE 8.2 Shipping data for P & T Co.

Shipping Cost (3$) per Truckload

Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

-STRANSP-DR

cPi-L

7

Transportation Problem

* Formulate the problem mathematically

* Implement the problem and report the optimal solution

" Solve the problem for a large instance (use N= 20, M = 30, and
files Labl cost.npy, Labl output.npy and Labl allocation.npy).

cPi-L

-STRANSP-DR

26

Transportation Problem Solution

M
min z COStij.X'ij

j=1

Mz

Il
[N

[

M
s. t. inj < ouput; Vi €{1, .., N}
J=1

N
z xij = allocation; Vj €{1,.., M}
i=1

xij € NO Vl,]

-g’;RANSP-UR EPFL

27

Transportation Problem Solution

N = 20

M= 30

cost = np.load("Labl_cost.npy", cost)

output = np.load("Labl_output.npy", output)

allocation = np.load("Labl_allocation.npy", allocation)

3
]

gp.Model()

{(i, j): m.addVar(vtype=GRB.INTEGER)
for i in range(N) for j in range(M)}

X
1}

m.setObjective(gp.quicksum(cost[i,j] * x[i, j]
for i in range(N) for j in range(M)),
GRB.MINIMIZE)

for i in range(N):
m.addConstr(gp.quicksum(x[i, j] for j in range(M)) <= output[i])
m.addConstr(gp.quicksum(x[i, j] for j in range(M)) <= output[i])

for j in range(M):
m.addConstr(gp.quicksum(x[i, j] for i in range(N)) >= allocation[j])

m.optimize()
print(f"Optimal objective = {m.Objval}")
for i in range(N):

for j in range(M):
print(f"Optimal x[{i},{j}] value = {x[i,jl.x}")

-ﬁ;RANSP_UR Optimal objective value is = 516468 E P F L

10

Overview

= Solution from last weeks Bonus exercise
" What is Branch & Cut?

= Example:Traveling salesman problem
= Set-partitioning problem

-g';RANSP-[]R EPFL

11

What is Branch & Cut!?

-S.'T‘RANSP-DR EPFL

12

What is Branch & Cut!?

= Simple:It’s Branch & Bound with added cuts at every (or
some) nodes

* Mainly used for solving problems with integer variables

= Often, we only add a cut at integer solutions, but
sometimes also at fractional solutions

-s.'.FRANSP-DR EPFL

(integer)
What is Branch & Bound?

13

All binary variables

Relaxation b, € [0,1]
bl = O b1 = 1
Rest € [0, 1] Rest € [0, 1]
Node 1 Node 2

-g'?'RANSP-[]R EPFL

Tom Haering

Tom Haering
Bound?

Tom Haering
(integer)

13

What is Branch & Cut?

All binary variables

Relaxation b, € [0,1]
bl = O b1 =1
Rest € [0, 1] Rest € [0, 1]
Node 1 Node 2
 Add cut to tighten relaxation / \

(if conditions apply)
* Else continue branching on b, for example

“ N
-f'}RANSP-UR EPFL

14

Example:
Traveling salesman problem

-g';RANSP-DR EPFL

15

Example: Traveling salesman problem

* Input: set of n points as (%, y) coordinates
* Goal: find the shortest tour that visits every point and
returns to the origin

-STRANSP-[]R

16

Example: Traveling salesman problem

= Mathematical formulation:

min z distijxij

(i,j)€EE
s.t. Z Xij = 2 Vi €{1, .., N} Degree 2
— constraints
JFl
x;<1S|-1 VSEN No cylces
N in subsets!
(L,7)€8(S)

Xij € {0,1} Vi,jEE

-f';RANSP-[]R EPFL

17

Example: Traveling salesman problem (TSP)

= Mathematical formulation:

min z distijxij

(i,j) EE

s.t. Z Xij = 2 Vi €{1, .., N} Degree 2

—) constraints
J#l Exponentially many!

No cylces
y = 15| - in subsets!

Xij € {0,1} Vi,jEE

-g';RANSP-[]R EPFL

Example: Traveling salesman problem (TSP) .

= |ldea:

* Start with relaxation (no subset constraints)
=> perform standard integer Branch & Bound

Every time we find an integer solution, check if there is a
subset constraint that is violated

o if yes => add the constraint to the branch (cut!)
o if no => solution is optimal

'g%RANSP-nR EPFL

Example: Traveling salesman problem (TSP) l

= TSP_VRPipynb (or TSP_VRPpy)
= First code full MILP model

" Then code a function that detects a (shortest) cycle, given an
integer solution to the TSP:

e Start at any node

* Degree 2 constraints imply: only cycles are possible

=> go along the neighbors until you're back at the
start

* If len(cycle) < n then we found a violation

" Run Gurobi using callbacks (Branch & Cut)

‘s%RANSP-DR EPFL

20

Extension to the
Vehicle Routing Problem (VRP)

-g'?'RANSP-[]R EPFL

21

Extension:Vehicle routing problem (VRP)

@
9 . .
10 B
» 6
11
Depot
@
2
o,

-g'?'RANSP-DR EPFL

22

Extension:Vehicle routing problem (VRP)

* Mathematical formulation: 9 o
10 o
min z distijxij ’ pepet
(lr.])EE 2.
s.t. z Xijj = 2 Vi €{1, ..., N} \ depot Degrtee-z
= constraints
S .
x;; < S| — |7|_|—‘ VSC N !\lo cylces N capauty
Q in subsets! ~ constraint
(L,))e6(S)
x;; € {0,1} Vi,j EE

-g'}RANSP-[]R EPFL

23

Extension:Vehicle routing problem (VRP)

= |ldea:

* Start with relaxation (no subset constraints)
=> perform standard integer Branch & Bound
* Every time we find an integer solution,

|. Check if there is a cycle not connected to the depot
if yes, eliminate with subset constraint (... < |S| — 1)

2. Else, check if any route violates capacity constraint

: .. : : S
if yes, eliminate with constraint (... < |S| — %

else, solution is optimal

sTRANSP-DR EPFL

