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How do we solve MILPs

Minimize
∑

(i,j)∈A

∑
k∈K

cijxijk

s.t.
∑
k∈K

yik = 1 ∀i ∈ N,

∑
j∈δ+(i)

xijk −
∑

j∈δ−(i)

xijk = 0 ∀i ∈ N, k ∈ K ,

∑
j∈δ+(o)

xojk −
∑

j∈δ−(o)

xojk = 1 ∀k ∈ K ,

yik =
∑

j∈δ−(i)

xijk ∀i ∈ N ∪ {o}, k ∈ K ,

ydk =
∑

i∈δ−(d)

xidk ∀k ∈ K ,

uik − ujk + Qxijk ≤ Q − qj ∀(i , j) ∈ A, k ∈ K ,

qi ≤ uik ≤ Q ∀i ∈ V , k ∈ K ,

xijk ∈ {0, 1}, yik ∈ {0, 1} ∀(i , j) ∈ A, k ∈ K .
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Branch-and-Bound

Consider the problem:

z = min{cT x : x ∈ X}

Definition: Feasible Solution

A feasible solution is a feasible point x∗ that satisfies all constraints
described by the set X .

Definition: Optimal Solution

An optimal solution is a feasible solution x∗ ∈ X such that cT x∗ ≤ cT x
for all x ∈ X .

Definition: Non Feasible Solution

A non feasible solution is a point x∗ that violates some constraint of the
problem ( x∗ ̸∈ X ). The violated constraints could be the integrality
constraints if x∗ is fractional.
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Branch-and-Bound

Consider the problem:

z = min{cx : x ∈ X}

Let X = X1 ∪ X2 · · · ∪ Xk be separable into different sets from 1 to k.
And the sets X1 ∩ X2 · · · ∩ Xk = ∅ are disjoints sets.

And let z1 = min{cx : x ∈ X1}, . . . , zk = min{cx : x ∈ Xk} be the value of
the objective value for each subset

Then z = min{z1, z2, . . . , zk} the smallest value of the objective function
for all subsets is also the solution over the entire set X .
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Disjoint sets

X1 X2

Figure: Disjoint sets
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Small example

Min x1 + x2 + x3

s.t.

x ∈ X

x ∈ {0, 1}3

Idea

If we enumerate all possible solutions we can solve the problem.
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B&B

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 0x2 = 1

X

X1 X0

X11 X10 X01 X00

X111 X110 X101 X100 X011 X010 X001 X000

Figure: Binary enumeration tree
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B&B

If we use this method on larger problems the total number of problems in

the binary enumeration tree will be:

2N

Where N is the number of variables. It will take too long if we have a
large number of variables.

Idea

What if we could use some method to eliminate large portions of the
enumeration tree before we branch.

Let look at some concepts first.
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Upper bound

Feasible solution value ≥ Optimal solution value

Feasible solutions are solutions that meet all the constraints of the
problem, however, they may or may not be optimal.

The objective value of a feasible solution gives an upper bound on the
problem. Since we have a feasible solution, the optimal solution
cannot be worse!

A feasible solution can be difficult to find in some cases, but we can
find them as we explore branch-and-bound tree.
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Linear relaxation

Linear Relaxation

If we eliminate the binary constraints and we allow the variables to take
fractional solutions we obtain the linear relaxation. Notice that feasible
solutions are not eliminated in the relaxations since we are only removing
constraints, i.e., the variables can also take integer values.

F.T. (EPFL) CIVIL-557 25/2/2025 12 / 72



Lower Bound

Relaxation solution value ≤ Optimal solution value

The value of the objective function of the linear relaxation is always
less than or equal to the objective function of the original problem.

Hence, whatever the optimal solution is, it cannot be better than the
value of the relaxation.
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Pruning

At each node of the enumeration tree we can evaluate the bounds. The
upper bound (feasible solution)is global, and the lower bound(solution of
the relaxation) is local.

1 Prune by infeasibility (feasible region = ∅);
2 Prune by bound (LB is more than the UB);

3 Prune by optimality (the solution is feasible, e.g., binary variables are
binary).
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Branching

If we cannot prune the problem, we select a fractional variable and we
branch on it.

X1 = {x : xf ≤
⌊
x∗f

⌋
}

X2 = {x : xf ≥
⌈
x∗f

⌉
}

No feasible solution is eliminated X = X1 ∪ X2

Two disjoint sets ∅ = X1 ∩ X2
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B&B
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Example

z = min − 4x1 + x2

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ N2

F.T. (EPFL) CIVIL-557 25/2/2025 17 / 72



Example

Linear relaxation: we add the linear relaxation to the list of active
problems.

z = min − 4x1 + x2

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1, x2 ≥ 0
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Ex. iteration 1

Select node and Optimize:
We relax the integer constraints and solve using the simplex algorithm
(i.e., Gurobi)

z = −59

7

x1 =
20

7
x2 = 3

Since no feasible solution is found (upper bound), we set z∗ = ∞
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Ex. iteration 1

Branching: We can see that the value of x1 is not integer and hence it
violates the integrality constraints. Therefore, we choose the variable x1 to
branch.

X1 = {x : x1 ≤
⌊
20

7

⌋
= 2}

X2 = {x : x1 ≥
⌈
20

7

⌉
= 3}

No feasible solution is eliminated X = X1 ∪ X2

Two disjoint sets ∅ = X1 ∩ X2
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Ex. iteration 1

Add problems to the list of active problems

We have now created 2 new problems (X1 and X2),

We call these problems active problems since they have not been
explored yet,

We keep a list of all active problems that need to be explored,

Next iteration we must select an active problem to explore, e.g., X1.

.
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Ex. iteration 2

Select node and Optimize:
We select problem X1 and solve it using the simplex algorithm (i.e.,
Gurobi)

z = −15

2
x1 = 2

x2 =
1

2
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Ex. iteration 2

Branching:
We can see that the value of x2 is not integer and hence it violates the
integrality constraints. Therefore, we choose the variable x2 to branch.

X11 = {x : x2 ≤
⌊
1

2

⌋
= 0}

X12 = {x : x2 ≥
⌈
1

2

⌉
= 1}

No feasible solution is eliminated X1 = X11 ∪ X12

Two disjoint sets ∅ = X11 ∩ X12
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Ex. iteration 3

Select node and Optimize:
Now the list of active problems is (X2,X11 and X12).
We arbitrarily select X2 and reoptimize using the simplex algorithm.

Prune by infeasibility:
The problem is infeasible. The constraint x1 ≥ 3 is not feasible in the
model. Therefore, we prune the problem, i.e., we eliminate it from the
active problem list and do not have to look at it any further.

The active list now contains only 2 problems (X11 and X12)
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Ex. iteration 4

Select node and Optimize:
We select arbitrarily an active problem X12.

z12 = −7

x1 = 2

x2 = 1

The solution is integer! Update incumbent solution: At the beginning
we did not have a feasible solution and we set z∗ = ∞, we now found an
feasible solution. z∗ > −7 We up date the incumbent solution z∗ = −7
and x∗(2, 1). Prune by integrality: There is no need to branch.
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Ex. iteration 5

Select node and Optimize:
There is only 1 active problem in the list X11.

z11 = −6

x1 =
3

2
x2 = 0

Check bound: z∗ = −7 < −6 = z11 any solution obtained from
branching will be higher than −6, therefore we prune by bound.
Prune by bound:
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Ex. iteration 5

Select node and Optimize:
There are no active problems and we stop the algorithm.
The incumbent solution is the optimal solution.

z∗ = −7

x∗1 = 2

x∗2 = 1
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Node selection strategies

During the previous example of B&B we were selecting the problem from
the list of active problems arbitrarily, however, there are more intelligent
ways of selecting an active problem from the list. Following are some
strategies:

Best node first strategy

Select the node that has the best bound first.

Depth first search strategy

Descend the enumeration tree as quickly as possible to find a feasible
solution. Select the node that has been branch the most.
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Best node first strategy

Advantage

This strategy is guaranteed to lead to the smallest B&B tree.

Disadvantage

It can take a long time to find a feasible solution that can be used to
prune the tree.
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Depth first search strategy

Advantage

This strategy finds a feasible integer solution quickly.

Disadvantage

It leads to a bigger tree with more problems to solve.
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Why not use both?

In practice, we do use both.

Start with depth first search to find a feasible solution.

Once a feasible solution is found select the best node first to improve
the lower bound.

We can even go back and forth between the two strategies.
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Branching strategies

During the example we chose any fractional variable to branch on.

Most fractional variable

Select the variable that has the fractional value closest to 0.5.

Strong branching

We branch up and down on a subset of fractional variables, then we solve
the linear relaxation for each up and down branch. The variable that has
the largest increase on the lower bound is chosen.
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Most fractional variable

Let C be a set of all fractional variables, and fj the value of variable j ∈ C

j∗ = arg maxj∈Cmin[fj , 1− fj ]

Advantage

Quick rule to select a variable.

Disadvantage

It could lead to small increases of the lower bound.
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Strong branching

j∗ = arg maxj∈Cmin[zupj , zdownj ]

Advantage

It leads to a larger increase of the lower bound.

Disadvantage

It takes the solution of two LR for each variable.
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Ideas

Adding constraints

If we add a constraints to an MILP formulation, we run the risk of
eliminating feasible solutions. Valid inequalities are inequalities that do
not eliminate feasible solutions, therefore they can be added.

Removing constraints

If we remove a constraint of an MILP formulation, we will not eliminate
feasible solutions, however, we will allow some solutions that are not
feasible, i.e., solutions that violate the removed constraint.
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How do we solve MILPs

Minimize
∑

(i,j)∈A

cijxij

s.t.
∑

j∈δ+(i)

xij = 1 ∀i ∈ N,

∑
i∈δ−(j)

xij = 1 ∀j ∈ N,

∑
(i,j)∈δ+(S)

xij ≥
⌈∑

i∈S qi

Q

⌉
∀S ⊆ N, S ̸= ∅,

xij ∈ {0, 1} ∀(i , j) ∈ A.
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Exponential constraints

Pascal’s triangle
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Subtours

Some subtours are more expensive than others!

Figure: Subtours ?
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Subtours

Figure: Unlikely subtours
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Subtours

Figure: Likely subtours
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Subtours

Can we know what subsets of customers will form ”Good” subtours
beforehand and add the corresponding constraints to the model?
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Subtours

No, there is no simple way to find all SECs that will be
needed!

The way to find the subsets of customers that will form subtours is to
solve the relaxation and see in the solution of the relaxation what SECs
are violated, add them to the model and continue to find more iteratively,
until the optimal solution is found.
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Linear Relaxation (LR)

Minimize
∑

(i ,j)∈A

cijxij

s.t.
∑

j∈δ+(i)

xij = 1 ∀i ∈ N,

∑
i∈δ−(j)

xij = 1 ∀j ∈ N.

xij ≥ 0 ∀(i , j) ∈ A

We eliminate the Rounded Capacity Inequalities (RCIs) and binary
constraints.
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Branch-and-cut
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Branch-and-cut

Finding violated RCIs can be difficult (not impossible) if the solution in
fractional. It is easy if the solution is integer.

Separation of cuts

An algorithm is needed to take an integer solution of the relaxation of the
problem and find all violated RCIs.

When the current solution is fractional there is no guarantee that all
violated cuts are identified.

If the solution is integer, we can find easily all violated RCIs by
looking at the solution and identifying connected subsets that violate
the RCIs.
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Branch-and-cut
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Branch-and-cut

Branching is expensive!

Every time we branch in a B&B algorithm, we create 2 new problems.
These problems can grow until there are too many and we must stop the
algorithm

Branch-and-Cut spend more time in each node

The main idea is to spend more time at each solution of the LR so as to
increase the lower bound. If the lower bound is high enough we can prune
by bound. Therefore we avoid branching.
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Chvátal-Gomory cuts

Not only can we add SECs but we can add any valid inequality in a
Branch-and-cut algorithm.

Branching creates an exponential number of problems (doubling each
time), cuts do not.

The idea is to use more effort eliminating subproblems before we
branch, in the hopes that we can prune by bound.

When we add cuts to a LR the lower bound increases.

Recall

Valid inequalities are inequalities that do not eliminate feasible integer
solutions.
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Chvátal-Gomory procedure

Let X = P ∩ Zn, where P = {x ∈ Rn
+ : Ax ≤ b}, A is an m × n matrix

with columns {a1, a2, . . . , an} and v ∈ Rm
+

The inequality is valid:

∑
j∈N

vajxj ≤ vb This is true since v is positive

Next: ∑
j∈N

⌊vaj⌋xj ≤ vb Left hand side is less than or equal to vb

∑
j∈N

⌊vaj⌋xj ≤ ⌊vb⌋ The LHS is now integer so the RHS is integer
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VRP Set-partitioning formulation

Master problem (MP)

Minimize
∑
r∈Ω

crλr (1)

s.t.
∑
r∈Ω

airλr = 1 ∀i ∈ N, (2)

λr ∈ {0, 1} ∀r ∈ Ω.
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Simplex Algorithm
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Simplex Algorithm
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Standard form
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Simplex tableau
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Linear Relaxation Master Problem

Minimize
∑
r∈Ω

crλr

s.t.
∑
r∈Ω

airλr = 1 ∀i ∈ N,

−→1 ≥ λr ≥ 0 ∀r ∈ Ω.
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Linear Relaxation Master Problem

At each iteration of the Simplex, we have a set of basic variables and
a set of non-basic variables.

Basic variables are λB = {λi1 , λi2 , . . . , λi|N|}. A total of |N|, i.e., the
number of customers.

Non-basic variables are λNB = {λi|N|+1
, λi|N|+2

, . . . , λi|Ω|}. In total,
there are |Ω| − |N|.
Non-basic variables are always equal to zero at each iteration of the
Simplex, i.e., λNB = 0.

Therefore, to calculate the solution value at each simplex iteration we
just need the basic variables, i.e., λB.
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Restricted Master Problem

What is the RMP?
optimal if reduced cost are non negative

The set Ω is too big (≈ (|N| − 1)!).

Lets consider a smaller set of variables, e.g., P ⊂ Ω

Where |P| is a small number, i.e., not exponential.

The following model is the Restricted Master Problem (RMP):

Min
∑
r∈P

crλr

(RMP) s.t.
∑
r∈P

airλr = 1 ∀i ∈ N,

1 ≥ λr ≥ 0 ∀r ∈ P.
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What variables should we add to P

Feasible solutions can be difficult to find.
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Optimal solution of the MP

When does the MP = RMP ?

Optimal if the reduced costs of NB varibles is non negative

Recall that a basic solution is optimal if there are no non-basic
variables (λNB) with a negative reduced cost.

We must find non-basic variables (i.e., routes) that have a negative
reduced cost to add to the set P and reoptimize.

If we can proof that all non-basic variables have a non-negative
reduced cost, the current basic solution of the RMP is also optimal
for the MP and we do not have to search for more variables.
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Reduced cost

The reduced cost formula is the following:

ĉr = cr − cTB B−1Ar

Let πi = (cTB B−1)i be the dual variables corresponding to each constraint
of the RMP, and let Rr be a list of all customers visited in route r ∈ Ω.
Then the reduced cost can be calculated for each route with the following
equation:

ĉr = cr −
∑
h∈Rr

πh ∀r ∈ Ω

ĉij = cij − πj ∀i , j ∈ V
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Minimum reduced cost route

Elemetary Shortest Path Problem with Resource Constraints (ESPPRC)

Min
∑
i∈V

∑
j∈V

ĉijxij

s.t.
∑
i∈N

qi
∑
j∈V

xij ≤ Q,

∑
j∈N

x0j = 1,

∑
i∈V

xi0 = 1,

∑
i∈N

xih −
∑
j∈N

xhj = 0 ∀h ∈ N,

Ti + tij −Mij(1− xij) ≤ Tj ∀i , j ∈ V ,

ai ≤ Ti ≤ bi ∀i ∈ N,

xij ∈ {0, 1} ∀i , j ∈ N.
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B&P
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Feasible solutions

How do we know a node is infeasible if we do not have all variables?
Maybe one variable will satisfy the violated constraints!

In the B&B algorithm, it is possible to encounter nodes in the
enumeration tree that are not feasible.

In B&P we don’t have the complete set of variables available.

How do we know that there does not exist a variable that satisfies the
constraints?

How do we prove that the current node is not feasible if we do not
have all variables?
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Dummy variable

We can add a dummy variable λD with a large cost, i.e., cD = M. The
dummy variable satisfies all constraints.

min MλD

s.t. λD = 1 ∀i ∈ N,

1 ≥ λD ≥ 0

To eliminate the dummy variable we have to solve the pricing problem
(i.e., ESPPRC). If a feasible solution exist, routes will be created with
a negative reduced cost and added to the RMP.

If we cannot eliminate the dummy variable, the current problem is
infeasible. Thus, we prune the problem and continue with B&P.
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Branching

Unbalanced binary tree: Branching on variables makes the binary tree
unbalanced since most paths are not in the optimal solution. Setting
λ = 0 is not significant.

1

01

0001 0000

000001

0

00

RMP
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Pricing problem

ESPPRC and Forbidden Paths.

Min
∑
i∈V

∑
j∈V

ĉijxij

s.t.
∑
i∈N

qi
∑
j∈V

xij ≤ Q,

∑
j∈N

x0j = 1,

∑
i∈V

xi0 = 1,

∑
i∈N

xih −
∑
j∈N

xhj = 0 ∀h ∈ N,

∑
(i,j)∈P

xi,j ≤ |P| − 1← Forbiddenpath ∀P ∈ B,

Ti + tij −Mij(1− xij) ≤ Tj ∀i , j ∈ V ,

ai ≤ Ti ≤ bi ∀i ∈ N,

xij ∈ {0, 1} ∀i , j ∈ N.
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Branching

Option

Branch: On xij variables instead.

At each node of the branch-and-bound tree set the corresponding
variables to 1 or 0, and solve the pricing problem.

The pricing problem will not produce routes that contain the variables
that are set to 0.
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Summary

Branch-and-Bound is a powerful method to solve MILPs. We can
reduce the size of the enumeration tree by pruning the tree:

Prune by optimality;
Prune by infeasibility;
Prune by bound.

Branch-and-Cut algorithms

B&C can be used solve problems with a large number of constraints by
adding them as needed;
Separation procedures are necessary to find violated cuts;
Adding valid inequalities in B&B reduces the number of problems.
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Summary

Branch-and-Price is an advanced method to solve MILPs with a large
number of variables by column generation;

The Restricted Master Problem (RMP) has only a few variables;
Find variables with a negative reduced by solving a pricing problem and
add them to the RMP;
If no variable with negative reduced cost is found in the pricing
problem, then, the current solution of the RMP is also optimal for the
master problem (MP);
Once a solution of the MP has been found we continue with B&B, i.e,
we prune by bound, feasibility or optimality, or we branch on some
fractional variable.
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Summary

General idea in optimization

When we have a complicating property in a model, create a relaxation
without the complicating property and consider it incrementally as needed
in the problem (if possible).
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