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Previously...

» The definition of transportation modelling
» The purpose of transportation modelling
« Terminology

» Model specification, calibration, and validation

e The 4-step model




The 4-step model

Step 1: Trip generation Decision for _m_aklng a trip with
a specific purpose




The 4-step model
Step 1: Decision for _making a trip with
a specific purpose

Step 3:

Step 4:




Today

Trip generation modelling (step 1 of the 4—step model)
« Aim — motivation — purpose

« Terminology

* Models

~ Cross classification — category analysis
>~ Growth factor models

> Linear regression



Trip generation

AiIm - Motivation

« Compute the number of trips associated with each type of activity (work, leisure, education etc.)

~ Model the trips generated by and attracted to each zone of the study area

» The trips are typically modelled at the household and zonal level

~ Trip generation modelling does not deal with how demand is split between modes or destinations

ugugigidig




Trip generation: A clarification

Trip generation modelling # “Generated trips” under some scenario

 Increase of vehicles or passengers in a location may be a result of:
>~ changing routes (Step 4 - assignment model)...

> ... or people may change destination (Step 2 — trip distribution model)...

>~ ... or traffic may increase because people travel more with car (Step 3 — mode split model)




Terminology (useful reminder)

* Trip or Journey: A one-way movement from a point of origin to a point of destination. We are
usually interested only in vehicular trips (even though we shouldn’t!!).

« Trip ends: total number of trips generated in a zone
« \We estimate the trip ends via trip rates
 Trip rate: typical number of trips (per unit) made by
>~ Different types of people
>~ In different types of areas
> In different types of buildings
>~ For different purposes

Rule of thumb: Trip rates remain quite stable over time, they are our starting point in the modelling
process



Zone (another useful reminder)

Traffic zone
 The unit of transport analysis
« Typically homogeneous

» Land use

> Transport network
» Area of main centres of activities

» Boundaries of administrative units

« Centroid: a point in each zone that is used to define the centre of activities in a zone and link it to
the traffic network (all demand is produced or attracted at the centroid of each zone)



Characterisation of trips

* Purpose: work, education, shopping, leisure, escort trips, other...
»  Work and education are typically called mandatory trips
* Time of the day: Peak hours (morning & afternoon peak), off-peak hours

* Individual characteristics: income, car ownership, household size and structure, etc.
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Production and attraction

Two different ways for the trip generation process: production and attraction

« Two main types of trips:
> Home-based (HB) Trip: Home of the trip maker is either the origin or the destination of the journey
> Non-home-based (NHB) Trip: Neither end of the trip is the home of the traveller.

« Trip Production: The home end of an HB trip or as the origin of an NHB (all trips leaving or arriving home are
‘produced’ at the home location)

« Trip Attraction: The non-home end of an HB trip or the destination of an NHB trip
« Trip Generation: The total number of trips generated by households in a zone, both HB or NHB.

Production Attraction

Home . « Work
" Production Attraction
Production Attraction

Work J ) Shop
Attraction Production




Production and attraction

« Each trip is produced in a zone and attracted to a zone
At this stage we do not examine the exact origin-destination pair (this is done in Step 2)
« NHB trips are more difficult to model. Simplification e.g. 30% of trips attracted to a zone

Number of trips from/to zone B, as
long as they are attracted to zone B

l

N
Number of trips from/to zone A, as ‘ %
long as they are produced in zone A >

Zone D




Production and attraction

Small example: 1 live in zone A and work in zone B

 Origin-destination format: (A, B) trip to work, and (B, A) return trip
 Production-attraction format: Two trips produced by zone A and two trips attracted to zone B

i—

Zone A: Home Zone B: Work




Production and attraction: Example

Following the direction of the arrows, define the production-attraction and origin-destination points
for each of the trips:

shopping




Production and attraction: Example

Following the direction of the arrows, define the production-attraction and origin-destination points
for each of the trips:

Trip #1:
Origin A — Destination B
Production A — Attraction B

Trip #2:
Origin B — Destination C
Production B — Attraction C

Trip #3:
Origin C — Destination A
Production A — Attraction C C

shopping




Trip generation models categories

« Models of production
* Models of attraction

« We use different models for production and attraction
 Different models for trips outside the study area or freight transport

« QOur Objective: Estimate how many trips are generated and attracted by each zone (we need to
model)

* Inaclosed system: production trips = attraction trips




Factors affecting trip generation

Personal trip productions
* Socioeconomic factors: as specified earlier (HH size, income etc.)
e Land use: value of land, residential density

* Accessibility e.g. availability of public transport in urban areas

Personal trip attractions
* Roofed space available for industrial, commercial and other services

e Zonal employment — Number of employment positions



Trip rates example

Purpose |Income|Cars|No of children Area

« Trip ends typically have quite detailed segmentation zommule,_Low {3 2 T
> You can also check last week’s demand segmentation commute,_Low {3 : Sroan
. Commute| Low [ O 2 Urban

* Example. Commute| Low | 0 2 Suburbs
. . . . Commute| Low | O 3+ Urban

> Trip purpose: commuting, leisure, shopping, ... Commute] Low | 0 3+ Suburbs
. . Commute| Low | 1+ 0 Urban

> Household income: Low, average, high Commute| Low | 1+ 0 Suburbs
. L . Commute| Low | 1+ 1 Urban

> Number of cars: 0, 1, 2+ (0, 1+ for example simplification) Commute| Low | 1+ 1 Suburbs
Commute| Low [ 1+ 2 Urban

> Number of children, 0, 1, 2, 3+ Commute| Low | 1+ 2 Suburbs
Commute| Low [ 1+ 3+ Urban

~ Area of living: rural, urban Commute| Low [ 1+ 3+ Suburbs
Leisure | High | 1+ 0 Urban

Leisure | High | 1+ 0 Suburbs

Leisure | High | 1+ 1 Urban

Leisure | High [ 1+ 1 Suburbs

Leisure | High | 1+ 2 Urban

Leisure | High | 1+ 2 Suburbs

Leisure | High | 1+ 3+ Urban

Leisure | High | 1+ 3+ Suburbs




Information required

We need information (data) about the:
* Number of households of each type (based on the grouping we decided before)

* Built space for different types of land use (shops, offices, hotels, restaurants etc...)

»  Some trips may be expressed as number of trips per unit of built space

» If we already have information on current trip rates: we know the base year scenario

» We still need a model for a future scenario e.g. what happens if we build new houses or
new shops in a zone.




Modelling process — Summary

1. Grouping of decision making units (e.g. household type)

2. Aggregation in time periods (instead of individual level trips)

3. Segregation per trip purpose (mainly work, leisure, and shopping)




Trip generation models

Deterministic models
» Cross classification — category analysis

 Growth factor models

Stochastic models

 Linear regression




Category analysis

« Estimate of the variable of interest (e.g trip productions per household — HH) as a function of
the HH characteristics

« Households are classified based on their characteristics

 Trip generation rates are computed from data about the current condition (base scenario)
 Future trip generation rates are computed based on a scenario

« Assumption: Trip generation rates and stable over time and HH characteristics

Considerations:

« At what dimension (how many levels) to cross-classify e.g. HH size, car ownership, income
etc...

« Choice of a category that is relatively stable over time



Category analysis

The category analysis is based on the computation of trip rates (trips per HH):
tP(h) =TP(h)/H(h)

h: household of type h

p: trip purpose

tP(h): average number of trips per household, with purpose p
TP(h): observed (total) trips per h and p

H(h): number of households of type h



Example 1

Data

« The (average) number of trips made by HH

* The number of cars owned

 Distribution of HHs by car ownership, HH size, etc.

Question
« What is the average number of trips per HH?




Example 1

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Car Av. number of trips per HH | % HH

Ownership

0 6 34%

1 6.78 47%

2+ 7.52 19%




Example 1

Average number of trips by car ownership = trips made by HH * % HH of the population

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Car Av. number of trips per HH | % HH Col. 2*
Ownership Col. 3
0 6 34% 204
1 6.78 47% 3.1866
2+ 7.52 19% 1.4288
6.655

N

Average of population



Example 1

Scenario: we change the distribution of HH

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Car Av. number of | % HH Col. 2 * Col. 3 New % of

Ownership | trips per HH HH (scenario)

0 6 34% 204 15% 0.9

1 6.78 47% 3.1866 55% 3.729

2+ 7.52 19% 1.4288 30% 2 256
6.655 6.885

~

New average



Example 1

Scenario: we change the distribution of HH

Col. 1 Col. 2 Col.3 |Col. 4 Col. 5 Col. 6 Col. 7

Car Av. number of trips %HH [Col.2* | New%of |Col.2* Difference

Ownership | per HH Col. 3 HH Col. 5

0 6 34% o4 15% 0.9 -1.14

1 6.78 47% 13.1866 55% 3.729 +0.5424

2+ 7.52 19% |1.4288 30% 2 956 +0.8272
6.655 6.885

Difference



Limitations of Example 1

* We considered only one category to group the households
~ Maybe we ignored some important household characteristics by generalising too much?
»  Could this have an impact on the future scenario?

« Results of the future scenario are significantly affected by number of cars

»  What if we overestimated trip rates due to this simplification?

* Solution: Let’s add another category to further segment the households




Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
Car HH Size | Av. trips %HH

Ownership per HH

0 1 4.25 4%

0 2 5.666667 | 15% | ¢ 34%
0 3+ 6.8 15%

1 1 5 7%

1 2 6.222222 18% | = 47%
1 3+ 7.818182 22%

2+ 1 5.6 5%

2+ 2 7.2 5% ¢ 190
2+ 3+ 8.777778 9%

We add one more group (HH size)




Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
Car HH Size | Av. trips %HH (Col. 3)*
Ownership per HH (Col. 4)
0 1 4.25 4% 0.17
0 2 5.666667 15% 0.85
0 3+ 6.8 15% 1.02
1 1 5 7% 0.35
1 2 6.222222 18% 1.12
1 3+ 7.818182 22% 1.72
2+ 1 5.6 5% 0.28
2+ 2 7.2 5% 0.36
2+ 3+ 8.777778 9% 0.79
6.65

Average trips remain the same for the base scenario /



Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
Car HH Size | Av. trips %HH (Col. 3)* | New %
Ownership per HH (Col. 4) HH

0 1 4.25 4% 0.17 5%
0 2 5.666667 15% 0.85 5%
0 3+ 6.8 15% 1.02 5%
1 1 5 7% 0.35 10%
1 2 6.222222 18% 1.12 20%
1 3+ 7.818182 22% 1.72 25%
2+ 1 5.6 5% 0.28 10%
2+ 2 7.2 5% 0.36 10%
2+ 3+ 8.777778 9% 0.79 10%

6.65




Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Car HH Size | Av. trips | %HH (Col. 3)* New % HH | (Col. 6)* | (Col. 7)-(Col. 5)

Ownership per HH (Col. 4) (Col. 3)

0 1 4.25 4% 0.17 5% 0.2125 +0.0425

0 2 5.666667 | 15% 0.85 5% 0.283333 -0.56667

0 3+ 6.8 15% 1.02 5% 0.34 -0.68

1 1 5 7% 0.35 10% 0.5 +0.15

1 2 6.222222| 18% 1.12 20% 1.244444 +0.124444

1 3+ 7.818182| 22% 1.72 25% 1.954546 +0.234545

2+ 1 5.6 5% 0.28 10% 0.56 +0.28

2+ 2 7.2 5% 0.36 10% 0.72 +0.36

2+ 3+ 8.777778 9% 0.79 10% 0.877778 +0.087778
6.65 6.692601 +0.032601




Discussion of Example 2

 Average trips per household remain the same for the base scenario

* In example 2, forecast Is 6.69 trips per household, as opposed to 6.88 in example 1, why?

~ Greater degree of classification (as in example 2) allows greater sophistication in assumptions and hence
possibility of more realistic representation of real life.

~ If we generalise too much, we may overestimate (or underestimate) the trip rates

» The difference between the two (synthetic) examples is small but much larger differences can be observed in
reality




Modelling car ownership

« Aim: To model the number of cars owned by households, where HH are categorised by location (URBAN/RURAL), and HH
size (number of adult members)

« Assurvey was carried out at two locations (Urban and Rural) and data presented as follows:

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Location HH Size Cars owned by No of HH
HH
URBAN 1 0000000011 10
URBAN 2 000000111122 12
URBAN 3+ 0122 4
RURAL 1 00111 5
RURAL 2 00111122 8
RURAL 3+ 01222 5

(@) The number of digits indicate the number of HH (e.g. the ten digits in
0000000011 = 10 HH) (b) The value of each digit indicates the number of cars
owned by a HH (e.g. ‘2’ means two cars and ‘0’ means no cars).



Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Location HH Size Cars owned by No of HH % of HH

HH
URBAN 1 0000000011 10 22.7%
URBAN 2 000000111122 12 27.3%
URBAN 3+ 0122 4 9.1%
RURAL 1 00111 5 11.4%
RURAL 2 00111122 8 18.1%
RURAL 3+ 01222 5 11.4%

44




Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Location HH Size Cars owned by No of HH % of HH No of cars
HH

URBAN 1 0000000011 10 22.7% 2
URBAN 2 000000111122 12 27.3% 8
URBAN 3+ 0122 4 9.1% 5

RURAL 1 00111 5 11.4% 3

RURAL 2 00111122 8 18.1% 8

RURAL 3+ 01222 5 11.4% 7

44




Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Co. 7
Location HH Size Cars owned No of HH % of HH No of cars Avg No of

by HH Cars per HH
URBAN 1 0000000011 |10 22.7% 2 0.20 (=2/10)
URBAN 2 000000111122 | 12 27.3% 8 0.67 (=8/12)
URBAN 3+ 0122 4 9.1% 5 1.25
RURAL 1 00111 5 11.4% 3 0.60
RURAL 2 00111122 8 18.1% 8 1.00
RURAL 3+ 01222 5 11.4% 7 1.40

44




Modelling car ownership

Example 3b: Using the data from 3a predict the average number of cars per household for a similar

population distributed as:

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+
Case 1 10% 20% 20% 10% 20% 20%
Case 2 2% 10% 10% 15% 30% 30%




Modelling car ownership

3b-1

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+
Case 1 10% 20% 20% 10% 20% 20%
Col. 1 Col. 2 Col. 3 Col. 4 Co.5
Location HH Size % of HH No of cars Col.3*Col. 4
URBAN 1 10% 0.20 0.020
URBAN 2 20% 0.67 0.134
URBAN 3+ 20% 1.25 0.25
RURAL 1 10% 0.60 0.06
RURAL 2 20% 1.00 0.200
RURAL 3+ 20% 1.40 0.280
0.944




Modelling car ownership

3b-2

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+
Case 2 5% 10% 10% 15% 30% 30%
Col. 1 Col. 2 Col. 3 Col. 4 Co.5
Location HH Size % of HH No of cars Col.3*Col. 4
URBAN 1 5% 0.20 0.010
URBAN 2 10% 0.67 0.067
URBAN 3+ 10% 1.25 0.125
RURAL 1 15% 0.60 0.090
RURAL 2 30% 1.00 0.300
RURAL 3+ 30% 1.40 0.420
1.012




Comments on category analysis

Advantages

» No prior assumptions about the shapes of relationships are required, i.e. no formula needed
» Analysis can be carried out on disaggregated data

* Independence between HH characteristics variables and zones structure

» Independence between the different HH characteristics

Disadvantages

» Unless using regression analysis to select variables and levels of variables, there are no goodness of
fit tests

« Extrapolation not possible; using open ended (continuous) variables levels can have difficulties
» Large samples required: preferably 20 to 50 observations per cell



Demand growth scenarios

« Demand growth scenarios: we assume different trip generation scenarios, following a change in our system
« Test the project on all the scenarios, some will never happen

« Not a robust scientific method on how to develop demand growth scenarios. Considerations:

~ Trip rates: Standard trip rates are the average of observed data. We also consider different values, especially if
we have knowledge of the local area

»  Employment growth: Employment rates, sectors, wider economic impacts, also in the surrounding zones
»  Trends: Working from home, ride sharing, autonomous vehicles (future scenario)

»  Population growth: Different assumptions, people moving in and out, new buildings

~ Shopping and leisure: Competition between retail and leisure centres

»  Mode-specific factors: Car ownership, investment on walking or cycling infrastructure, capacity of public
transport, parking policy



Expansion (or Growth) Factor

Main formula

where T. and t; are respectively future (scenario) and current (base year) trip origins in zone I, and F; is a
growth factor

Normally the growth factor is related to variables such as population (P), income (I) and car ownership (C), in a
function such as:

. f(PEIE, CF)
=
f(PE,If, CF)

where f can even be a direct multiplicative function with no parameters, and the superscripts d and ¢ denote the
design and current years respectively

Similarly, this method can be applied to trips destinations



Expansion (or Growth) Factor - Example

a. Base year

250 HH with a car

6 trips/day (with a car)

250 HH without a car

2.5 trips/day (w/o a car)

total trips: t; =250 x 6 + 250 x 2.5 = 2125 trips/day

b. Target year
500 HH with a car

0 HH without a car

How many trips/day in the target year?



Expansion (or Growth) Factor - Example

Solution
All but car ownership remain constant:

F,=cCcf/cf =1/05=2
T; = 2 x 2125 = 4250 trips/day

Initial formula (previous slide)
T;=500*6=3000

The growth factor approach can be very crude — estimated (4250-3000)/3000 = 42% more trips



Expansion (or Growth) Factor

« \Very simple
» Requires good base year data for all zones to obtain reliable expansion factors

» Separate expansion factors could be used for different zones or types (in inner area/outer
area)

« Not sensitive to policy changes without taking into account all relevant factors
~ E.g. Based on some employment level trends, | expect a 10% population increase, hence F; = 1.1
~ What if some new congestion charge is introduced?
« Growth factor methods are mostly used predict the future number of external trips to an area
~ usually they are not too many (so errors cannot be too large)
>~ there are no simple ways to predict them



Linear regression

Statistical technique to "explain™ movements (changes) in a variable (dependent variable) as a function of
other variables (independent variables):

Yi = Po th1Xy; e
where
Y; : Dependent variable (e.g. number of trips of a household daily)
Xi: Independent variable (e.g. car availability)

P & Sy: parameters to be estimated (5, is also known as the intercept term or simply constant)
Interpretation: if X; changes by one unit, then Y; changes by £,

&; - Independent and identically normally distributed (i.i.d.) error term

« Alinear regression model can have many independent (explanatory) variables

Yi = Bo TP Xei TPKo HP3X5  HBXi e



Linear regression

Advantages: Easy to specify, estimate and interpret. Plenty of available software.

Linear regression (and all statistical models) require some assumptions to ensure the
validity of the results.

f Can be overused or misused. More advanced models must be used if assumptions
are violated.

Trip generation is a ‘count’ outcome (i.e. number of trips). Linear regression is

producing a continuous prediction Y, e.g. 2.7 trips/hh or —0.14 trips/hh. Forecasts
must be carefully checked

» Alternatives: Poisson regression, negative binomial regression or any other model
suitable for a count outcome



Linear regression — Estimation procedures

So far, we have mentioned some parameters /5 associated with the impact of independent
variables on the dependent variable...

Yi = Bo tH1Xyi TP Ko +P3X5  HPXKi té

... but how do we obtain their values?




Linear regression — Estimation — Ordinary Least Squares

Aim: minimise the squared error

In matrix form:

g'e=(Y—XB) (Y =XB) =Y'Y —2f'X'Y + B'X'Xp

!

de' €
For F i 0 we get
f=XX)1XY

... these are the parameters that we want to estimate



Linear regression — Estimation — Standard errors

Standard errors: a measure of variability of the estimated parameters in the population
« Aim: the smaller the better

« How small? We investigate in the next slides

Var(B) = 6*(X'X)"! - SE(B) = /o2(X'X)1

True variance unknown, instead we use the mean squared error (MSE):

SSE

MSE ==y (v, - 7)" = SSE is the sum of squared errors

* nisthe sample size, k is the number of the estimated parameters
« E[MSE] =



Linear regression — categorical independent variables

The interpretation of linear regression is one-unit change of an independent variable results to
S change to the dependent variable.

Sometimes, the independent variable may not be continuous but categorical for instance
gender, highest education level, availability of car in a household, time of the day someone
commutes (morning, noon, afternoon, evening).

If we use an independent variable X which is categorical, we must estimate different gs for
each category.

f " Dummy variable trap! We can estimate one less parameter than the total number of groups
of the independent variable to avoid perfect multicollinearity



Linear regression — categorical independent variables

Let’s consider a categorical variable D with 4 levels Dy;, D,;, D3, D,; Where:
D;; = 1 if condition is met for observation i, 0 otherwise.

A regression model would be:

Yi = o 151Dy T5,D5 +63D3i +5,Dyi +0:X; e
In this case we keep D4 as a reference category and we are not estimating a parameter for it.

- Eg.4,=0



Linear regression — categorical independent variables

If we attempt to estimate parameters for all levels:

Yi = Po TP1D1i +5,Dyi +53Dsi +5.Dy +5X; e

By definition: Dy; +D,; +Dg; +D,; =1

Hence:

Yi = Po tp1Dsj +5,D4; +53Dsi +54(1 - Dy; +Dy; +Dg) 05X, +e;

Yi = (Bo TBs) + (Br - Ba) D1i + (B2 - Ba)Dai + (B3 - Ba)DsitPsX; +e;

« Every group is a linear combination of the others plus the intercept — perfect multicollinearity
(X'X non-invertible)

« Cannot estimate the sums and differences of parameters separately Solution: Do not estimate
B, (in general estimate one parameter less than the number of categories)



Linear regression — Estimation output

Using any linear regression software we would receive an output like this:

« Dependent variable: number of trips of a household per day

And this??
We know what are these... What is this?? 1

™ N\

Parameter Estimate
Bo 0.883

0.418

t-ratio
18.655
97.635

B(Household size)

0.263 53.389

0.014
0.216
-0.455

(Number of vehicles)
B(Income)
B(Presence of children)

24.775
19.467
-111.233

B(nicmnr‘p to Inuhlir‘ fmncpnrf)

/

How to interpret the estimate values?



Linear regression — interpretation of parameters

« Linear regression is linear in parameters S

>

Model interpretation: Change of one unit in the independent variable results in f change to the

dependent variable, all others being equal
Example 1: If a household increases its size by one member then 0.418 daily trips are added
Example 2: One additional km far from public transport reduces 0.455 daily trips are subtracted

Example 3: If a household has kids then 0.216 daily trips are added.

= How about households without kids??




Linear regression — interpretation of parameters

« Linear regression is linear in parameters S

>~ Model interpretation: Change of one unit in the independent variable results in B change to the

dependent variable, all others being equal

~ Example 1: If a household increases its size by one member then 0.418 daily trips are added

~ Example 2: One additional km far from public transport reduces 0.455 daily trips are subtracted

~  Example 3: If a household has children then 0.216 daily trips are added.

How about households without kids??

Presence of kids is a dummy variable. No kids is a the reference category, no need to estimate a
parameter

The reference category parameter is fixed typically assumed to be fixed to O

The parameter of the reference category is absorbed by the model constant and the parameters
of the categories that we estimate

This extends to categorical variables with any number of categories



Linear regression — Estimation output

Using any linear regression software we would receive an output like this:

« But what is the t-ratio? And what is the p-value?

And this??
We know what are these... What is this?? 1

™ N\

Parameter Estimate
Bo 0.883

0.418

t-ratio
18.655
97.635

B(Household size)

0.263 53.389

0.014
0.216
-0.455

(Number of vehicles)
B(Income)
B(Presence of children)

24.775
19.467
-111.233

B(nicmnr‘p to Inuhlir‘ fmncpnrf)

/

How to interpret the estimate values?



Sampling — Confidence intervals (Reminder)

First, let’s remember some properties of the standard normal distribution

N ~ (0,1):

* 68% of the observations are between -1 and 1 standard deviations of the mean

« 95% of the observations are between -2 and 2 standard deviations (-1.96 and 1.96 to be precise)

e 99.9% of the observations are between -3 and 3 standard deviations

7Y

68% 95% 9930%




Sampling — Confidence intervals (Reminder)

 Brief reminder — A standard normal [N ~ (0,1)] variable Z is defined as:
X—u
o/\/n

/=

« Astandard normal variable Z is with 0.95 probability between the range [-1.96, 1.96] (from
the previous slide); then:

_ X—u . — _
0.95=P(-1.96 < 24 < 1.96) = P(X-1.96-Z <u<X+1.96-%)

« The confidence interval that captures 1 with a probability of 0.95 can be rewritten as:

X +1.96

S



Sampling — Confidence intervals

 For a confidence interval of value (1-a)) [where a takes values between 0 and 1] and Z ,, such
as the area 1n each of the two tails of the normal distribution curve (a/2) we get:

« When population variance is unknown the t-distribution is used instead with degrees of
freedom n —1:




Sampling — Confidence intervals

o
v 0.1 0.05 0.025 0.01 0.005 0.0025 0.001
22 1.321 1.717 2.074 2.508 2.819 3:50b Il 92
23 1.519 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 171 2.064 2.492 2.797 3.467 3.745
29 1.316 1.708 2.060 2.485 2.787 3.450 3./2D
26 1315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 24052 2.473 2,771 3.421 3.690
28 1.313 1701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
39 1.306 1.690 2.030 2.438 2.724 3.340 3.891
40 1,506 1.684 2.021 2.423 2.704 3.307 3:951
45 1.301 1.679 2.014 2412 2.690 3.281 3.520
50 1.299 1.676 2.009 2.403 2.678 3.261 3.496
100 1.290 1.660 1.984 2.364 2.626 3.174 3.390

>100 1.282 1.645 1.960 2.326 2.576 3.091 3.291




Hypothesis testing

Hypothesis testing is used to assess if a difference in a population parameter (e.g. mean)
between two or more groups is likely to have occurred by chance or due to some specific
factor.

Mechanics of hypothesis testing:

* Null Hypothesis (HO): There is no significant difference between two groups

« Alternative Hypothesis (H1): There is significant difference between two groups




Hypothesis testing

Example: We want to investigate whether after the implementation of traffic calming
measures, the average traffic speed on a road is different from 60 km/h. Hence:

* HO: Ygpeeq = 60km/h
* HI1: Ygpeeq # 60km/h

First we transform speed (e.g. we take speed observations from vehicles in the study area)
to a Z-variable as:

_X-u
-

The result of this transformation is a variable of approximately normal distribution with
mean = 0 and standard deviation = 1

Z*




Hypothesis testing

The null hypothesis is rejected if the sample mean is significantly different from 60 and X
falls in the rejection region

* The value of the true mean is not within [-1.96, 1.96] with 0.95 probability

Rejection region (

Rejection region l




Hypothesis testing

Critical Points of Z_ for Different Levels of Significance a

Level of Significance a
0.10 0.05 0.01
+1.645 +1.960 +2.576

We then evaluate significance as:
 Critical values of Z, or Z_, are defined such that
P[Z*>Z.]=P[Zx<-Z]=0/2

« If|Z¥ >|Z,, then the probability of observing this (Z*) value (or larger), if HO is true is a. In
this case, the null hypothesis (HO) is rejected.

« If|Z* <|Z, then the probability of observing this value (or smaller) if HO is true is equal to
1—a. In this case, the null hypothesis (HO) cannot be rejected.



Hypothesis testing: the p-value

Probability value or p-value

An alternative metric to report the significance of an outcome

The smallest level of significance « that leads to rejection of the null hypothesis

Quantifies the amount of statistical evidence that supports the alternative hypothesis

Let’s say we obtain Z* = 3.27; the p-value is calculated as:

p-value(Z* = 3.27) = p[£ <-3.27 and Z > 3.27] = 2p[Z > 3.27] = 2[1-p[Z < 3.27]]
= 2[1-.99946] = .001

For reference, if Z* = 1.96, then p-value = 0.05 (typically we want to see p-value < 0.05)
But how do we know that p[Z < 3.27] = .999467?



Hypothesis testing: the p-value

« To answer this question we need to use the concept of Cumulative Density Function (CDF)

« The CDF of a probability distribution contains the probabilities that a random variable X is
smaller than or equal to a given value x

Fe(x) = PX < x] = f fe () dx

* For the normal distribution, the CDF value for 3.27 1s .99946

« CDF functions are readily available in most software packages



Cumulative Density Function (CDF)

Fy(3.27) = 0.99946
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F(0.40) = 0.65542




Hypothesis testing and parameter estimates

 In linear regression (and all statistical models) we want to estimate parameters
* B :<Bg,P1,Bss----Pn> that best approximate our dependent variable

« \We need a metric that will allow us to measure the importance of each parameter i.e., the
likelihood that an independent variable is significantly related to the dependent.

It is possible to achieve so with hypothesis testing.




Hypothesis testing and parameter estimates

* Let’s focus on the parameter 3; of a model.
* We can only obtain an estimate of the true ;; let’s call it Bl

« The sampling distribution of the estimate Bl of B, Is the distribution of the mean values that
would result from repeated samples drawn from the population.

« The sampling distribution is approximately normal (from the Central Limit Theorem) as:

:BAl ~ (ﬁl: 0-12 )
where ¢ is the standard error of the parameter

« We can then form a hypothesis test around the true value of B



Hypothesis testing and parameter estimates

« The typical hypothesis test that we form is around the 0 value

Why? If the true value of a parameter is not significantly different from 0, then the independent
variable associated with this parameter does not have an impact on the dependent variable

 Hence, we have:
Hy:B;=0
H, :B;#0

» Following the hypothesis testing approach we discussed earlier, we form the t-statistic of the
parameter as:

pr=0
9B,
« As we already discussed, for large samples we reject the null hypothesis for |t31| >1.96 (or
p—Value < 0.05)

3, =



Linear regression — Estimation output

Now we can understand the whole table

And this??
We know what are these... What is this?? 1

™ N\

Parameter Estimate
Bo 0.883

0.418

t-ratio
18.655
97.635

B(Household size)

0.263 53.389

0.014
0.216
-0.455

(Number of vehicles)
B(Income)
B(Presence of children)

24.775
19.467
-111.233

B(nicmnr‘p to Inuhlir‘ fmncpnrf)

/

How to interpret the estimate values?



Linear regression Assumptions — Brief summary

Statistical Assumption Mathematical Expression
1. Functional form Y. = B + Pk -+ &

2. Zero mean of disturbances Elg]=0

3. Homoscedasticity of disturbances VAR[¢g;] = 0?

4. Nonautocorrelation of disturbances COVlg, ] =01t i#f

5. Uncorrelatedness of regressor and disturbances ~ COV[X),, ¢;] = 0 for all / and j
6. Normality of disturbances g, = N(0, 6%)




Linear regression — Goodness-of-fit

e Sum of square errors:

n
SSE = Z(Yi ~7)°
=1

» Total sum of squares:

n
SST= ) (%, - 7)°
i=1

» The coefficient of determination, R-squared (proportion of total variance explained by X)

, SSE
RZ=1-—"—

0<R? <1, if RZ = 1 then all the variance is explained by the independent variables



Linear regression — Useful transformations

Exponential Y=0LBX8 = InY=Ino+XInp+u, where u~N(0, ¢?)

Logarithmic (log-log model) Y=e"XPe = InY=0+BInX+u, where u~N(0, ¢?)

Other Y¥=— = 1=g+ BX + u, where u~N(0, ¢?)
a+fX+u Y




Linear regression — Comments

« Remember: Significance of parameters and goodness-of-fit are not everything!

« Always check the sign of your parameters:

« E.g., does it make sense in my study if my model predicts that car availability or household size
reduce the number of trips?

» Make sure that the interpretation of your parameter estimates is consistent with your expectations




Scaling methods

« Models DO NOT guarantee that (system closure):

ZOL=ZD]
L J

« We need a closed system to generate an OD matrix

« We assume that generation models are ‘better’ than trip attraction models
» Generation (production) models: Sophisticated household-based models including explanatory variables
~ Attraction models: Estimated using zonal data

 Fix: total number of trips arising from summing all origins O; is the ‘correct’ value

> Each destination D; are multiplied by an F factor as:

P, = % 0;
iDj

Ng



Scaling methods

* If we have reason to trust more the destination data, then we multiply each O; by:

* |f we trust both then:

1. G= (zioi +3, D]-) /2

G
2 Fp m

G
ST
4. O;=OIFO
5 D] =D;Fp




Limitations of trip generation models

« Uncertain growth: We have no forecasting information. Define several scenarios an
evaluate their plausibility

 Definition of trip generation: Be clear if the total demand changes or we simply observe
modal shift or change in route choice in our models

« Unclear behaviour: Non home-based trips are difficult to be modelled well

« Model scope: The standard 4—step model assumes that no one is moving house or work
location due to transport issues




Summary

Trip generation modelling (step 1 of the 4—step model)
« Aim — motivation — purpose

« Terminology

* Models

~ Cross classification — category analysis
>~ Growth factor models

> Linear regression



