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Overview

* Using a mathematical solver (GUROBI)
" What is a mathematical solver
* What is GUROBI?
" |nstalling GUROBI
= Using GUROBI
" Example
* Container storage problem
* Transportation problem
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Using a mathematical solver
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What is a mathematical solver?

" Input = mathematical formulation of an optimization problem
* Output = optimal solution to the problem
= Options for optimality gap, time limits, numerical precision etc.

= Applies several optimization techniques in order to find the
optimal solution(s).

" [ncludes simplex + many other methods, such as branch and
bound, cutting planes, probing, pre-processing, and
heuristics.
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What is GUROBI?

GUROBI

OPTIMIZATION

Gurobi Optimizer — The State-of-the-Art

Mathematical Programming Solver
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What is GUROBI?
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For example, on time to optimality benchmark (87 models) using 4 threads (P=4),
CPLEX was 50% slower (1.50) and XPRESS was 66% slower (1.66) than Gurobi.

Copyright © 2019, Gurobi Optimization, LLC E P F
(]
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What is GUROBI?

* Free for academic use
https://www.gurobi.com/academia/academic-program-and-
licenses/

* No local installation of optimization suite necessary
https://support.gurobi.com/hc/en-us/articles/360044290292-
How-do-l-install-Gurobi-for-Python

» Latest version (12.0.1) compatible with Python 3.9+

* Easy to use with Pandas etc.
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https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/academia/academic-program-and-licenses/
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python

Installing GUROBI

1. Create Gurobi account using epfl email
2. Download academic license
3. pip install gurobipy

* Use the python coding environment you're most
comfortable with

" Jupyter notebooks: great to play around with
* To use jupyter notebooks we recommend using anaconda,

convenient to set up environments etc.
https://docs.anaconda.com/anaconda/install/

$: = Alternatively you could use VS Code “P=L
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https://docs.anaconda.com/anaconda/install/

Installing GUROBI 9

" Let’s take some minutes until everyone can do this in some way:

import gurobipy as gp

m = gp.Model()
m.optimize()

Set parameter Username
Academic license - for non-commercial use only - expires 2026-02-17
Gurobi Optimizer version 12.0.1 build v12.0.1rc® (mac64[x86] - Darwin 23.6.0 23G93)

CPU model: Intel(R) Core(TM) i7-9758H CPU @ 2.60GHz
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with @ rows, @ columns and @ nonzeros
Model fingerprint: @xf9715dal
Coefficient statistics:

Matrix range [0e+00, 0e+00]
Objective range [0e+0@, 0e+00]
Bounds range [0e+00, 0e+00]
RHS range [0e+00@, 0e+00]

Presolve time: 0.02s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 0.000000e+00 0.000000e+00 @s

Solved in ® iterations and 0.02 seconds (0.00 work units)
Optimal objective ©.000000000e+00
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Using GUROBI (example)

from gurobipy import GRB

# Create a new model
m = gp.Model("mipl")

max x+y+ 2z

# Create variables
st. x+2y+3z<5 X = m.addVar(vtype=GRB.BINARY, name="x")
x+y > 1 y = m.addVar(vtype=GRB.BINARY, name="y")
x,,2y € {01} z = m.addVar(vtype=GRB.BINARY, name="2z")
# Set objective
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

Add constraint: x +
.addConstr(x + 2 * y

3 ®

2y +32z<=4
+ 3 %x z <= 4, "c0")

# Add constraint: x + y >= 1
m.addConstr(x + y >= 1, "c1")

# Optimize model
_f;RANSP_DR m.optimize()
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First example to solve

min 3x + 2y

subjectto x —y =5 »

3x +2y =10

= GRB.INFINITY
m.addVar(lb = -inf, vtype=GRB.CONTINUOUS)
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First example to solve
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min 3x + 2y M-

m.
subjectto x —y =5 » .

3x +2y =10

m.

= gp.Model()
= m.addVar(lb = =inf, vtype=GRB.CONTINUOUS)
= m.addVar(lb = -inf, vtype=GRB.CONTINUOUS)

.setObjective(3*x + 2%y, GRB.MINIMIZE)

addConstr(x - y >= 5)
addConstr(3xx + 2y >= 10)

setParam("OutputFlag", 0)

optimize()

print(f"Optimal objective = {m.Objval}")
print(f"Optimal x value = {x.x}")

print(f"Optimal y value

{y.x}")

Optimal objective = 10.0
Optimal x value = 4.0
Optimal y value = -1.0

'sTRANSP-nR
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Container storage problem
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Exercise
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"= Solve the container storage problem (balanced Iload

allocation)

Storage blocks i € {1, ..., B}

Parameters

a;: Initial number of stored containers in block i

N: Number of new containers expected to arrive for
storage in this period

B:Total number of blocks in the storage yard

A: Number of storage positions per block

F: The fill-ratio in the whole yard at the end of this
period (N + >,;a; ) / AB)

Decision variables

x;: Number of arriving containers in this period to be
stored to block i

-STRANSP-DR
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Exercise

* How can we model an absolute value in a linear program!?
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Exercise

* How can we model an absolute value in a linear program!?

B B
min Zlai+xi—AF| min Zzi
i=1 =1
B B
s.t xi =N s.t. zxi=N
i=1 i=1
x; €ENg Vi x; ENg Vi
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Exercise
O
N+, q;

AB

= Set N=15166,B=100, A=600, F =
" a can be read from the numpy file on the moodle (Labl_a.npy)
import numpy as np

a = np.load("Labl_a.npy")

= Hint |:use dictionaries for variables

X = {i: m.addVar(vtype=GRB.INTEGER) for i in range(B)}

* Hint 2:for sums use gp.quicksum()
B

:E:xi:: gp.quicksum(x[i] for i in range(B))
-g'}RANSF‘-EIR i=1
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Surprise exercise!

-s.’T‘RANSP-DR EPFL




19

Surprise exercise

* How can we model logical constraints linearly?

d; ifd; > 5
={ >

e; else
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Surprise exercise solution

" |ntroduce auxiliary binary variables w; and a large
constant M (can be optimized, i.e. minimized)

di —(1-w)M
di + (1 — a)l)M

d; ifd; > 5 Ci
Ci:{ c; = e —wM
e; else c; = e +wM

* Use with caution. Large computational burden,
weak relaxations
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Transportation Problem
(Bonus exercise)
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Transportation Problem

One of the main products of the P&T COMPANY is canned peas. The peas are
prepared at three canneries (near Bellingham, Washington; Eugene, Oregon;
and Albert Lea, Minnesota) and then shipped by truck to four distributing
warehouses in the western United States (Sacramento, California; Salt Lake
City, Utah; Rapid City, South Dakota; and Albuquerque, New Mexico). Because
the shipping costs are a major expense, management is initiating a study to
reduce them as much as possible. For the upcoming season, an estimate has
been made of the output from each cannery, and each warehouse has been
allocated a certain amount from the total supply of peas. This information (in
units of truckloads), along with the shipping cost per truckload for each
cannery-warehouse combination, is given in Table 8.2 (and is provided as
data). Thus, there are a total of 300 truckloads to be shipped. The problem
now is to determine which plan for assigning these shipments to the various
cannery-warehouse combinations would minimize the total shipping cost.

m

PrL
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Transportation Problem — Layout
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Transportation Problem —Table 8.2

TABLE 8.2 Shipping data for P & T Co.
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Shipping Cost ($) per Truckload

Warehouse
1 2 3 4 Output
1 464 513 654 867 75
Cannery 2 352 416 690 791 125
3 995 682 388 685 100
Allocation 80 65 70 85

-$TRANSP-DR
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Transportation Problem

* Formulate the problem mathematically

" Implement the problem and report the optimal solution

" Solve the problem for a large instance (use N= 20, M = 30, and
files Labl cost.npy, Labl output.npy and Lab| allocation.npy).

cPi-L
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Transportation Problem Solution

M
min z COStij.X'ij

j=1

Mz

Il
[N

[

M
s. t. inj < ouput; Vi €{1, .., N}
J=1

N
z xij = allocation, Vj €{1,.., M}
i=1

xij € NO Vl,]
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Transportation Problem Solution

N=2
M=3
cost = np.load("Labl_cost.npy", cost)

output = np.load("Labl_output.npy", output)

allocation = np.load("Labl_allocation.npy", allocation)

| = =

gp.Model()

=
]

{(i, j): m.addVar(vtype=GRB.INTEGER)
for i in range(N) for j in range(M)}

m.setObjective(gp.quicksum(cost[i,j] * x[i, j]
for i in range(N) for j in range(M)),
GRB.MINIMIZE)

for i in range(N):
m.addConstr(gp.quicksum(x[i, j] for j in range(M)) == output[i])
m.addConstr(gp.quicksum(x[i, j] for j in range(M)) <= output[i])

for j in range(M):
m.addConstr(gp.quicksum(x[i, j] for i in range(N)) == allocation[j])

m.optimize()
print(f"Optimal objective = {m.0Objval}")
for 1 in range(N):

for j in range(M):
print(f"Optimal x[{i},{j}] value = {x[i,j]l.x}")

-f}RANSP_DR Optimal objective value is = 516468 EPFL
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