CIVIL-557
Decision aid methodologies

In transportation

Lab 4:
TSP Heuristics

Tom Haering, Prunelle Vogler

Transport and Mobility Laboratory (TRANSP-OR)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

-g;RANSP-UR 11.03.2025 EPFL

Overview

" TSP recap

" Nearest Neighbour Heuristic
" 2opt Heuristic

* Random Insertion Heuristic

* Destroy and Rebuild Heuristic

-f';RANSP-[]R EPFL

Traveling salesman problem

* Input: set of n points as (%, y) coordinates (or a distance matrix)

= Goal:

-STRANSP-[]R

find the shortest tour that visits every point and
returns to the origin

100 A

20

s % % ZPF]

Traveling salesman problem

* Input: set of n points as (%, y) coordinates
* Goal: find the shortest tour that visits every point and
returns to the origin

100 A

f- ; % p p . 150 EPFL
“Z TRANSP-OR

Traveling salesman problem

* Input: set of n points as (%, y) coordinates
* Goal: find the shortest tour that visits every point and
returns to the origin

100 A

f- ; % p p . 150 EPFL
“Z TRANSP-OR

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Tom Haering

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

-g';RANSP-[]R EPFL

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

-g';RANSP-[]R EPFL

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

-g'T‘RANSP-[]R EPFL

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

7\ O

-g'}RANSP-[]R EPFL

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

7\ O

-g'}RANSP-[]R EPFL

10

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

N

-g'}RANSP-[]R EPFL

11

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

N

-g'}RANSP-[]R EPFL

12

Nearest Neighbor Heuristic

= Start from city O

* Find city that is closest to that city, add it to the route
= Continue until all cities are traversed

= At the end tie back to city 0

-s'T‘RANSP-[]R EPFL

13

Nearest Neighbor Heuristic

num_cities = distance_matrix.shape([0]

route = [0]

unvisited_cities = set(range(1, num_cities))

while unvisited_cities:
take the city for which distance is minimized,
call it "nearest city"

append "nearest city" to route

remove "nearest city" from unvisited cities
route.append(0@) # Return to starting city
return route

distance between two cities i, j
distance_matrix[i, jl

taking last element from route
route[-1]

finding the element in a Set that minimizes a certain function:
min_element = min(Set, key=lambda element: function(element))

add element to list
List.append(element)

remove element from set
Set.remove(element)

-f'}RANSP-DR EPFL

Nearest Neighbor Heuristic (N=50) :

100

0 2 a0 60 80 100

Length = 805.4974003341896
Solve time = 0.00044989585876464844

-S.'T‘RANSP-DR EPFL

15

20pt Heuristic

= Start with a solution (ex. from nearest neighbor heuristic)

" Traverse all pairs of edges

* For every pair of edges, delete them, reverse the middle section,
reconnect the reversed sequence to the other nodes

" [f the new route is better, update the route, start again

" Else, continue looking for pairs of edges

-s'}RANSP-DR EPFL

16

20pt Heuristic

= Start with a solution (ex. from nearest neighbor heuristic)

" Traverse all pairs of edges

* For every pair of edges, delete them, reverse the middle section,
reconnect the reversed sequence to the other nodes

" [f the new route is better, update the route, start again

" Else, continue looking for pairs of edges

i+1

-S.'.FRANSP-DR EPFL

17

20pt Heuristic

= Start with a solution (ex. from nearest neighbor heuristic)

" Traverse all pairs of edges

* For every pair of edges, delete them, reverse the middle section,
reconnect the reversed sequence to the other nodes

" [f the new route is better, update the route, start again

" Else, continue looking for pairs of edges

-S.'.FRANSP-DR EPFL

18

20pt Heuristic

= Start with a solution (ex. from nearest neighbor heuristic)
" Traverse all pairs of edges

* For every pair of edges, delete them, reverse the middle section,
reconnect the reversed sequence to the other nodes

" [f the new route is better, update the route, start again

" Else, continue looking for pairs of edges

N
3

-S.'.FRANSP-DR EPFL

19

20pt Heuristic

= Start with a solution (ex. from nearest neighbor heuristic)

" Traverse all pairs of edges

* For every pair of edges, delete them, reverse the middle section,
reconnect the reversed sequence to the other nodes

" [f the new route is better, update the route, start again

" Else, continue looking for pairs of edges

i+1

-s.'.FRANSP-DR EPFL

20

20pt Heuristic

def reverse_segment(route, i, j):
""""Reverse the order of cities from index i to index j in a route."""
new_route = route[:i] + route[i:j+1]1[::-1] + route[j+1:]
return new_route

Start with NN route
route = nearest_neighbour_tsp(distance_matrix)
size = len(route)
improved = True
best_distance = total_distance(route, distance_matrix)
while improved:
best = total_distance(route, distance_matrix)
improved = False
for all possible combinations of edges
for i in range(size-2): # edge i to i+l
for j in range(i+2, size-1): # edge j to j+1
Calculate gain: old edges - new edges
if gain > @ then reverse the middle segment,
set improved to True, update "best_distance" variable
and exit the current j-loop (break)
return route

insert a list2 into another listl at element i
new_list = listl[:i] + list2 + routel[i+1:]

invert a listl
new_list = listl[::-1]

take all elements from index i to index j from a listl:
new_list = listl[i:j+1]

exit a loop at any point
break

shorter notation for x = x - y
: = EPFL
-sTRANSP-DR

20pt Heuristic (N=50) 21

100 -

20 1

L

L] T - i .

? = - 60 80 100

Length = 658.3492010827817
Solve time = 0.006730079650878906

-S.'T‘RANSP-DR EPFL

22

Random insertion Heuristic

= Start with two randomly chosen cities

* Choose a random city from unvisited cities and compute the
total length for every possible position where we could insert it
in the current route

" |nsert it where the total length is minimized

Route =[3, 4, 6, 3]

‘s.%RANSP-UR EPFL

23

Random insertion Heuristic

= Start with two randomly chosen cities
* Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

" Insert it where the total length is minimized

Route =[3, 4, 6, 3]
New = [3, 1, 4, 6, 3]

-s.'.FRANSP-DR EPFL

24

Random insertion Heuristic

= Start with two randomly chosen cities
* Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

" Insert it where the total length is minimized

Route =[3, 4, 6, 3]
New = [3, 4, 1, 6, 3]

-s.'.FRANSP-DR EPFL

25

Random insertion Heuristic

= Start with two randomly chosen cities
* Choose a random city from unvisited cities and compute the

total length for every possible position where we could insert it
in the current route

" Insert it where the total length is minimized

Route =[3, 4, 6, 3]
New = [3, 4, 6, 1, 3]

-S.'.FRANSP-DR EPFL

Random insertion Heuristic

26

compute cost for inserting a city between two adjacent cities
def cost(i, j, city, distance_matrix):
return distance_matrix[i, city] + distance_matrix[city, j] - distance_matrix[i, j]

random.seed(1)

num_cities = distance_matrix.shape[0]

unvisited_cities = set(range(num_cities))

start = random.choice(list(unvisited_cities)) # start from a random city
route = [start]

unvisited_cities.remove(start)

while unvisited_cities:

choose random city amongst unvisited ones

i1f the route so far contains 1 city we simply add the new city, else:
find insertion position that minimizes added cost when inserted
between i-1 and i, for all i in the route

insert the random city at the index

remove the random city from the unvisited cities
route.append(route[0]) # Return to starting city

return route

HHHHRITHR

choose a random element from a set:
random_element = random.choice(list(set))

find the index that minimizes a function over a list "List"
index = min(list(range(len(List))), key=lambda i: function(i))

insert an element into a list at a specific index
List.insert(insertion_index, element)

4 # remove an element from a list EPFL
-STRANSP-DR List.remove(element)

27

Random insertion Heuristic

100 -

20 1

|

0 20 a0 60 80 100

Length = 654.9459660024927
Solve time = 0.0012331008911132812

-S.'T‘RANSP-DR EPFL

28

Destroy and rebuild Metaheuristic

* Construct tour using random insertion
* Randomly remove half the cities of the tour

* Re-insert the removed cities using for example the random
insertion heuristic

"= Repeat M times, for example M = 10000

-s.;RANSP-DR EPFL

29

Destroy and rebuild Metaheuristic

num_cities = distance_matrix.shape[0]

half_num_cities = round(num_cities/2)

create a first tour by using random insertion

route = random_insertion_tsp(distance_matrix)

best_tour = route

best_length = total_distance(route, distance_matrix)

for i in range(num_iterations):
remove randomly half of the cities
use random insertion method as before to fill up the tour to full length
(just copy paste the while loop)
check if these new found route is shorter than the best route so far
(using total_distance(route, distance_matrix))
1f yes, update the variables "best_tour" and "best_length"

return best_tour

take a random sample of size H from a list
sample = random.sample(List, H)

list comprehension: define a list buy manipulating elements from another list

example: listl = all elements in list2 that are not in list3
listl = [el for el in list2 if el not in list3]

-g';RANSP-[]R EPFL

30

Destroy and rebuild Metaheuristic (N=50, 1000 iter)

100 -

20 1

L

0 20 40 60 80 100

Length = 635.5025787588411
Solve time = 0.6271371841430664

-g';RANSP-DR EPFL

