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Variable Neighborhood Search (VNS)

@ VNS is a metaheuristic for solving combinatorial and global
optimization problems.

@ Its basic idea is a systematic change of neighborhood both within:

e a descent phase: to find a local optimum.
e a perturbation phase: to get out of the corresponding valley.
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Variable Neighborhood Search

Consider an optimization problem formulated as:

min{f(x)|x € X, X CQ}
where € is the solution space and X is the feasible set.
@ A solution x* € X is a global minimum if f(x*) < f(x), Vxé€ X.

o Ni(k=1,...,kmax) is a finite set of pre-selected neighborhood
structure.

@ Ni(x) is the set of solutions in the k' neighborhood of x.

@ A solution x’ € X is local minimum with respect to N if there is no
solution x € Ni(x") C X such that f(x) < f(x').
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VNS Principles

VNS is based on three simple facts:

@ Fact 1: A local minimum with respect to one neighborhood structure
is not necessarily a local minimum for another neighborhood
structure.

@ Fact 2: A global minimum is a local minimum with respect to all
possible neighborhood structures.

o Fact 3: For many problems, local minima with respect to one or
several Ny are relatively close to each other.
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Neighborhood change

@ Consider x the current iterate and consider x’ a solution obtained
when performing a local search with respect to the k" neighborhood.

e Compare f(x) and f(x').
@ If an improvement is obtained, the current iterate is updated and k is
returned to its initial value.

@ Otherwise, the next neighborhood is considered.

Algorithm 1 Neighborhood change

Function NeighborhoodChange (x,x, k)
1 if f(¥') < f(x) then
2 x — X' // Make a move
3 k < 1 // Initial neighborhood
else
4 | k< k+1//Nextneighborhood

return x, k
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Variable neighborhood descent (VND)

The variable neighborhood descent method is obtained if a change of

neighborhoods is performed in a deterministic way.

Algorithm 2 Variable neighborhood descent

Function VND (x,K,ax)
k1
repeat
X'« argminycy, () f(v) // Find the best neighbor in Ny (x)
X,k + NeighborhoodChange (x,x’,k) // Change neighborhood
until k = k.
return X
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Basic Variable Neighborhood Search (BVNS)

The basic VNS method combines deterministic and stochastic changes of
neighborhood:

@ The stochastic part is represented by a shake function that generates a
point x’ a random from the k" neighborhood of x (x’ € Ni(x)).

@ The deterministic part is a best improvement function which is a local
search algorithm.

We also assume that a stopping condition has been chosen like the maximum
CPU time allowed t,ax.

Therefore, BVNS uses two parameters: t. and Kmax.

Algorithm 7 Basic VNS
Function BVNS(X, kyax, fmax)

110
2 while? < 1,4, do
3 k1
4 repeat
5 x' — Shake (x,k) // Shaking
6 x" «+ BestImprovement (x') // Local search
7 X,k — NeighborhoodChange (x,x",k) // Change neighborhood
: cpe
until k = kpax =PrL
8 t +— CpuTime ()
return x
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General VNS

General VNS is a BVNS where the local search step is replaced by VND
algorithm.

Algorithm 8 General VNS

Function GVNS (x, ému)u kmax: bnax)
1 repeat
k— 1
repeat
x' « Shake(x,k)
X — VND(X’, Linax)
X,k « NeighborhoodChange(x,x", k)
until k£ = kyax
7 t + CpuTime ()
until 7 > f4x
return x
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This general VNS (VNS/VND) approach has led to some of the most
successful applications reported in the literature.
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Case Study: The Multi-Depot Vehicle Routing Problem

MDVRP is a CVRP in which there is more than one depot.

@ Let G =(V,A) be a complete graph, where V is a set of nodes and A is a
set of arcs.

@ The set of nodes are partitioned into two subsets:

o the set of customers to be served, given by Vst = {1,2,..., N},
o the set of depots Vpgp = {N + 1, N +2,.... N + M}.

@ There is a non-negative cost ¢ associated with each arc(i,j) € A.

@ For each customer, there is a non-negative demand d; and there is no
demand at the depot nodes.

@ In each depot, there are K identical vehicles, each with capacity Q.
@ The service time at each customer i/ is t;.

@ The maximum route duration time is set to T.

@ A conversion factor wj; to transform the cost ¢j; into time units.
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Example of MDVRP solution

Let's consider an instance of MDVRP where Vst = {1,2,...,13} and
VDEP = {N + 1, N + 2, ey N + M}
@ A solution s of the MDRVP is represented by a list vector.

@ Each position of this vector indicates a depot and each list indicates
the visit routes to be performed by vehicles from that depot.

@ The solution below is s = {r, n} where n =[14425914 123 14]
and n=[15161511 13157 8 10 15].
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Mathematical formulation MDVRP

Decision variables

@ Xjj: a binary decision variable which is equal to 1 when vehicle k
visits node j immediately after node 7, and O otherwise.

@ y;: auxiliary continuous variables are used in the subtour elimination
constraints.

Objective function
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Neighborhoods for MDVRP

@ Swap(1,1): permutation between a customer v; from a route r, and
a customer v; from a route r;.

(a Swap(1,1) in one depot (b) Swap(1,1) in two different depots.

@ Swap(2,1): permutation of two adjacent customers v; and vj;1 from
a route rx by a customer v; from a route r;.
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a) Swap(2,1) in one depot. (b) Swap(2,1) in two dlfferent depots.
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Neighborhoods for MDVRP

@ Swap(2,2): permutation between two adjacent customers v; and vj;1
from a route rx by another two adjacent customers v; and viyq,
Vvt, vi+1 € VesT, belonging to a route r;.

2 280- 500
- {13‘ fj:é’
0 """" 0
(a) Swap(2,2) in one depot. (b) Swap(2,2) in two different depots.
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Neighborhoods for MDVRP

@ Shift(1,0): transference of a customer v; from a route r, to a route r;.
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a) Shift(1,0) in one depot. Shlft (1,0) in two dlfferent depots.
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@ Shift(2,0): transference of two adjacent customersv; and vj;1 from a

route ry to a route r;.
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(a) Shift(2,0) in one depot. (b) Shift(2,0) in two different depots.
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General VNS applied to MDVRP

@ GVNS is a VNS algorithm in which the local search is made by the
Variable Neighborhood Descent algorithm.

@ However, for this problem the Randomized Variable Neighborhood
Descent (RVND) is used as local search of GVNS.

Algorithm 1 : GVNS

1: Let s an initial solution;

2: k+ 1 > Initial Ng(s).
3: s+ s

4: while iter < IterMaz or t < maxTime do > Stopping criterion
5: s' + Perturbation(s, k, level); > Generate s with neighborhood Ny,
6: s+ RVND(s); > Best Improvement Strategy
7 1f f(s") < j( s) then

8: s 8"

9: k + 1

10: iter < 0;

11: else
12: iter < iter + 1;
13: k+—k+1; > Change of neighborhood
14: end if L

15: end while
16: return s;
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Perturbation algorithm

@ In order to generate a shake move with these neighborhoods, each
move is applied p times.

@ The value of p is a random integer between 1 and level.

Algorithm 3 : Perturbation(s, k, level)

1: p + rand(level); > Generate a number between 1 and level
2: for (i =1;i < p;i++) do

3: switch k£ do

4: case 1: Shift(1,0)(s);

5: case 2: Swap(2,2)(s);

6: case 3: Swap(2,1)(s);

7: end for
8: return s;
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RVND algorithm

@ Unlike the VND method, which uses a deterministic neighborhood

ordering, RVND applies a random neighborhood ordering scheme.

@ RVND avoids parameter tuning, but may also avoid looking for the

best order, which may be highly dependent on the instance.

Algorithm 2 : RVND(s)

e
e oQ

: Let L, the list of r neighborhoods for local searches;
> Put the list of neighborhoods in a random order

L, + randomize (L,);
k<« 1;
while £ < r do
p < L(k);
Find the best neighbor s € N®)(s);
if f(s') < f(s) then
s s
k+1;
else
k+—k+1;
end if

: end while
: return s;

> Initial Ng(s).

> Neighborhood exchange

L
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Conclusion

@ The computational experiments showed that the GVNS algorithm is a good
alternative to solve the MDVRP, since its results are competitive and, unlike
other algorithms, it has few parameters.

@ Originally designed for approximate solution of combinatorial optimization
problems, it was extended to address mixed integer programs, nonlinear
programs, and recently mixed integer nonlinear programs.

@ Applications are rapidly increasing in number and pertain to many fields:

o location theory,
o cluster analysis,
e scheduling,

e network design...

Fabian Torres (EPFL) CIVIL-557 18/3/2025 19 /20



Main references

@ Bezerra, S.N., de Souza, S.R., Souza, M.J.F.: A VNS-Based Algorithm with
Adaptive Local Search for Solving the Multi-Depot Vehicle Routing Problem,
Lecture Notes in Computer Science, vol 11328. Springer,2019.

@ Bezerra, S.N., de Souza, S.R., Souza, M.J.F.: A GVNS algorithm for solving the
multi-depot vehicle routing problem. Electron. Notes Discrete Math, 2018.

Fabian Torres (EPFL) CIVIL-557 18/3/2025 20 /20



