
CIVIL-557
Decision-Aid Methodologies in Transportation

Lecture IV
Metaheuristics

Fabian Torres

Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL

F.T. (EPFL) CIVIL-557 11/3/2025 1 / 113

Outline

1 Heuristics
Greedy Heuristics
Local Search Heuristics

2 Metaheuristics
Simulated Annealing

F.T. (EPFL) CIVIL-557 11/3/2025 2 / 113

Outline

1 Heuristics
Greedy Heuristics
Local Search Heuristics

2 Metaheuristics
Simulated Annealing

F.T. (EPFL) CIVIL-557 11/3/2025 3 / 113

What is a heuristic?

”A heuristic is a problem-solving strategy that uses practical and
common-sense approaches to find solutions that may not be op-
timal but are good enough for the given situation. It is a rule
of thumb or an educated guess that is used when an exact or
optimal solution is difficult or impossible to find.”

F.T. (EPFL) CIVIL-557 11/3/2025 4 / 113

Why use a heuristic?

Different reasons may lead one to choose a heuristic:

A solution is required rapidly, within a few seconds or minutes. The
instance is so large and/or complicated that it cannot be formulated
as an IP or MIP of reasonable size.

Even though it has been formulated as an MIP, it is difficult or
impossible for the branch-and-bound algorithm to find good feasible
solutions.

For certain combinatorial problems such as vehicle routing and
machine scheduling, it is easy to find feasible solutions by inspection
or knowledge of the problem structure. However, a general-purpose
mixed-integer programming approach is ineffective.

F.T. (EPFL) CIVIL-557 11/3/2025 5 / 113

Greedy Algorithms

Greedy heuristics construct a solution incrementally, starting with an
empty solution and selecting the item with the best immediate benefit
at each step.

Greedy heuristics are simple and efficient, but may not always find the
optimal solution.

Greedy heuristics can be based on different criteria for selecting the
”best” item at each step that minimizes cost.

Greedy heuristics can be modified or combined with other methods,
such as local search, to improve the solution.

The effectiveness of a greedy heuristic depends on the problem
structure and the quality of the criteria used to select the items at
each step.

F.T. (EPFL) CIVIL-557 11/3/2025 6 / 113

Nearest Neighbor Heuristic

It is a greedy heuristic that builds a solution iteratively;

The nearest neighbor algorithm begins by selecting a current city
randomly.

The algorithm selects the nearest unvisited city to the current city at
each step, until all cities are visited;

It has a time complexity of O(n2);
The nearest neighbor heuristic is classified as a construction heuristic
that builds a solution from scratch.

F.T. (EPFL) CIVIL-557 11/3/2025 7 / 113

Nearest Neighbor Heuristic

Input: A set of N cities, their pairwise distances, and a starting city s
Output: A tour of the cities
scurrent ← s;
while there are unvisited cities do

for j in Unvisited do
Find the nearest neighbor of scurrent ;
Let j∗ be the unvisited city closest to scurrent ;
Add the edge (scurrent , j

∗) to the tour;
scurrent ← j∗;

end

end
Add the edge (scurrent , s) to complete the tour;
return the resulting tour;

F.T. (EPFL) CIVIL-557 11/3/2025 8 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 9 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 10 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 11 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 12 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 13 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 14 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 15 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 16 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 17 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 18 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 19 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 20 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 21 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 22 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 23 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 24 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 25 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 26 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 27 / 113

Nearest Neighbor Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 28 / 113

Nearest Neighbor Example

Total cost = 26.765

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 29 / 113

Sorted Edges Heuristic

Greedy heuristic!

Sort the edges in nondecreasing order;

Select the cheapest edge, if feasible, add the edge to the solution;

Repeat until all cities are connected;

Return to the starting city to complete the Hamiltonian tour.

Not the nearest neighbor.

F.T. (EPFL) CIVIL-557 11/3/2025 30 / 113

Sorted Edges Heuristic

Input: N cities with pairwise distances d(i,j)
Output: A tour that visits each city exactly once and returns to the starting

city
Sort = Sort the edges (i , j) in nondecreasing order of cost d(i,j);
Initialize a list of connected components C;
C = {{i} : ∀i ∈ N};
while |C | > 1 do

for edge (i , j) in the sorted list do
if adding edge (i , j) does not violate any constraints then

Create a new component c(i −−j) that connects c(i) to c(j);
Add c(i −−j) to the list of components C.;
Remove components c(i) and c(j) from C ;

end

end

end
Return to the starting city to complete the tour;

F.T. (EPFL) CIVIL-557 11/3/2025 31 / 113

Sorted edges Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 32 / 113

Sorted edges Example

List of sorted edges = {(2, 17), (3, 13), (3, 18), (4, 17), (5, 18), (6, 14), (6, 19), (7, 15), (7, 20), (8, 19), (9,

20), (10, 16), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12), (13, 14), (13, 18), (14, 15), (14, 17),

(14, 19), (15, 16), (15, 18), (15, 20), (16, 19), (1, 13), (1, 18), (2, 13), (2, 14), (3, 14), (3, 15), (4, 14), (4, 19), (5, 15), (5,

20), (6, 15), (6, 16), (6, 17), (7, 16), (7, 18), (8, 16), (10, 19), (11, 20), (1, 5), (2, 6), (3, 7), (4, 8), (5, 9), (6, 10), (7, 11),

(8, 12), (13, 15), (13, 17), (14, 16), (14, 18), (15, 19), (16, 20), (17, 19), (18, 20), (5, 13), (6, 13), (7, 14), (8, 14), (9, 15),

(10, 15), (11, 16), (12, 16), (2, 3), (3, 6), (6, 7), (7, 10), (10, 11), (2, 19), (3, 17), (3, 20), (4, 13), (5, 14), (6, 18), (7, 13),

(7, 19), (8, 15), (8, 17), (9, 16), (9, 18), (10, 14), (10, 20), (11, 15), (12, 19), (13, 19), (14, 20), (15, 17), (16, 18), (1, 14),

(1, 15), (2, 15), (2, 18), (3, 16), (3, 19), (4, 15), (4, 16), (5, 16), (6, 20), (1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (1, 7),

(2, 8), (3, 9), (4, 10), (5, 11), (6, 12), (13, 16), (13, 20), (16, 17), (17, 18), (18, 19), (19, 20), (1, 17), (1, 20), (2, 16), (4,

18), (5, 19), (7, 17), (8, 13), (8, 20), (9, 14), (10, 17), (10, 18), (11, 18), (11, 19), (12, 15), (1, 6), (2, 5), (2, 7), (3, 8), (3,

10), (4, 7), (5, 10), (6, 9), (6, 11), (7, 12), (8, 11), (5, 17), (8, 18), (9, 13), (9, 19), (10, 13), (11, 14), (12, 14), (12, 20), (1,

9), (2, 10), (3, 11), (4, 12), (1, 4), (4, 5), (5, 8), (8, 9), (9, 12), (17, 20), (1, 16), (1, 19), (2, 20), (4, 20), (11, 13), (12, 17),

(9, 17), (12, 18), (1, 8), (1, 10), (2, 9), (3, 12), (4, 9), (4, 11), (5, 12), (1, 11), (2, 12), (11, 17), (12, 13), (2, 11), (1, 12)}

F.T. (EPFL) CIVIL-557 11/3/2025 33 / 113

Sorted edges Example

Initialize the set of connected components with a set of singletons for each
city.

C ={{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}}

F.T. (EPFL) CIVIL-557 11/3/2025 34 / 113

Sorted edges Example

Next cheapest = (2, 17)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 35 / 113

Sorted edges Example

(2, 17)
Add the set {2, 17} to C :

C ={{1}, {2}, {2, 17}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}}

Remove the set {2} and {17}:

C ={{1}, {2, 17}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {18}, {19}, {20}}

|C | = 19

F.T. (EPFL) CIVIL-557 11/3/2025 36 / 113

Sorted edges Example

Next cheapest = (3, 13)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 37 / 113

Sorted edges Example

(3, 13)
Add the set {3, 13} to C :

C ={{1}, {2, 17}, {3, 13}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {13}, {14}, {15}, {16}, {18}, {19}, {20}}

Remove the set {3} and {13}:

C ={{1}, {2, 17}, {3, 13}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {18}, {19}, {20}}

|C | = 18

F.T. (EPFL) CIVIL-557 11/3/2025 38 / 113

Sorted edges Example

Next cheapest = (3, 18)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 39 / 113

Sorted edges Example

(3, 18)
Add the set {18, 3, 13} to C :

C ={{1}, {2, 17}, {18, 3, 13}, {3, 13}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {18}, {19}, {20}}

Remove the set {3, 13} and {18}:

C ={{1}, {2, 17}, {18, 3, 13}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {19}, {20}}

|C | = 17

F.T. (EPFL) CIVIL-557 11/3/2025 40 / 113

Sorted edges Example

Next cheapest = (4, 17)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 41 / 113

Sorted edges Example

(4, 17)
Add the set {2, 17, 4} to C :

C ={{1}, {2, 17, 4}, {2, 17}, {18, 3, 13}, {3, 13}, {4}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {18}, {19}, {20}}

Remove the set {2, 17} and {4}:

C ={{1}, {2, 17, 4}, {18, 3, 13}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {19}, {20}}

|C | = 16

F.T. (EPFL) CIVIL-557 11/3/2025 42 / 113

Sorted edges Example

Next cheapest = (5, 18)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 43 / 113

Sorted edges Example

(5, 18)
Add the set {5, 18, 3, 13} to C :

C ={{1}, {2, 17, 4}, {5, 18, 3, 13}, {18, 3, 13}, {5}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {19}, {20}}

Remove the set {2, 17} and {4}:

C ={{1}, {2, 17, 4}, {5, 18, 3, 13}, {6}, {7}, {8}, {9}, {10},
{11}, {12}, {14}, {15}, {16}, {19}, {20}}

|C | = 15

F.T. (EPFL) CIVIL-557 11/3/2025 44 / 113

Sorted edges Example

Next cheapest = (6, 14)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 45 / 113

Sorted edges Example

Next cheapest = (6, 19)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 46 / 113

Sorted edges Example

Next cheapest = (7, 15)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 47 / 113

Sorted edges Example

Next cheapest = (7, 20)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 48 / 113

Sorted edges Example

Next cheapest = (8, 19)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 49 / 113

Sorted edges Example

Next cheapest = (9, 20)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 50 / 113

Sorted edges Example

Next cheapest = (10, 16)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 51 / 113

Sorted edges Example

C ={{1}, {2, 17, 4}, {5, 18, 3, 13}, {14, 6, 19, 8}, {9, 20, 7, 15}, {10, 16},
{11}, {12}}

|C | = 8

F.T. (EPFL) CIVIL-557 11/3/2025 52 / 113

Sorted edges Example

Next cheapest = (1, 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 53 / 113

Sorted edges Example

Next cheapest = (4, 6)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 54 / 113

Sorted edges Example

Next cheapest = (5, 7)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 55 / 113

Sorted edges Example

Next cheapest = (8, 10)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 56 / 113

Sorted edges Example

Next cheapest = (9, 11)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 57 / 113

Sorted edges Example

Next cheapest = (14, 16)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 58 / 113

Sorted edges Example

Next cheapest = (13, 14)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 59 / 113

Sorted edges Example

Next cheapest = (15, 16)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 60 / 113

Sorted edges Example

Next cheapest = (1, 5)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 61 / 113

Sorted edges Example

Next cheapest = (1, 2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 62 / 113

Sorted edges Example

Next cheapest = (11, 12)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 63 / 113

Sorted edges Example

Next cheapest = (4, 12). Total cost = 26.142

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 64 / 113

Sorted edges Example

C ={{2, 17, 4, 12, 11, 9, 20, 7, 15, 16, 10, 8, 19, 6, 14, 13, 3, 18, 5, 1}}

|C | = 1

F.T. (EPFL) CIVIL-557 11/3/2025 65 / 113

Evaluation

Which heuristic is better? NN or SE?

NN > SE → 26.765 > 26.142

This is not always the case;

If we start the NN in a different city the solution can change;

When SE heuristic has equal cost edges we can get different solutions
based on a random choice.

Is there any room for improvement?

F.T. (EPFL) CIVIL-557 11/3/2025 66 / 113

Evaluation

Is there any room for improvement?

How do we know that we should invest more time improving our
heuristics?

Is there a simple way to evaluate the solution;

If we had a good lower bound for the solution then we could compare!

F.T. (EPFL) CIVIL-557 11/3/2025 67 / 113

Evaluation

The optimality gap is the gap between a feasible solution value (upper
bound) and a lower bound (relaxation).

UB − LB

LB
× 100%

The optimal solution is both an upper bound and a lower bound:

A feasible solution cannot be lower that the optimal, otherwise the
optimal solution would not be optimal;

The optimal solution is a feasible solution, hence it is also an upper
bound.

F.T. (EPFL) CIVIL-557 11/3/2025 68 / 113

Solution with B&C

Optimal cost = 22.4667

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 69 / 113

Evaluation

Sorted edges

SE − opt

opt
× 100%

26.142− 22.467

22.467
× 100% ≈ 16.36%

Nearest Neighbor

NN − opt

opt
× 100%

26.765− 22.467

22.467
× 100% ≈ 19.13%

F.T. (EPFL) CIVIL-557 11/3/2025 70 / 113

Evaluation

Is a 16.36% gap a ”good” solution?

The size and complexity of the problem, as well as the time
constraints, can make it necessary to accept a suboptimal solution
with a larger gap.

The cost implications of the suboptimal solution, such as high
shipping costs, may require a more accurate solution with a smaller
gap.

The acceptable gap between solutions may vary depending on the
level of service quality required or the specific needs of the problem at
hand.

F.T. (EPFL) CIVIL-557 11/3/2025 71 / 113

Local Search

Local Search algorithms optimize the cost function by exploring the
neighborhood of the current point in the solution space.

A move is a change in the solution, e.g., swapping customers in a
route.

LS makes a move that improves the solution at each step.

Once no improving predefined moves exist the algorithm stops (Local
optima).

F.T. (EPFL) CIVIL-557 11/3/2025 72 / 113

Local Search

Let S be the set of feasible solutions and let f be the objective function of
the problem.

Definition 1: Let H be a heuristic that defines for each solution
w ∈ S a subset Sw ⊆ S of solutions “close” (to be defined by the
user according to the problem of interest) to the solution w . The
subset Sw is called the neighborhood of solution w .

Definition 2: A solution w∗ ∈ S is called a local optimum with
respect to H for the subset of feasible solutions S and the objective
function f if f (w∗) ≤ f (z) for all z ∈ Sw∗ .

Definition 3: The neighborhood structure H is said to be exact if,
for every local optimum with respect to H, w∗ ∈ S , w∗ is also a
global optimum of S and f .

F.T. (EPFL) CIVIL-557 11/3/2025 73 / 113

Local Search Algorithms

Input : Initial solution w
Output: Best solution found
while termination condition not met do

Generate a solution z from the neighborhood Sw of the current
solution w ;

if f (z) < f (w) then
w ← z;

end
if f (z) ≥ f (w) for all z ∈ Sw then

Terminate;
end

end
Algorithm 1: Local Search

F.T. (EPFL) CIVIL-557 11/3/2025 74 / 113

k-opt

The k-opt algorithm is a local search algorithm for the Traveling
Salesman Problem (TSP).

The algorithm works by iteratively improving a feasible solution to
the TSP by exploring its neighborhood using a k-opt move.

The k-opt move involves removing k edges from the current solution
and reconnecting the resulting fragments in a new way to obtain a
new feasible solution.

The value of k determines the size of the neighborhood and the
complexity of the search.

The algorithm terminates when no further improvement can be made,
and the current solution is returned as the approximate solution to
the TSP.

F.T. (EPFL) CIVIL-557 11/3/2025 75 / 113

2-opt algorithm

Input : An initial tour T for the TSP
Output: An approximate solution to the TSP
Set T ∗ ← T ;
while no improvement is made do

for i ∈ T ∗ do
for j = i + 1 to |T | do

if di ,i−1 + dj+1,j > di ,j+1 + di−1,j then
R ← Reverse the segment between cities i − 1 and j +1;
T ∗ ← R;

end

end

end

end
Algorithm 2: 2-opt algorithm for TSP

F.T. (EPFL) CIVIL-557 11/3/2025 76 / 113

2-opt Example

Initial tour is the NN solution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 77 / 113

2-opt Example

A 2-opt move consists of replacing 2 edges with 2 new edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 78 / 113

2-opt Example

Remove (13,14) and (2,18). Now add (2,13) and (14,18) to reconnect the
tour.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 79 / 113

2-opt Example

2-opt continues only making moves that improve the objective function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 80 / 113

2-opt Example

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 81 / 113

2-opt Example

2-opt solution value = 23.97. Local optimum

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 82 / 113

Evaluation

Is this solution better?

2opt − opt

opt
× 100%

23.97− 22.467

22.467
× 100% ≈ 6.72%

F.T. (EPFL) CIVIL-557 11/3/2025 83 / 113

Local Search

Why not do 10-opt or more?

The time complexity of each iteration for the k-opt algorithm is:

O(nk)

In general, the time complexity of the k-opt algorithm increases
exponentially with the value of k, so it is often used with small values of k
(such as 2 or 3) to balance between solution quality and computation time.

F.T. (EPFL) CIVIL-557 11/3/2025 84 / 113

Local Search

In a local optimal point there is no descent direction. That is, there is
no improving solution in the neighborhood around the current solution

x

f (x)

x1 x2

local optima

F.T. (EPFL) CIVIL-557 11/3/2025 85 / 113

Local Search

In Local search the local optima is defined by the heuristic (e.g.,
2-opt heuristic).

Once the heuristic cannot identify an improving move, then we say
that the solution is a local optima (e.g., 2-opt local optima).

Notice that if we change the heuristic (e.g, 4-opt) we could improve
the solution to arrive at a new local optima for the new heuristic.

Disadvantage local search is unable to escape local optima since it
does not accept non improving solutions.

F.T. (EPFL) CIVIL-557 11/3/2025 86 / 113

Outline

1 Heuristics
Greedy Heuristics
Local Search Heuristics

2 Metaheuristics
Simulated Annealing

F.T. (EPFL) CIVIL-557 11/3/2025 87 / 113

Metaheuristics

The idea is to escape local optima by altering the solution in some
way (sometimes called kick, shake or destroy).

Moves that cause an increase in the function can be accepted to
escape local optima.

Once the solution has been altered in some way that is sufficient to
escape, local search is used again to improve the new solution.

Generally, the procedure is repeated for some pre-specified number of
iterations.

F.T. (EPFL) CIVIL-557 11/3/2025 88 / 113

Annealing

Annealing is a process of heating and cooling a material to change its
properties.

It is commonly used in the manufacturing of metals and glass.

The annealing process involves heating the material to a high
temperature, then allowing it to cool slowly.

This slow cooling allows the material’s atoms to rearrange themselves
into a more stable configuration.

Annealing can result in changes to the physical and mechanical
properties of a material, such as strength, ductility, and toughness.

It can also be used to relieve stresses in a material that occur during
processes such as welding or machining.

F.T. (EPFL) CIVIL-557 11/3/2025 89 / 113

Annealing: Rapid cooling

High Energy State
(Liquid)

Cooling

Metastable
(Solid)

F.T. (EPFL) CIVIL-557 11/3/2025 90 / 113

Annealing: Slow gradual cooling

High Energy State
(Liquid)

Cooling

Minimum Energy State
(Crystal)

F.T. (EPFL) CIVIL-557 11/3/2025 91 / 113

Simulated Annealing(SA)

SA is a metaheuristic optimization algorithm based on the physical process
of annealing in materials.

The SA process involves starting with an initial solution and gradually
modifying it by changing some elements of the solution.

At each step, the new solution is evaluated and accepted or rejected based
on a probability that depends on the difference between the energy of the
new solution and the energy of the current solution, as well as the current
temperature.

Initially, the temperature is set high so that the system is in a high-energy
state, allowing for a more complete exploration of the solution space.

As the temperature is gradually decreased, the system is encouraged to
settle into a lower-energy state.

If the temperature decreases too quickly, the system can become trapped in
a local optimum, known as hardening.

F.T. (EPFL) CIVIL-557 11/3/2025 92 / 113

Simulated Annealing

Let the temperature be T ;
Let f (z) be the new solution’s objective value;

Let f (w) be the current solution’s objective value;

Let Pr{accept z} be the probability of accepting z as a new current
solution.

F.T. (EPFL) CIVIL-557 11/3/2025 93 / 113

Simulated Annealing

Probability of accepting a new solution:

e
f (w)−f (z)
T

Pr{accept z} =

{
1 if f (z) < f (w)

e
f (w)−f (z)

T otherwise

F.T. (EPFL) CIVIL-557 11/3/2025 94 / 113

Simulated Annealing

−4 −3 −2 −1 0

0.5

1

1.5

f (w)−f (z)
T

e
f
(w

)−
f
(z
)

T

e
f (w)−f (z)

T

F.T. (EPFL) CIVIL-557 11/3/2025 95 / 113

Simulated Annealing

Input : wstart , T0, L0
Output: Best solution found

w ← wstart , k ← 0, Tk ← T0, Lk ← L0;
while Tk ̸≃ 0 do

for l = 0 to Lk do
Generate a solution z from the neighborhood Sw ;
if f (z) < f (w) then

w ← z;
end
else

Accept z as the current solution with probability e
f (w)−f (z)

Tk ;
end

end
k ← k + 1;
Compute (Lk , Tk);

end
return w ;

F.T. (EPFL) CIVIL-557 11/3/2025 96 / 113

Simulated Annealing

At each iteration, the algorithm cools the temperature by a cooling
factor of α.

Tk+1 ← α× Tk

F.T. (EPFL) CIVIL-557 11/3/2025 97 / 113

SA Example

T0 = 1000, α = 0.999, L = 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 98 / 113

SA Example

Tk = 499.9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 99 / 113

SA Example

Tk = 124.94

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 100 / 113

SA Example

Tk = 1.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 101 / 113

SA Example

Tk ≃ 0.0 Total cost 22.467

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F.T. (EPFL) CIVIL-557 11/3/2025 102 / 113

SA calibrating parameters

Cooling temperature

If the cooling factor “α” is to small the temperature will cool down too
quickly. The solution might get stuck in local optima;

If it is too high the algorithm will take longer to converge to a solution.

Temperature

If the initial temperature is too low, SA can fail to escape local optima.

If the temperature is too high, SA will take a long time to converge to a
solution.

Stopping criteria

If the stopping criteria is too high, SA will stop before final improvements
can be explored.

If it is too low it might take a long time for the algorithm to stop, even after
finding a good solution. There will be no improvements.

F.T. (EPFL) CIVIL-557 11/3/2025 103 / 113

SA calibrating parameters

The cooling:
Tk+1 = α× Tk

The algorithm will stop when: Tk ≤ stop therefore:

αk∗T0 = stop

Where k∗ is the total number of iterations and stop is the stopping value
for the temperature.

F.T. (EPFL) CIVIL-557 11/3/2025 104 / 113

SA calibrating parameters

To solve for α:

α =

(
stop

T0

) 1
k∗

To solve for k∗:

k∗ =
ln
(
stop
T0

)
ln(α)

To solve for T0:

T0 =
stop

αk∗

To solve for stop:
stop = αk · T0

F.T. (EPFL) CIVIL-557 11/3/2025 105 / 113

SA: Initial Temperature

1 Set stopping criteria “stop” equal to a small number, e.g.,
stop = 10(−8).

2 Set temperature to a value that is not too small or too large.
1 Run 20 iterations of the algorithm with the temperature equal to 0,

i.e., T0 = 0;
2 Determine the absolute value of the difference from the current

solution to the new solution;
3 Set the initial temperature to the average of the difference.

F.T. (EPFL) CIVIL-557 11/3/2025 106 / 113

SA: Iterations and cooling rate

It depends how long you have to generate solutions.

1 Determine the time that you have to run the algorithm, e.g., 1
minute, 20 minutes, etc.

2 Determine how long it takes for each iteration and set iterations to
the amount of time you have.

3 Set the cooling rate accordingly:

α =

(
stop

T0

) 1
k∗

F.T. (EPFL) CIVIL-557 11/3/2025 107 / 113

SA: conclusion

Simulated Annealing is a stochastic algorithm.

Stochastic algorithms depend on random parameters that change
every time we run the algorithm.

Stochastic algorithms can provide different solutions every time we
run.

It can be necessary to run a few times to get the best solution.

F.T. (EPFL) CIVIL-557 11/3/2025 108 / 113

Stochastic vs Deterministic

Stochastic algorithms are algorithms that use random elements in their
search process. They can be thought of as probabilistic algorithms that
make use of randomness to explore the search space.

Deterministic algorithms are algorithms that produce the same output
for a given input every time they are run. They do not use any
randomness in their search process.

F.T. (EPFL) CIVIL-557 11/3/2025 109 / 113

Summary

Heuristics are used for the following reasons:

When time is of essence;
The exact solution might be difficult or impossible to find in a
reasonable amount of time;

It is necessary to have a lower bound to compare the quality of the
solutions provided by the heuristic.

Heuristic solutions can be arbitrarily bad, while exact methods provide
the best solution, heuristics do not.
The need to compare and improve the heuristics is always present.

F.T. (EPFL) CIVIL-557 11/3/2025 110 / 113

Summary

Heuristics can be classified in different ways

Constructive heuristics: Build solution from scratch.

Nearest Neighbor heuristic.
Sorted edges heuristic.

Local search

k-opt

Deterministic: if the algorithm converges to the same solution

Nearest Neighbor; if we start with a predefined city;
Sorted edges
k-opt

Stochastic: if the solution depends on some random parameters.

Simulated annealing.
Nearest Neighbor, if we start in a random city.

Greedy: always choosing the best step:

Nearest Neighbor heuristic.
Sorted edges heuristic.

F.T. (EPFL) CIVIL-557 11/3/2025 111 / 113

Summary

Constructive heuristics are fast and can build initial solutions quickly;

Local search algorithms improve solutions by making specific “moves”
that search the neighborhood of the solution;

Local search heuristics define the neighborhood by the moves;

Local search heuristics get stuck in local optima and cannot escape;

To find better solutions we need to escape local optima by
momentarily accepting bad solutions that worsen the objective value.

Simulated Annealing uses a stochastic approach to accept solutions
so that there exists a high probability of moving to a worse solution.

The probability of acceptance of bad solutions decreases as the
temperature cools.

F.T. (EPFL) CIVIL-557 11/3/2025 112 / 113

References

Wolsey, L. A. (1998). Integer programming. Wiley.

Gendreau, M., & Potvin, J.-Y. (Eds.). (2010). Handbook of
metaheuristics. Springer.

F.T. (EPFL) CIVIL-557 11/3/2025 113 / 113

	Heuristics
	Greedy Heuristics
	Local Search Heuristics

	Metaheuristics
	Simulated Annealing

