CIVIL 534 | Computational systems thinking for sustainable engineering

Project Milestone 1

Due 17:00 on April 5

Throughout this course, you will work on a semester-long project that will allow you to engage with
material from different parts of the course through a single case study. The case study is a famous
set of systems dynamics models initially developed by the pioneers of systems thinking that
attempt to model the global-scale dynamics of population, economic growth, and pollution. The
models have received both praise and criticism in the years since they were first developed in the
early 1970s. You will have the opportunity to formulate your own arguments about the models.

In this first project milestone, you will begin exploring the models and running initial simulations in
Python. Then, you will leverage computational power to help you arrive at policies that drive system
behavior that you have deemed sustainable.

The models

We will be using two highly related models that essentially describe the same key systems
components but are different in their complexity. The world2 model was developed by Jay
Forrester and presented in his book World Dynamics. (This book can be a nice reference if you are
interested in going further into understanding the model.) The wor1d3 model was developed by
Dennis Meadows and a large team of collaborators. The results were presented in the book The
Limits to Growth and the model was published in the book Dynamics of Growth in a Finite World.
The table below summarizes the size of the two models.

Model Stocks Flows Variables Total connections
world2 5 8 82 121
world3 15 23 156 336

Throughout the semester, we will be working with pre-defined implementations of both models.

Setting up your Python environment

To get started with the project, you will need to install specific packages for working with the
models. Both packages can be installed using pip. However, for maximum flexibility and the option
to modify certain aspects of the model, it is better to install the folders directly. Here is the process
for doing this with the pyworld2 model:

1. Go to https://github.com/cvanwynsberghe/pyworld2
2. Download the code as a zip file (you can use the green “Code” button to do this).

https://github.com/cvanwynsberghe/pyworld2

CIVIL 534 | Computational systems thinking for sustainable engineering

3. Goto https://noto.epfl.ch/
4. Create a new folder where you like and call it “pyworld2”

5. Within the pyworld2 folder you just created, upload the files contained within the
“pyworld2” folder you just downloaded. Note that the “pyworld2” folder is contained within
the “pyworld2-main” folder. You need to upload the files from __init.py toworld2.py.
You can now create Jupyter notebooks in the outer folder and use the pyworld2 package.
Test this by creating a new notebook and running the following two lines of code:
import pyworld2
pyworld2.hello _world2()

You should see the following output:

World2 scenario - standard run

Fa o9 O
~ o~ o < ©

~
O n1 O o1 O-A
o — N m ©
N =
~
O o4 O ©4 O-
o — (=] N <
o —
T}
O 1 ©O19 o1 OA
o (=} N ~ o~
N
o _//\
o< o< o+ O~ O T T T T T T T

© 1900 1925 1950 1975 2000 2025 2050 2075 2100

time [years]

World2 scenario - reduced usage of Natural Resources

R QL CI POLR _P

= o O o9 O
~ o~ o < ©
~
094 nd 04 o o0-
o — 1 m ©
wn —~
~
U4 o4 O ©1 O-
o — o N <
o -~
n
U n-1 O o O-
=] (=] n ~ o~
wn
o~
od o+d o-d od o T T T T T T T
© 1900 1925 1950 1975 2000 2025 2050 2075 2100

time [years]

https://noto.epfl.ch/

CIVIL 534 | Computational systems thinking for sustainable engineering

You can install the world3 model using the same steps. You should look through the source code to
understand the similarities and differences in how the updated world3 model is structured. world3
has a similar structure to the world2 model. While there are more parameters in world3 (e.g.,
multiple mortality rates for different ages instead of one overall death rate), the same world2
diagram on Moodle provides a good proxy for the structure of world3.

Part 1: world2 model characterization

When you initialize the model, you see the standard run of the model in addition to an alternative
run in which the use of natural resources is reduced by 75% in 1970. The impact of using fewer
natural resources (holding all other things equal) may be surprising. One of the key reasons for the
surprising behavior is the interdependencies between the population and natural resource stocks.
As a starting point for this milestone, take a look at the world2 system diagram and try to identify
the feedback loops that link these stocks. To identify feedback loops, it may be useful to consider
the dynamics of the other stocks in each of the two scenarios as well.

In this first milestone, you should also take some time to consider varying additional parameters in
the model. Parameters can be varied in different ways. The README file on Github for the models
provides some details on how to vary the model parameters. Some model parameters can be
varied using the set_state variables() orset_initial state() functions. The function
set_switch_functions() allowsyou to implement changes to a select number of parameters
that occur at a defined time during the model run. As described in the README file, this is done by
editing the contents of a . json file. Note that this can be done in Python using the json package
(already installed). Here is an example of editing a json file:

import json
open the file
with open('filename.json', 'r') as file:
Edit the contents of the file object
data = json.load(file)
data[key]["key"] = @ # access the data using the keys within the json file
new_data = json.dumps(data)
write the file
with open('new_filename.json', 'w') as file:
file.write(new_data)

At a minimum, you should vary the following parameters: capital investment rate, birth rate, death
rate, pollution production rate, but you should go deeper than this to fully explore the model
dynamics. Note that you can create your own graphs by plotting individual variables as well.
Variables can be accessed directly through the modelinstance (e.g., [model name].[variable
name]).

https://github.com/cvanwynsberghe/pyworld3/tree/main

CIVIL 534 | Computational systems thinking for sustainable engineering

Consider the usefulness and potential weaknesses of the world2 model. Identify the key feedback
loops and discuss how varying different parameters affects the model runs. Remember that this is
the first milestone of a semester-long project, so your understanding and opinion of the model will
likely change throughout your work on the project.

Part 2: Automated policy design

Your next task is to develop a structured exploration of “policies” using an automated process that
you design in Python. The goal of your automated procedure is to arrive at a policy that produces
“sustainable development,” however you would like to define the term (be explicit). You may use
both models (world2 and world3) in the development phase of your automated procedure, but
ultimately you should define the policy for the world3 model and its parameters.

The policy you come up with involves the setting of parameters that you believe could be adjusted
in a realistic manner. Beyond the values of parameters themselves, another aspect of the model is
the time at which certain policies are implemented. These are described in the source codes of
both world2 and world3, though they are implemented slightly differently in each version.

A key task here is to leverage the computational power of Python to explore policy scenarios in an
automated fashion. One part of your strategy could be to define the most important variables and
compute summary statistics of the variables for the different possible policies. This way, you can
run multiple scenarios and evaluate the impacts without needing to look at the output graphs for

each run separately, enabling fast comparisons of different policies.

Submission

e Groupsof3or4

e Max 8-page narrative

e Code for analysis (note that this is not graded at this stage, but you will need to submit your
code at the end of the project)

