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Shortest Path Problem (SPP)
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SPP: Principle of optimality
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SPP: Principle of optimality

Let P = {o, . . . , p1, . . . , p2, . . . d} be the shortest path that starts in the
origin o and finishes in the destination d . And let p1 and p2 be any
intermediate nodes in the path (o − d).

Proposition:

The subpaths (o − p1), (p1 − p2) and (p2 − d) are shortest paths from (o
to p1), (p1 to p2) and (p2 to d) respectively.

Proof:

Suppose there was a shorter path that could replace any of these
subpaths. Then, we could replace this smaller cost section into path P and
we would find a shorter path from (o to d). Which contradicts that P was
the shortest path since we found a shorter path than P.
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SPP: Principle of optimality

If we knew the shortest path to every node connected to p, we could
extend these paths to node p and determine which is the shortest at node
p:

D(i) is the shortest path distance from the origin to i .

N(p) is the set of nodes connected to the node (p).

cip is the cost of going from node i to p directly.

D(p) = min
i∈N(p)

{D(i) + cip}

For acyclic directed graphs, this leads to an algorithm that is polynomial
time O(|A|) where A is the set of arcs.
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SPP: Principle of optimality

For a general directed graph with non-negative costs we need an ordering:
Where do we begin?

Consider a set of stages k ∈ {0, 1, . . . , |N|}, where k is the number of
nodes visited in a path.

Dk(j) = min
i∈N(j)

{Dk−1(i) + cij}

We start by setting D0(o) = 0 and then find the shortest paths for all
nodes connected to the origin.

For all k ∈ 1, . . . , |N| :
For all j ∈ N :

Dk(j) = mini∈N(j){Dk−1(i) + cij ,∞}
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Label
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Label

A label stores information about a path. Any information can be
stored, e.g., cost, time, capacity, etc.

Let Lk = (i ,Dk(i), Lk−1) be a label with information about the
current node (i.e., i), the cost of the path to node i (i.e., Dk(i)) and
the previous label from the path (i.e., Lk−1).

LetM(k, i) be a bucket that stores labels that are currently in node i
after visiting k nodes.

For simplicity: M(k , i) = {L = (i , c , L)}, where c = Dk(i) and L = Lk−1
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Label extension

Extending a label Lextend = (ie , ce , L) is to extend the path from the
current node, i.e., ie to another adjacent node in the graph, e.g., jn.

Extending a label creates a new label Lnew .

The label is created like this Lnew = (jn, ce + cie jn ,Lextend).
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Dominance
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Dominance

If two labels are in the same node we can use the Principle of optimality
to decide which is better and eliminate the one that has a larger cost.

Dominance rules:
Label L1 = (i1, c1, L1) dominates label L2 = (i2, c2, L2) if the following is
true:

1 i1 = i2
2 c1 ≤ c2
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Labeling Algorithm

Output: Shortest path

M(k, i)← ∅, ∀i ∈ N, k ∈ {0, . . . , |N|};
M(0, o)← {(o, 0, ∅)};
for k = 1 to |N| do

for i ∈ N do
for j ∈ N(i) do

for l ∈ M(k − 1, i) do
if feasible(i,j) then

Create new label:
g ← (j, fc , l);
dominated ← false;
Dominance ← rules;
for h ∈ M(k, j) do

Check dominance:
if Dominance(h, g) then

dominated ← true;
Break;

else if Dominance(g, h) then
Delete dominated label h:
M(k, j) \ {h};

end
end
if not dominated then

M(k, j)←M(k, j) ∪ {g};
end

end

end

end

end

end
return Cheapest label fromM
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Example: stage 0 (k = 0)
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Example: stage 1 (k = 1)
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Example: stage 2 (k = 2)
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Example: stage 3 (k = 3)
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Example: stage 3 (k = 3)
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Example: stage 3 (k = 3)
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Example: stage 3 (k = 3)

F.T. (EPFL) CIVIL-557 4/3/2025 21 / 82



Example: stage 3 (k = 3)
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Example: stage 4 (k = 4)
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Example: stage 4 (k = 4)
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Example: stage 4 (k = 4)
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Example: stage 4 (k = 4)
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Example: stage 5 (k = 5)
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Example: stage 6 (k = 6)
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Example: Dominating labels from all stages

Recall the dominance rules

1 i1 = i2
2 c1 ≤ c2

We can use other labels stored in M(k, i) such that k <= 6 if the
dominance rules are true, then we delete dominated labels.
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Example: Backtracking to get solution
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SPP

The shortest path problem is Unbounded! We can cycle forever.
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Shortest Path Problem with Resource Constraints
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Shortest Path Problem with Resource Constraints

Time constraints

ei earliest arrival

bi latest arrival,

tij time consumed in arc (i , j),

Capacity constraints

The total load of a path cannot exceed Q,

qi is the demand of node i .
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Labels

Lextend = (ie , ce ,T e ,Qe , Le)

Let Lextend = (ie , ce ,T e ,Qe , Le) be a label that we want to extend from
ie to jn.

ie is the current node,

ce is the total cost traveled in the path of label,

T e is the total time travel in the path that ends in the current node,
i.e., ie ,

Qe is the total load, i.e., the sum of all demand of nodes on the path.

jn is a node connected to ie .
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Label extensions

Extend label Lextend from node ie to node jn,

We have to create a new label Lnew ,

The cost is extended by adding the cost in arc (ie , jn)

Resources must be extended too!

Resource constraints have to be checked before we
extend!
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Resource Extension Functions (REF)

REFs keep track of the resources that are used.

At each extension we consume resources. REFs are functions that return
the total amount of resource used by passing through an arc (i , j).

Capacity Resource Extension Function fQ = Qi + qj

Time Resource Extension Function fT = Ti + tij

F.T. (EPFL) CIVIL-557 4/3/2025 37 / 82



Feasibility checks

Before we extend a label we must check resource constraints.

Some extensions might not be feasible,

Resource constraints could be violated,

Time windows requires the path to arrive within the time window,

Capacity constraints require the path to not exceed the capacity,

At each extension we need to check all constraints allow the
extension.
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Feasibility checks

If:

T e + t(ie ,jn) > bjn , Then the extension is not feasible.
or

Qe + qjn > Q, Then the extension is not feasible.
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Feasibility checks

What happens if we arrive early?

1 Waiting is feasible,

2 If T e + t(ie ,jn) < ejn we can wait at node jn until ejn ,

3 The waiting time must be added to the resource consumption,

4 The REF for time is modified to fT = max{ejn ,T e + t(ie ,jn)}.

New label is

Lnew = (jn, cn, fT , fQ ,Lextend)
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Example waiting
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Dominance

We can use dominance rules to delete labels as before, however,
dominance rules need to be modified.

Dominance rules:
Label L1 = (i1, c1,T1,Q1, L1) dominates label L2 = (i2, c2,T2,Q2, L2) if
the following is true:

1 i1 = i2
2 c1 ≤ c2
3 T1 ≤ T2

4 Q1 ≤ Q2
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Example: Dominance
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Example: negative cost cycle
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Example: negative cost cycle
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Example: negative cost cycle
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Example: negative cost cycle
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Example: negative cost cycle
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Example: negative cost cycle
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Find the route with minimum reduced cost

Elemetary Shortest Path Problem with Resource Constraints (ESPPRC)

Min
∑
i∈V

∑
j∈V

ĉijxij

s.t.
∑
i∈N

qi
∑
j∈V

xij ≤ Q,

∑
j∈N

x0j = 1,

∑
i∈V

xi0 = 1,

∑
i∈N

xih −
∑
j∈N

xhj = 0 ∀h ∈ N,

Ti + tij −Mij(1− xij) ≤ Tj ∀i , j ∈ V ,

ai ≤ Ti ≤ bi ∀i ∈ N,

xij ∈ {0, 1} ∀i , j ∈ N.
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Negative reduced cost

The pricing problem for the VRP has negative cost cycles,

Elementarity constraints (i.e., no cycles allowed) are used to prevent
cycles from forming,

Vehicles cannot visit the same customer multiple times.
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Unreachable nodes

Let V e be the set of unreachable nodes for label Lextend ,
If a node is in set V e then it is unfeasible to visit this node from label
Lextend .

Lextend = (ie , ce ,T e ,Qe ,V e , Le)
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Label extensions

Add an extension for the set of unreachable nodes!

1 V n = V e ∪ {jn}
2 The REF for capacity is fQ = Qe + qjn

3 The REF for time is fT = max{ejn ,T e + t(ie ,jn)}.

New label is:

Lnew = (jn, cn, fT , fQ ,V
n,Lextend)
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Feasibility checks

Before we extend a label we must check all constraints.

jn ∈ V e , Then the extension is not feasible.
or

T e + t(ie ,jn) > bjn , Then the extension is not feasible.
or

Qe + qjn > Q, Then the extension is not feasible.
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Dominance

We can use dominance rules to delete labels as before, however,
dominance rules need to be modified.

Dominance rules:
Label L1 = (i1, c1,T1,Q1,V1, L1) dominates label
L2 = (i2, c2,T2,Q2,V2, L2) if the following is true:

1 i1 = i2
2 c1 ≤ c2
3 T1 ≤ T2

4 Q1 ≤ Q2

5 V1 ⊆ V2
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Dominance

Exponential growth of labels!

Dominance rule (5) makes it difficult to delete labels through
dominance,

There is an exponential number of subsets of nodes,

Labels grow exponentially.
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Relaxation

ESPPRC
relax−−−→ SPPRC

When we relax the elemetarity constraints we have the SPPRC as a
relaxation, i.e., the solution of the SPPRC will give us a lower bound on
the ESPPRC.

What about cycles?

Cycles are added as feasible routes.

Will the solution to the VRP contain routes that visit customers
multiple times?
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Master Problem: The set-covering formulation

We replace the set-partitioning formulation with the Set-covering
formulation

Master problem (MP)

Minimize
∑
r∈Ω

crλr

s.t.
∑
r∈Ω

airλr ≥ 1← ∀i ∈ N,

λr ∈ {0, 1} ∀r ∈ Ω.
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Master Problem: The set-covering formulation

Will the solution to the VRP contain routes that visit
customers multiple times?

No!

Why?

Routes with cycles are more expensive than routes without cycles,

The optimal integer solution will have routes that visit customers only
once,

However, the lower bounds obtained by the relaxation are weak.
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Relaxation: k-cycle

Only cycles containing more than k nodes are allowed.

Lower bound

The lower bound from this relaxation is better than the SPPRC.
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Relaxation: 2-cycle
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Relaxation: 2-cycle
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Relaxation: Ng-route

Eliminate cycles formed by close neighbors

Only allow cycles formed by distant customers.

Lower bound

The lower bound from the Ng-route relaxation is better than the k-cycle
relaxation.
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Relaxation: Ng-route

Ng i is a set of nearest customers to customer i ∈ N.

For every customer we create an Ng-set that contains its ∆ nearest
neighbors, e.g., ∆ = 5 means than the set Ng i contains the 5 nearest
neighbors of the customer i .

When we extend a label from ie to a distant neighbor not in set
jn /∈ Ng ie we can forget some customers that we could visit again.
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Ng-route relaxation: Labels

Labels keep track of the set of unreachable customers that are allowed to
be visited next.
The full set of unreachable customers V is replaced by a smaller set U.

L = (i , c ,T ,Q,V , L)→L = (i , c ,T ,Q,U, L)

Lextend = (ie , ce ,T e ,Qe ,Ue , Le)

Let V e be the set of unreachable nodes for label Lextend ,
If a node is in set V e then it is unfeasible to visit this node from label
Lextend .
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Label extensions

Add an extension for the set of unreachable nodes!

1 Un = Ue ∩ Ngn → Only common elements are kept.

2 Un = Un ∪ {jn} → Add the current customer to the set.

3 The REF for capacity is fQ = Qe + qjn

4 The REF for time is fT = max{ejn ,T e + t(ie ,jn)}.

New label is:

Lnew = (jn, cn, fT , fQ ,U
n,Lextend)
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Example:ng-route
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Example:ng-route
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Example:ng-route
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Feasibility checks

Before we extend a label we must check all constraints.

jn ∈ Ue , Then the extension is not feasible.
or

T e + t(ie ,jn) > bjn , Then the extension is not feasible.
or

Qe + qjn > Q, Then the extension is not feasible.
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Dominance

We can use dominance rules to delete labels as before, however,
dominance rules need to be modified.

Dominance rules:
Label L1 = (i1, c1,T1,Q1,U1, L1) dominates label
L2 = (i2, c2,T2,Q2,U2, L2) if the following is true:

1 i1 = i2
2 c1 ≤ c2
3 T1 ≤ T2

4 Q1 ≤ Q2

5 U1 ⊆ U2
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Example: Dominance

L1 = (i1 = 9, c1 = −3,T1 = 55,Q1 = 44,U1 = (1, 2, 3, 9), L1)

L2 = (i2 = 9, c2 = −3,T2 = 55,Q2 = 44,U2 = (1, 3, 9), L2)

Which label dominates?

1 i1 = i2 =⇒ 9 = 9

2 c1 ≤ c2=⇒ −3 ≤ −3
3 T1 ≤ T2=⇒ 55 ≤ 55

4 Q1 ≤ Q2=⇒ 44 ≤ 44

5 U1 ⊆ U2=⇒ U1 ̸⊆ U2 2 is not in U2

Rule (5) is violate and we cannot delete L2
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Example: Dominance

The other way around

L1 = (i1 = 9, c1 = −3,T1 = 55,Q1 = 44,U1 = (1, 2, 3, 9), L1)

L2 = (i2 = 9, c2 = −3,T2 = 55,Q2 = 44,U2 = (1, 3, 9), L2)

Which label dominates?

1 i2 = i1 =⇒ 9 = 9

2 c2 ≤ c1=⇒ −3 ≤ −3
3 T2 ≤ T1=⇒ 55 ≤ 55

4 Q2 ≤ Q1=⇒ 44 ≤ 44

5 U2 ⊆ U1=⇒ U2 ⊂ U1 All elements are contained

All rules are satisfied label L1 is dominated by L2 and is deleted.
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Summary

SPP find the shortest path from the origin to the destination node in
a graph

The Principle of optimality shows that any sub path of the shortest
path must also be a shortest path.
The SPP can be solved with a labeling algorithm in a polynomial
number of operations,
A SPP where the graph has a negative cost cycle is unbounded.

SPPRC some graphs have resources that are used as a path passes
through an arc.

Non negative consumption of resources bound the problem since the
resources run out. The path cannot cycle on a negative cost cycle for
ever.
Resource Extension Functions (REFs) extend the resources used when
a path passes through an arc.
Feasibility check are necessary to not violate resource constraints.
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Summary

ESPPRC: Elememtarity constraints prevent cycles from forming in the
shortest path.

Exponential growth of paths make the problem difficult to solve
The SPPRC is a relaxation of the ESPPRC that is produced when the
elementarity constraints are dropped. However, the bound is weak.
k-cycle relaxations allow only cycles larger than k to be formed. The
k-cycle relaxation imporves the bound of the SPPRC relaxation.
Ng-route relaxation only allows cycles with distant nodes to be formed
and prevents cycles formed by nearest neighbors.
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