
CIVIL-557

Decision aid methodologies
in transportation

Transport and Mobility Laboratory (TRANSP-OR)
École Polytechnique Fédérale de Lausanne (EPFL)

Tom Haering, Prunelle Vogler

Lab 4:
TSP Heuristics

11.03.2025

1

Overview

§ TSP recap
§ Nearest Neighbour Heuristic
§ 2opt Heuristic
§ Random Insertion Heuristic
§ Destroy and Rebuild Heuristic

2

Traveling salesman problem
3

§ Input: set of ! points as (x, y) coordinates (or a distance matrix)
§ Goal: find the shortest tour that visits every point and

 returns to the origin

Traveling salesman problem
4

§ Input: set of ! points as (x, y) coordinates
§ Goal: find the shortest tour that visits every point and

 returns to the origin

Traveling salesman problem
4

§ Input: set of ! points as (x, y) coordinates
§ Goal: find the shortest tour that visits every point and

 returns to the origin

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

5

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

6

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

7

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

8

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

9

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

10

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

11

Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0

12

Nearest Neighbor Heuristic
13

Nearest Neighbor Heuristic (N=50)
14

2opt Heuristic
15

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges
§ For every pair of edges, delete them, reverse the middle section,
 reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges

2opt Heuristic
16

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges
§ For every pair of edges, delete them, reverse the middle section,
 reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges

i

i + 1

j

j + 1

2opt Heuristic
17

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges
§ For every pair of edges, delete them, reverse the middle section,
 reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges

i

i + 1

j

j + 1

2opt Heuristic
18

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges
§ For every pair of edges, delete them, reverse the middle section,
 reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges

i

i + 1

j

j + 1

2opt Heuristic
19

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges
§ For every pair of edges, delete them, reverse the middle section,
 reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges

i

i + 1

j

j + 1

2opt Heuristic
20

2opt Heuristic (N=50)
21

Random insertion Heuristic
22

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

§ Insert it where the total length is minimized

3
4

6

1

Route = [3, 4, 6, 3]

Random insertion Heuristic
23

3
4

6

1

Route = [3, 4, 6, 3]
New = [3, 1, 4, 6, 3]

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

§ Insert it where the total length is minimized

Random insertion Heuristic
24

3
4

6

1

Route = [3, 4, 6, 3]
New = [3, 4, 1, 6, 3]

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

§ Insert it where the total length is minimized

Random insertion Heuristic
25

3
4

6

1

Route = [3, 4, 6, 3]
New = [3, 4, 6, 1, 3]

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

§ Insert it where the total length is minimized

Random insertion Heuristic
26

Random insertion Heuristic
27

Destroy and rebuild Metaheuristic
28

§ Construct tour using random insertion
§ Randomly remove half the cities of the tour
§ Re-insert the removed cities using for example the random

insertion heuristic
§ Repeat M times, for example M = 10000

Destroy and rebuild Metaheuristic
29

Destroy and rebuild Metaheuristic (N=50, 1000 iter)
30

