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Overview

§ TSP recap
§ Nearest Neighbour Heuristic
§ 2opt Heuristic
§ Random Insertion Heuristic
§ Destroy and Rebuild Heuristic
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Traveling salesman problem
3

§ Input: set of ! points as (x, y) coordinates (or a distance matrix)
§ Goal: find the shortest tour that visits every point and 

   returns to the origin
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Nearest Neighbor Heuristic

§ Start from city 0
§ Find city that is closest to that city, add it to the route
§ Continue until all cities are traversed
§ At the end tie back to city 0
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Nearest Neighbor Heuristic
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Nearest Neighbor Heuristic (N=50)
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2opt Heuristic
15

§ Start with a solution (ex. from nearest neighbor heuristic)
§ Traverse all pairs of edges 
§ For every pair of edges, delete them, reverse the middle section, 
    reconnect the reversed sequence to the other nodes
§ If the new route is better, update the route, start again
§ Else, continue looking for pairs of edges
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2opt Heuristic
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2opt Heuristic (N=50)
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Random insertion Heuristic
22

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the 

total length for every possible position where we could insert it 
in the current route

§ Insert it where the total length is minimized
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Random insertion Heuristic
23

3
4

6

1

Route = [3, 4, 6, 3]
New = [3, 1, 4, 6, 3]

§ Start with two randomly chosen cities
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total length for every possible position where we could insert it 
in the current route
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Route = [3, 4, 6, 3]
New = [3, 4, 6, 1, 3]

§ Start with two randomly chosen cities
§ Choose a random city from unvisited cities and compute the 

total length for every possible position where we could insert it 
in the current route

§ Insert it where the total length is minimized



Random insertion Heuristic
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Random insertion Heuristic
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Destroy and rebuild Metaheuristic
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§ Construct tour using random insertion
§ Randomly remove half the cities of the tour
§ Re-insert the removed cities using for example the random 

insertion heuristic
§ Repeat M times, for example M = 10000



Destroy and rebuild Metaheuristic
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Destroy and rebuild Metaheuristic (N=50, 1000 iter)
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