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The 4-step model

Trip generation
Decision for making a trip with 

a specific purpose

Trip distribution Destination choice

Modal split Mode choice

Network assignment Route choice
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Previously – Trip generation models

Trip generation modelling

• Aim – motivation

• Terminology

• Models

‣ Cross classification – category analysis

‣ Growth factor models

‣ Linear regression



Trip distribution models

Trip distribution modelling

• Aim – background

• Models

‣ Growth factor methods – Furness method

‣ Synthetic methods – gravity model



Step 1: Trip generation

• Trip generation step:

• The number of trips generated in each zone

• The number of trips attracted in each zone

• Generated trips are typically a function of 

socioeconomic characteristics and land use

• Attracted trips are typically a function of land 

use characteristics

• Output: The number of trips generated in and 

attracted to each zone 



Step 2: Trip distribution

• Trip distribution step:

• The number of trips between each origin-destination 

pair

• The number of trips typically depends on the 

productivity of the origin zone and the attractiveness of 

the destination zone

• Some typical factors that affect trip distribution are the 

size of a zone, the land use, and the trip cost between 

the origin and destination zones

• Input: Trip production/attraction (from step 1), travel 

cost matrix

• Output: Origin-destination matrix (typically by trip 

purpose)



Trip distribution – Aim

• Where the generated trips go & the attracted trips come from

• We match the O zones with D zones

• Sum of each row and column are known (From our trip generation models)

• Challenge: Fill in the blanks-cells

‣ We begin from our estimates of trip ends in each zone



Trip distribution – Aim

Inputs:

• Trip productions and attractions

• Travel (generalised) cost matrix (if we have one)

Output:

• Full trip OD matrix Tij (Tij is the number of trips from origin zone i to destination zone j)

We should generate separate OD matrixes for each trip purpose, travel mode, scenario, and 

year in our analysis (we use the same demand segmentation from the trip generation step)

We do not examine the exact path from i to j yet. This is done by the assignment model in 

step 4

O

D1

D2

D3



Trip characteristics

Different OD matrices per trip purpose:

• When trip purpose home to work – confident both for production and attraction trip ends

‣ Travellers have specific home and work locations

• Numbers computed in the trip generation stage (residential characteristics and employment figures)

• We must convert production-attraction to origin-destination

‣ The assignment step requires the origin and destination zones



Trip purpose

• Factors affecting distribution: Congestion, distance, cost, frequency of public transport etc.

• Factors take the form of generalised cost:

‣ Comes from the assignment model and/or

‣ Discrete choice models

‣ For today we will assume its value known – more in the next lecture

• For commute trips we take input from the trip generation model

‣ Generalised cost has secondary role

‣ People most likely will not change work location due to the generalised cost



Trip purpose

“Home to other” trips (we exclude work and education) productions from the generation step:

• We care less about trip attractions in this case, lower importance

• People are more flexible to travel to a different zone – generalised cost is important here

• E.g. If purpose is shopping or leisure, one can easier change the destination zone, if generalised cost 

changes considerably

• Trip production and generalised cost the most important factors

• Fixed totals for the rows but not the columns (destination choice modelling)

• The opposite for home to work trips (totals of all rows and columns are fixed)



Trip purpose - Summary

• Home to work (or education), we fixed columns and rows totals, we just need to fill in the matrix

▪ Less choice flexibility

• For other trips: Distribution process selects which columns have more trips (destination choice 

modelling)

• Generalised cost: must include as many as possible variables that make a destination attractive; 

otherwise may overrepresent irrelevant destinations

• May have too many calculations – comes at the expense of behavioural aspects. We primarily care 

about executing calculations fast



Defining the OD matrix

• Gravity model: assign trips based on the smaller generalised cost

‣ How do we get the cost? At the assignment step and/or using choice models.

• In the first model iteration there is no assignment.

‣ We need to fill the trips without any knowledge of the generalised cost.

‣ Maybe we are lucky and we can use the cost from an older model

• Maybe I do not trust the generalised cost, using it gives me unexpected results:

‣ Methods that do not depend on the generalised cost e.g., Furness or Fratar methods

‣ Numbers add up correctly to the known totals

• Rebalancing: balance the matrix based on new totals and a previous OD matrix



Matrix conversion: from production–attraction (PA) to origin–destination (OD) 

The distribution matrix is in PA format; we need to convert to OD to feed the assignment model. 

Why?

• PA matrix is not directional; we know the production and attraction zone but not the direction of trip e.g. 

home location is always considered as the trip production location

• Route choice depends on the direction of the travel

• Traffic conditions depend on the direction of the travel.

• Assignment model requires exact origin and destination

Solution:

• Reverse trips going towards home so we get the correct travel direction

• For every zone use shares from observed data (e.g. what % of productions are leaving or 

entering the zone) – we will do a simplified approach if this technique in the lab session



Matrix conversion: from production–attraction (PA) to origin–destination (OD) 

Reasons for preferring the PA format:

• Consistency with Home-Based Trip Behaviour: people consider both the from and to

costs

• More Meaningful Trip Generation Modelling: productions are based on residential 

characteristics and attractions are based on activity locations

• Easier Calibration of Trip Rates: PA allows calibration of trip rates by trip purpose and 

socioeconomic group, using household survey data (the production end always at 

home).

• Better input for Trip Distribution models (clear which zone attracts and which zone 

produces)



Matrix conversion: from production–attraction (PA) to origin–destination (OD) 

• We can directly use OD if data is poor quality at first place (rule of thumb)

• We need different matrices for time of the day:

‣ Information about trip generation, distribution, and mode choice typically available for 

24h or average weekday

‣ 24h  window may be too long and generic for our project

‣ Assignment (traffic levels, passenger numbers) at smaller time periods e.g. morning 

peak

‣ Detailed approach: time of day choice model on how to split the number of trips in 

morning-peak, afternoon-peak, rest of the time

‣ Usually we simplify: we use the data to see what proportion of the trips is made at each 

time of the day, based on some fixed factors

‣ Caution! We must ensure that the factors will not lead to behaviour change in the 

scenario that we investigate (e.g. a new tram line that changes proportion between 

work/other reason trips starting from a zone)



Trips within the same zone 

• Some trips never leave the zone (internal trips)

• Internal trips are usually ignored during network assignment (Step 4)

‣ All trips are assumed to start and end at a centroid – internal trips have the same centroid

‣ This is one more reason that it is important to correctly specify the zones!

• Important to include internal trips in the distribution step

‣ Destinations may change due to changes in the transport system and some of the trips will 

leave the zone

• What is the generalised cost of an internal trip?

‣ Assumption e.g. 70% of the generalised cost travelling to the nearest zone



Sanity checks on demand matrix

For large projects it is impossible to check cell by cell a trip distribution matrix produced by 

a model.

We check some specific aspects of the matrix.

• Trip length (either distance or travel time) distribution 

‣ We can compare our data to old data or simply to our expectation (not very scientific)

‣ It is applied at the network level (not per unique OD) but gives an overall picture

• Maps are useful but can show only one type of information at the time

‣ Demand by origin zones

‣ Demand by destination zones

‣ Demand from one origin to all destinations

‣ Demand from all origins to a destination



Limitations of trip distribution models

• Filling the matrix has black box elements – always some OD pairs will not make sense

• Easy to miss obvious problems due to matrix size (check sanity checks)

• Missing behavioural consistency when combining data from multiple sources

• Generalised cost not only time-cost but also other factors – perception that drives 

choices (we must approximate well all these aspects)

• Lower credibility of trips identified as internal, due to simplified generalised cost. 

Number of trips to adjacent zones may be affected by this because there is 

redistribution of internal trips to these zones.



Reminder – trip distribution

1 2 3 4 5 Oi

1 ? ? ? ? ? O1

2 ? ? ? ? ? O2

3 ? ? ? ? ? O3

4 ? ? ? ? ? O4

5 ? ? ? ? ? O5

Dj D1 D2 D3 D4 D5

1 2 3 4 5 Oi

1 Τ11 Τ12 Τ13 Τ14 Τ15 O1

2 Τ21 Τ22 Τ23 Τ24 Τ25 O2

3 Τ31 Τ32 Τ33 Τ34 Τ35 O3

4 Τ41 Τ42 Τ43 Τ44 Τ45 O4

5 Τ51 Τ52 Τ53 Τ54 Τ55 O5

Dj D1 D2 D3 D4 D5

Trip generation: 

Production Oi and 

attraction Dj

Trip distribution: 

Origin-destination 

matrix Tij



Model types

1. We update an existing OD matrix with known Tij values

• Growth factor methods

• Furness (or Fratar in the USA) method

2. We know the Oi and Dj at the aggregate level and we have to find Tij (unknown) – Synthetic 

methods

• Gravity models

3. Logit model (next lecture)



Growth factor methods

• Uniform growth factor method

‣ Unrealistic except perhaps for very short time spans (e.g. 2 years)

• Singly constrained growth factor methods

• Doubly constrained growth factor methods



Uniform growth factor method

Same concept with trip generation

𝑇𝑖𝑗 = 𝑇𝑖𝑗
0 × 𝜏

where

𝑇𝑖𝑗 = trips from origin zone i to destination zone j in the future year

𝑇𝑖𝑗
0 = trips from origin zone i to destination zone j in the base year

𝜏 = a general growth factor from base year to future year applied to all ij pairs

Based on past trends or forecasts

Base year 1 2

1 𝑇11
0 𝑇12

0

2 𝑇21
0 𝑇22

0

Future year 1 2

1 𝑇11 𝑇12

2 𝑇21 𝑇22

× 𝜏

𝑇11 = 𝑇11
0 × 𝜏



Uniform growth factor method: Example

A B C Sum

A 1 2 4 7

B 3 3 4 10

C 4 3 3 10

Sum 8 8 11

Base year matrix

New D 12 15 12

New O

14

10

15

Compute the future matrix…



Uniform growth factor method: Example

A B C Sum

A 1 × 1.44 2 × 1.44 4 × 1.44 10.08

B 3 × 1.44 3 × 1.44 4 × 1.44 14.4

C 4 × 1.44 3 × 1.44 3 × 1.44 14.4

Sum 11.52 11.52 15.84

Base year total trips = 27

Future year total trips = 39

Growth factor = 39/27 = 1.44

Future table

We didn’t do very well in capturing the future valuesNew D 12 15 12

New O

14

10

15



Singly Constrained Growth factor methods

• Origin-constrained growth factor method:

‣ Future growth data is available on trips produced in each zone

• Destination-constrained growth factor method:

‣ Future growth data is available on trips attracted in each zone

𝑇𝑖𝑗 = 𝑇𝑖𝑗
0 × 𝜏𝑖 for origin – constrained factors

𝑇𝑖𝑗 = 𝑇𝑖𝑗
0 × 𝜂𝑗 for destination – constrained factors

𝜏𝑖 = growth factor applied to origin zone i

𝜂𝑗 = growth factor applied to destination zone j



Singly Constrained Growth factor methods

Origin-constrained growth factor method:

𝑂𝑖 = Future trips from origin zone i

𝑂𝑖
0 = Base year trips from origin zone i

𝜏𝑖 =
𝑂𝑖

𝑂𝑖
0

Base year 1 2

1 𝑇11
0 𝑇12

0

2 𝑇21
0 𝑇22

0
×

𝜏1

𝜏2

Future year 1 2

1 𝑇11
0 × 𝜏1 𝑇12

0 × 𝜏1

2 𝑇21
0 × 𝜏2 𝑇22

0 × 𝜏2



Singly Constrained Growth factor methods: Example

A B C Sum

A 1 2 4 7

B 3 3 4 10

C 4 3 3 10

Sum 8 8 11

Base year matrix

New D 12 15 12

New O

14

10

15

Compute the future matrix…



Singly Constrained Growth factor methods: Example

Origin-constrained growth factor method:

𝜏𝑖 =
𝑂𝑖

𝑂𝑖
0 𝜏𝐴 =

14

7
= 2

τ

2

1

1.5

𝜏𝐵 =
10

10
= 1 𝜏𝐶 =

15

10
= 1.5

τ Α Β C

A 2 2 2

B 1 1 1

C 1.5 1.5 1.5



Singly Constrained Growth factor methods: Example

Multiply element–wise 

τ A B C

A 2 2 2

B 1 1 1

C 1.5 1.5 1.5

A B C

A 1 2 4

B 3 3 4

C 4 3 3

×

A B C Sum

A 2 4 8 14

B 3 3 4 10

C 6 4.5 4.5 15

Sum 11 11.5 16.5

Sums at destination do not match the 

expected future totals…



Singly Constrained Growth factor methods

Destination-constrained growth factor method:

𝐷𝑗 = Future trips from destination zone j

𝐷𝑗
0 = Base year trips from destination zone j

𝜂𝑗 =
𝐷𝑗

𝐷𝑗
0

Base year 1 2

1 𝑇11
0 𝑇12

0

2 𝑇21
0 𝑇22

0

×

Future year 1 2

1 𝑇11
0 × 𝜂1 𝑇12

0 × 𝜂2

2 𝑇21
0 × 𝜂1 𝑇22

0 × 𝜂2

𝜂1 𝜂2



Doubly Constrained Growth factor methods

• Information available and reliable on both future trips originated and attracted to each zone

• Average growth factor method

• Furness method (Fratar in the USA)



Average growth factor

𝑃𝑖𝑗 =
𝜏𝑖 + 𝜂𝑗
2

=

𝑂𝑖
𝑂𝑖
0 +

𝐷𝑗
𝐷𝑗
0

2

Average zonal growth factor:

Base year 1 2

1 𝑇11
0 𝑇12

0

2 𝑇21
0 𝑇22

0

𝑃11 𝑃12

𝑃21 𝑃22
× =

Future year 1 2

1 𝑇11
0 × 𝑃11 𝑇12

0 × 𝑃12

2 𝑇21
0 × 𝑃21 𝑇22

0 × 𝑃22

Neither Os or Ds will match the expected future values



The Furness method

• A doubly constrained growth factor method

• Furness suggests updating the initial matrix by adjusting alternatively both the

constraints to origins and destinations, until convergence is reached

• The final O-D matrix is obtained by iteratively adjusting the origins and

destinations until both the new origins and destinations are close enough to the

target values



The Furness method

𝑇𝑖𝑗 = 𝑇𝑖𝑗
0𝑃𝑖𝑗 = 𝑇𝑖𝑗

0 ×
𝑂𝑖

𝑂𝑖
0 ×

𝐷𝑗

𝐷𝑗
0 × 𝐴𝑖 × 𝐵𝑗 = 𝑇𝑖𝑗

0 × 𝑎𝑖 × 𝑏𝑗

𝑎𝑖 =
𝑂𝑖

𝑂𝑖
0 × 𝐴𝑖

𝑏𝑗 =
𝐷𝑗

𝐷𝑗
0 × 𝐵𝑗

Ai and Bj are balancing factors



The Furness method

𝑂𝑖 =෍

𝑗

𝑇𝑖𝑗 =෍

𝑗

𝑇𝑖𝑗
0 × 𝑎𝑖 × 𝑏𝑗 = 𝑎𝑖 ×෍

𝑗

𝑇𝑖𝑗
0 × 𝑏𝑗 ⟹

𝑎𝑖 =
𝑂𝑖

σ𝑗 𝑇𝑖𝑗
0 × 𝑏𝑗

𝐷𝑗 =෍

𝑖

𝑇𝑖𝑗 =෍

𝑖

𝑇𝑖𝑗
0 × 𝑎𝑖 × 𝑏𝑗 = 𝑏𝑗 ×෍

𝑖

𝑇𝑖𝑗
0 × 𝑎𝑖 ⟹

𝑏𝑗 =
𝐷𝑗

σ𝑖 𝑇𝑖𝑗
0 × 𝑎𝑖

For 𝑎𝑖 :

For 𝑏𝑗 :



The Furness method: Algorithm

• We need the base year full matrix and future Oi and Dj values

• Iteration 0:

▪ Calculate initial ai and bj as: 𝑎𝑖 =
𝑂𝑖

𝑂𝑖
0 and 𝑏𝑖 =

𝐷𝑗

𝐷𝑗
0

▪ If all αi and bj values are within 0.95 – 1.05, STOP; Else, next iteration

• Iteration 1: origin constrained growth

▪ Multiply matrix by αi

▪ Calculate new row and column totals and the new bj

▪ If all new bj values are within 0.95 – 1.05, STOP; Else, next iteration

• Iteration 2: origin constrained growth

▪ Multiply matrix by bj

▪ Calculate new row and column totals and the new αi

▪ If all new αi values are within 0.95 – 1.05, STOP; Else, GOTO Iteration 1



The Furness method: Example

A B C Sum

A 1 2 4 7

B 3 3 4 10

C 4 3 3 10

Sum 8 8 11

Base year matrix

New D 12 15 12

New O

14

10

15

Use the Furness method to calculate the new matrix…



The Furness method: Example

A B C 𝑂𝑖
0 𝑂𝑖 𝑎𝑖=𝑂𝑖/𝑂𝑖

0

A 1 2 4 7 14 2

B 3 3 4 10 10 1

C 4 3 3 10 15 1.5

𝐷𝑗
0 8 8 11

𝐷𝑗 12 15 12

𝑏𝑗=𝐷𝑗/𝐷𝑗
0

Base year matrix

Step 1: adjust the origins



The Furness method: Example

A B C 𝑂𝑖
0 𝑂𝑖 𝑎𝑖=𝑂𝑖/𝑂𝑖

0

A 2 4 8 14 14 1

B 3 3 4 10 10 1

C 6 4.5 4.5 15 15 1

𝐷𝑗
0

11 11.5 16.5

𝐷𝑗 12 15 12

𝑏𝑗=𝐷𝑗/𝐷𝑗
0

1.09 1.30 0.73

Iteration 1:

Step 2: Compute 𝑏𝑗 and check if between 0.95 – 1.05



The Furness method: Example

A B C 𝑂𝑖
0 𝑂𝑖 𝑎𝑖=𝑂𝑖/𝑂𝑖

0

A 2.18 5.22 5.82 13.22 14 1.06

B 3.27 3.91 2.91 10.09 10 0.99

C 6.55 5.87 3.27 15.69 15 0.96

𝐷𝑗
0

12 15 12

𝐷𝑗 12 15 12

𝑏𝑗=𝐷𝑗/𝐷𝑗
0

0.99 1 1

Iteration 2:

Step 3: adjust the destinations

Step 4: Compute 𝑎𝑖 and check if between 

0.95 – 1.05



The Furness method: Example

A B C 𝑂𝑖
0 𝑂𝑖 𝑎𝑖=𝑂𝑖/𝑂𝑖

0

A 2.60 4.53 6.89 14 14 1

B 3.63 3.17 3.21 10 10 1

C 7.00 4.58 3.48 15 15 1

𝐷𝑗
0

11.81 15.01 12.17

𝐷𝑗 12 15 12

𝑏𝑗=𝐷𝑗/𝐷𝑗
0

1.02 0.99 0.99

Back to Iteration 1:

… converged!

Step 6: Compute 𝑏𝑗 and check if between 0.95 – 1.05

Step 5: Adjust origins



Growth Factor Methods

Advantages
• Simple and easy to understand and implement

• Make use of existing matrix and trip end (O or/and D) forecasts

• Suitable for short term planning

• Can use a ‘Uniform Growth Factor’ or ‘Zonal Growth Factors’

Disadvantages
• Needs lot of data (base year trip matrix)

• The results ‘replicate’ the patterns in the existing matrix – not suitable for long term planning

• Suffer from empty cell problem, i.e. if a cell is empty (Tij = 0), growth factor methods cannot compute

a new value to the empty cell

• Existing low volume cells also result in problematic outputs

• Cannot add new traffic zones

• Cannot account for changes in transport costs – limited in its ability to model changes in policy



Synthetic Distribution Models

• If no reliable previous matrix exists but there are reliable Oi and Dj

• Generating Tij from Oi and Dj

• A common method is the gravity model:

‣ Newton’s Law of Gravity: the relative strength (i.e. gravity) between two objects is proportional to their

masses and inversely proportional to the distance between the two

‣ In trip distribution, the OD trips (due to attractions between two zones) are proportional to Oi and Dj and

inversely proportional to travel cost (generalised cost) attributes (e.g. distance, time and cost)



The Generalised Cost (Reminder)

• Summarises everything about the travel experience from origin O to destination D

• A measure combining all the main cost attributes related to the disutility of a journey

• Typically a linear function of the attributes of the journey weighted by coefficients which

attempt to represent their relative importance

• If different options available, each of them has a different generalised cost (even if monetary

cost is the same)



The Generalised Cost form

cij = a0 + a1t1 + a2*t2 + a3*t3

where

cij : generalised cost from origin zone i to destination zone j

t1 - t3: factors affecting the perceived generalised cost from origin zone i to destination zone j (e.g. travel

time, travel cost, level of comfort, etc.)

a0 : constant (specific to the ij pair, travel mode used etc.)

a1 - a3: weights to be estimated (convert all factors to the same units)



The Gravity model

Newton’s law

where

F1,2 : the relative strength (i.e. gravity)

M1, M2: the masses

d1,2 : the distance between M1 and M2

2

2,1

21
2,1

.

d

MM
F =



The Gravity model: for trip distribution

The Gravity model

where

Tij : trips from origin zone i to destination zone j

k : the proportionality constant or balancing factor

cij : generalised cost from origin zone i to destination zone j

f(cij) : the "deterrence function" representing the disincentive to travel

Tij=kTi.Tj.f(cij)



The Deterrence Function

Typical forms:

n, β: parameters to be estimated

𝑓 𝑐𝑖𝑗 = 𝑐𝑖𝑗
−𝑛 Power function

𝑓 𝑐𝑖𝑗 = exp(−𝛽𝑐𝑖𝑗) Exponential function

𝑓 𝑐𝑖𝑗 = 𝑐𝑖𝑗
−𝑛exp(−𝛽𝑐𝑖𝑗) Combined function



The balancing factor k

• A single balancing factor may not be sufficient to ensure a match between the O and D totals

• Instead, we can use two balancing factors (and follow a Furness method approach)

• Origin constrained case:

• Destination constrained case:

• Origin and destination constrained case:

Tij=kTiTjf(cij) Tij=AiDjTiTjf(cij)

Ai = 1/σDj f(cij), all Bj = 1

Bi = 1/σOi f(cij), all Ai = 1

Ai = 1/σ BjDjf(cij) , and Bi = 1/σ AiOif(cij)



Example: uniform k

Steps:

1. Tij=kTiTjf(cij)

1. σ𝑖𝑗 Tij =kσ𝑖𝑗 OiDjf(cij)

2. 𝑘 =
σ𝑖𝑗 Tij

σ𝑖𝑗 OiDjf(cij)
=

𝑇

σ𝑖𝑗 OiDjf(cij)



Example: uniform k

1 2 Totals

1 ?? ?? 5

2 ?? ?? 5

Totals 7 3

The empty OD matrix

cij 1 2

1 2 1

2 3 5

The generalised cost matrix



Example: uniform k

෍

𝑖𝑗

Tij =k෍

𝑖𝑗

OiDjf(cij) =

k O1D1𝑐11
−1 + O1D2𝑐12

−1 + O2D1𝑐21
−1 + O2D2𝑐22

−1 =

k 5 × 7 ×
1

2
+ 5 × 3 ×

1

1
+ 5 × 7 ×

1

3
+ 5 × 3 ×

1

5
= k ×47.17

𝑘 =
σ𝑖𝑗 Tij

σ𝑖𝑗 OiDjf(cij)
=

𝑇

σ𝑖𝑗 OiDjf(cij)
=

10

47.17
= 0.21

We can now compute every Tij

1 2 Totals

1 17.5 ×0.21 15×0.21 6.83

2 11.67 ×0.21 3×0.21 3.08

Totals 6.125 3.78

The totals don’t look great



Example: singly constrained gravity model

1. Tij=AiOiDjf(cij)

2. σ𝑗 Tij =AiOiσ𝑖𝑗 Djf(cij) (sum over j)

3. Ai =
1

σ𝑗 Djf(cij)

Origin constrained gravity model Destination constrained gravity model

1. Tij=BjOiDjf(cij)

2. σ𝑖 Tij =BjDjσ𝑖 Oif(cij) (sum over i)

3. Bj =
1

σ𝑖 Oif(cij)



Example: origin constrained gravity model

1 2 Totals

1 ?? ?? 5

2 ?? ?? 5

Totals 7 3

The empty OD matrix

cij 1 2

1 2 1

2 3 5

The generalised cost matrix



Example: origin constrained gravity model

𝐴1 =
1

σ𝑗𝐷𝑗
1
𝑐1𝑗

=
1

𝐷1 ×
1
𝑐11

+ 𝐷2 ×
1
𝑐12

=
1

7 ×
1
2 + 3 ×

1
1

= 0.154

𝐴2 =
1

σ𝑗𝐷𝑗
1
𝑐2𝑗

=
1

𝐷1 ×
1
𝑐21

+ 𝐷2 ×
1
𝑐22

=
1

7 ×
1
3 + 3 ×

1
5

= 0.34

Solution: Step 1



Example: origin constrained gravity model

Solution: Step 2 1 2 Oi Ai

1 ?? ?? 5 0.154

2 ?? ?? 5 0.097

Dj 7 3

T11=A1O1D1𝑐11
−1 = 0.154 × 5 × 7 ×

1

2
=2.695

T12=A1O1D2𝑐12
−1 = 0.154 × 5 × 3 ×

1

1
=2.31

T22=A2O2D2𝑐22
−1 = 0.34 × 5 × 3 ×

1

5
=1.02

T21=A2O2D1𝑐21
−1 = 0.34 × 5 × 7 ×

1

3
=3.97

1 2 Oi Ai

1 2.695 2.31 5 0.154

2 3.97 1.02 5 0.097

Dj 6.66 3.33



Example: doubly constrained gravity model

1 2 Totals

1 ?? ?? 5

2 ?? ?? 5

Totals 7 3

The empty OD matrix

cij 1 2

1 2 1

2 3 5

The generalised cost matrix



Example: doubly constrained gravity model

𝐴1 =
1

σ𝑗 Bj𝐷𝑗
1
𝑐1𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐11

+ 𝐵2 × 𝐷2 ×
1
𝑐12

=
1

1 × 7 ×
1
2+ 1 × 3 ×

1
1

= 0.154

𝐴2 =
1

σ𝑗𝐵𝑗𝐷𝑗
1
𝑐2𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐21

+ 𝐵2𝐷2 ×
1
𝑐22

=
1

1 × 7 ×
1
3 + 1 × 3 ×

1
5

= 0.34

Solution: 

Step 1 (Bj=1):

Step 2: calculate Bj based on the new Ai

𝐵1 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖1

=
1

𝐴1 × 𝑂1 ×
1
𝑐11

+ 𝐴2 × 𝑂2 ×
1
𝑐21

=
1

0.154 × 5 ×
1
2 + 0.34 × 5 ×

1
3

= 1.05

𝐵2 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖2

=
1

𝐴1 × 𝑂1 ×
1
𝑐12

+ 𝐴2 × 𝑂2 ×
1
𝑐22

=
1

0.154 × 5 ×
1
1 + 0.34 × 5 ×

1
5

= 0.90



Example: doubly constrained gravity model

𝐴1 =
1

σ𝑗 Bj𝐷𝑗
1
𝑐1𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐11

+ 𝐵2 × 𝐷2 ×
1
𝑐12

=
1

1.05 × 7 ×
1
2+ 0.90 × 3 ×

1
1

= 0.157

𝐴2 =
1

σ𝑗𝐷𝑗
1
𝑐2𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐21

+ 𝐵2𝐷2 ×
1
𝑐22

=
1

1.05 × 7 ×
1
3 + 0.90 × 3 ×

1
5

= 0.334

Solution: 

Back to Step 1:

Back to Step 2

𝐵1 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖1

=
1

𝐴1 × 𝑂1 ×
1
𝑐11

+ 𝐴2 × 𝑂2 ×
1
𝑐21

=
1

0.157 × 5 ×
1
2 + 0.334 × 5 ×

1
3

= 1.054

𝐵2 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖2

=
1

𝐴1 × 𝑂1 ×
1
𝑐12

+ 𝐴2 × 𝑂2 ×
1
𝑐22

=
1

0.157 × 5 ×
1
1 + 0.334 × 5 ×

1
5

= 0.894



Example: doubly constrained gravity model

𝐴1 =
1

σ𝑗 Bj𝐷𝑗
1
𝑐1𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐11

+ 𝐵2 × 𝐷2 ×
1
𝑐12

=
1

1.054 × 7 ×
1
2 + 0.894 × 3 ×

1
1

= 0.157

𝐴2 =
1

σ𝑗𝐷𝑗
1
𝑐2𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐21

+ 𝐵2𝐷2 ×
1
𝑐22

=
1

1.054 × 7 ×
1
3 + 0.894 × 3 ×

1
5

= 0.333

Solution: 

Back to Step 1:

Back to Step 2

𝐵1 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖1

=
1

𝐴1 × 𝑂1 ×
1
𝑐11

+ 𝐴2 × 𝑂2 ×
1
𝑐21

=
1

0.157 × 5 ×
1
2 + 0.333 × 5 ×

1
3

= 1.055

𝐵2 =
1

σ𝑖 Ai𝑂𝑖
1
𝑐𝑖2

=
1

𝐴1 × 𝑂1 ×
1
𝑐12

+ 𝐴2 × 𝑂2 ×
1
𝑐22

=
1

0.157 × 5 ×
1
1 + 0.333 × 5 ×

1
5

= 0.894



Example: doubly constrained gravity model

𝐴1 =
1

σ𝑗 Bj𝐷𝑗
1
𝑐1𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐11

+ 𝐵2 × 𝐷2 ×
1
𝑐12

=
1

1.055 × 7 ×
1
2 + 0.894 × 3 ×

1
1

= 0.157

𝐴2 =
1

σ𝑗𝐷𝑗
1
𝑐2𝑗

=
1

𝐵1 × 𝐷1 ×
1
𝑐21

+ 𝐵2𝐷2 ×
1
𝑐22

=
1

1.055 × 7 ×
1
3 + 0.894 × 3 ×

1
5

= 0.334

Solution: 

Back to Step 1:

We can assume the model converged!



Example: doubly constrained gravity model

Solution: 

Step 3:

T11=A1B1O1D1𝑐11
−1 = 0.157 × 1.055 × 5 × 7 ×

1

2
= 2.899

T12=A1B2O1D2𝑐12
−1 = 0.157 × 0.894 × 5 × 3 ×

1

1
=2.11

T22=A2B2O2D2𝑐22
−1 = 0.334 × 0.894 × 5 × 3 ×

1

5
= 0.90

T21=A2B1O2D1𝑐21
−1 = 0.334 × 1.055 × 5 × 7 ×

1

3
= 4.11

1 2 Oi Ai

1 ?? ?? 5 0.157

2 ?? ?? 5 0.334

Dj 7 3

Bj 1.055 0.894

1 2 Oi Ai

1 2.899 2.11 5 0.157

2 4.11 0.90 5 0.334

Dj 7 3

Bj 1.055 0.894The estimated totals Oi and Dj match the expected numbers



Further considerations on the Gravity model

• The quality of our results is affected by the deterrence function

• The deterrence function has several parameters that need to be estimated e.g. n, β

but we do not know the value of these parameters

• Usually, we evaluate the quality of a Gravity model by comparing the estimated

outputs with an existing matrix

• As a goodness-of-fit indicator we use the observed trip length distribution (OTLD)

• The output of our model is the modelled trip length distribution (MTLD)

• Assumption: the same TLD will be maintained in the future

• There are techniques that allow the comparison between OTLD and MTLD by

iteratively trying different values for the unknown parameters (n, β) until the best fit

is found (e.g., Hyman method, Poisson model fitting)



Calibration of the deterrence function

• So far we assumed that the deterrence function is known

• However, the parameters of the deterrence function must be estimated

• Method 1: Hyman method

• Easier to be implemented when the deterrence function only has one parameter

• More complex for multiple parameters e.g. combined function

• We calibrate the deterrence function while solving the gravity model

• Method 2: Poisson fitting

• Requires a known OD matrix

• No form for the deterrence function (it is assumed as a parameter)



The Hyman method

• The Hyman method is based on the following requirement for β (parameter of the

deterrence function to be estimated

• c∗ is the mean cost from the OTLD

• Nij is the observed number of trips for each origin destination pair

𝑐 𝛽 =෍

𝑖𝑗

𝑇𝑖𝑗 𝛽 𝑐𝑖𝑗 /𝑇 𝛽 = 𝑐∗ =෍

𝑖𝑗

𝑁𝑖𝑗𝐶𝑖𝑗 /෍

𝑖𝑗

𝑁𝑖𝑗



The Hyman method: procedure

1. Initialise the first iteration (m=0) with β0 = 1/c∗

2. Use β0 and calculate a trip matrix using the gravity model

3. Obtain the mean modelled trip cost c0 and update β as: βm = β0c0/c
∗ (only for m=0)

4. Using the latest value for β calculate a trip matrix using a standard gravity model

5. Obtain a new mean modelled trip cost (cm) and compare it with c∗; if sufficiently

closed then STOP. If not, go to step 6.

6. For m > 0, update the β of the next iteration as:

7. Repeat steps 4 – 6 until convergence.

𝛽𝑚+1 =
𝑀𝑇𝐿 −𝑀𝑇𝐿𝑚−1 𝛽𝑚 − 𝑀𝑇𝐿 −𝑀𝑇𝐿𝑚 𝛽𝑚−1

𝑀𝑇𝐿𝑚 −𝑀𝑇𝐿𝑚−1



Poisson model fitting

Requirements

• Observed OD matrix

• Cost per i-j

Model formulation: ෠𝑇𝑖𝑗 = 𝑄𝑖𝑋𝑗𝐹𝑘 𝑐𝑖𝑗

• ෠𝑇𝑖𝑗 = estimated trips from origin i to destination j

• 𝑄𝑖 = production potential of zone i

• 𝑋𝑗 = attraction potential of zone j

• 𝐹𝑘 𝑐𝑖𝑗 = deterrence function with respect to generalised cost – “willingness” to

travel from i to j



Poisson model fitting

Poisson model probability

• where 𝑇𝑖𝑗 observed known trips from i to j

• 𝑄𝑖, 𝑋𝑗, 𝐹𝑘 𝑐𝑖𝑗 are treated as unknown parameters to be estimated

• In every iteration we compute the LL = σ 𝑙𝑛 𝑃 𝑇𝑖𝑗

• We stop when LL stops improving

𝑃 𝑥 =
𝑒−𝜆𝜆𝑥

𝑥!
⟹𝑃 𝑇𝑖𝑗 =

𝑒
− 𝑄𝑖𝑋𝑗𝐹𝑘 𝑐𝑖𝑗 𝑄𝑖𝑋𝑗𝐹𝑘 𝑐𝑖𝑗

𝑇𝑖𝑗

𝑇𝑖𝑗!



Poisson model fitting: Example

𝑐𝑖𝑗 =

4 12 19 23
11 4 14 20
16 14 6 8
25 19 7 6

𝑃𝑖 =

601
691
601
1054

𝐴𝑗 = 390 601 752 1204



• We set the starting values of 𝑄𝑖, 𝑋𝑗, 𝐹𝑘 𝑐𝑖𝑗 to 1 (hence their product results in unity for all i,j cells)

• Scale to productions (𝑄𝑖 = 𝑃𝑖/ ෠𝑃𝑖):
= 601/4

= 691/4

= 601/4

= 1054/4

Poisson model estimator: Iteration 1

1 1 1 1 601

1 1 1 1 691

1 1 1 1 601

1 1 1 1 1054

390 601 752 1204 Sums



• Now we have a new version of the OD matrix…

• Scale to attractions (𝑋𝑗 = 𝐴𝑗/ መ𝐴𝑗):

= 390/736.75

= 601/736.75

= 752/736.75

= 1204/736.75

Poisson model estimator: Iteration 1

150.25 150.25 150.25 150.25 601

172.75 172.75 172.75 172.75 691

150.25 150.25 150.25 150.25 601

263.5 263.5 263.5 263.5 1054

390 601 752 1204 Sums



• Now we have a newer new version of the OD matrix (values rounded)…

• Scale to fit the observed distribution

Poisson model estimator: Iteration 1

80 123 153 246 601

91 141 176 282 691

80 123 153 246 601

139 215 269 431 1054

390 601 752 1204 Sums



• Scale to fit the observed distribution (take the ratio between observed and estimated counts for 

every bin)

The ratios (𝐹𝑘 𝑐𝑖𝑗 ) are: 2.47, 1.32, 0.96, 0.80, 0.49, 0.53, 0.45, 0.22

Poisson model estimator: Iteration 1



• Now we must find in which bin each cell belongs and multiply with the respective factor from the 

previous slide

• We know this information from the generalised cost matrix of each ij pair e.g. if generalised cost is 

5 then the factor is 2.47, if generalised cost is 10 then the factor is 0.96 etc.

• Compute the LL and store the value

• Important! While running the loop, store the 𝑄𝑖, 𝑋𝑗, 𝐹𝑘 𝑐𝑖𝑗 values of every iteration (it will become 

clear later why)

Poisson model estimator: Iteration 1

80 123 153 246 601

91 141 176 282 691

80 123 153 246 601

139 215 269 431 1054

390 601 752 1204 Sums

198 99 81 111 601

87 348 141 150 691

39 99 202 324 601

30 114 355 568 1054

390 601 752 1204 Sums

Apply factors



• Use the result table from iteration 1 as your starting point

• Repeat the whole process, same as iteration 1

• At an iteration n, if LLn similar to LLn-1, stop the loop

• The final values of 𝑄𝑖, 𝑋𝑗, 𝐹𝑘 𝑐𝑖𝑗 are the products of each for all iterations.

• E.g. for n=10:

• 𝐹𝑘 𝑐𝑖𝑗 = 𝐹𝑘 𝑐𝑖𝑗 1
× 𝐹𝑘 𝑐𝑖𝑗 2

× 𝐹𝑘 𝑐𝑖𝑗 3
×. . . 𝐹𝑘 𝑐𝑖𝑗 10

Poisson model estimator: Iteration 2 (and onward)

198 99 81 111 601

87 348 141 150 691

39 99 202 324 601

30 114 355 568 1054

390 601 752 1204 Sums



• Except for growth factors and synthetic methods, we can do the trip distribution step using discrete 

choice models…

• What is a discrete choice model?

• These are the models that we use for the modal split step (Step 3) so we will see next week!

Trip distribution via discrete choice models



• Background and purpose of trip distribution

• From PA to OD

• Models:

‣ Growth factor methods (Furness)

‣ Synthetic methods (Gravity model)

• Calibration techniques (Hyman method, Poisson estimation)

Trip distribution summary


