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Neighborhood Search/Local Search

The neighborhood (Nk) of a solution ‘w’ in the 2-opt neighborhood is
the set of solutions that can be reached from ‘w’ by deleting two
edges in ‘w’ and adding two other edges in order to reconnect the
tour.

Simple example of a neighborhood for the CVRP is the relocate
neighborhood.

In this neighborhood, N(w) is defined as the set of solutions that can
be created from w by relocating a single customer. The customer can
be moved to another position in its current route or to another route.
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Relocate heuristic
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Relocate heuristic

F.T. (EPFL) CIVIL-557 18/3/2025 6 / 36



Relocate heuristic
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Small Neighborhood Search

Neighborhood Size:

If we take the 2-opt algorithm for the TSP as an example, the total
number of solutions that are possible from a given solution ‘w’ are:

O(n2)

For the relocate algorithm for the VRP, the total number of different
solutions that are possible from a given solution ‘w’ are also:

O(n2)

These “possible” solutions are the Neighborhood of a given solution
‘w’.

Definition: A small neighborhood is a neighborhood that has a size of
O(nk), where k ≤ 3.
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Large Neighborhood Search (LNS)

LNS is based on the destroy and recreate idea;

Some authors use different terms, e.g., ruin and rebuild, destroy and
repair, etc. However, the main idea is the same;

A destroy heuristic destroys a part of the current solution;

A rebuild heuristic repairs the destroyed solution.

Destroy heuristic:

Can remove a number of customers from a current solution.

Rebuild heuristic:

Inserts the removed customers to form a new solution.

F.T. (EPFL) CIVIL-557 18/3/2025 9 / 36



Large Neighborhood Search (LNS)

Local Search heuristics get stuck in local optima;

By destroying a solution, LNS can escape local optima and go to a
different neighborhood.

Neighborhood size In a VRP with 100 customers, if LNS removes 15% of
the customers, the number of possible solutions is the following:(

100

15

)
=

100!

15!× 85!
= 2.5× 1017

That is the reason why this is called Large Neighborhood Search
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LNS: Notation

x∗ Initial solution;

xb Current solution;

f (x) The objective function;

accept(x1, x2) Criteria to accept a new solution as a current solution;
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LNS

Algorithm 1: Large Neighborhood Search Algorithm

Input: Initial solution x∗

xb ← x∗; Incumbent solution ;
x ← x∗; Current solution ;
repeat

xk ← rebuild(destroy(x));
if accept(xk , x) then

x ← xk ;

if f (xk) < f (xb) then
xb ← xk ;

until stopping criterion is met;
return xb;
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LNS: Acceptance criteria

The acceptance criteria accept(xk ,w): There are different strategies to
select an acceptance criteria.

Hill-climber, if LNS accepts only improving solutions.

Threshold accepting. Similar to Simulated annealing, select a
threshold T0, if a the difference f (xk)− f (w) is smaller than T0 then
we accept the solution.

Simulated annealing criteria. Variations of SA have been considered
where the temperature ‘T ’ decreases linearly.
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LNS: Destroy method

The “degree of destruction” is the most important choice when
implementing the destroy method.

Destroy too little: If LNS removes only one customer from the
solution, then LNS would be the same as the relocate heuristic.

The LNS algorithm is reduced to a small neighborhood algorithm.
LNS will not be able to escape local optima.

Destroy too much: If LNS destroys all the solution, then LNS is a
constructive heuristic, e.g., random insertion.

We are rebuilding the solution from scratch.

Balance is required so that the degree of destruction is not too small
or too large. Here are some strategies:

Increase the degree of destruction gradually.
Chose the degree of destruction randomly, from a range that is not too
small or too large.
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LNS: Rebuild method

Exact Method
An exact method can reconstruct the partially destroyed solution in the
best possible way;
It could lead to higher quality solutions;
In some applications it can take too long;

Heuristic
An exact rebuild method can be bad for the diversification of the
current solution.
Heuristic can escape local optima more often since it does not always
find the same optima solution.
Heuristics are fast!
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Adaptive Large Neighborhood Search (ALNS)

ALNS extends the LNS heuristic, by allowing multiple destroy and
multiple rebuild methods.

Each destroy/repair method is assigned a weight that controls how
often that particular method is attempted during the search.

The weights are adjusted dynamically as the search progresses so that
the heuristic adapts to the instance at hand and to the state of the
search.
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Adaptive Large Neighborhood Search (ALNS)
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ALNS

Algorithm 2: Adaptive Large Neighborhood Search

Input: Initial solution x∗

ρ− ← (1, ..., 1): ρ+ ← (1, ..., 1) Initial weights set to 1;
xb ← x∗; Incumbent solution ;
x ← x∗; Current solution ;
repeat

select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using ρ−

and ρ+;
xk ← r(d(x)); Destroy and rebuild ;
if accept(xk , x) then

x ← xk ;

if f (xk) < f (xb) then
xb ← xk ;

update ρ− and ρ+;
until stopping criterion is met;
return xb;

F.T. (EPFL) CIVIL-557 18/3/2025 19 / 36



ALNS: Probability of selection

Ω−Set of all destroy methods;

Ω+Set of all rebuild methods;

ϕ−j Probability of choosing destroy method “j”;

ρ−j Weight of destroy method “j”;

ϕ+j Probability of choosing rebuild method “j”;

ρ+j Weight of rebuild method “j”;

The probability to choose the “j” destroy method is the following:

ϕ−j =
ρ−j∑|Ω−|
k=1 ρ

−
k
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ALNS: Reward and Update

Calculate the reward of each operator used:

ψ = max


ω1 if the new solution is a new global best,

ω2 if the new solution is better than the current one,

ω3 if the new solution is accepted,

ω4 if the new solution is rejected,

ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0

Update weights:

ρ−j = λρ−j + (1− λ)ψ, ρ+i = λρ+i + (1− λ)ψ

Where λ is the decay parameter that controls how sensitive the weights
are to changes to the performance of the heuristics.
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ALNS: Rewards

The weights of the heuristics that were not used remain unchanged.

The goal is to select heuristics that work well for the problem being
solved.

Coupled neighborhoods: Some remove heuristics and rebuild
heuristics go well together, or might be incompatible together. In
such cases, one may define a set of rebuild heuristics that can be used
with a specific destroy heuristic.
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ALNS: Time vs quality

If a heuristic h1 if faster than a heuristic h2, it can be used for
hundreds of iterations for a single iteration of the slower heuristic h2.

The rewards in ALNS favor heuristics that find higher quality
solutions, even if they require a large number of iterations in
comparison to faster heuristics that require less iterations.

The quality of the solution quality has to be evaluated with time. For
example, if 100 iterations of h1, on average, finds better solutions
than a single iteration of h2, and 100 iterations takes the same time
as 1 iteration of h2, then, h1 is better.

If all heuristics take the same time then it is not a problem.

Otherwise, one can adjust the score ψ with a measure of time
consumption.
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Matheuristics

Matheuristic are a family of metaheuristics that combine powerful exact
methods like MIP and metahusristics.
Examples:

LNS, can use an exact method to rebuild the partialy destroyed
solution.

Variable fixing: In a Branch-and-Bound algorithm, find a variable that
is fractional and set to one, resolve without branching and fix another
fractional value to one, until a feasible solution is found.

Column generation: Solve the pricing problem and convert the
relaxation problem to an MIP and solve.
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Master Problem: The set-covering formulation

The Set-covering formulation is solved efficiently with commercial
solvers, e.g., Gurobi or CPLEX.

Restricted Master problem (RMP)

Minimize
∑
r∈Ω̄

crλr

s.t.
∑
r∈Ω̄

airλr ≥ 1 ∀i ∈ N,

λr ∈ {0, 1} ∀r ∈ Ω̄.
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Column Generation
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Heuristic Pricing

It is not necessary to produce the shortest path in every iteration of CG.
All that is needed is a path with a negative reduced cost.

The exact method to find the shortest path can be time consuming;

Dual values can be unstable at the start of the algorithm taking many
iterations to stabilize;

Fast heuristics can be used to find a negative reduced cost route;

The exact method for the pricing problem only needs to be used to
prove optimality of the master problem.
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Column Generation
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CG: Pricing Heuristic

Recall the dominance rules and Feasibility check for the exact method of the ESPPRC

Dominance rules: Label L1 = (i1, c1,T1,Q1,V1, L1) dominates label
L2 = (i2, c2,T2,Q2,V2, L2) if the following is true:

1 i1 = i2

2 c1 ≤ c2

3 T1 ≤ T2

4 Q1 ≤ Q2

5 V1 ⊆ V2← complicating rules!

Feasible extension

if jn ∈ V e , Then the extension is not feasible.
or

if T e + t(ie ,jn) > bjn , Then the extension is not feasible.
or

if Qe + qjn > Q, Then the extension is not feasible.
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CG: Pricing Heuristic

Change dominance rules and keep feasibility checks

1 i1 = i2

2 c1 ≤ c2

3 T1 ≤ T2

4 Q1 ≤ Q2

if jn ∈ V e , Then the extension is not feasible.
or

if T e + t(ie ,jn) > bjn , Then the extension is

not feasible.
or

if Qe + qjn > Q, Then the extension is not
feasible.

- Eliminating complicating dominance rules makes the algorithm
terminate in pseudo-polynomial time. However, there is no guarantee
that the solution is optimal.

- Keeping all feasibility checks guarantee that the solution (if found)
will be feasible.

- If more dominance rules are eliminated the algorithm will terminate
faster.
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CG:Pricing heuristic

Strategy: Develop multiple heuristics and order them from fastest to
slowest. The fast heuristics produce solutions of smaller quality while the
slower ones will be able to find a negative column more easily.

Start by using the fastest heuristic to produce columns.

If the fastest heuristic found a negative column, add to and resolve
the LRMP.

If the fastest heuristic fails to find a negative column, move to the
second fastest, etc.

If all heuristics have failed to produce a negative column then use the
exact method.

F.T. (EPFL) CIVIL-557 18/3/2025 32 / 36



Column Generation heuristic

Commercial solvers, e.g., Gurobi, can solve set partitioning models quickly.
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Column Generation heuristic

The solution is not necessarily optimal. To find the optimal solution we
must use Branch-and-Price, i.e., every time we branch we must solve the
pricing problem again.

The RMP with a restricted number of routes will most likely not have
the optimal routes in the subset of columns.

Commercial solvers do not have the feature of adding columns in the
middle of branching.

If the exact method was used in the last iteration of CG then we at
least get a lower bound for the problem.
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Column Generation: Variable fixing

Another strategy widely used is to fix fractional variables to an integer,
instead of branching.

1 Solve the MP, find a fractional variable close to 1, e.g., 0.95, and set
equal to 1;

2 Solve pricing problem until no negative column is found.

3 Select another fractional variable that is close to 1 and set equal to 1.

4 Repeat until you find a feasible solution.

At any point we can stop the algorithm and turn the RMP into an IP and
solve the problem with a commercial solver. The set of routes contained in
the restricted set of routes will be larger, and increase the probability of
finding better solutions.
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