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The 4-step model

Step 1: Trip generation Decision for _m_aklng a trip with
a specific purpose
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Previously — Trip generation models

Trip generation modelling
* Aim — motivation

« Terminology

* Models

» Cross classification — category analysis
>~ Growth factor models

>~ Linear regression



Trip distribution models

Trip distribution modelling
e Aim — background

 Models

»  Growth factor methods — Furness method

>~ Synthetic methods — gravity model




Step 1: Trip generation

Trip generation step:

« The number of trips generated in each zone

| | —
« The number of trips attracted in each zone / ;/i
BN b
Generated trips are typically a function of /é ". . .
socioeconomic characteristics and land use - I ‘.
e | >
Attracted trips are typically a function of land 1 % RS

use characteristics .
Output: The number of trips generated in and \{r

attracted to each zone




Step 2: Trip distribution

 Trip distribution step:

« The number of trips between each origin-destination
pair

« The number of trips typically depends on the
productivity of the origin zone and the attractiveness of
the destination zone

» Some typical factors that affect trip distribution are the
size of a zone, the land use, and the trip cost between
the origin and destination zones

* Input: Trip production/attraction (from step 1), travel
cost matrix

« Output: Origin-destination matrix (typically by trip
purpose)




Trip distribution — Aim

« Where the generated trips go & the attracted trips come from
* \We match the O zones with D zones
« Sum of each row and column are known (From our trip generation models)
« Challenge: Fill in the blanks-cells
> We begin from our estimates of trip ends in each zone

)




Trip distribution — Aim

Inputs:
* Trip productions and attractions
« Travel (generalised) cost matrix (if we have one)

Output:
* Full trip OD matrix Tj; (T; Is the number of trips from origin zone i to destination zone j)

We should generate separate OD matrixes for each trip purpose, travel mode, scenario, and
year in our analysis (we use the same demand segmentation from the trip generation step)

We do not examine the exact path from i to j yet. This is done by the assignment model in
step 4



Trip characteristics

Different OD matrices per trip purpose:
« When trip purpose home to work — confident both for production and attraction trip ends
~ Travellers have specific home and work locations
« Numbers computed in the trip generation stage (residential characteristics and employment figures)

« We must convert production-attraction to origin-destination

> The assignment step requires the origin and destination zones




Trip purpose

 Factors affecting distribution: Congestion, distance, cost, frequency of public transport etc.

* [Factors take the form of generalised cost:

» Comes from the assignment model and/or

>~ Discrete choice models

~ For today we will assume its value known — more in the next lecture
« For commute trips we take input from the trip generation model

» Generalised cost has secondary role

~ People most likely will not change work location due to the generalised cost



Trip purpose

“Home to other” trips (we exclude work and education) productions from the generation step:

We care less about trip attractions in this case, lower importance
People are more flexible to travel to a different zone — generalised cost is important here

E.g. If purpose is shopping or leisure, one can easier change the destination zone, if generalised cost
changes considerably

Trip production and generalised cost the most important factors

Fixed totals for the rows but not the columns (destination choice modelling)

The opposite for home to work trips (totals of all rows and columns are fixed)




Trip purpose - Summary

Home to work (or education), we fixed columns and rows totals, we just need to fill in the matrix
= Less choice flexibility

For other trips: Distribution process selects which columns have more trips (destination choice
modelling)

Generalised cost: must include as many as possible variables that make a destination attractive;
otherwise may overrepresent irrelevant destinations

May have too many calculations — comes at the expense of behavioural aspects. We primarily care
about executing calculations fast




Defining the OD matrix

Gravity model: assign trips based on the smaller generalised cost
» How do we get the cost? At the assignment step and/or using choice models.

In the first model iteration there is no assignment.
> We need to fill the trips without any knowledge of the generalised cost.
» Maybe we are lucky and we can use the cost from an older model

Maybe | do not trust the generalised cost, using it gives me unexpected results:
> Methods that do not depend on the generalised cost e.g., Furness or Fratar methods
> Numbers add up correctly to the known totals

Rebalancing: balance the matrix based on new totals and a previous OD matrix



Matrix conversion: from production—attraction (PA) to origin—destination (OD)

The distribution matrix is in PA format; we need to convert to OD to feed the assignment model.
Why?

« PA matrix is not directional; we know the production and attraction zone but not the direction of trip e.qg.
home location is always considered as the trip production location

* Route choice depends on the direction of the travel
« Traffic conditions depend on the direction of the travel.
« Assignment model requires exact origin and destination

Solution:
« Reverse trips going towards home so we get the correct travel direction

« For every zone use shares from observed data (e.g. what % of productions are leaving or
entering the zone) — we will do a simplified approach if this technique in the lab session



Matrix conversion: from production—attraction (PA) to origin—destination (OD)

Reasons for preferring the PA format:

» Consistency with Home-Based Trip Behaviour: people consider both the from and to
Costs

« More Meaningful Trip Generation Modelling: productions are based on residential
characteristics and attractions are based on activity locations

» Easier Calibration of Trip Rates: PA allows calibration of trip rates by trip purpose and
socioeconomic group, using household survey data (the production end always at
home).

» Better input for Trip Distribution models (clear which zone attracts and which zone
produces)




Matrix conversion: from production—attraction (PA) to origin—destination (OD)

« \We can directly use OD if data is poor quality at first place (rule of thumb)

* \We need different matrices for time of the day:

~ Information about trip generation, distribution, and mode choice typically available for
24h or average weekday

» 24h window may be too long and generic for our project

~ Assignment (traffic levels, passenger numbers) at smaller time periods e.g. morning
peak

» Detailed approach: time of day choice model on how to split the number of trips in
morning-peak, afternoon-peak, rest of the time

»  Usually we simplify: we use the data to see what proportion of the trips is made at each
time of the day, based on some fixed factors

~ Caution! We must ensure that the factors will not lead to behaviour change in the
scenario that we investigate (e.g. a new tram line that changes proportion between
work/other reason trips starting from a zone)



Trips within the same zone

Some trips never leave the zone (internal trips)

Internal trips are usually ignored during network assignment (Step 4)
~  All trips are assumed to start and end at a centroid — internal trips have the same centroid

~ This is one more reason that it is important to correctly specify the zones!

Important to include internal trips in the distribution step

~ Destinations may change due to changes in the transport system and some of the trips will
leave the zone

What is the generalised cost of an internal trip?

» Assumption e.g. 70% of the generalised cost travelling to the nearest zone



Sanity checks on demand matrix

For large projects it is impossible to check cell by cell a trip distribution matrix produced by
a model.

We check some specific aspects of the matrix.

 Trip length (either distance or travel time) distribution
~ We can compare our data to old data or simply to our expectation (not very scientific)
~ It is applied at the network level (not per uniqgue OD) but gives an overall picture

« Maps are useful but can show only one type of information at the time

»  Demand by origin zones

»  Demand by destination zones

> Demand from one origin to all destinations
> Demand from all origins to a destination



Limitations of trip distribution models

 Filling the matrix has black box elements — always some OD pairs will not make sense
« Easy to miss obvious problems due to matrix size (check sanity checks)
« Missing behavioural consistency when combining data from multiple sources

« Generalised cost not only time-cost but also other factors — perception that drives
choices (we must approximate well all these aspects)

« Lower credibility of trips identified as internal, due to simplified generalised cost.
Number of trips to adjacent zones may be affected by this because there is
redistribution of internal trips to these zones.




Reminder — trip distribution

1 (2 |3 |4 |5 |o 1 |2 |3 |4 |5 |0
1 ? ? ? ? ? Ol 1 T11 T12 T13 T14 T15 Ol
2 ? A<__?___..3____?___ _2____0_2_ 2 T21 T22 T23 T24 T25 O2
3 (20?2 |2 [? |? |0 I 3 [Ty |Ts |Tas [Tas [Tas | O
|
4 ? : ? ? ? ? O4 4 T41 T42 T43 T44 T45 O4
1
5 ? i ? ? ? ? O5 5 T51 T52 T53 T54 T55 O5
D, |D,i |D, |Dy |[D, |Ds D, |D, |D, |D; |D, |[Ds
Trip generation: Trip distribution:
Production O, and Origin-destination
attraction D, matrix T;;




Model types

1. We update an existing OD matrix with known T;; values
« Growth factor methods
* Furness (or Fratar in the USA) method

2. We know the O; and D; at the aggregate level and we have to find T;; (unknown) — Synthetic
methods

« Gravity models

3. Logit model (next lecture)



Growth factor methods

« Uniform growth factor method

Unrealistic except perhaps for very short time spans (e.g. 2 years)

 Singly constrained growth factor methods

« Doubly constrained growth factor methods




Uniform growth factor method

Same concept with trip generation
_ 0
Tij = TU XT
where
T;; = trips from origin zone i to destination zone j in the future year
Ti‘} = trips from origin zone i to destination zone j in the base year

T = a general growth factor from base year to future year applied to all ij pairs
Based on past trends or forecasts

Base year 1 2 X T Future year 1 2

1 (i TS, E——— 1 . Ty Tis
2 T 0 /2/ T34 T22

Tll — T101 XT




Uniform growth factor method: Example

Base year matrix

A B C Sum New O
A 1 2 4 7 14

3 3 4 10 10
C 4 3 3 10 15
Sum 8 8 11
New D 12 15 12

Compute the future matrix...



Uniform growth factor method: Example

Base year total trips = 27
Future year total trips = 39
Growth factor =39/27 =1.44

Future table

New O

14

10

15

A B C Sum
A 1x1.44 |2x1.44 |4x1.44 10.08
B 3x1.44 [3x1.44 |4x1.44 14.4
C 4x1.44 |(3x1.44 |3x1.44 14.4
Sum 11.52 11.52 15.84
NewD |12 15 12

We didn’t do very well in capturing the future values




Singly Constrained Growth factor methods

 Origin-constrained growth factor method:
» Future growth data is available on trips produced in each zone

 Destination-constrained growth factor method:
> Future growth data is available on trips attracted in each zone

T;j = Ti‘} X 1; for origin — constrained factors

T;j = Ti(]’- X 7; for destination — constrained factors
7; = growth factor applied to origin zone i

n; = growth factor applied to destination zone j



Singly Constrained Growth factor methods

Origin-constrained growth factor method:

0;
Ti:m
l

O; = Future trips from origin zone i

0; = Base year trips from origin zone i

Base year 1 2
1 T10 1 T102 v (51
2 Tzo 1 Tz0 2 12

Future year 1 2
1 TY X1, | TS X 14
2 T201 X (%) T202 X (%)




Singly Constrained Growth factor methods: Example

Base year matrix

A B C Sum New O
A 1 2 4 7 14

3 3 4 10 10
C 4 3 3 10 15
Sum 8 8 11
New D 12 15 12

Compute the future matrix...



Singly Constrained Growth factor methods: Example

Origin-constrained growth factor method:

0; 14 10 15

T; 0_l0 »TA=_=2 TB_E_ TC_E=15
T T A B C
2 ) A 2 2
1 B 1 1 1
1.5 C 15 |15 |15




Singly Constrained Growth factor methods: Example

Multiply element—wise

A B C Sum
A 2 4 8 14
B 3 3 4 10
C 6 4.5 4.5 15
Sum 11 11.5 16.5

T A B C
A 2 2 2
B 1 1 1
C 1.5 1.5 1.5
X

A B C
A 1 2 4
B 3 3 4
C 4 3 3

Sums at destination do not match the
expected future totals...




Singly Constrained Growth factor methods

Destination-constrained growth factor method:

D; = Future trips from destination zone |

D]p = Base year trips from destination zone j

Base year | 1 2 Future year 1 2
1 Tiy Tiy M | M2 — 1 Tir X1 | Ty X1
2 71 T2 2 Tpr Xng | Ty X1y




Doubly Constrained Growth factor methods

 Information available and reliable on both future trips originated and attracted to each zone

* Average growth factor method

* Furness method (Fratar in the USA)




Average growth factor

Average zonal growth factor:

0; . D;
Pij = RS/ o
2 2
Baseyear | 1 2
1 T101 T102 X P11 P12
2 T201 T202 P21 P22

Future year 1 2
1 T X Pyp | T, X Py,
2 TPy X Pyy | Tgy X Py

Neither Os or Ds will match the expected future values




The Furness method

« Adoubly constrained growth factor method

« Furness suggests updating the initial matrix by adjusting alternatively both the
constraints to origins and destinations, until convergence is reached

 The final O-D matrix is obtained by iteratively adjusting the origins and
destinations until both the new origins and destinations are close enough to the
target values




The Furness method

_m0p. . _ 70, 9% . Dj 70
l J

a; 50 X A;
D;
bj m X B]

A, and B; are balancing factors



The Furness method

For a; :

Ul Wy .
Oi:ZT Z( X a; X b =alxz T°><b
J J




The Furness method: Algorithm

We need the base year full matrix and future O; and D; values
Iteration O:

- a. 0: D:
* Calculate initial a; and b; as: a; = —5and b; = D—{)
i j

= Ifall o; and b; values are within 0.95 — 1.05, STOP; Else, next iteration

Iteration 1: origin constrained growth
= Multiply matrix by o
= Calculate new row and column totals and the new b,
= If all new b; values are within 0.95 — 1.05, STOP; Else, next iteration

Iteration 2: origin constrained growth
= Multiply matrix by b,
= Calculate new row and column totals and the new o
= |fall new o, values are within 0.95 — 1.05, STOP; Else, GOTO Iteration 1



Base year matrix

The Furness method: Example

New O

14

10

15

A B C Sum
A 1 2 4 7

3 3 4 10
C 4 3 3 10
Sum 8 8 11
New D 12 15 12

Use the Furness method to calculate the new matrix...




The Furness method: Example

Base year matrix

A B
A 1 2
B 3 3 s Step 1: adjust the origins
C 4 3
0
D 8 8
D 12 | 15 | 12
- 0




The Furness method: Example

Iteration 1;
0; | a;=0;/0]
14 1
10 1
15 1

Step 2: Compute b; and check if between 0.95 - 1.05



The Furness method: Example

Iteration 2;

Step 4. Compute a; and check if between
0.95-1.05

-—

Step 3: adjust the destinations



The Furness method: Example

Back to Iteration 1:

Step 5: Adjust origins

... converged!

Step 6: Compute b; and check if between 0.95 - 1.05



Growth Factor Methods

Advantages

Simple and easy to understand and implement

Make use of existing matrix and trip end (O or/and D) forecasts
Suitable for short term planning

Can use a ‘Uniform Growth Factor’ or ‘Zonal Growth Factors’

Disadvantages

Needs lot of data (base year trip matrix)

The results ‘replicate’ the patterns in the existing matrix — not suitable for long term planning

Suffer from empty cell problem, i.e. if a cell is empty (T;; = 0), growth factor methods cannot compute
a new value to the empty cell

Existing low volume cells also result in problematic outputs

Cannot add new traffic zones

Cannot account for changes in transport costs — limited in its ability to model changes in policy



Synthetic Distribution Models

* If no reliable previous matrix exists but there are reliable O; and D;
* Generating T; from O; and D,
« A common method is the gravity model:

»  Newton’s Law of Gravity: the relative strength (i.e. gravity) between two objects is proportional to their
masses and inversely proportional to the distance between the two

> In trip distribution, the OD trips (due to attractions between two zones) are proportional to O; and D; and
inversely proportional to travel cost (generalised cost) attributes (e.g. distance, time and cost)




The Generalised Cost (Reminder)

« Summarises everything about the travel experience from origin O to destination D
« A measure combining all the main cost attributes related to the disutility of a journey

« Typically a linear function of the attributes of the journey weighted by coefficients which
attempt to represent their relative importance

« |If different options available, each of them has a different generalised cost (even if monetary
cost Is the same)




The Generalised Cost form

Cjj = 8 + ity + a,™t, + a3™1;

where
C;; : generalised cost from origin zone I to destination zone |

t, - t;: factors affecting the perceived generalised cost from origin zone i to destination zone j (e.g. travel
time, travel cost, level of comfort, etc.)

a, : constant (specific to the ij pair, travel mode used etc.)

a, - a5 weights to be estimated (convert all factors to the same units)



The Gravity model

Newton’s law

where
F,, : the relative strength (i.e. gravity)

M, M,: the masses

d, , : the distance between M, and M,




The Gravity model: for trip distribution

The Gravity model
Tl'jZle'.T}'.f(cij)
where
T;; - trips from origin zone i to destination zone j
k : the proportionality constant or balancing factor

c;; : generalised cost from origin zone i to destination zone |

f(cy;) : the "deterrence function™ representing the disincentive to travel



The Deterrence Function

Typical forms:

f(eij) = cii” Power function
f(cij) = exp(—Bcij) Exponential function
f(cl-j) = cj;exp(—pBc;;) Combined function

n, . parameters to be estimated



The balancing factor k

A single balancing factor may not be sufficient to ensure a match between the O and D totals

 Instead, we can use two balancing factors (and follow a Furness method approach)

Tij:kTiij(Cij) —) Ti':AiDjTiij(Cij)
 Origin constrained case:
A4; = 1/ZDJf(ClJ), all Bj=1

* Destination constrained case:
B; =1/ 0; (Cl'j), allA, =1

 Origin and destination constrained case:

A;=1/3 [Bijf(Cij)]’ and B; =1/, [A,-Oif(cij)]



Example: uniform k

Steps:

1. le:kTiij(cij)

1. %y Ty =k X |0iDif(cyp)]

Zij Iy T

2. k= =
25|ODfley)| 54| ODiftey)




Example: uniform k

The empty OD matrix

1 2 Totals
1 ?? ?? 5
2 ?? ?? 5
Totals 7 3
The generalised cost matrix
Cj 1 2
1 1
2 3 5




Example: uniform k

Z Tij ZkZ lOiDjf(Cij)] =
ij ij

k(O;Djcilt + 01Dycit + 05D jc5t + 0rDycsyt) =

k(5><7x%+5x3><%+5><7><§+5><3><%)=kx47.17

The totals don’t look great

2.ij Tjj T 10
k = = = 1717 = 0.21
Zij IOiDjf(Ci]')] Zij IOiDjf(Cij)] :
1 2 Totals

1 17.5 x0.21 15x0.21

We can now compute every T,-j 0.83
2 11.67 x0.21 3x0.21 3.08

Totals 6.125 3.78




Example: singly constrained gravity model

Origin constrained gravity model Destination constrained gravity model

1. Tji=A; OD}f(cl]) 1. T;j=B; ODJf(clJ)

2. Z-Tl--zA,-OiZij [Djf(c,-j)] (sum over j) DY Tjj BD]Z IOZf(cl])] (sum over 1)
3. A; 3. Bj -

3 IOJ(C,])]

3 [D[(cl])]




The empty OD matrix

Example: origin constrained gravity model

1 2 Totals
1 ?? ?? 5
2 ?? ?? 5
Totals 7 3
The generalised cost matrix
Cj 1 2
1 1
2 3 5




Example: origin constrained gravity model

Solution: Step 1

A 1 1 1 0.154
1= - 1 1~ 1 1~
DiX—+D,X— 7X5+3X+
Z JC1] 11+ C12 2+ 1
A 1 1 1 0.34
2 = 1~ 1 1 _ 1 1
-D-— DiX—+D ><— 7X5+3X=
2 ey Voc 7 727 g 3 5




Example: origin constrained gravity model

Solution: Step 2
_ -1 _ 1_
Tj;=A;01Djcii = 0154 X5 X7 X x =2.695
_ o 1_
T7j>=A;101Dyci5; = 0.154 X5 X 3 X - =2.31

_ —1 _ 1 _
TZI—A202D1C21 =034 xXx5%x7X » =3.97

_ —1 _ 1_
T22—A202D2C22 =0.34X5%x3X% - =1.02

1 2 o} A,
2 2 5 0.154
2 2 5 0.097
7 3
1 2 o} A,

2.695 2.31 5 0.154

3.97 1.02 5 0.097

6.66 3.33




The empty OD matrix

Example: doubly constrained gravity model

1 2 Totals
1 ?? ?? 5
2 ?? ?? 5
Totals 7 3
The generalised cost matrix
Cj 1 2
1 1
2 3 5




Example: doubly constrained gravity model

Solution:
Stepl(szl):
1 1 1
4y = = T = 7 T = 0.154
Z]-BijC] Bl><1)1><:+32><1)2><E IX7X5+1%X3X7
A ! ! ! 0.34
ZfoDfE- By XDy X =+ By X 1x7X3+1x3Xg

Step 2: calculate B; based on the new A,

1 1 1
B, = = T = T 7 =1.05
2 A4;0;—— A1><01><—+A2><02><— 0.154 X 5x 5+ 034 X 5X %
Ci1 C11 C21 2 3
1 1 1
B, = = T = 7 7 =10.90
2 4;0; — A1><01><—+A2><02><— 0.154 X 5x =+ 0.34 X 5x=
LT e C12 C22 1 5



Example: doubly constrained gravity model

Solution:
Back to Step 1:
1 1 1
A = = : = : T = 0.157
Y. B:iD; — leDlx—+Bz><D2><— 1.05X7X54+090X%X3 X =
J7T7T eq C11 C12 2 1
1 1 1
Back to Step 2
1 1 1
By = 1= 1 1= 1 1= 1054
Y. A;0; — A1><01><—+A2><02><— 0.157 X 5X5+0.334 X5 X3
LT e C11 C21 2 3
1 1 1
B, = = : = : 7= 0894
Y. A;0; — A1x01><—+A2><02><— 0.157 Xx5X=+0334 X5 %X ¢
L7 ey C12 C22 1 5



Example: doubly constrained gravity model

Solution:
Back to Step 1:
1 1 1
ZfBij?j leDlxa+Bsz2x§ 1.054><7><7+0.894><3><T
1 1 1
A, = T = 7 = T 1:0.333
Zijaj leDlxa+BzD2x@ 1.054><7><§+0.894><3><§
Back to Step 2
1 1 1
ZiAiOia A1x01xa+A2x02xa 0.157><5><§+0.333><5><§
1 1 1
B, = = - = : T = 0.894
2. 4;0,— A X0 X—+ A, X0, X— 0.157%xXx5X=+0333X5X%Xz
LT e C12 C22 1 5



Example: doubly constrained gravity model

Solution:
Back to Step 1:
1 1 1
ZfBij?j leDlxa+Bsz2x§ 1.055><7><7+0.894><3><T
1 1 1
A, = T = 7 = T 7= 0.334
Zijgj leDlxa+BzD2x@ 1.055><7><§+0.894><3><§

We can assume the model converged!



Example: doubly constrained gravity model

Solution:
Step 3:

_ -1 _ 1_
T11=A1B;jO1Djcq —0.157)(1.055)(5)(7)(2 = 2.899

_ -1 _ 1_
T7>=A1B>0Dyci; = 0.157 X 0.894 X 5 X 3 X - =2.11

_ -1 _ 1 _
TZI—A2B102D1C21 = 0.334 x 1.055 X 5%x 7 X S = 411

T22=AZB202D2C2_21 = 0.334%x0.894 x5 %x 3 X

The estimated totals O; and D; match the expected numbers

1—090
5_ .

~

1 2 o} A
1 22 27 5 | 0157
2 27 27 5 | 0334
D, 7 3
B, | 1055 | 0.894

1 2 o} A

1 | 2899 | 211 | 5 | 0157
2 | 411 | 09 | 5 | 0334
D, 7 3
B, | 1055 | 0.894




Further considerations on the Gravity model

« The quality of our results is affected by the deterrence function

« The deterrence function has several parameters that need to be estimated e.g. n, S
but we do not know the value of these parameters

« Usually, we evaluate the quality of a Gravity model by comparing the estimated
outputs with an existing matrix

« As a goodness-of-fit indicator we use the observed trip length distribution (OTLD)
« The output of our model is the modelled trip length distribution (MTLD)
« Assumption: the same TLD will be maintained in the future

« There are techniques that allow the comparison between OTLD and MTLD by
iteratively trying different values for the unknown parameters (n, ) until the best fit
Is found (e.g., Hyman method, Poisson model fitting)



Calibration of the deterrence function

« So far we assumed that the deterrence function is known
« However, the parameters of the deterrence function must be estimated
« Method 1: Hyman method
« Easier to be implemented when the deterrence function only has one parameter
« More complex for multiple parameters e.g. combined function
« \We calibrate the deterrence function while solving the gravity model
« Method 2: Poisson fitting
* Requires a known OD matrix

« No form for the deterrence function (it is assumed as a parameter)



The Hyman method

« The Hyman method is based on the following requirement for § (parameter of the
deterrence function to be estimated

c®) = ) [TyBey] /TB) = ¢ = ) (NyyCy)/ ) Ny
ij ij ij

e C*ISthe mean cost from the OTLD

* N; Is the observed number of trips for each origin destination pair




The Hyman method: procedure

Initialise the first iteration (m=0) with g, = 1/c*
Use S, and calculate a trip matrix using the gravity model
Obtain the mean modelled trip cost ¢, and update B as: B, = B,Co/C* (only for m=0)

Using the latest value for B calculate a trip matrix using a standard gravity model

AN =

Obtain a new mean modelled trip cost (c,,) and compare it with c*; if sufficiently
closed then STOP. If not, go to step 6.

6. For m >0, update the B of the next iteration as:

B .. = (MTL — MTLyp,_1)Bm — (MTL — MTLy,) Brq
mtl MTL,, — MTL,, 4

7. Repeat steps 4 — 6 until convergence.



Poisson model fitting

Requirements

e Observed OD matrix

« Cost per i-j

Model formulation: T;; = Q;X;F(cij)

. T j = estimated trips from origin i to destination |

*  Q; = production potential of zone I

* X =attraction potential of zone |

. Fk(cij) = deterrence function with respect to generalised cost — “willingness” to
travel from 1 to |



Poisson model fitting

Poisson model probability

e—A)x - P(Tij) _ e_(QinFk(Cij))(QinFk(cij))Tif

P(x) =

x! Tij!

where T;; observed known trips from i to |

Qi, X;, Fy, (¢ j) are treated as unknown parameters to be estimated

In every iteration we compute the LL = ) In (P(Tl- ]))

We stop when LL stops improving




Poisson model fitting: Example

OTLD
1400 A
1200 A
4 12 19 23 601 5 1000
o114 14 20| , _[ 691
Y7116 14 6 8| "' | 601 g 8001
25 19 7 6 1054 7 600
3
A;=(390 601 752 1204) 007
200 A
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Poisson model estimator: Iteration 1

 We set the starting values of Q;, X;, Fy (cij) to 1 (hence their product results in unity for all i,j cells)

1 1 1 1 601
1 1 1 1 691
1 1 1 1 601
1 1 1 1 1054
390 601 752 1204 Sums

» Scale to productions (Q; = P;/P;):
=601/4
=691/4
=601/4
=1054/4



Poisson model estimator: Iteration 1

* Now we have a new version of the OD matrix...

150.25 150.25 150.25 150.25 601
172.75 172.75 172.75 172.75 691
150.25 150.25 150.25 150.25 601
263.5 263.5 263.5 263.5 1054

390 601 752 1204 Sums

» Scale to attractions (X; = 4;/4;):
= 390/736.75
=601/736.75
= 752/736.75
=1204/736.75



Poisson model estimator: Iteration 1

 Now we have a newer new version of the OD matrix (values rounded)...

80 123 153 246 601
91 141 176 282 691
80 123 153 246 601
139 215 269 431 1054
390 601 752 1204 Sums

o Scale to fit the observed distribution




Poisson model estimator: Iteration 1

« Scale to fit the observed distribution (take the ratio between observed and estimated counts for

every bin)
OTLD MTLD
1400 A
1000 A
1200 A
v 800 -
£ 1000 £
3 -}
(o) @]
o (&)
- 800 A - 600 A
Q @
2 o
g 600 £
8 E 400 A
400 A
200 A
200 A
0- 0
0 5 10 15 20 25 0 5 10 15 20 25
Generalised cost Generalised cost

The ratios (Fy(c;;)) are: 2.47, 1.32, 0.96, 0.80, 0.49, 0.53, 0.45, 0.22



Poisson model estimator: Iteration 1

« Now we must find in which bin each cell belongs and multiply with the respective factor from the
previous slide

* We know this information from the generalised cost matrix of each ij pair e.g. if generalised cost is
5 then the factor is 2.47, if generalised cost is 10 then the factor is 0.96 etc.

80 | 123 | 153 | 246 | 601 198 | 99 31 111 | 601
91 | 141 | 176 | 282 | 691 Apply factors 87 | 348 | 141 | 150 | 691
80 | 123 | 153 | 246 | 601 I 39 99 | 202 | 324 | 601
139 | 215 | 269 | 431 | 1054 30 | 114 | 355 | 568 | 1054
390 | 601 | 752 | 1204 | Sums 390 | 601 | 752 | 1204 | Sums

« Compute the LL and store the value
* Important! While running the loop, store the Q;, X;, Fy (cl- j) values of every iteration (it will become
clear later why)



Poisson model estimator: Iteration 2 (and onward)

Use the result table from iteration 1 as your starting point

198 99 81 111 | 601
87 348 | 141 | 150 | 691
39 99 202 | 324 | 601

30 114 | 355 | 568 | 1054
390 | 601 | 752 | 1204 | Sums

« Repeat the whole process, same as iteration 1
« Atan iteration n, if LL similar to LL,_,, stop the loop
» The final values of Q;, X;, Fi(c;;) are the products of each for all iterations.

« E.g. for n=10:
* Filey) = Fk(cij)1 X Fk(cif)z X Fk(cif)3 X"'Fk(cij)w



Trip distribution via discrete choice models

Except for growth factors and synthetic methods, we can do the trip distribution step using discrete

choice models...

* What is a discrete choice model?
These are the models that we use for the modal split step (Step 3) so we will see next week!




Trip distribution summary

« Background and purpose of trip distribution
 From PAto OD
* Models:

>~ Growth factor methods (Furness)

>~ Synthetic methods (Gravity model)

 (Calibration technigues (Hyman method, Poisson estimation)




