

CIVIL-557

Decision-Aid Methodologies in Transportation

Lecture III

Shortest Path Problems

Fabian Torres

Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL

EPFL

Outline

- 1 Shortest Path Problem (SPP)
 - Solution method
- 2 Shortest Path Problem with Resource Constraints
 - Solution Method
- 3 Elementary Shortest Path Problem with Resource Constraints
 - Solution Method
 - Relaxations

Outline

1 Shortest Path Problem (SPP)

- Solution method

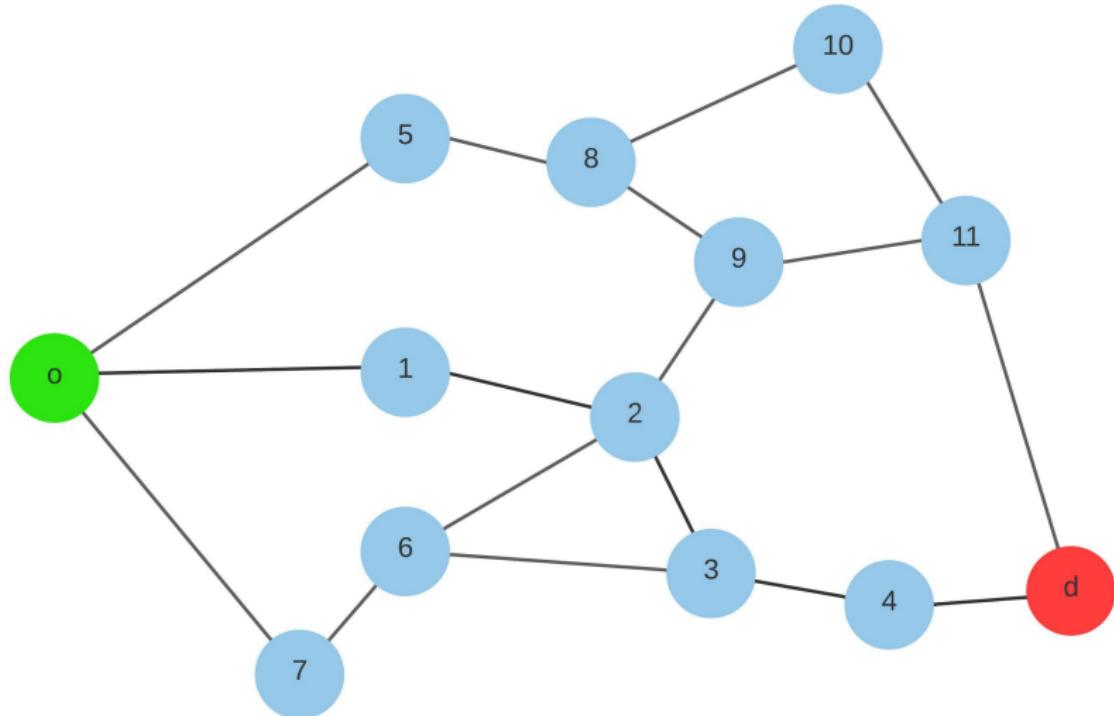
2 Shortest Path Problem with Resource Constraints

- Solution Method

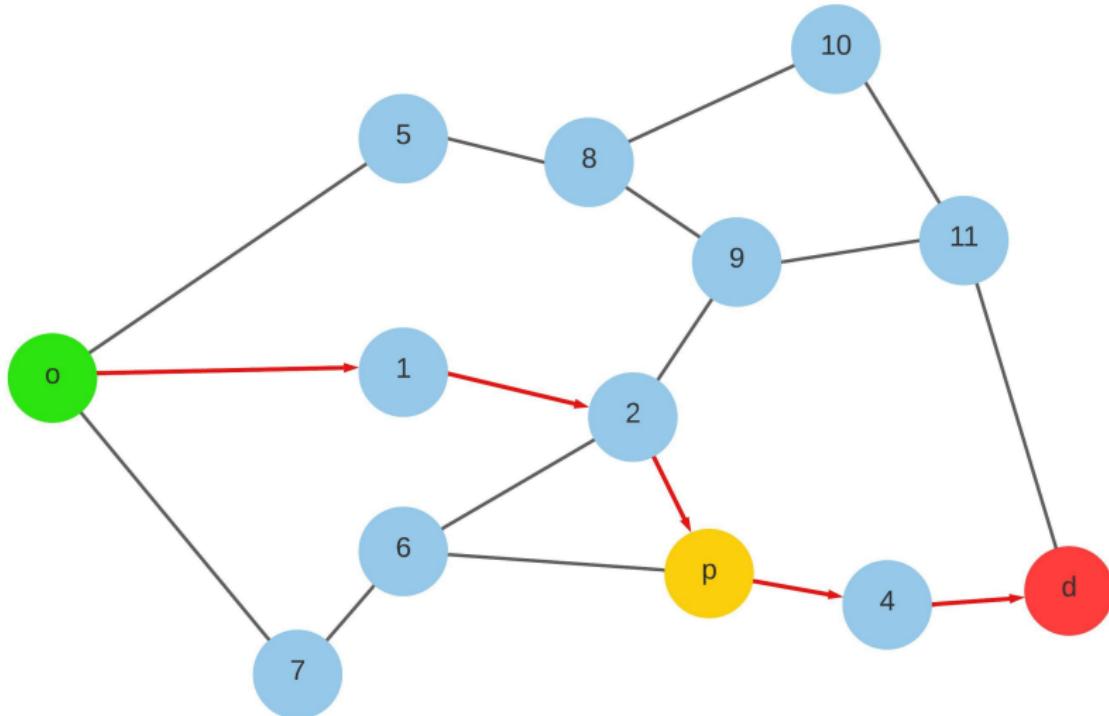
3 Elementary Shortest Path Problem with Resource Constraints

- Solution Method
- Relaxations

Shortest Path Problem (SPP)



SPP: Principle of optimality



SPP: Principle of optimality

Let $P = \{o, \dots, p_1, \dots, p_2, \dots, d\}$ be the shortest path that starts in the origin o and finishes in the destination d . And let p_1 and p_2 be any intermediate nodes in the path $(o - d)$.

Proposition:

The subpaths $(o - p_1)$, $(p_1 - p_2)$ and $(p_2 - d)$ are shortest paths from $(o$ to $p_1)$, $(p_1$ to $p_2)$ and $(p_2$ to $d)$ respectively.

Proof:

Suppose there was a shorter path that could replace any of these subpaths. Then, we could replace this smaller cost section into path P and we would find a shorter path from $(o$ to $d)$. Which contradicts that P was the shortest path since we found a shorter path than P . □

SPP: Principle of optimality

If we knew the shortest path to every node connected to p , we could extend these paths to node p and determine which is the shortest at node p :

- $D(i)$ is the shortest path distance from the origin to i .
- $N(p)$ is the set of nodes connected to the node (p) .
- c_{ip} is the cost of going from node i to p directly.

$$D(p) = \min_{i \in N(p)} \{D(i) + c_{ip}\}$$

For acyclic directed graphs, this leads to an algorithm that is polynomial time $O(|A|)$ where A is the set of arcs.

SPP: Principle of optimality

For a general directed graph with non-negative costs we need an ordering:

Where do we begin?

Consider a set of stages $k \in \{0, 1, \dots, |N|\}$, where k is the number of nodes visited in a path.

$$D_k(j) = \min_{i \in N(j)} \{D_{k-1}(i) + c_{ij}\}$$

We start by setting $D_0(o) = 0$ and then find the shortest paths for all nodes connected to the origin.

For all $k \in 1, \dots, |N| :$

For all $j \in N :$

$$D_k(j) = \min_{i \in N(j)} \{D_{k-1}(i) + c_{ij, \infty}\}$$

EPFL

Label

Label

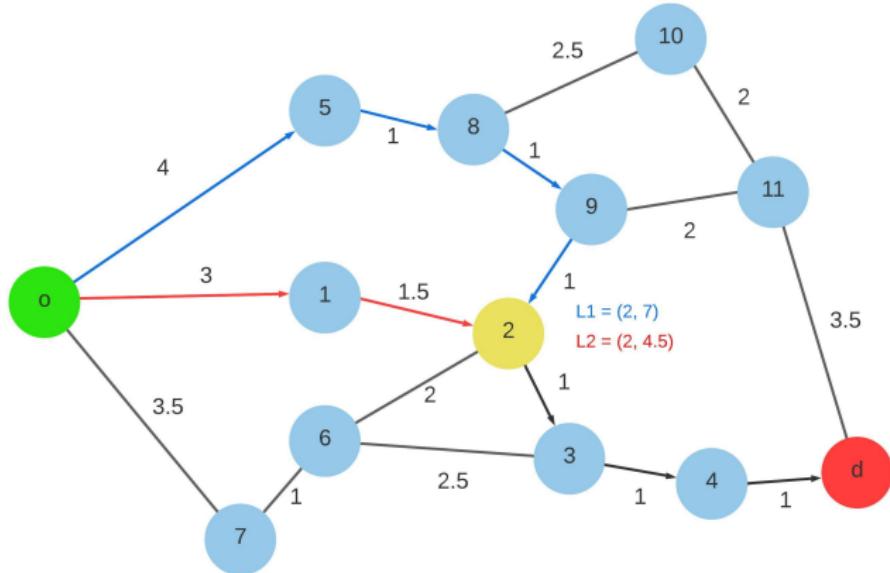
- A label stores information about a path. Any information can be stored, e.g., cost, time, capacity, etc.
- Let $\mathcal{L}_k = (i, D_k(i), L_{k-1})$ be a label with information about the current node (i.e., i), the cost of the path to node i (i.e., $D_k(i)$) and the previous label from the path (i.e., L_{k-1}).
- Let $\mathcal{M}(k, i)$ be a bucket that stores labels that are currently in node i after visiting k nodes.

For simplicity: $\mathcal{M}(k, i) = \{\mathcal{L} = (i, c, L)\}$, where $c = D_k(i)$ and $L = L_{k-1}$

Label extension

- Extending a label $\mathcal{L}_{extend} = (i^e, c^e, L)$ is to extend the path from the current node, i.e., i^e to another adjacent node in the graph, e.g., j^n .
- Extending a label creates a new label \mathcal{L}_{new} .
- The label is created like this $\mathcal{L}_{new} = (j^n, c^e + c_{i^e j^n}, \mathcal{L}_{extend})$.

Dominance



Dominance

If two labels are in the same node we can use **the Principle of optimality** to decide which is better and eliminate the one that has a larger cost.

Dominance rules:

Label $\mathcal{L}_1 = (i_1, c_1, L_1)$ dominates label $\mathcal{L}_2 = (i_2, c_2, L_2)$ if the following is true:

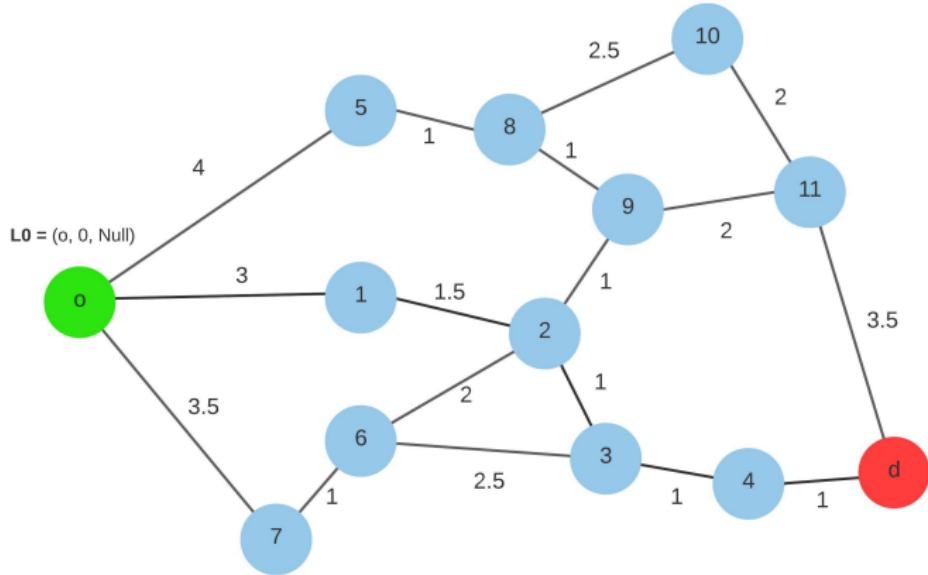
- ① $i_1 = i_2$
- ② $c_1 \leq c_2$

Labeling Algorithm

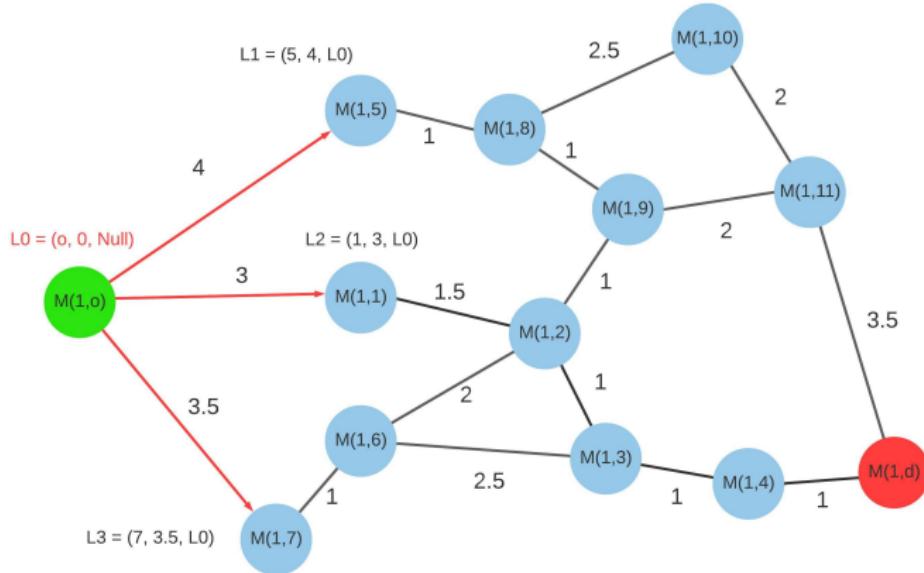
Output: Shortest path

```
 $\mathcal{M}(k, i) \leftarrow \emptyset, \quad \forall i \in N, k \in \{0, \dots, |N|\};$ 
 $\mathcal{M}(0, o) \leftarrow \{(o, 0, \emptyset)\};$ 
for  $k = 1$  to  $|N|$  do
  for  $i \in N$  do
    for  $j \in N(i)$  do
      for  $l \in \mathcal{M}(k - 1, i)$  do
        if feasible( $i, j$ ) then
          Create new label:
           $g \leftarrow (j, f_c, l);$ 
           $dominated \leftarrow false;$ 
           $Dominance \leftarrow rules;$ 
          for  $h \in \mathcal{M}(k, j)$  do
            Check dominance:
            if Dominance( $h, g$ ) then
               $dominated \leftarrow true;$ 
              Break;
            else if Dominance( $g, h$ ) then
              Delete dominated label  $h$ :
               $\mathcal{M}(k, j) \setminus \{h\};$ 
            end
          if not dominated then
             $\mathcal{M}(k, j) \leftarrow \mathcal{M}(k, j) \cup \{g\};$ 
          end
        end
      end
    end
  end
return Cheapest label from  $\mathcal{M}$ 
```

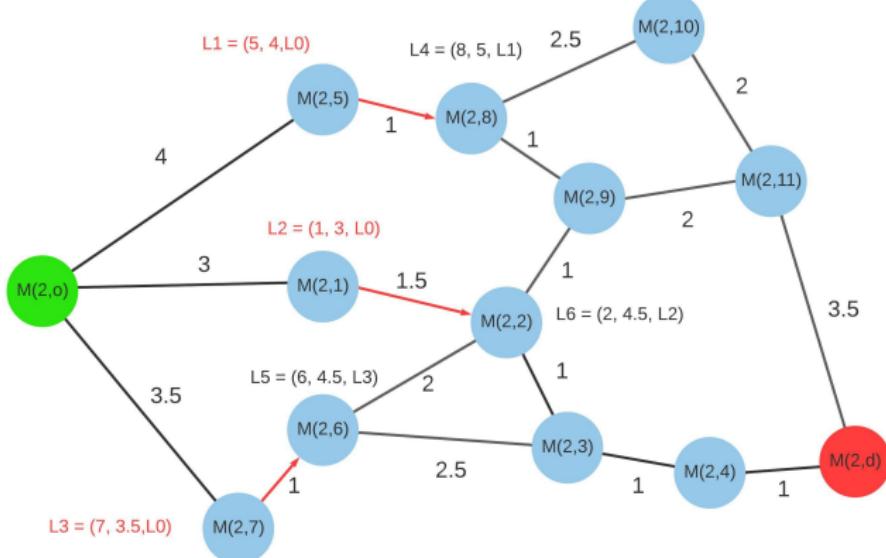
Example: stage 0 ($k = 0$)



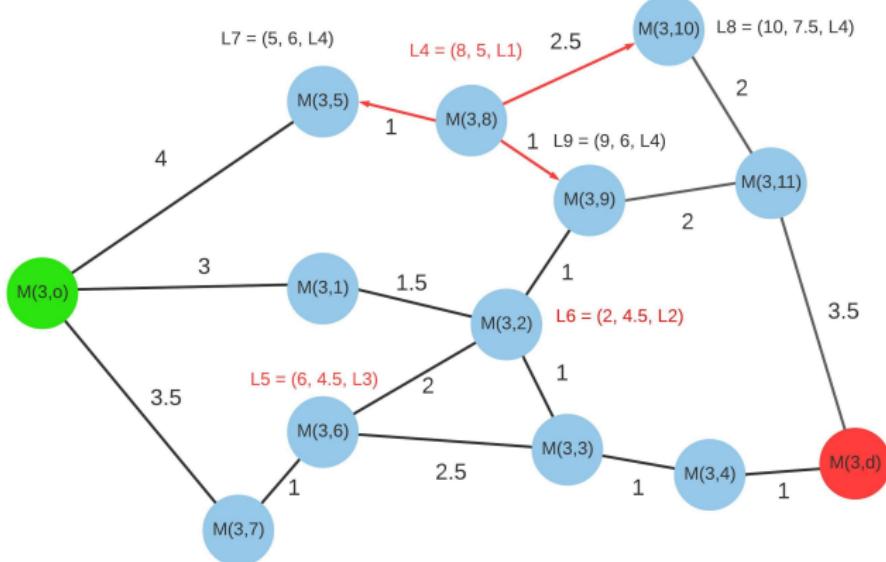
Example: stage 1 ($k = 1$)



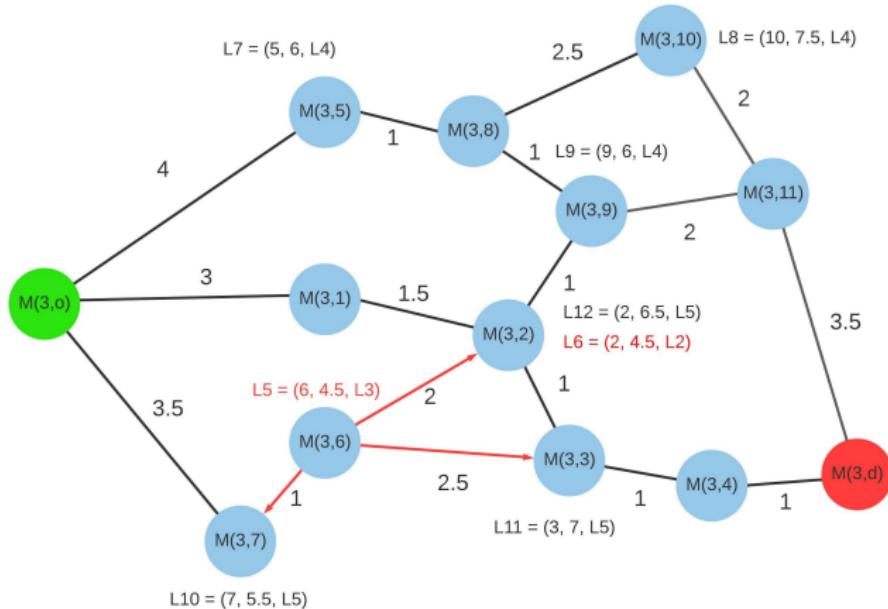
Example: stage 2 ($k = 2$)



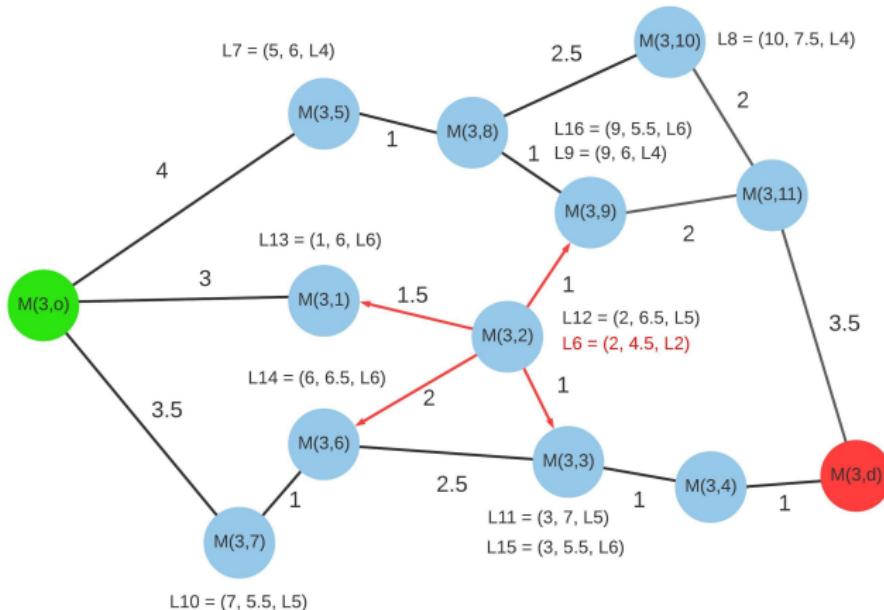
Example: stage 3 ($k = 3$)



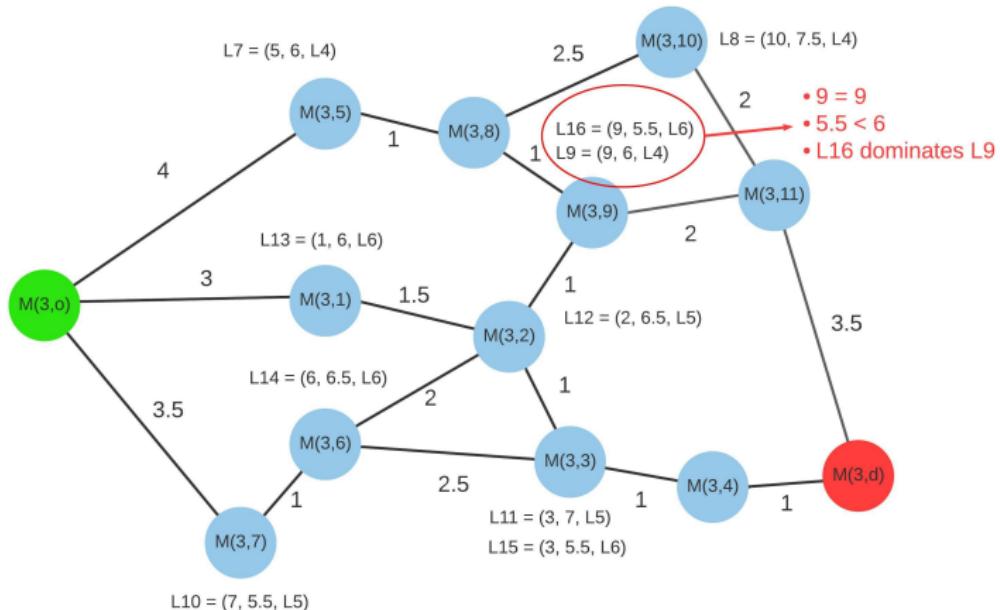
Example: stage 3 ($k = 3$)



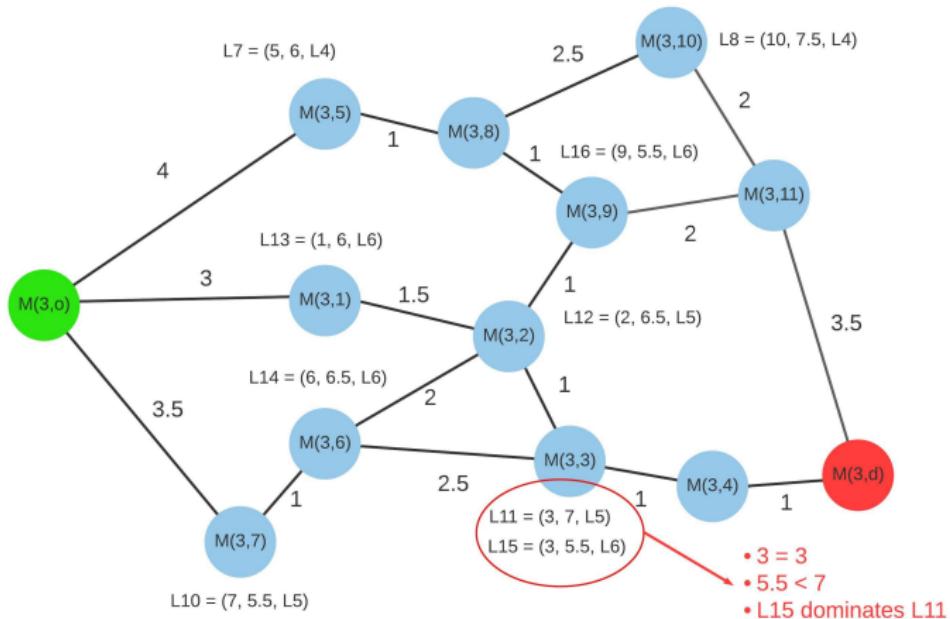
Example: stage 3 ($k = 3$)



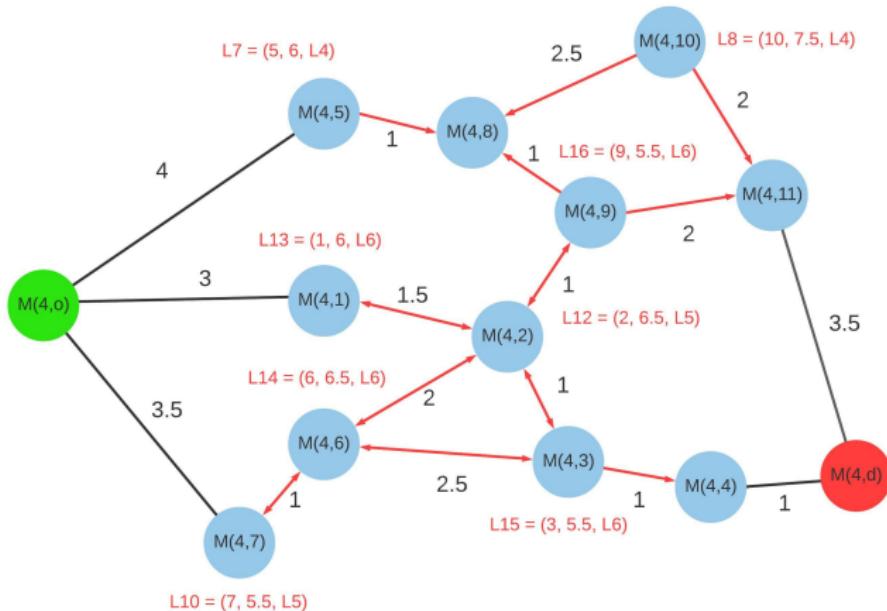
Example: stage 3 ($k = 3$)



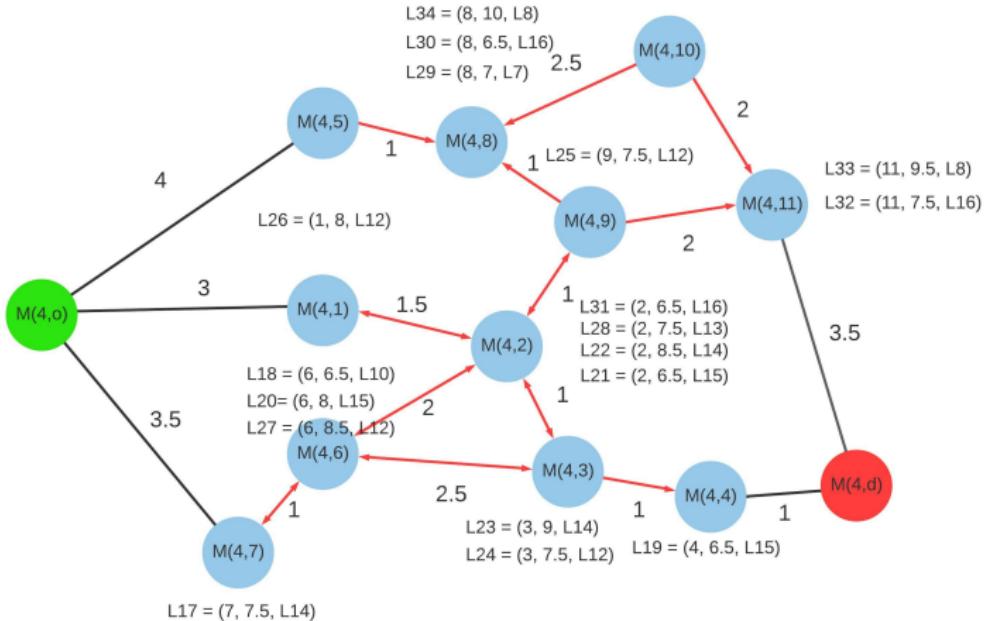
Example: stage 3 ($k = 3$)



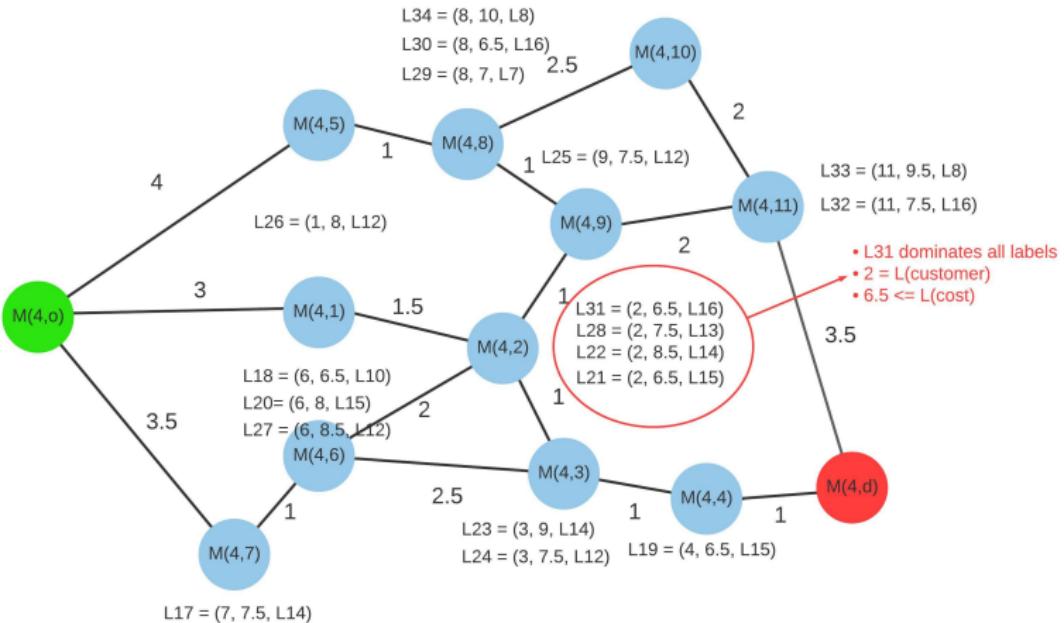
Example: stage 4 ($k = 4$)



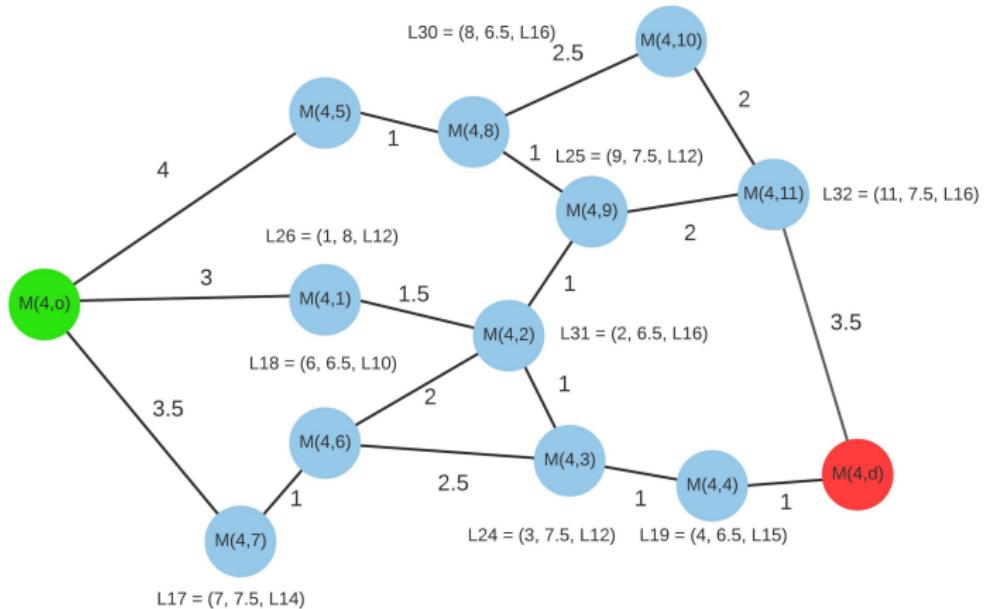
Example: stage 4 ($k = 4$)



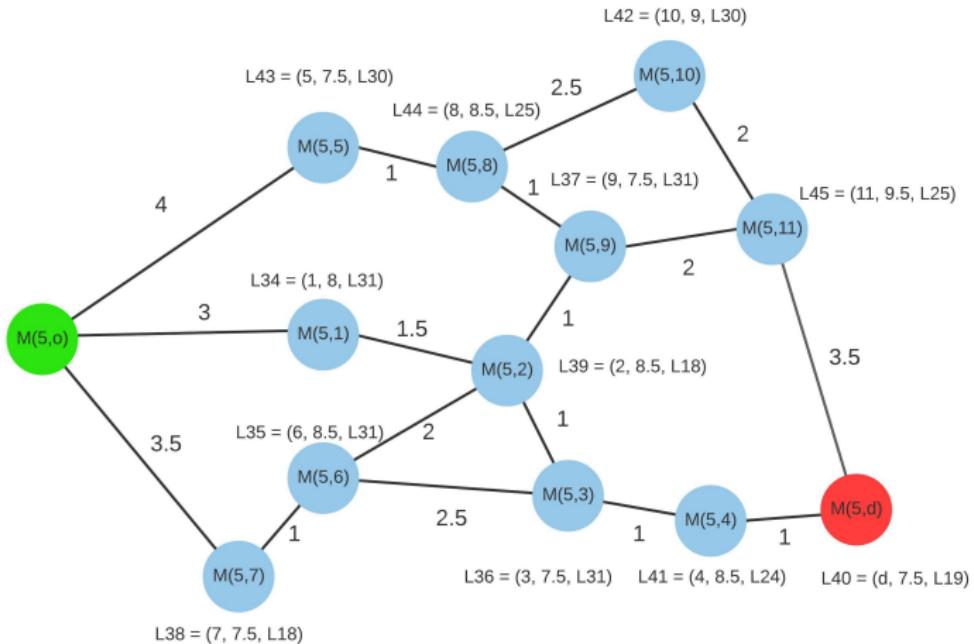
Example: stage 4 ($k = 4$)



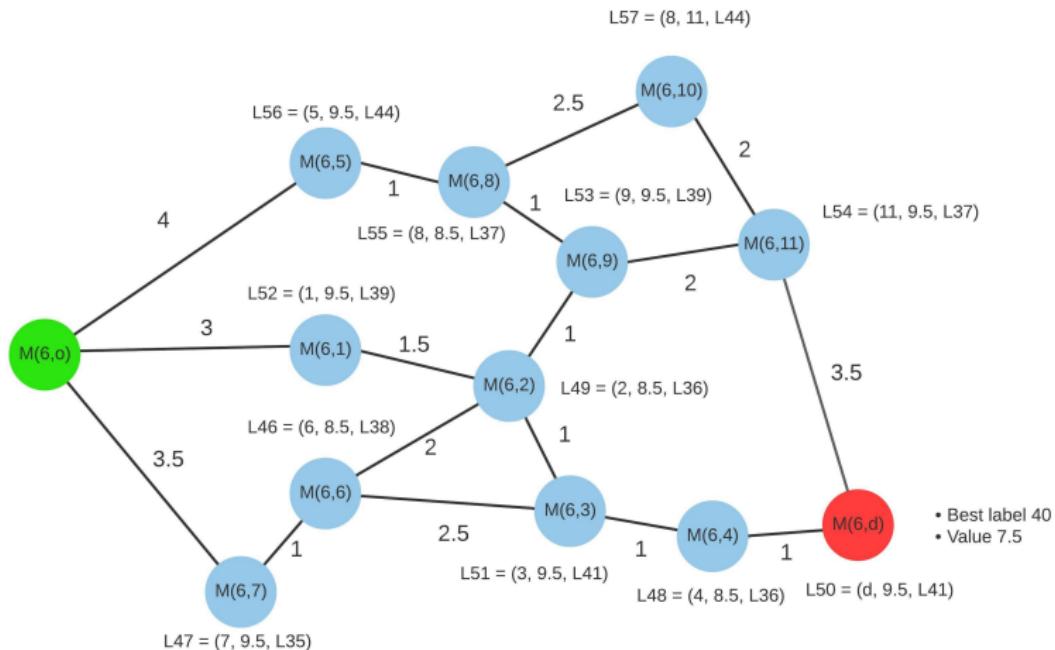
Example: stage 4 ($k = 4$)



Example: stage 5 ($k = 5$)



Example: stage 6 ($k = 6$)



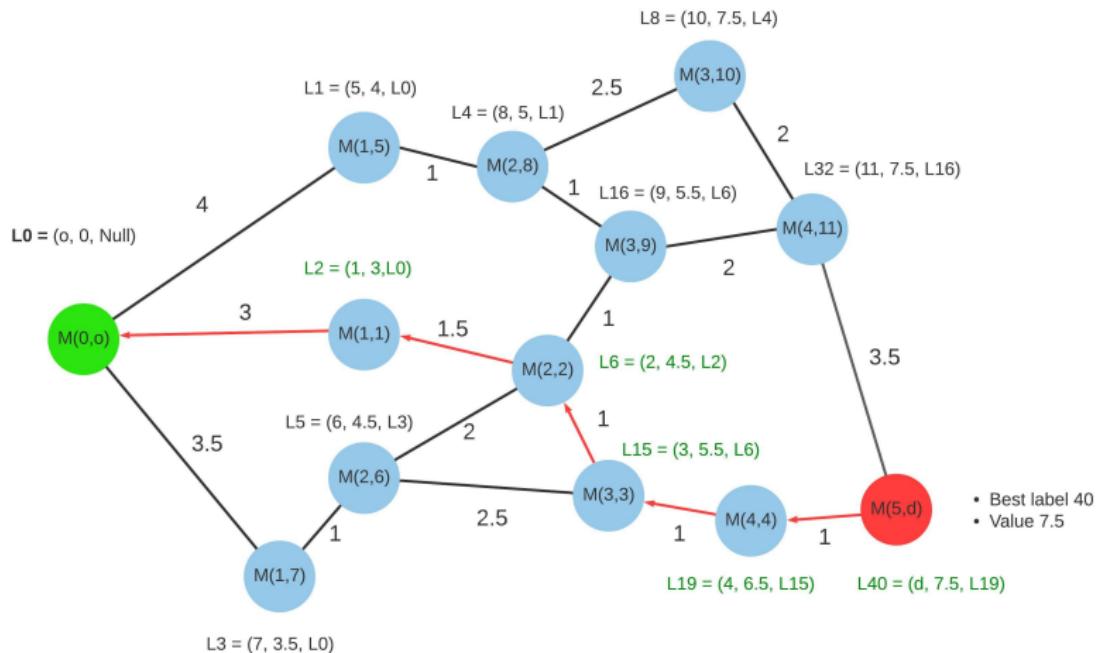
Example: Dominating labels from all stages

Recall the dominance rules

- ① $i_1 = i_2$
- ② $c_1 \leq c_2$

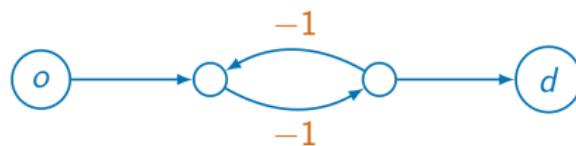
We can use other labels stored in $M(k, i)$ such that $k \leq 6$ if the dominance rules are true, then we delete dominated labels.

Example: Backtracking to get solution



Negative cost cycle

If there exists a forward path from o to d containing a negative cost cycle, no forward path is the shortest path from o to d .



The shortest path problem is **Unbounded!** We can cycle forever.

Outline

1 Shortest Path Problem (SPP)

- Solution method

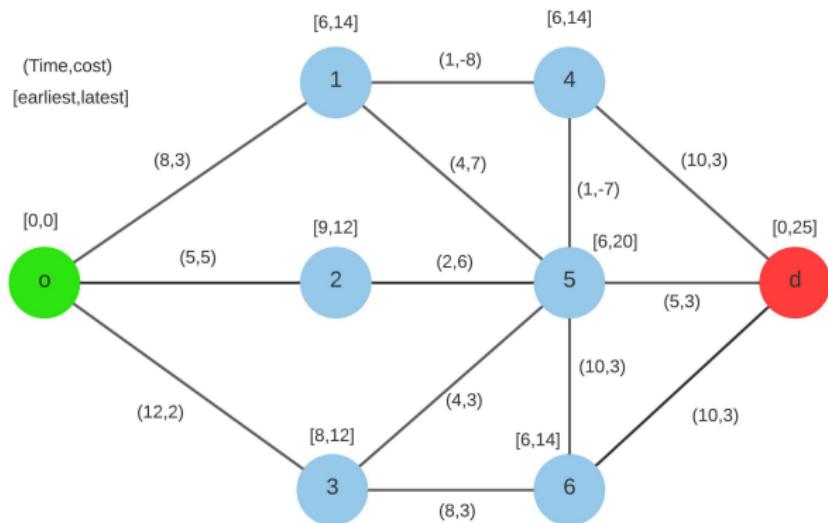
2 Shortest Path Problem with Resource Constraints

- Solution Method

3 Elementary Shortest Path Problem with Resource Constraints

- Solution Method
- Relaxations

Shortest Path Problem with Resource Constraints



Shortest Path Problem with Resource Constraints

Time constraints

- e_i earliest arrival
- b_i latest arrival,
- t_{ij} time consumed in arc (i,j) ,

Capacity constraints

- The total load of a path cannot exceed Q ,
- q_i is the demand of node i .

Labels

$$\mathcal{L}_{extend} = (i^e, c^e, T^e, Q^e, L^e)$$

Let $\mathcal{L}_{extend} = (i^e, c^e, T^e, Q^e, L^e)$ be a label that we want to extend from i^e to j^n .

- i^e is the current node,
- c^e is the total cost traveled in the path of label,
- T^e is the total time travel in the path that ends in the current node, i.e., i^e ,
- Q^e is the total load, i.e., the sum of all demand of nodes on the path.
- j^n is a node connected to i^e .

Label extensions

- Extend label \mathcal{L}_{extend} from node i^e to node j^n ,
- We have to create a new label \mathcal{L}_{new} ,
- The cost is extended by adding the cost in arc (i^e, j^n)
- **Resources must be extended too!**
- **Resource constraints have to be checked before we extend!**

Resource Extension Functions (REF)

REFs keep track of the resources that are used.

At each extension we consume resources. REFs are functions that return the total amount of resource used by passing through an arc (i, j) .

- Capacity Resource Extension Function $f_Q = Q_i + q_j$
- Time Resource Extension Function $f_T = T_i + t_{ij}$

Feasibility checks

Before we extend a label we must check resource constraints.

- Some extensions might not be feasible,
- Resource constraints could be violated,
- Time windows requires the path to arrive within the time window,
- Capacity constraints require the path to not exceed the capacity,
- At each extension we need to check all constraints allow the extension.

Feasibility checks

If:

- $T^e + t_{(i^e, j^n)} > b_{j^n}$, **Then** the extension is not feasible.
or
- $Q^e + q_{j^n} > Q$, **Then** the extension is not feasible.

Feasibility checks

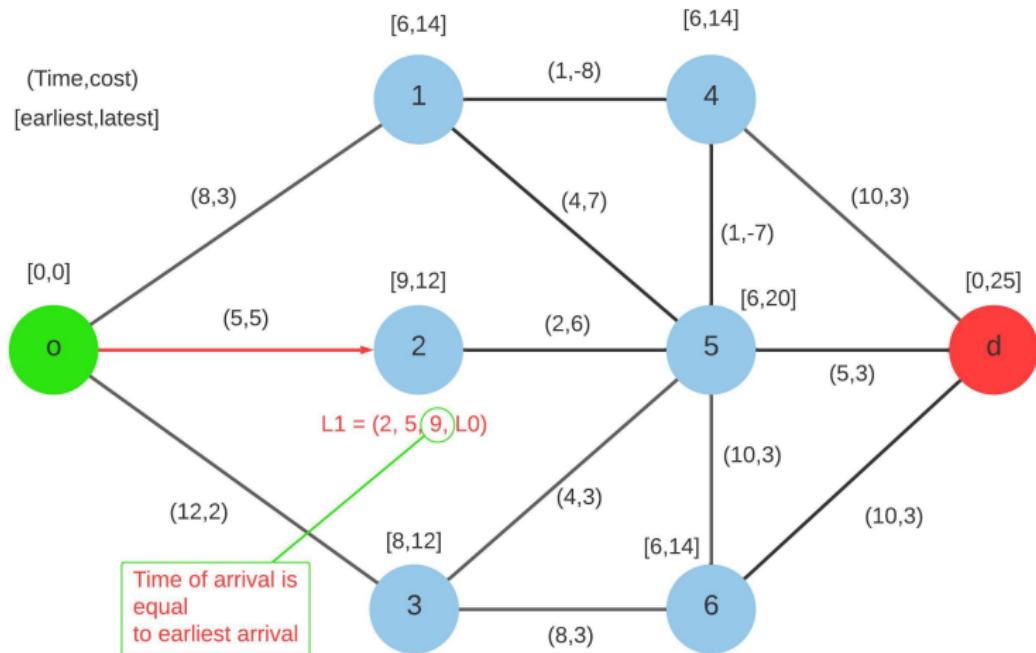
What happens if we arrive early?

- ① Waiting is feasible,
- ② If $T^e + t_{(i^e, j^n)} < e_{j^n}$ we can wait at node j^n until e_{j^n} ,
- ③ The waiting time must be added to the resource consumption,
- ④ The REF for time is modified to $f_T = \max\{e_{j^n}, T^e + t_{(i^e, j^n)}\}$.

New label is

$$\mathcal{L}_{new} = (j^n, c^n, f_T, f_Q, \mathcal{L}_{extend})$$

Example waiting



Dominance

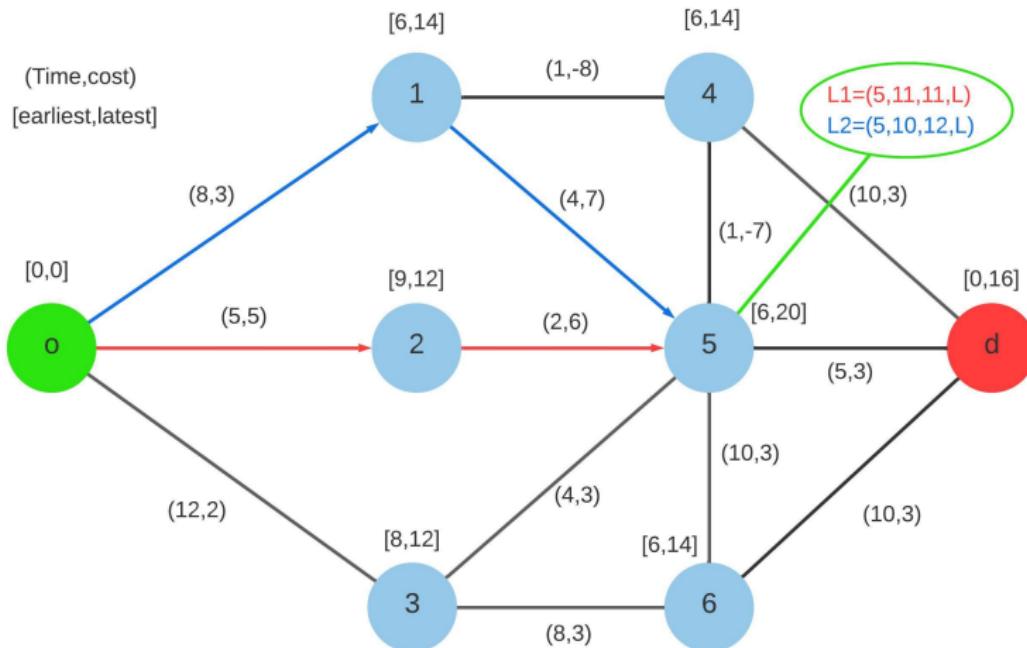
We can use dominance rules to delete labels as before, however, dominance rules need to be modified.

Dominance rules:

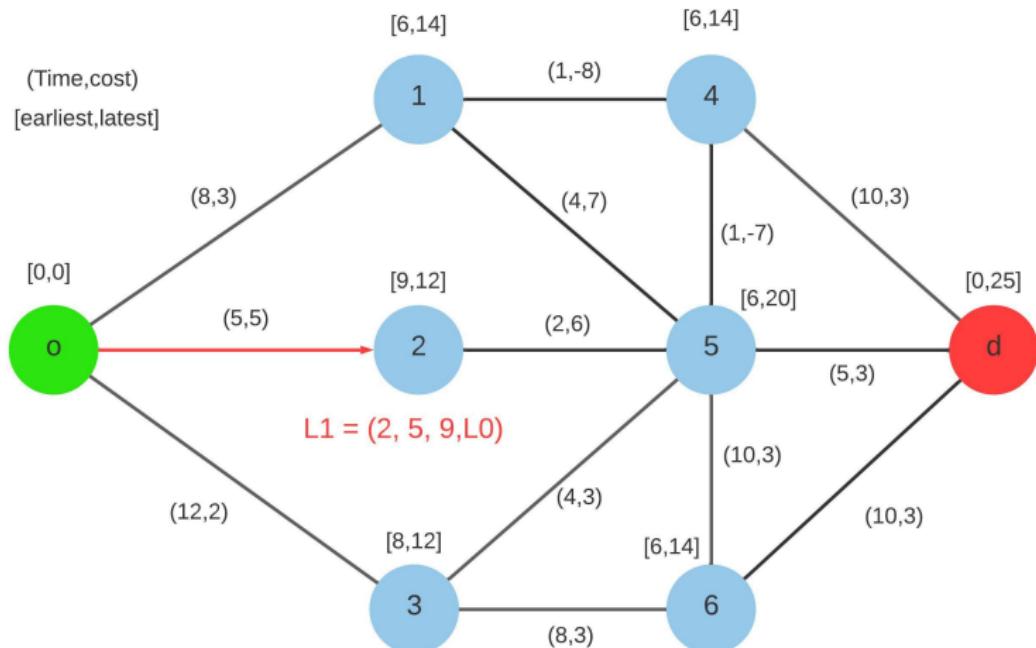
Label $\mathcal{L}_1 = (i_1, c_1, T_1, Q_1, L_1)$ dominates label $\mathcal{L}_2 = (i_2, c_2, T_2, Q_2, L_2)$ if the following is true:

- ① $i_1 = i_2$
- ② $c_1 \leq c_2$
- ③ $T_1 \leq T_2$
- ④ $Q_1 \leq Q_2$

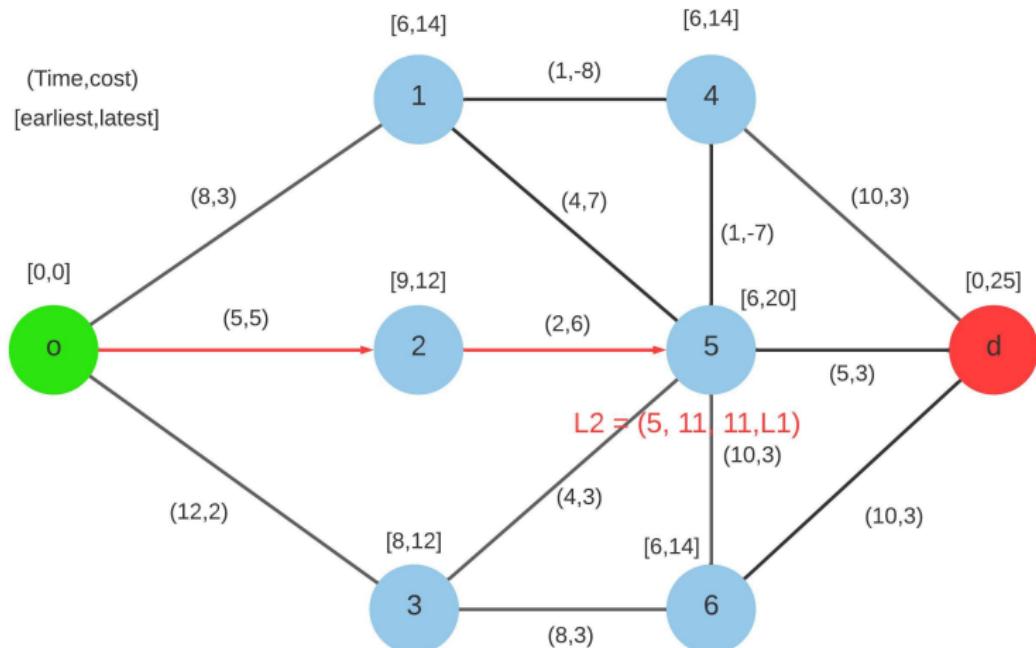
Example: Dominance



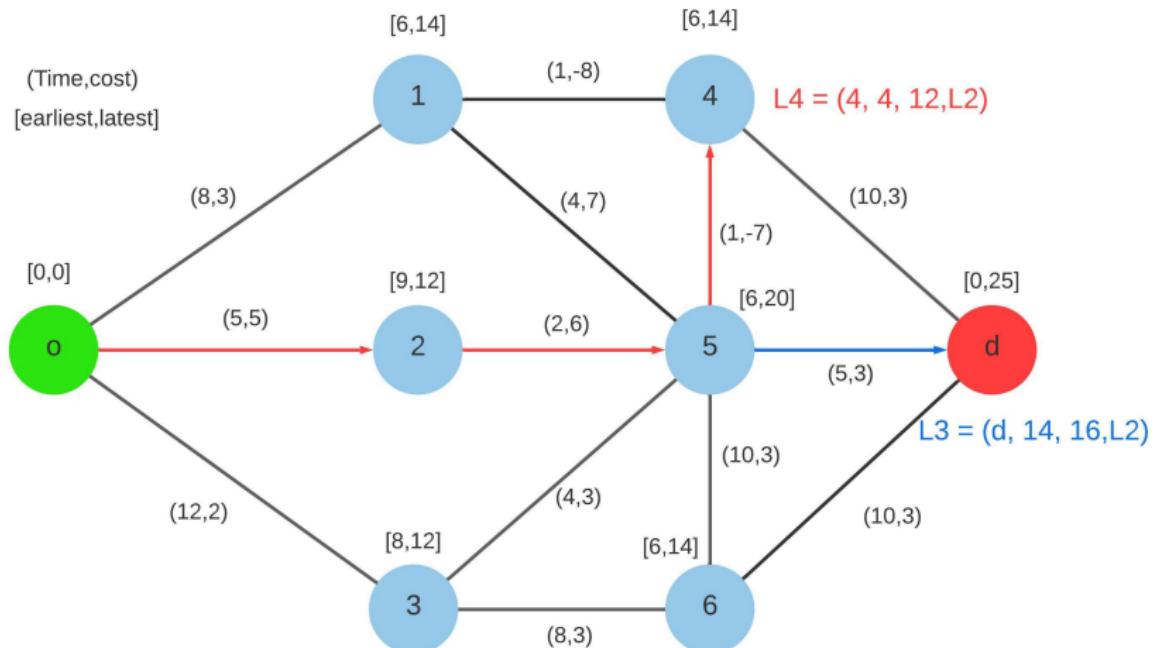
Example: negative cost cycle



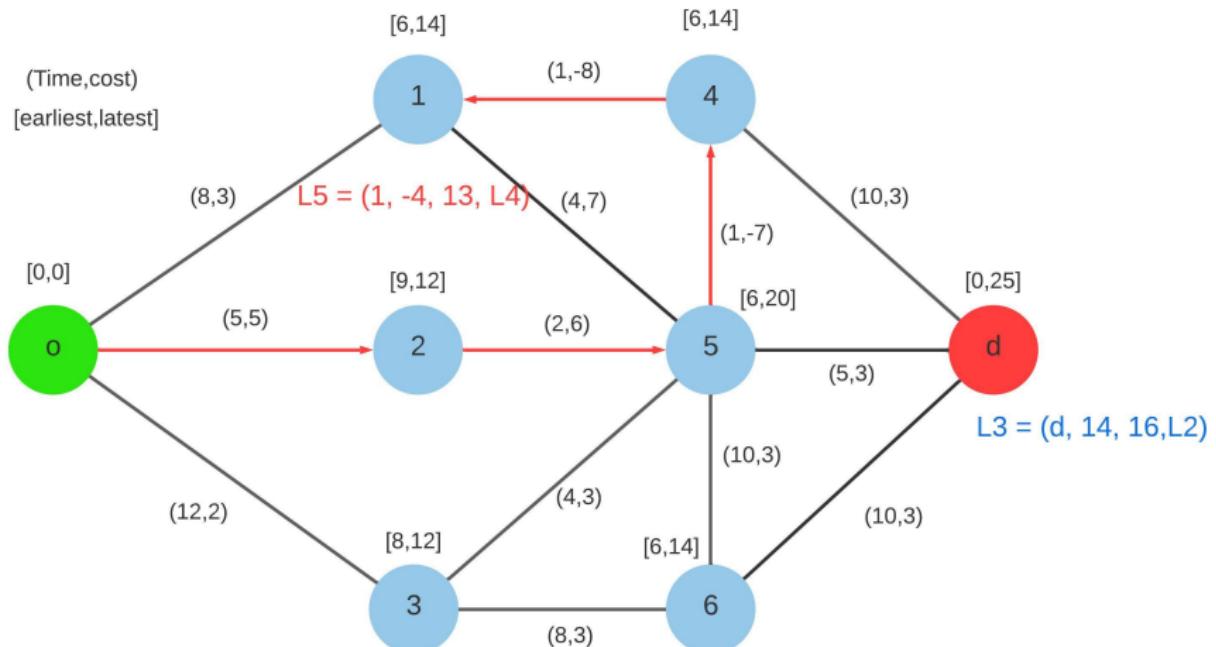
Example: negative cost cycle



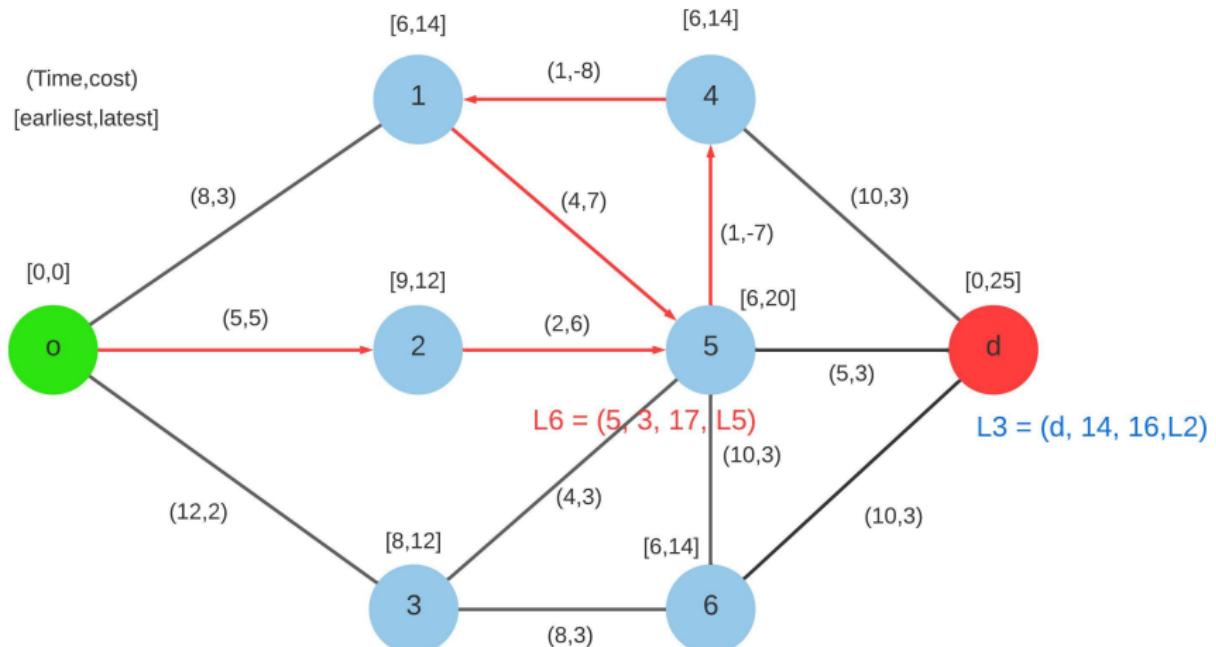
Example: negative cost cycle



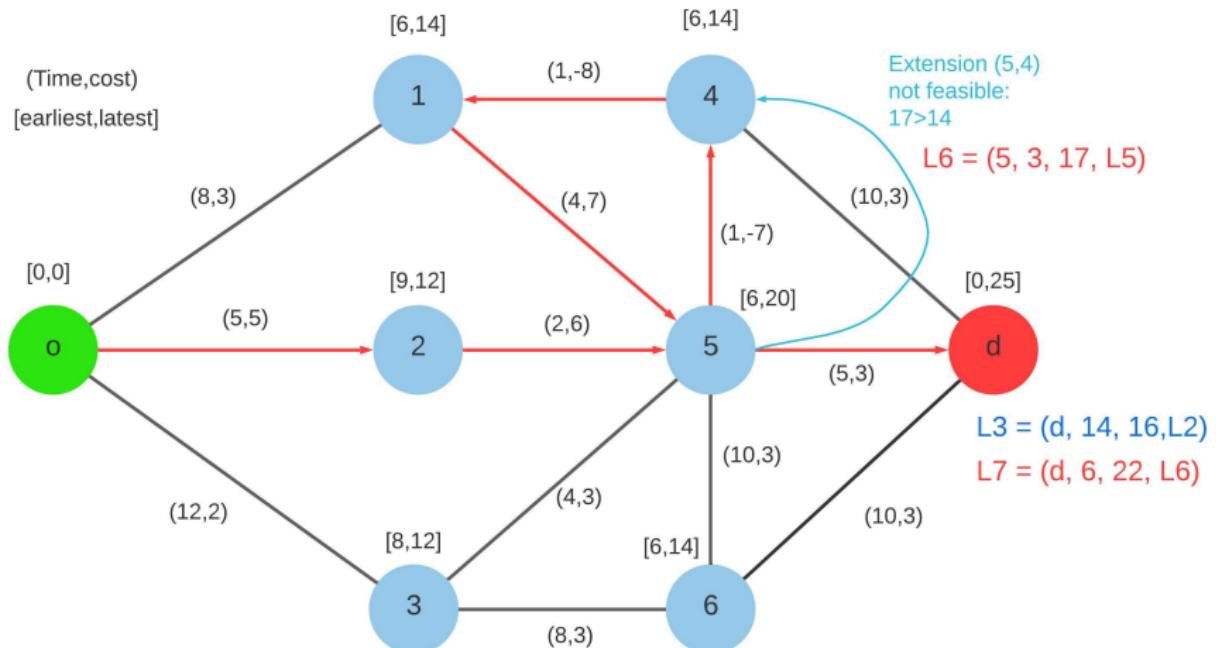
Example: negative cost cycle



Example: negative cost cycle



Example: negative cost cycle



Outline

1 Shortest Path Problem (SPP)

- Solution method

2 Shortest Path Problem with Resource Constraints

- Solution Method

3 Elementary Shortest Path Problem with Resource Constraints

- Solution Method
- Relaxations

Find the route with minimum reduced cost

Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

$$\text{Min} \sum_{i \in V} \sum_{j \in V} \hat{c}_{ij} x_{ij}$$

$$\text{s.t.} \sum_{i \in N} q_i \sum_{j \in V} x_{ij} \leq Q,$$

$$\sum_{j \in N} x_{0j} = 1,$$

$$\sum_{i \in V} x_{i0} = 1,$$

$$\sum_{i \in N} x_{ih} - \sum_{j \in N} x_{hj} = 0 \quad \forall h \in N,$$

$$T_i + t_{ij} - M_{ij}(1 - x_{ij}) \leq T_j \quad \forall i, j \in V,$$

$$a_i \leq T_i \leq b_i \quad \forall i \in N,$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in N.$$

Negative reduced cost

- The pricing problem for the VRP has negative cost cycles,
- Elementarity constraints (i.e., no cycles allowed) are used to prevent cycles from forming,
- Vehicles cannot visit the same customer multiple times.

Unreachable nodes

- Let V^e be the set of unreachable nodes for label \mathcal{L}_{extend} ,
- If a node is in set V^e then it is unfeasible to visit this node from label \mathcal{L}_{extend} .

$$\mathcal{L}_{extend} = (i^e, c^e, T^e, Q^e, V^e, L^e)$$

Label extensions

Add an extension for the set of unreachable nodes!

- ① $V^n = V^e \cup \{j^n\}$
- ② The REF for capacity is $f_Q = Q^e + q_{j^n}$
- ③ The REF for time is $f_T = \max\{e_{j^n}, T^e + t_{(i^e, j^n)}\}$.

New label is:

$$\mathcal{L}_{new} = (j^n, c^n, f_T, f_Q, V^n, \mathcal{L}_{extend})$$

Feasibility checks

Before we extend a label we must check all constraints.

- $j^n \in V^e$, **Then** the extension is not feasible.
or
- $T^e + t_{(i^e, j^n)} > b_{j^n}$, **Then** the extension is not feasible.
or
- $Q^e + q_{j^n} > Q$, **Then** the extension is not feasible.

Dominance

We can use dominance rules to delete labels as before, however, dominance rules need to be modified.

Dominance rules:

Label $\mathcal{L}_1 = (i_1, c_1, T_1, Q_1, V_1, L_1)$ dominates label $\mathcal{L}_2 = (i_2, c_2, T_2, Q_2, V_2, L_2)$ if the following is true:

- ① $i_1 = i_2$
- ② $c_1 \leq c_2$
- ③ $T_1 \leq T_2$
- ④ $Q_1 \leq Q_2$
- ⑤ $V_1 \subseteq V_2$

Exponential growth of labels!

- Dominance rule (5) makes it difficult to delete labels through dominance,
- There is an exponential number of subsets of nodes,
- Labels grow exponentially.

Relaxation

$$\text{ESPPRC} \xrightarrow{\text{relax}} \text{SPPRC}$$

When we relax the elemetary constraints we have the SPPRC as a relaxation, i.e., the solution of the SPPRC will give us a lower bound on the ESPPRC.

- What about cycles?
- Cycles are added as feasible routes.
- Will the solution to the VRP contain routes that visit customers multiple times?

Master Problem: The set-covering formulation

- We replace the set-partitioning formulation with the **Set-covering formulation**

Master problem (MP)

$$\text{Minimize} \sum_{r \in \Omega} c_r \lambda_r$$

$$\text{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r \geq 1 \leftarrow \quad \forall i \in N,$$

$$\lambda_r \in \{0, 1\} \quad \forall r \in \Omega.$$

Master Problem: The set-covering formulation

- **Will the solution to the VRP contain routes that visit customers multiple times?**
- No!
- **Why?**
- Routes with cycles are more expensive than routes without cycles,
- The optimal integer solution will have routes that visit customers only once,
- However, the lower bounds obtained by the relaxation are weak.

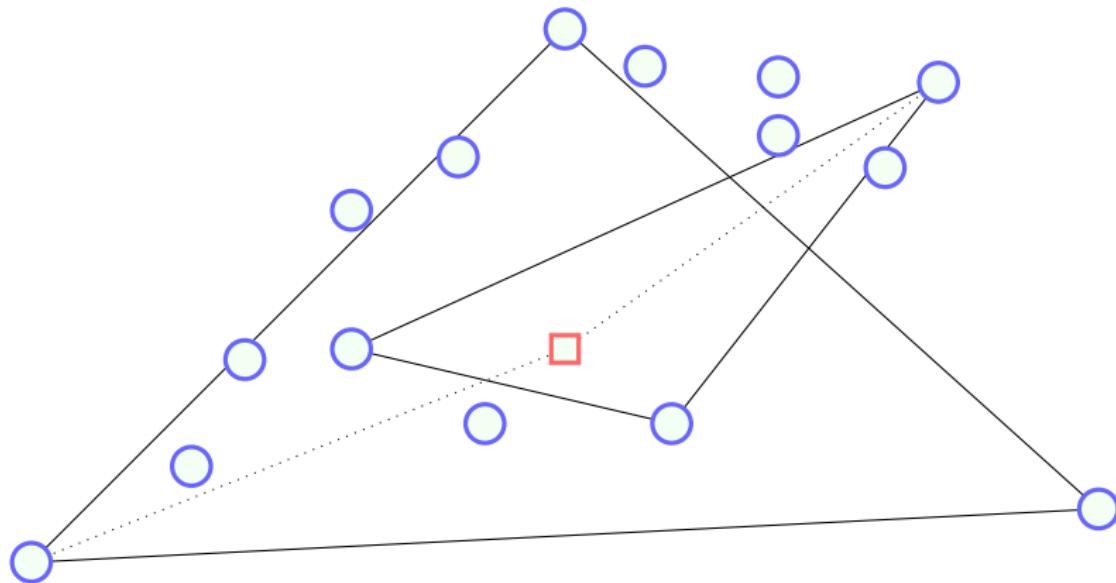
Relaxation: k-cycle

Only cycles containing more than k nodes are allowed.

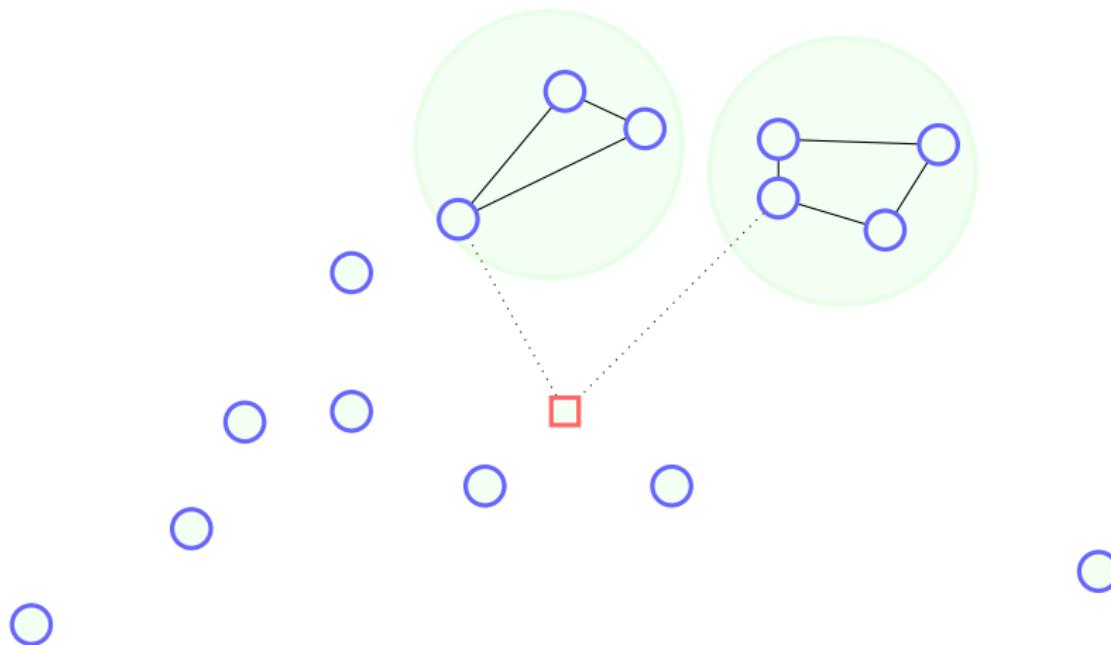
Lower bound

The lower bound from this relaxation is better than the SPPRC.

Relaxation: 2-cycle



Relaxation: 2-cycle



Relaxation: Ng-route

- Eliminate cycles formed by close neighbors
- Only allow cycles formed by distant customers.

Lower bound

The lower bound from the Ng-route relaxation is better than the k-cycle relaxation.

Relaxation: Ng-route

- Ng^i is a set of nearest customers to customer $i \in N$.
- For every customer we create an Ng-set that contains its Δ nearest neighbors, e.g., $\Delta = 5$ means that the set Ng^i contains the 5 nearest neighbors of the customer i .
- When we extend a label from i^e to a distant neighbor not in set $j^n \notin Ng^{i^e}$ we can forget some customers that we could visit again.

Ng-route relaxation: Labels

Labels keep track of the set of unreachable customers that are allowed to be visited next.

The full set of unreachable customers V is replaced by a smaller set U .

$$\mathcal{L} = (i, c, T, Q, V, L) \rightarrow \mathcal{L} = (i, c, T, Q, U, L)$$

$$\mathcal{L}_{\text{extend}} = (i^e, c^e, T^e, Q^e, U^e, L^e)$$

- Let V^e be the set of unreachable nodes for label $\mathcal{L}_{\text{extend}}$,
- If a node is in set V^e then it is unfeasible to visit this node from label $\mathcal{L}_{\text{extend}}$.

Label extensions

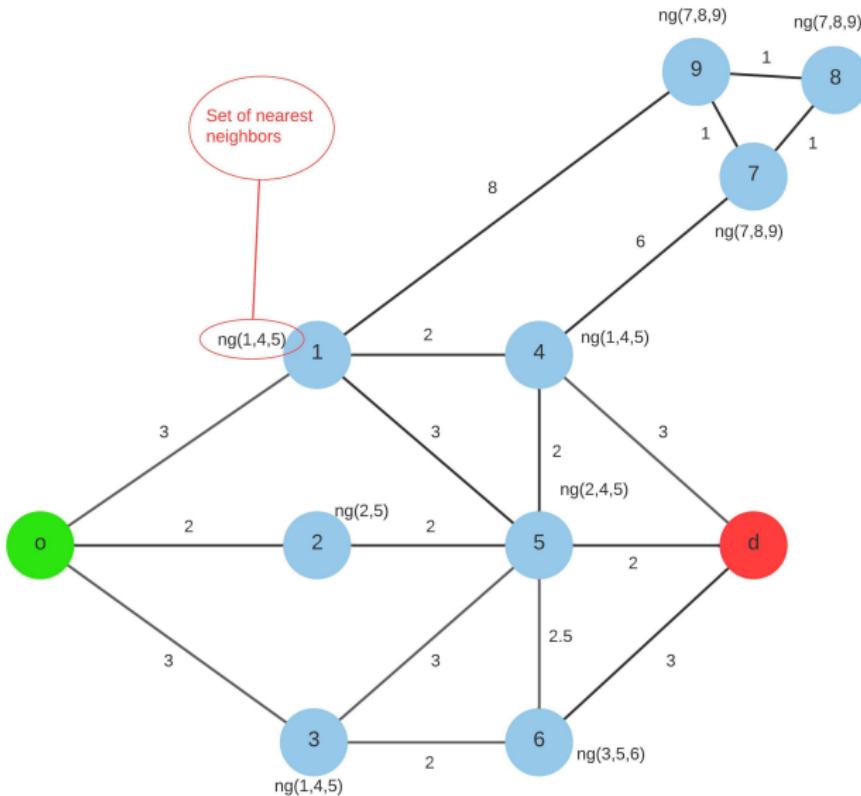
Add an extension for the set of unreachable nodes!

- ① $U^n = U^e \cap Ng^n \rightarrow$ Only common elements are kept.
- ② $U^n = U^n \cup \{j^n\} \rightarrow$ Add the current customer to the set.
- ③ The REF for capacity is $f_Q = Q^e + q_{j^n}$
- ④ The REF for time is $f_T = \max\{e_{j^n}, T^e + t_{(i^e, j^n)}\}.$

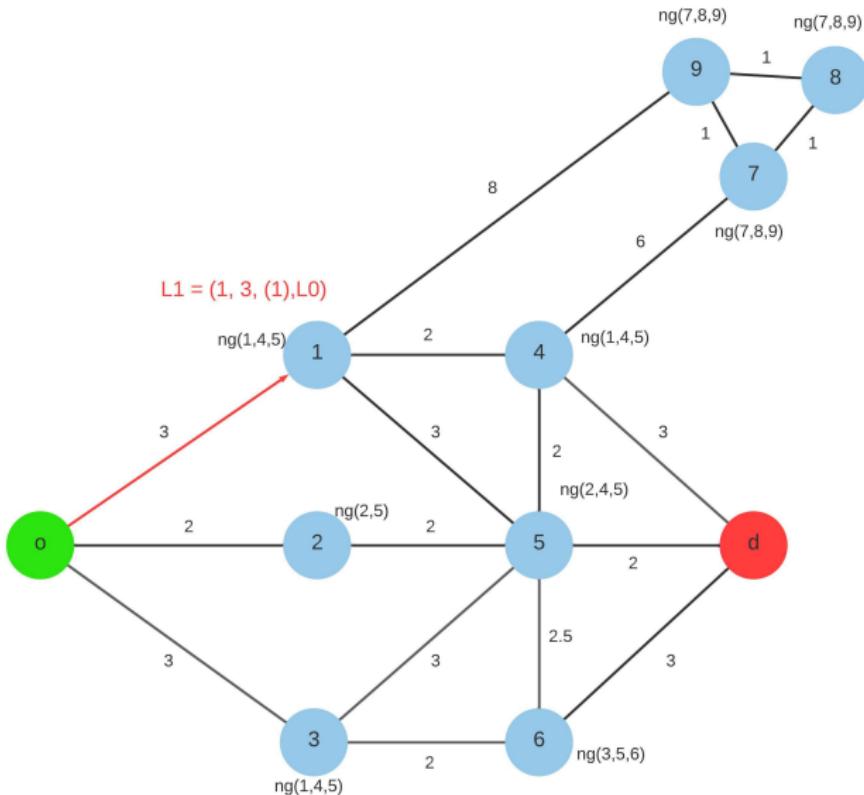
New label is:

$$\mathcal{L}_{new} = (j^n, c^n, f_T, f_Q, U^n, \mathcal{L}_{extend})$$

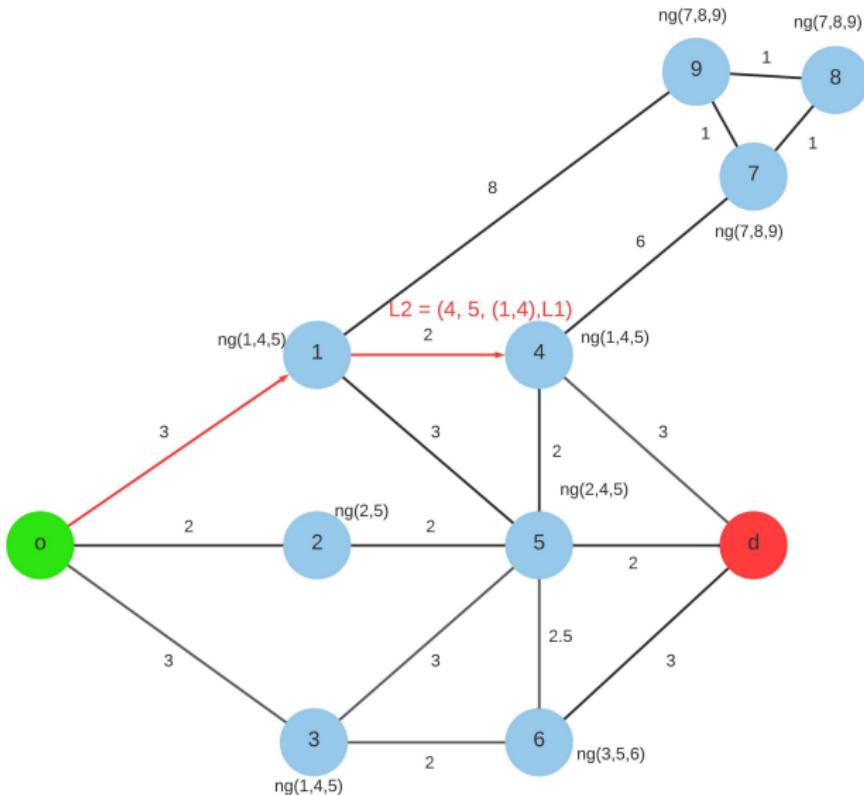
Example:ng-route



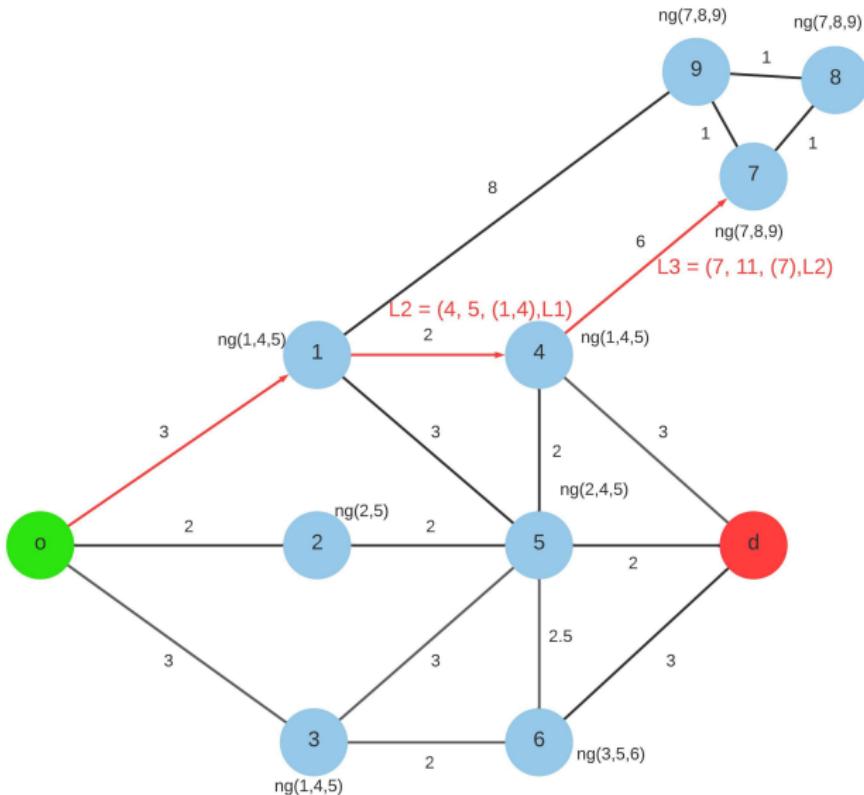
Example:ng-route



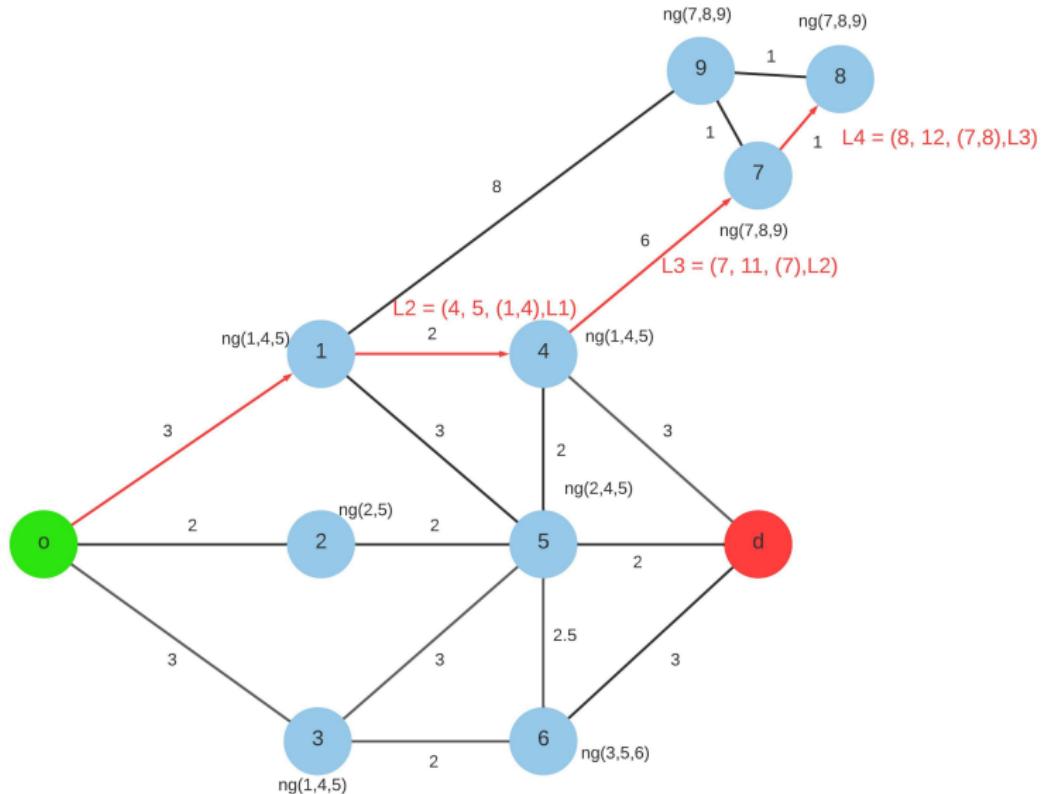
Example:ng-route



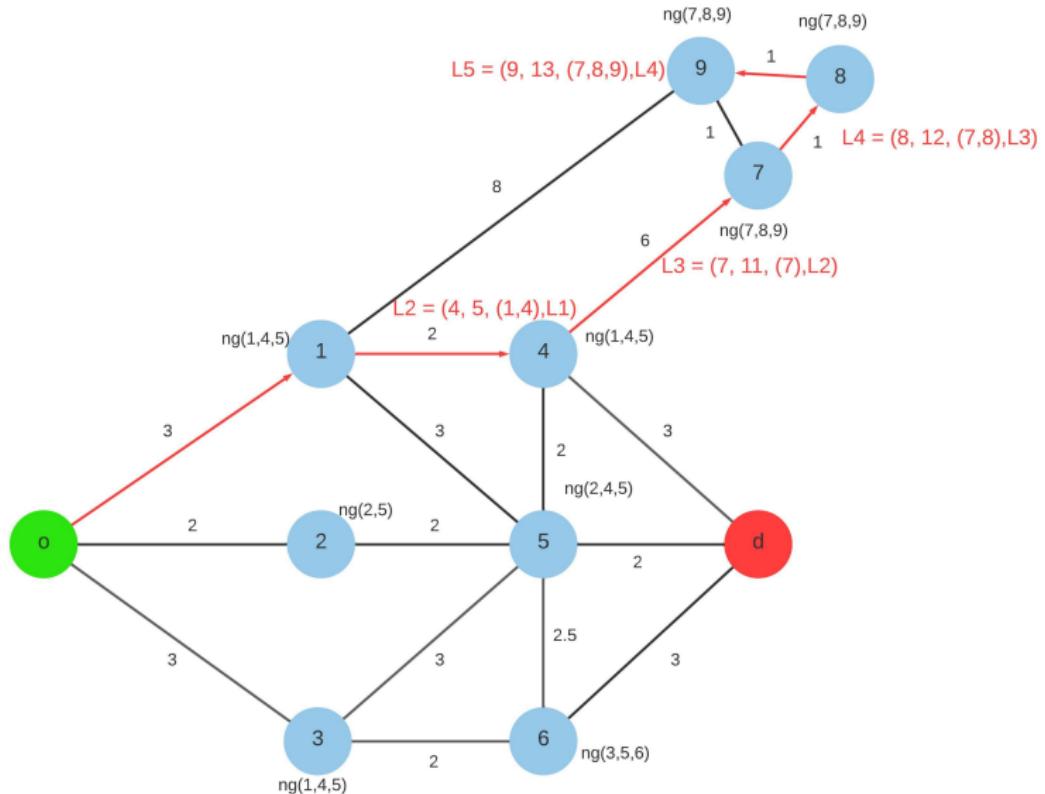
Example:ng-route



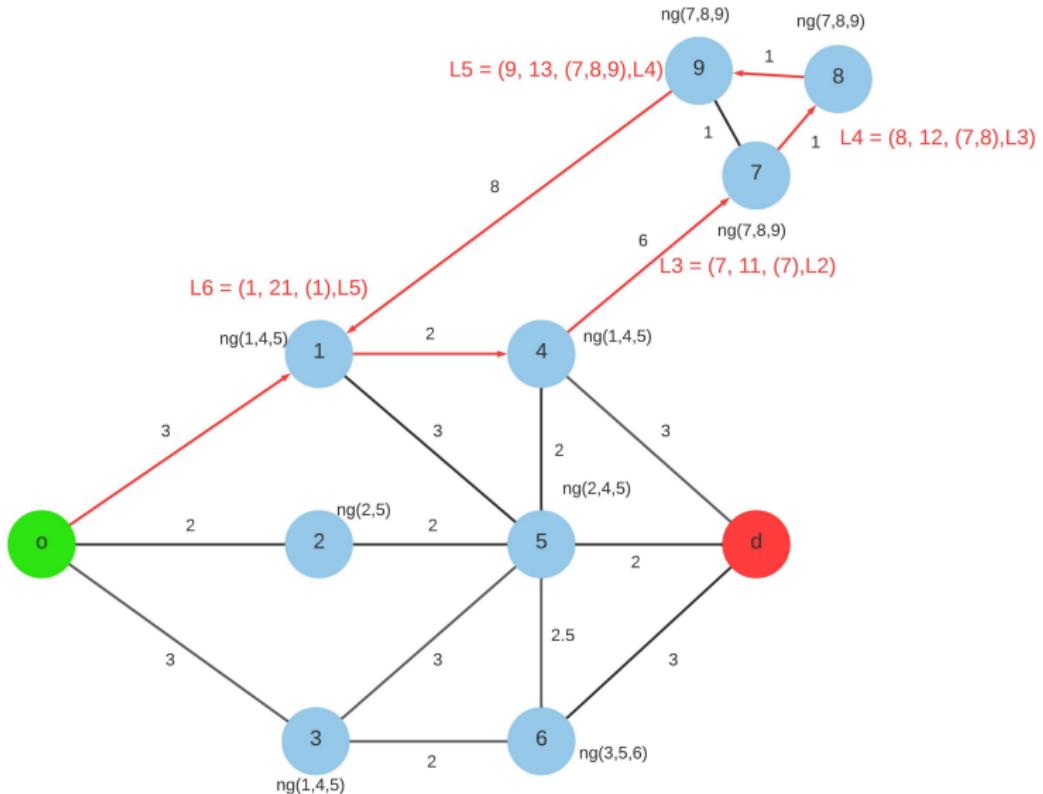
Example:ng-route



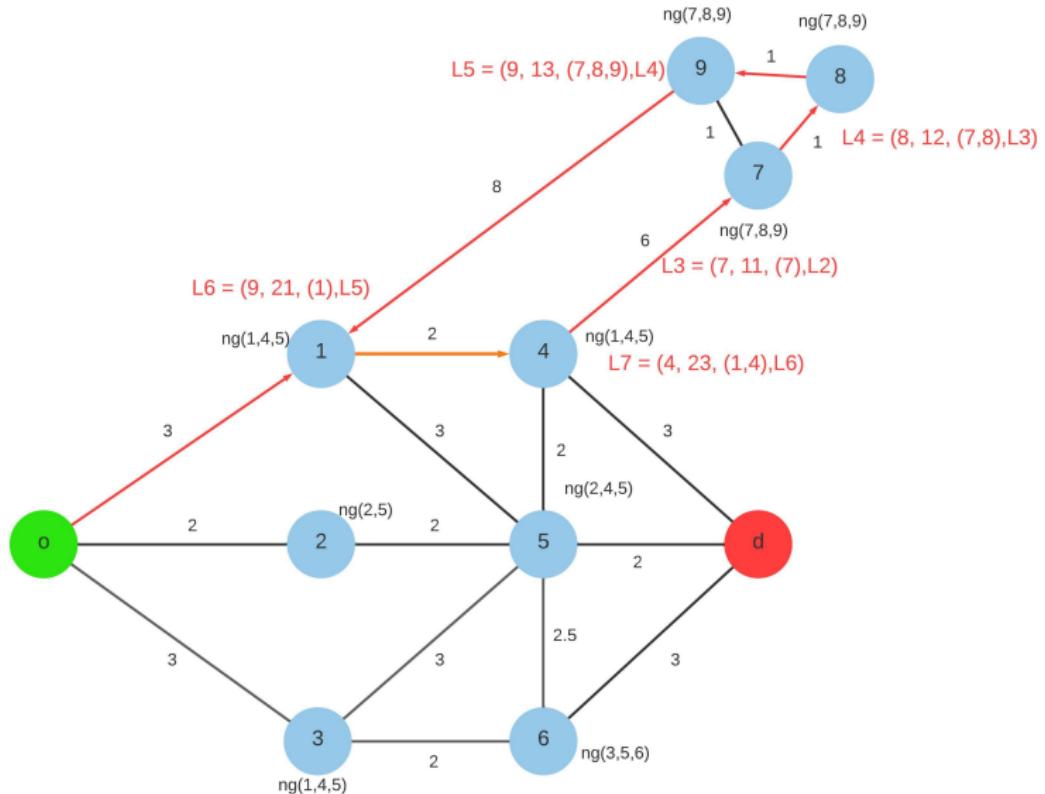
Example:ng-route



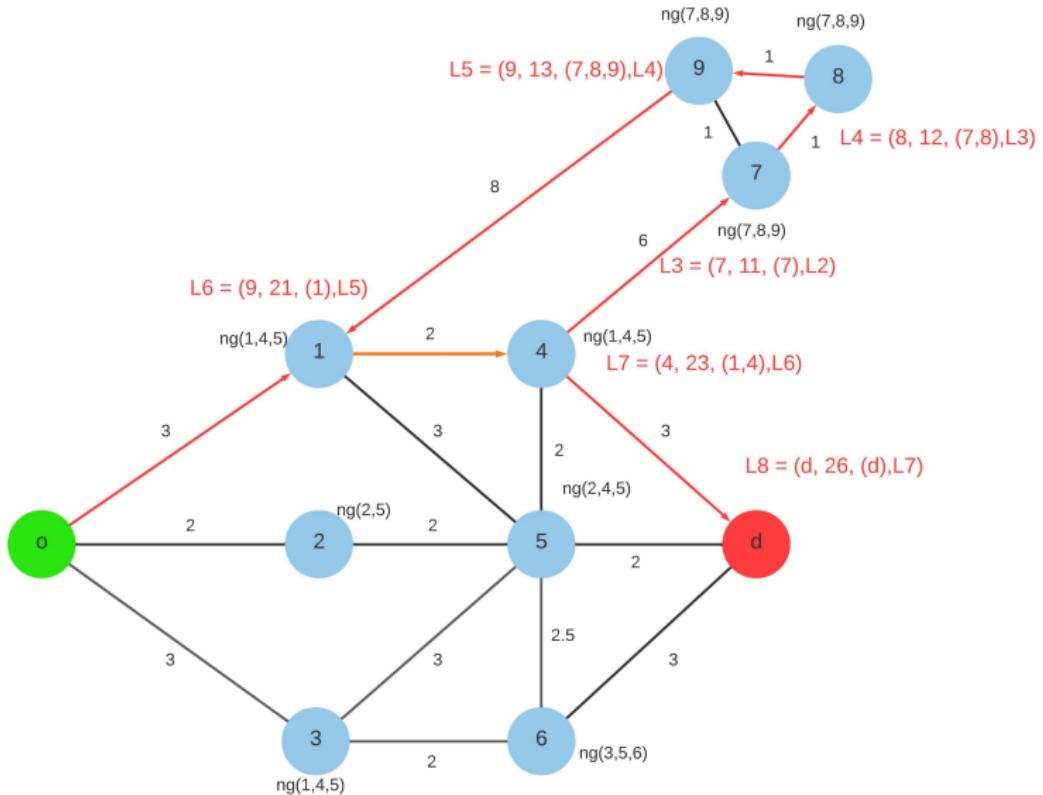
Example:ng-route



Example:ng-route



Example:ng-route



Feasibility checks

Before we extend a label we must check all constraints.

- $j^n \in U^e$, **Then** the extension is not feasible.
or
- $T^e + t_{(i^e, j^n)} > b_{j^n}$, **Then** the extension is not feasible.
or
- $Q^e + q_{j^n} > Q$, **Then** the extension is not feasible.

Dominance

We can use dominance rules to delete labels as before, however, dominance rules need to be modified.

Dominance rules:

Label $\mathcal{L}_1 = (i_1, c_1, T_1, Q_1, U_1, L_1)$ dominates label $\mathcal{L}_2 = (i_2, c_2, T_2, Q_2, U_2, L_2)$ if the following is true:

- ① $i_1 = i_2$
- ② $c_1 \leq c_2$
- ③ $T_1 \leq T_2$
- ④ $Q_1 \leq Q_2$
- ⑤ $U_1 \subseteq U_2$

Example: Dominance

$$\mathcal{L}_1 = (i_1 = 9, c_1 = -3, T_1 = 55, Q_1 = 44, U_1 = (1, 2, 3, 9), L_1)$$

$$\mathcal{L}_2 = (i_2 = 9, c_2 = -3, T_2 = 55, Q_2 = 44, U_2 = (1, 3, 9), L_2)$$

Which label dominates?

- ① $i_1 = i_2 \implies 9 = 9$
- ② $c_1 \leq c_2 \implies -3 \leq -3$
- ③ $T_1 \leq T_2 \implies 55 \leq 55$
- ④ $Q_1 \leq Q_2 \implies 44 \leq 44$
- ⑤ $U_1 \subseteq U_2 \implies U_1 \not\subseteq U_2$ 2 is not in U_2

Rule (5) is violated and we cannot delete \mathcal{L}_2

Example: Dominance

The other way around

$$\mathcal{L}_1 = (i_1 = 9, c_1 = -3, T_1 = 55, Q_1 = 44, U_1 = (1, 2, 3, 9), L_1)$$

$$\mathcal{L}_2 = (i_2 = 9, c_2 = -3, T_2 = 55, Q_2 = 44, U_2 = (1, 3, 9), L_2)$$

Which label dominates?

- ① $i_2 = i_1 \implies 9 = 9$
- ② $c_2 \leq c_1 \implies -3 \leq -3$
- ③ $T_2 \leq T_1 \implies 55 \leq 55$
- ④ $Q_2 \leq Q_1 \implies 44 \leq 44$
- ⑤ $U_2 \subseteq U_1 \implies U_2 \subset U_1$ All elements are contained

All rules are satisfied label \mathcal{L}_1 is dominated by \mathcal{L}_2 and is deleted.

Summary

- SPP find the shortest path from the origin to the destination node in a graph
 - The Principle of optimality shows that any sub path of the shortest path must also be a shortest path.
 - The SPP can be solved with a labeling algorithm in a polynomial number of operations,
 - A SPP where the graph has a negative cost cycle is unbounded.
- SPPRC some graphs have resources that are used as a path passes through an arc.
 - Non negative consumption of resources bound the problem since the resources run out. The path cannot cycle on a negative cost cycle for ever.
 - Resource Extension Functions (REFs) extend the resources used when a path passes through an arc.
 - Feasibility check are necessary to not violate resource constraints.

Summary

- ESPPRC: Elementarity constraints prevent cycles from forming in the shortest path.
 - Exponential growth of paths make the problem difficult to solve
 - The SPPRC is a relaxation of the ESPPRC that is produced when the elementarity constraints are dropped. However, the bound is weak.
 - k -cycle relaxations allow only cycles larger than k to be formed. The k -cycle relaxation improves the bound of the SPPRC relaxation.
 - Ng-route relaxation only allows cycles with distant nodes to be formed and prevents cycles formed by nearest neighbors.