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Previously…

• The definition of transportation modelling

• The purpose of transportation modelling

• Terminology

• Model specification, calibration, and validation

• The 4–step model

• Data collection – Sampling



The 4-step model

Trip generation
Decision for making a trip with 

a specific purpose

Trip distribution Destination choice

Modal split Mode choice

Network assignment Route choice

Step 1:

Step 2:

Step 3:

Step 4:
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Today

Trip generation modelling (step 1 of the 4–step model)

• Aim – motivation – purpose

• Terminology

• Models

‣ Cross classification – category analysis

‣ Growth factor models

‣ Linear regression



Trip generation

Aim - Motivation

• Compute the number of trips associated with each type of activity (work, leisure, education etc.)

‣ Model the trips generated by and attracted to each zone of the study area

‣ The trips are typically modelled at the household and zonal level

‣ Trip generation modelling does not deal with how demand is split between modes or destinations



Trip generation: A clarification

Trip generation modelling ≠ “Generated trips” under some scenario

• Increase of vehicles or passengers in a location may be a result of: 

‣ changing routes (Step 4 - assignment model)…

‣ … or people may change destination (Step 2 – trip distribution model)…

‣ … or traffic may increase because people travel more with car (Step 3 – mode split model)



Terminology (useful reminder)

• Trip or Journey: A one-way movement from a point of origin to a point of destination. We are 

usually interested only in vehicular trips (even though we shouldn’t!!).

• Trip ends: total number of trips generated in a zone

• We estimate the trip ends via trip rates

• Trip rate: typical number of trips (per unit) made by

‣ Different types of people

‣ In different types of areas

‣ In different types of buildings

‣ For different purposes

Rule of thumb: Trip rates remain quite stable over time, they are our starting point in the modelling 

process



Zone (another useful reminder)

Traffic zone

• The unit of transport analysis

• Typically homogeneous

‣ Land use

‣ Transport network

‣ Area of main centres of activities

‣ Boundaries of administrative units

• Centroid: a point in each zone that is used to define the centre of activities in a zone and link it to 

the traffic network (all demand is produced or attracted at the centroid of each zone)



Characterisation of trips

• Purpose: work, education, shopping, leisure, escort trips, other…

‣ Work and education are typically called mandatory trips

• Time of the day: Peak hours (morning & afternoon peak), off-peak hours

• Individual characteristics: income, car ownership, household size and structure, etc.



Production and attraction

• Two different ways for the trip generation process: production and attraction

• Two main types of trips:

‣ Home-based (HB) Trip: Home of the trip maker is either the origin or the destination of the journey

‣ Non-home-based (NHB) Trip: Neither end of the trip is the home of the traveller.

• Trip Production: The home end of an HB trip or as the origin of an NHB (all trips leaving or arriving home are 

‘produced’ at the home location)

• Trip Attraction: The non-home end of an HB trip or the destination of an NHB trip 

• Trip Generation: The total number of trips generated by households in a zone, both HB or NHB. 

Home

Work

Work

Shop

Production

Production

Production

Attraction

Attraction

Attraction

Attraction

Production



Production and attraction

• Each trip is produced in a zone and attracted to a zone

• At this stage we do not examine the exact origin-destination pair (this is done in Step 2)

• NHB trips are more difficult to model. Simplification e.g. 30% of trips attracted to a zone

A

D

Number of trips from/to zone A, as 

long as they are produced in zone A

Number of trips from/to zone B, as 

long as they are attracted to zone B

Z
o
n
e A

Zone D



Production and attraction

Small example: I live in zone A and work in zone B

• Origin-destination format: (A, B) trip to work, and (B, A) return trip

• Production-attraction format: Two trips produced by zone A and two trips attracted to zone B

Zone A: Home Zone B: Work

ZZZ



Production and attraction: Example

work

shopping

#1

#3

#2

home

Following the direction of the arrows, define the production-attraction and origin-destination points 

for each of the trips:

A

B

C



Production and attraction: Example

work

shopping

#1

#3

#2

home

Following the direction of the arrows, define the production-attraction and origin-destination points 

for each of the trips:

Trip #1:

Origin A – Destination B

Production A – Attraction B

Trip #2:

Origin B – Destination C

Production B – Attraction C

Trip #3:

Origin C – Destination A

Production A – Attraction C

A

B

C



Trip generation models categories

• Models of production

• Models of attraction

• We use different models for production and attraction

• Different models for trips outside the study area or freight transport

• Our Objective: Estimate how many trips are generated and attracted by each zone (we need to 

model)

• In a closed system: production trips = attraction trips



Factors affecting trip generation

Personal trip productions

• Socioeconomic factors: as specified earlier (HH size, income etc.)

• Land use: value of land, residential density

• Accessibility e.g. availability of public transport in urban areas

Personal trip attractions

• Roofed space available for industrial, commercial and other services

• Zonal employment – Number of employment positions



Trip rates example

• Trip ends typically have quite detailed segmentation

‣ You can also check last week’s demand segmentation

• Example:

‣ Trip purpose: commuting, leisure, shopping, …

‣ Household income: Low, average, high

‣ Number of cars: 0, 1, 2+ (0, 1+ for example simplification)

‣ Number of children, 0, 1, 2, 3+

‣ Area of living: rural, urban

Purpose Income Cars No of children Area

Commute Low 0 0 Urban

Commute Low 0 0 Suburbs

Commute Low 0 1 Urban

Commute Low 0 1 Suburbs

Commute Low 0 2 Urban

Commute Low 0 2 Suburbs

Commute Low 0 3+ Urban

Commute Low 0 3+ Suburbs

Commute Low 1+ 0 Urban

Commute Low 1+ 0 Suburbs

Commute Low 1+ 1 Urban

Commute Low 1+ 1 Suburbs

Commute Low 1+ 2 Urban

Commute Low 1+ 2 Suburbs

Commute Low 1+ 3+ Urban

Commute Low 1+ 3+ Suburbs

Leisure High 1+ 0 Urban

Leisure High 1+ 0 Suburbs

Leisure High 1+ 1 Urban

Leisure High 1+ 1 Suburbs

Leisure High 1+ 2 Urban

Leisure High 1+ 2 Suburbs

Leisure High 1+ 3+ Urban

Leisure High 1+ 3+ Suburbs

…



Information required

We need information (data) about the:

• Number of households of each type (based on the grouping we decided before)

• Built space for different types of land use (shops, offices, hotels, restaurants etc…)

‣ Some trips may be expressed as number of trips per unit of built space

• If we already have information on current trip rates: we know the base year scenario

• We still need a model for a future scenario e.g.  what happens if we build new houses or 

new shops in a zone.



Modelling process – Summary

1. Grouping of decision making units (e.g. household type)

2. Aggregation in time periods (instead of individual level trips)

3. Segregation per trip purpose (mainly work, leisure, and shopping)



Trip generation models

Deterministic models

• Cross classification – category analysis

• Growth factor models

Stochastic models

• Linear regression



Category analysis

• Estimate of the variable of interest (e.g trip productions per household – HH) as a function of 

the HH characteristics 

• Households are classified based on their characteristics

• Trip generation rates are computed from data about the current condition (base scenario)

• Future trip generation rates are computed based on a scenario

• Assumption: Trip generation rates and stable over time and HH characteristics

Considerations:

• At what dimension (how many levels) to cross-classify e.g. HH size, car ownership, income 

etc…

• Choice of a category that is relatively stable over time



Category analysis

The category analysis is based on the computation of trip rates (trips per HH):

h: household of type h

p: trip purpose

tp(h): average number of trips per household, with purpose p

Tp(h): observed (total) trips per h and p

H(h): number of households of type h

𝑡𝑝 ℎ = 𝑇𝑝 ℎ /𝐻 ℎ



Example 1

Data

• The (average) number of trips made by HH

• The number of cars owned

• Distribution of HHs by car ownership, HH size, etc.

Question

• What is the average number of trips per HH?



Example 1

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Car 

Ownership

Av. number of trips per HH % HH

0 6 34%

1 6.78 47%

2+ 7.52 19%



Example 1

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Car 

Ownership

Av. number of trips per HH % HH Col. 2 * 

Col. 3

0 6 34% 2.04

1 6.78 47% 3.1866

2+ 7.52 19% 1.4288

6.655

Average number of trips by car ownership = trips made by HH * % HH of the population

Average of population



Example 1

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Car 

Ownership

Av. number of 

trips per HH

% HH Col. 2 * Col. 3 New % of

HH (scenario)

0 6 34% 2.04 15% 0.9

1 6.78 47% 3.1866 55% 3.729

2+ 7.52 19% 1.4288 30% 2.256

6.655 6.885

Scenario: we change the distribution of HH

New average



Example 1

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Car 

Ownership

Av. number of trips 

per HH

% HH Col. 2 * 

Col. 3

New % of

HH

Col. 2 * 

Col. 5

Difference

0 6 34% 2.04 15% 0.9 -1.14

1 6.78 47% 3.1866 55% 3.729 +0.5424

2+ 7.52 19% 1.4288 30% 2.256 +0.8272

6.655 6.885 +0.2296

Scenario: we change the distribution of HH

Difference



Limitations of Example 1

• We considered only one category to group the households

‣ Maybe we ignored some important household characteristics by generalising too much?

‣ Could this have an impact on the future scenario?

• Results of the future scenario are significantly affected by number of cars

‣ What if we overestimated trip rates due to this simplification?

• Solution: Let’s add another category to further segment the households



Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Car 

Ownership

HH Size Av. trips 

per HH

%HH

0 1 4.25 4%

0 2 5.666667 15%

0 3+ 6.8 15%

1 1 5 7%

1 2 6.222222 18%

1 3+ 7.818182 22%

2+ 1 5.6 5%

2+ 2 7.2 5%

2+ 3+ 8.777778 9%

We add one more group (HH size)

47%

19%

34%



Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Car 

Ownership

HH Size Av. trips 

per HH

%HH (Col. 3)*

(Col. 4)

0 1 4.25 4% 0.17

0 2 5.666667 15% 0.85

0 3+ 6.8 15% 1.02

1 1 5 7% 0.35

1 2 6.222222 18% 1.12

1 3+ 7.818182 22% 1.72

2+ 1 5.6 5% 0.28

2+ 2 7.2 5% 0.36

2+ 3+ 8.777778 9% 0.79

6.65

Average trips remain the same for the base scenario



Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Car 

Ownership

HH Size Av. trips 

per HH

%HH (Col. 3)*

(Col. 4)

New % 

HH

0 1 4.25 4% 0.17 5%

0 2 5.666667 15% 0.85 5%

0 3+ 6.8 15% 1.02 5%

1 1 5 7% 0.35 10%

1 2 6.222222 18% 1.12 20%

1 3+ 7.818182 22% 1.72 25%

2+ 1 5.6 5% 0.28 10%

2+ 2 7.2 5% 0.36 10%

2+ 3+ 8.777778 9% 0.79 10%

6.65



Example 2

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Car 

Ownership

HH Size Av. trips 

per HH

%HH (Col. 3)*

(Col. 4)

New % HH (Col. 6)*

(Col. 3)

(Col. 7)-(Col. 5)

0 1 4.25 4% 0.17 5% 0.2125 +0.0425

0 2 5.666667 15% 0.85 5% 0.283333 -0.56667

0 3+ 6.8 15% 1.02 5% 0.34 -0.68

1 1 5 7% 0.35 10% 0.5 +0.15

1 2 6.222222 18% 1.12 20% 1.244444 +0.124444

1 3+ 7.818182 22% 1.72 25% 1.954546 +0.234545

2+ 1 5.6 5% 0.28 10% 0.56 +0.28

2+ 2 7.2 5% 0.36 10% 0.72 +0.36

2+ 3+ 8.777778 9% 0.79 10% 0.877778 +0.087778

6.65 6.692601 +0.032601



Discussion of Example 2

• Average trips per household remain the same for the base scenario

• In example 2, forecast is 6.69 trips per household, as opposed to 6.88 in example 1, why?

‣ Greater degree of classification (as in example 2) allows greater sophistication in assumptions and hence 

possibility of more realistic representation of real life.

‣ If we generalise too much, we may overestimate (or underestimate) the trip rates

‣ The difference between the two (synthetic) examples is small but much larger differences can be observed in 

reality



Modelling car ownership

• Aim: To model the number of cars owned by households, where HH are categorised by location (URBAN/RURAL), and HH 

size (number of adult members)

• A survey was carried out at two locations (Urban and Rural) and data presented as follows:

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Location HH Size Cars owned by 

HH

No of HH

URBAN 1 0000000011 10

URBAN 2 000000111122 12

URBAN 3+ 0122 4

RURAL 1 00111 5

RURAL 2 00111122 8

RURAL 3+ 01222 5

(a) The number of digits indicate the number of HH (e.g. the ten digits in 

0000000011 = 10 HH) (b) The value of each digit indicates the number of cars 

owned by a HH (e.g. ‘2’ means two cars and ‘0’ means no cars).



Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Location HH Size Cars owned by 

HH

No of HH % of HH

URBAN 1 0000000011 10 22.7%

URBAN 2 000000111122 12 27.3%

URBAN 3+ 0122 4 9.1%

RURAL 1 00111 5 11.4%

RURAL 2 00111122 8 18.1%

RURAL 3+ 01222 5 11.4%

44



Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Location HH Size Cars owned by 

HH

No of HH % of HH No of cars

URBAN 1 0000000011 10 22.7% 2

URBAN 2 000000111122 12 27.3% 8

URBAN 3+ 0122 4 9.1% 5

RURAL 1 00111 5 11.4% 3

RURAL 2 00111122 8 18.1% 8

RURAL 3+ 01222 5 11.4% 7

44



Modelling car ownership

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Co. 7

Location HH Size Cars owned 

by HH

No of HH % of HH No of cars Avg No of 

Cars per HH

URBAN 1 0000000011 10 22.7% 2 0.20 (=2/10)

URBAN 2 000000111122 12 27.3% 8 0.67 (=8/12)

URBAN 3+ 0122 4 9.1% 5 1.25

RURAL 1 00111 5 11.4% 3 0.60

RURAL 2 00111122 8 18.1% 8 1.00

RURAL 3+ 01222 5 11.4% 7 1.40

44



Modelling car ownership

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+

Case 1 10% 20% 20% 10% 20% 20%

Case 2 5% 10% 10% 15% 30% 30%

Example 3b: Using the data from 3a predict the average number of cars per household for a similar 

population distributed as:



Modelling car ownership

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+

Case 1 10% 20% 20% 10% 20% 20%

3b-1

Col. 1 Col. 2 Col. 3 Col. 4 Co. 5

Location HH Size % of HH No of cars Col. 3 * Col. 4

URBAN 1 10% 0.20 0.020

URBAN 2 20% 0.67 0.134

URBAN 3+ 20% 1.25 0.25

RURAL 1 10% 0.60 0.06

RURAL 2 20% 1.00 0.200

RURAL 3+ 20% 1.40 0.280

0.944



Modelling car ownership

URBAN 1 URBAN 2 URBAN 3+ RURAL 1 RURAL 2 RURAL 3+

Case 2 5% 10% 10% 15% 30% 30%

3b-2

Col. 1 Col. 2 Col. 3 Col. 4 Co. 5

Location HH Size % of HH No of cars Col. 3 * Col. 4

URBAN 1 5% 0.20 0.010

URBAN 2 10% 0.67 0.067

URBAN 3+ 10% 1.25 0.125

RURAL 1 15% 0.60 0.090

RURAL 2 30% 1.00 0.300

RURAL 3+ 30% 1.40 0.420

1.012



Comments on category analysis

Advantages
• No prior assumptions about the shapes of relationships are required, i.e. no formula needed

• Analysis can be carried out on disaggregated data

• Independence between HH characteristics variables and zones structure

• Independence between the different HH characteristics

Disadvantages
• Unless using regression analysis to select variables and levels of variables, there are no goodness of 

fit tests

• Extrapolation not possible; using open ended (continuous) variables levels can have difficulties

• Large samples required: preferably 20 to 50 observations per cell



Demand growth scenarios

• Demand growth scenarios: we assume different trip generation scenarios, following a change in our system

• Test the project on all the scenarios, some will never happen

• Not a robust scientific method on how to develop demand growth scenarios. Considerations:

‣ Trip rates: Standard trip rates are the average of observed data. We also consider different values, especially if 

we have knowledge of the local area

‣ Employment growth: Employment rates, sectors, wider economic impacts, also in the surrounding zones

‣ Trends: Working from home, ride sharing, autonomous vehicles (future scenario)

‣ Population growth: Different assumptions, people moving in and out, new buildings

‣ Shopping and leisure: Competition between retail and leisure centres

‣ Mode-specific factors: Car ownership, investment on walking or cycling infrastructure, capacity of public 

transport, parking policy



Expansion (or Growth) Factor

𝑇𝑖 = 𝐹𝑖 𝑡𝑖

where Ti and ti are respectively future (scenario) and current (base year) trip origins in zone i, and Fi is a 

growth factor

Normally the growth factor is related to variables such as population (P), income (I) and car ownership (C), in a 

function such as:

Similarly, this method can be applied to trips destinations

𝐹𝑖 =
𝑓 𝑃𝑖

𝑑 , 𝐼𝑖
𝑑 , 𝐶𝑖

𝑑

𝑓 𝑃𝑖
𝑐 , 𝐼𝑖

𝑐 , 𝐶𝑖
𝑐

where f can even be a direct multiplicative function with no parameters, and the superscripts d and c denote the 

design and current years respectively

Main formula



Expansion (or Growth) Factor - Example

a. Base year

250 HH with a car

6 trips/day (with a car)

250 HH without a car

2.5 trips/day (w/o a car)

total trips:  ti = 250 x 6 + 250 x 2.5 = 2125 trips/day

b. Target year

500 HH with a car

0 HH without a car

How many trips/day in the target year?



Expansion (or Growth) Factor - Example

Solution

All but car ownership remain constant:

𝐹𝑖 = 𝐶𝑖
𝑑/𝐶𝑖

𝑐 = 1/0.5 = 2

𝑇𝑖 = 2 × 2125 = 4250 trips/day

Initial formula (previous slide)

𝑇𝑖=500*6=3000

The growth factor approach can be very crude – estimated (4250-3000)/3000 = 42% more trips



Expansion (or Growth) Factor

• Very simple

• Requires good base year data for all zones to obtain reliable expansion factors

• Separate expansion factors could be used for different zones or types (in inner area/outer 
area)

• Not sensitive to policy changes without taking into account all relevant factors

‣ E.g. Based on some employment level trends, I expect a 10% population increase, hence Fi = 1.1

‣ What if some new congestion charge is introduced?

• Growth factor methods are mostly used predict the future number of external trips to an area

‣ usually they are not too many (so errors cannot be too large) 

‣ there are no simple ways to predict them



Linear regression

Statistical technique to "explain" movements (changes) in a variable (dependent variable) as a function of 

other variables (independent variables):

Yi = β0 +β1X1i +εi

where

Yi : Dependent variable (e.g. number of trips of a household daily)

Xi: Independent variable (e.g. car availability)

β0 & β1: parameters to be estimated (β0 is also known as the intercept term or simply constant)

Interpretation: if X1i changes by one unit, then Yi changes by β1

εi : Independent and identically normally distributed (i.i.d.) error term

• A linear regression model can have many independent (explanatory) variables

Yi = β0 +β1X1i +β2X2i +β3X3i … +βkXki +εi



Linear regression

Advantages: Easy to specify, estimate and interpret. Plenty of available software.

Linear regression (and all statistical models) require some assumptions to ensure the 

validity of the results.

Can be overused or misused. More advanced models must be used if assumptions 

are violated.

Trip generation is a ‘count’ outcome (i.e. number of trips). Linear regression is 

producing a continuous prediction ෠𝑌, e.g. 2.7 trips/hh or –0.14 trips/hh. Forecasts 

must be carefully checked

• Alternatives: Poisson regression, negative binomial regression or any other model 

suitable for a count outcome



Linear regression – Estimation procedures

So far, we have mentioned some parameters β associated with the impact of independent 

variables on the dependent variable…

Yi = β0 +β1X1i +β2X2i +β3X3i … +βkXki +εi

… but how do we obtain their values?



Aim: minimise the squared error

In matrix form:

For 
𝜕𝜀′𝜀

𝜕෡𝛽
= 0 we get

Linear regression – Estimation – Ordinary Least Squares

𝜀𝑖
2 =෍

𝑖=1

𝑛

𝑌𝑖 − 𝑋𝑖 መ𝛽
2

𝜀′𝜀 = 𝑌 − 𝑋 መ𝛽
′
𝑌 − 𝑋 መ𝛽 = 𝑌′𝑌 − 2 ෡𝛽′Χ′𝑌 + ෡𝛽′Χ′𝑋 መ𝛽

መ𝛽 = Χ′𝑋 −1 Χ′ 𝑌

… these are the parameters that we want to estimate



Standard errors: a measure of variability of the estimated parameters in the population

• Aim: the smaller the better

• How small? We investigate in the next slides

True variance unknown, instead we use the mean squared error (MSE):

Linear regression – Estimation – Standard errors

𝑉𝑎𝑟 ෢𝛽 = σ2 Χ′𝑋 −1 → 𝑆𝐸 ෢𝛽 = σ2 Χ′𝑋 −1

𝑀𝑆𝐸 =
1

𝑛−𝑘
σ𝑖=1
𝑛 𝑌𝑖 − ෠𝑌𝑖

2
=

𝑆𝑆𝐸

𝑛−𝑘
, SSE is the sum of squared errors

• n is the sample size, k is the number of the estimated parameters

• 𝐸[𝑀𝑆𝐸] = 𝜎2



Linear regression – categorical independent variables

The interpretation of linear regression is one-unit change of an independent variable results to 

β change to the dependent variable.

Sometimes, the independent variable may not be continuous but categorical for instance 

gender, highest education level, availability of car in a household, time of the day someone 

commutes (morning, noon, afternoon, evening).

If we use an independent variable X which is categorical, we must estimate different βs for 

each category.

" Dummy variable trap! We can estimate one less parameter than the total number of groups 

of the independent variable to avoid perfect multicollinearity



Linear regression – categorical independent variables

Let’s consider a categorical variable D with 4 levels D1i, D2i, D3i, D4i where:

Dji = 1 if condition is met for observation i, 0 otherwise.

A regression model would be:

Yi = β0 +β1D1i +β2D2i +β3D3i +β4D4i +β5Xi +εi

In this case we keep D4 as a reference category and we are not estimating a parameter for it.

• E.g. β4 = 0



Linear regression – categorical independent variables

If we attempt to estimate parameters for all levels:

Yi = β0 +β1D1i +β2D2i +β3D3i +β4D4i +β5Xi +εi

By definition: D1i +D2i +D3i +D4i = 1

Hence:

Yi = β0 +β1D1i +β2D2i +β3D3i +β4(1 - D1i +D2i +D3i)+β5Xi +εi

Yi = (β0 +β4) + (β1 - β4) D1i + (β2 - β4)D2i + (β3 - β4)D3i+β5Xi +εi

• Every group is a linear combination of the others plus the intercept – perfect multicollinearity 

(Χ′X non-invertible)

• Cannot estimate the sums and differences of parameters separately Solution: Do not estimate 

β4 (in general estimate one parameter less than the number of categories)



Linear regression – Estimation output

Parameter Estimate s.e. t-ratio p-value

β₀ 0.883 0.047 18.655 0.000

β(Household size) 0.418 0.004 97.635 0.000

β(Number of vehicles) 0.263 0.005 53.389 0.000

β(Income) 0.014 0.001 24.775 0.000

β(Presence of children) 0.216 0.011 19.467 0.000

β(Distance to public transport) -0.455 0.004 -111.233 0.000

Using any linear regression software we would receive an output like this:

• Dependent variable: number of trips of a household per day

What is this??
And this??

We know what are these…

How to interpret the estimate values?



Linear regression – interpretation of parameters

• Linear regression is linear in parameters β

‣ Model interpretation: Change of one unit in the independent variable results in β change to the 

dependent variable, all others being equal

‣ Example 1: If a household increases its size by one member then 0.418 daily trips are added

‣ Example 2: One additional km far from public transport reduces 0.455 daily trips are subtracted

‣ Example 3: If a household has kids then 0.216 daily trips are added.

▪ How about households without kids??
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‣ Example 3: If a household has children then 0.216 daily trips are added.

▪ How about households without kids??

▪ Presence of kids is a dummy variable. No kids is a the reference category, no need to estimate a 

parameter

▪ The reference category parameter is fixed typically assumed to be fixed to 0

▪ The parameter of the reference category is absorbed by the model constant and the parameters 

of the categories that we estimate

▪ This extends to categorical variables with any number of categories



Linear regression – Estimation output

Parameter Estimate s.e. t-ratio p-value

β₀ 0.883 0.047 18.655 0.000

β(Household size) 0.418 0.004 97.635 0.000

β(Number of vehicles) 0.263 0.005 53.389 0.000

β(Income) 0.014 0.001 24.775 0.000

β(Presence of children) 0.216 0.011 19.467 0.000

β(Distance to public transport) -0.455 0.004 -111.233 0.000

Using any linear regression software we would receive an output like this:

• But what is the t-ratio? And what is the p-value?

What is this??
And this??

We know what are these…

How to interpret the estimate values?



Sampling – Confidence intervals (Reminder)

First, let’s remember some properties of the standard normal distribution

N ∼ (0,1):

• 68% of the observations are between -1 and 1 standard deviations of the mean

• 95% of the observations are between -2 and 2 standard deviations (-1.96 and 1.96 to be precise)

• 99.9% of the observations are between -3 and 3 standard deviations



Sampling – Confidence intervals (Reminder)

• Brief reminder – A standard normal [N ∼ (0,1)] variable Z is defined as:

• A standard normal variable Z is with 0.95 probability between the range [-1.96, 1.96] (from 

the previous slide); then:

• The confidence interval that captures µ with a probability of 0.95 can be rewritten as: 

Z=
തX− μ

σ/ n



Sampling – Confidence intervals

• For a confidence interval of value (1-α) [where α takes values between 0 and 1] and Zα/2 such 

as the area in each of the two tails of the normal distribution curve (α/2) we get:

• When population variance is unknown the t-distribution is used instead with degrees of 

freedom n −1:



Sampling – Confidence intervals



Hypothesis testing

Hypothesis testing is used to assess if a difference in a population parameter (e.g. mean) 

between two or more groups is likely to have occurred by chance or due to some specific 

factor.

Mechanics of hypothesis testing:

• Null Hypothesis (H0): There is no significant difference between two groups

• Alternative Hypothesis (H1): There is significant difference between two groups



Hypothesis testing

Example: We want to investigate whether after the implementation of traffic calming 

measures, the average traffic speed on a road is different from 60 km/h. Hence:

• H0: µspeed = 60km/h

• H1: µspeed ≠ 60km/h

First we transform speed (e.g. we take speed observations from vehicles in the study area) 

to a Z-variable as:

𝑍∗ =
ത𝑋 − 𝜇

𝜎 𝑛

The result of this transformation is a variable of approximately normal distribution with 

mean = 0 and standard deviation = 1



Hypothesis testing

The null hypothesis is rejected if the sample mean is significantly different from 60 and ത𝑋
falls in the rejection region

• The value of the true mean is not within [-1.96, 1.96] with 0.95 probability



Hypothesis testing

Critical Points of Zc for Different Levels of Significance α

We then evaluate significance as:

• Critical values of Z, or Zc, are defined such that

P[Z∗ ≥ Zc] = P[Z∗ ≤ −Zc] = α/2

• If |Z∗| ≥ |Zc|, then the probability of observing this (Z∗) value (or larger), if H0 is true is α. In 

this case, the null hypothesis (H0) is rejected.

• If |Z∗| < |Zc|, then the probability of observing this value (or smaller) if H0 is true is equal to 

1−α. In this case, the null hypothesis (H0) cannot be rejected.



Hypothesis testing: the p-value

• Probability value or p-value

• An alternative metric to report the significance of an outcome

• The smallest level of significance α that leads to rejection of the null hypothesis

• Quantifies the amount of statistical evidence that supports the alternative hypothesis

• Let’s say we obtain Z∗ = 3.27; the p-value is calculated as:

p-value(Z∗ = 3.27) = p[Z ≤ -3.27 and Z ≥ 3.27] = 2p[Z ≥ 3.27] = 2[1-p[Z ≤ 3.27]] 

= 2[1-.99946] = .001

• For reference, if Z∗ = 1.96, then p-value = 0.05 (typically we want to see p-value ≤ 0.05)

• But how do we know that p[Z ≤ 3.27] = .99946??



Hypothesis testing: the p-value

• To answer this question we need to use the concept of Cumulative Density Function (CDF)

• The CDF of a probability distribution contains the probabilities that a random variable X is 

smaller than or equal to a given value x

𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 = න
−∞

𝑥

𝑓𝑋 𝑥 𝑑𝑥

• For the normal distribution, the CDF value for 3.27 is .99946

• CDF functions are readily available in most software packages



Cumulative Density Function (CDF)



Hypothesis testing and parameter estimates

• In linear regression (and all statistical models) we want to estimate parameters

• β : <β0,β1,β2,...,βN> that best approximate our dependent variable

• We need a metric that will allow us to measure the importance of each parameter i.e., the 

likelihood that an independent variable is significantly related to the dependent.

• It is possible to achieve so with hypothesis testing.



Hypothesis testing and parameter estimates

• Let’s focus on the parameter β1 of a model.

• We can only obtain an estimate of the true β1; let’s call it ෠β1

• The sampling distribution of the estimate ෠β1 of β1 is the distribution of the mean values that 

would result from repeated samples drawn from the population.

• The sampling distribution is approximately normal (from the Central Limit Theorem) as:

መ𝛽1 ≈ 𝛽1, 𝜎1
2

where 𝜎1
2 is the standard error of the parameter

• We can then form a hypothesis test around the true value of β1



Hypothesis testing and parameter estimates

• The typical hypothesis test that we form is around the 0 value

Why? If the true value of a parameter is not significantly different from 0, then the independent 

variable associated with this parameter does not have an impact on the dependent variable

• Hence, we have:

H0 : β1 = 0

H1 : β1 ≠ 0

• Following the hypothesis testing approach we discussed earlier, we form the t-statistic of the 

parameter as:

𝑡෡𝛽1 =
መ𝛽1 − 0

𝜎෡𝛽1

• As we already discussed, for large samples we reject the null hypothesis for |𝑡෡𝛽1 | ≥ 1.96 (or 

p−Value < 0.05)



Linear regression – Estimation output

Parameter Estimate s.e. t-ratio p-value

β₀ 0.883 0.047 18.655 0.000

β(Household size) 0.418 0.004 97.635 0.000

β(Number of vehicles) 0.263 0.005 53.389 0.000

β(Income) 0.014 0.001 24.775 0.000

β(Presence of children) 0.216 0.011 19.467 0.000

β(Distance to public transport) -0.455 0.004 -111.233 0.000

Now we can understand the whole table

What is this??
And this??

We know what are these…

How to interpret the estimate values?



Linear regression Assumptions – Brief summary



• Sum of square errors:

• Total sum of squares:

• The coefficient of determination, R-squared (proportion of total variance explained by X)

0≤ R2 ≤1, if R2 = 1 then all the variance is explained by the independent variables

Linear regression – Goodness-of-fit

SSE =෍

𝑖=1

𝑛

𝑌𝑖 − ෠𝑌𝑖
2

SST =෍

𝑖=1

𝑛

𝑌𝑖 − ത𝑌
2

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇



Linear regression – Useful transformations

Exponential Y=αβΧε ⟹ lnY=lnα+Xlnβ+u, where u~N(0, σ2)

Logarithmic (log-log model) Y=eαXβε ⟹ lnY=α+βlnΧ+u, where u~N(0, σ2)

Other 𝑌 =
1

𝛼+𝛽𝑋+𝑢
⟹

1

𝑌
= 𝛼 + 𝛽𝑋 + 𝑢, where u~N(0, σ2)



Linear regression – Comments

• Remember: Significance of parameters and goodness-of-fit are not everything!

• Always check the sign of your parameters:

• E.g., does it make sense in my study if my model predicts that car availability or household size 

reduce the number of trips?

• Make sure that the interpretation of your parameter estimates is consistent with your expectations



Scaling methods

• Models DO NOT guarantee that (system closure):

• We need a closed system to generate an OD matrix

• We assume that generation models are ‘better’ than trip attraction models

‣ Generation (production) models: Sophisticated household-based models including explanatory variables

‣ Attraction models: Estimated using zonal data

• Fix: total number of trips arising from summing all origins Oi is the ‘correct’ value

‣ Each destination Dj are multiplied by an F factor as:

෍

𝑖

𝑂𝑖 =෍

𝑗

𝐷𝑗

𝐹𝐷 =
σ𝑖𝑂𝑖
σ𝑗𝐷𝑗



Scaling methods

• If we have reason to trust more the destination data, then we multiply each Oi by:

• If we trust both then:

1. G = σiOi + σjDj /2

2. FO =
G

σi Oi

3. FD =
G

σj Dj

4. Oi
′ = Oi FO

5. Dj
′ = Dj FD

𝐹𝑂 =
σ𝑗𝐷𝑗

σ𝑖𝑂𝑖



Limitations of trip generation models

• Uncertain growth: We have no forecasting information. Define several scenarios an 

evaluate their plausibility

• Definition of trip generation: Be clear if the total demand changes or we simply observe 

modal shift or change in route choice in our models

• Unclear behaviour: Non home-based trips are difficult to be modelled well

• Model scope: The standard 4–step model assumes that no one is moving house or work 

location due to transport issues



Summary

Trip generation modelling (step 1 of the 4–step model)

• Aim – motivation – purpose

• Terminology

• Models

‣ Cross classification – category analysis

‣ Growth factor models

‣ Linear regression


